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ABSTRACT

We present results of a spectroscopic survey of X-ray— and proper-motion-selected samples of late-type
stars in the Lower Centaurus—Crux (LCC) and Upper Centaurus—Lupus (UCL) subgroups of the nearest OB
association: Scorpius-Centaurus. The primary goals of the survey are to determine the star formation history
of the OB subgroups and to assess the frequency of accreting stars in a sample dominated by ““ post-T Tauri”
pre-main-sequence (PMS) stars. We investigate two samples: (1) proper-motion candidates from the ACT
Catalog and Tycho Reference Catalog (TRC) with X-ray counterparts in the ROSAT All-Sky Survey
(RASS) Bright Source Catalog and (2) G- and K-type stars in the Hipparcos catalog found to be candidate
members by de Zeeuw et al. We obtained optical spectra of 130 candidates with the Siding Spring 2.3 m dual-
beam spectrograph. PMS stars were identified by (1) strong Li A6707 absorption, (2) subgiant surface grav-
ities, (3) proper motions consistent with Sco-Cen membership, and (4) H-R diagram positions consistent with
being PMS. We find 93% of the RASS-ACT/TRC stars to be probable PMS members, compared with 73%
of the Hipparcos candidates. We demonstrate that measuring the gravity-sensitive band ratio of Sr 1 A4077
to Fe 1 AM4071 is a valuable means of discriminating PMS and zero-age main-sequence (ZAMS) stars. Using
secular parallaxes and Hipparcos, Tycho-2, and Two Micron All Sky Survey photometry, we construct an H-
R diagram. Depending on the choice of published evolutionary tracks, we find the mean ages of the PMS
populations to range between 17 and 23 Myr for LCC and 15 and 22 Myr for UCL. Taking into account
observational errors, it appears that 95% of the low-mass star formation in each subgroup must have
occurred in less than 8 Myr (LCC) and 12 Myr (UCL). Using the Bertelli et al. tracks, we find main-sequence
turnoff ages for Hipparcos B-type members to be 16 = 1 Myr for LCC and 17 £+ 1 Myr for UCL. Contrary to
previous findings, it appears that LCC is coeval with, or slightly older than, UCL. The secular parallaxes of
the Sco-Cen PMS stars yield distances of 85-215 pc, with 12 of the LCC members lying within 100 pc of the
Sun. Only one out of 110 (O.9f§jé%; 1 o) PMS solar-type stars in the sample with ages of 13 + 1 (s.e.) £ 6 (1
o) Myr and masses of 1.3 + 0.2 (1 o) M, shows both enhanced Ha emission and a K-band excess indicative

of accretion from a truncated circumstellar disk: the nearby (d ~ 86 pc) classical T Tauri star PDS 66.

Key words: open clusters and associations: individual (Scorpius OB2, Lower Centaurus—Crux,
Upper Centaurus—Lupus) — stars: activity — stars: formation — stars: kinematics —

stars: pre-main-sequence — X-rays

1. INTRODUCTION

Post-T Tauri stars (PTTSs) are low-mass, pre-main-
sequence (PMYS) stars with properties intermediate between
T Tauri stars found in molecular clouds (both “ classical,”
with evidence for accretion from a circumstellar disk and
“weak lined,” lacking such evidence, hereafter CTTSs and
WTTSs; ages less than a few megayears) and zero-age main-
sequence stars (ZAMS; ages greater than 30-100 Myr).
Although strict observational criteria do not exist for classi-
fying PTTSs as such, a working definition is a low-mass star
(less than 2 M) that is Li-rich compared with stars in
ZAMS open clusters such as the ~120 Myr old Pleiades,
and whose theoretical H-R position [log 7. and log
(L/L)] is above the main sequence (Herbig 1978; Jensen
2001). Since these criteria also apply to CTTSs and WTTSs,
one could argue that, in addition, PTTSs should be located
in regions devoid of nearby molecular gas or nebulosity.
Classifying PTTSs by these criteria has complications: (1)
few young field stars not associated with well-studied molec-
ular clouds currently have accurately measured distances
(hence known luminosities), (2) unresolved binarity can
make stars with known distances appear more luminous,
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and thus younger, and (3) there is a dispersion in observed
Li abundances among stars with the same masses and ages
in coeval open clusters. Pre-main-sequence stars exhibit
considerable chromospheric (Ho and Ca H and K) and
coronal X-ray emission. Only a few PTTS candidates were
known before the Einstein and ROSAT X-ray missions, and
X-ray surveys have become the primary means of identify-
ing these PMS stars.

Investigations of pre—main-sequence evolution have been
hampered by a lack of large samples of well-characterized
PTTSs. This deficit has impacted studies of PMS angular
momentum evolution (e.g., Rebull et al. 2002; Bouvier et al.
1997), stellar multiplicity (e.g., Kohler et al. 2000), and cir-
cumstellar disk evolution (e.g., Spangler et al. 2001; Haisch,
Lada, & Lada 2001). The nearest PTTSs also provide opti-
mal targets for young exoplanet and brown dwarf searches
(e.g., Lowrance et al. 2000). These objects are much more
luminous early in their evolution, and the closest targets
enable characterization of the smallest orbital radii. With a
post-T Tauri population in a nearby OB association, we
can address basic questions such as how long the star forma-
tion persists in a giant molecular cloud and what is the dura-
tion of the accretion phase for young solar-type stars.
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Identifying a bona fide PTTS sample can be accomplished
by searching for low-mass members of nearby fossil OB
associations. The Sco-Cen OB complex (Sco OB2) is the
nearest OB association to the Sun (mean subgroup distances
range from 118 to 145 pc; de Zeeuw et al. 1999, hereafter
dZ99) and covers roughly 2000 deg? (~5%) of the sky. The
complex is made up of three kinematic subgroups (Blaauw
1946) with nuclear ages ranging from 5 to 15 Myr, a molecu-
lar cloud currently undergoing star formation (the p Oph
complex, Wilking, Lada, & Young 1989; Blaauw 1991; de
Geus 1992), and perhaps several smaller cloud complexes in
the vicinity (e.g., the Lupus, Corona Australis, Chamae-
leon, Musca, and Coalsack clouds). The three subgroups
are Upper Scorpius (US; age 5-6 Myr), Upper Centaurus—
Lupus (UCL; age 14-15 Myr), and Lower Centaurus—Crux
(LCC; age 11-12 Myr, de Geus, de Zeeuw, & Lub 1989). US
has been studied extensively in recent years (e.g., Preibisch
& Zinnecker 1999, and references therein), but UCL and
LCC have received relatively little attention.

In this work, we investigate the low-mass (less than 2 M..)
membership of the two oldest Sco-Cen OB subgroups (LCC
and UCL) using recently available astrometric catalogs
(Hipparcos, ACT, the Tycho Reference Catalog [TRC], and
Tycho-2), the Two Micron All Sky Survey (2MASS), and
the ROSAT All-Sky Survey (RASS). We conduct a spectro-
scopic survey of two samples: (1) an X-ray-selected sample
of late-type stars from the kinematic candidate membership
lists of Hoogerwerf (2000), and (2) the G-K type Hipparcos
members of the OB subgroups from dZ99. In § 2, we discuss
the procedure for selecting candidate PMS stars from both
samples, and § 3 discusses the observations and assembled
database. Section 4 describes the data analysis and charac-
terization of our stellar sample, and § 5 discusses the
selection of PMS stars, sample contamination, and com-
pleteness. Section 6 describes how we construct an H-R dia-
gram for the subgroups, and § 7 presents results regarding
the ages of the subgroups, their age spreads, and the fre-
quency of accretion disks around PMS stars. Section 8 dis-
cusses the star formation history of LCC and UCL, and § 9
summarizes the findings of our survey.

2. SELECTION OF CANDIDATE PMS STARS
2.1. The Hipparcos Sample

DZ99 lists Hipparcos Sco-Cen members that were
selected using both de Bruijne’s (1999a) refurbished conver-
gent point method and Hoogerwerf & Aguilar’s (1999) spa-
ghetti method. Their membership lists contained 31 G-K
stars in UCL and 21 G-K stars in LCC (their Table C1).
Most of these bright stars have been classified in the Michi-
gan Spectral Survey (e.g., Houk & Cowley 1975); however,
SIMBAD! reveals that most have been studied no further.
We limit the survey to the 30 G-K candidates with Michi-
gan luminosity classes IV or V (see Table 1). Stars with bor-
derline F/G Michigan types were not observed. HIP 63962
and 73777 met the criteria but were not observed. DZ99 esti-
mated the contamination by G-K type interlopers of all
luminosity classes to be 32% for LCC and 24% for UCL. Of
these 31 stars, 17 also have RASS BSC X-ray counterparts
within 40”.

I See http://simbad.u-strasbg.{r/Simbad.

2.2. The RASS-ACT/TRC Sample

To identify lower mass members of an OB association,
one can search for stars whose proper motions are similar to
those of high-mass members. The high-mass membership
and moving group solution for each OB subgroup were
determined by dZ99 and de Bruijne (1999b). Thousands of
faint stars in the ACT and TRC astrometric catalogs” were
identified by Hoogerwerf (2000) as candidate low-mass
LCC and UCL members. A high degree of contamination
from interlopers is expected because of the similarity of the
space motions of the subgroups to that of the local standard
of rest, compounded by the low galactic latitude of the sub-
groups. The selection of ACT/TRC candidate members is
described in detail in § 4 of Hoogerwerf (2000).

The Hoogerwerf ACT/TRC membership lists for LCC
and UCL were slightly modified and filtered to produce the
final target list. First, we requested from R. Hoogerwerf
(1999, private communication) candidate membership lists
with different color-magnitude constraints from that
described in Hoogerwerf (2000). The new color-magnitude
selection box is essentially a polygon defined by the
Schmidt-Kaler (1982) empirical zero-age main sequence
(B—V vs. My) at the mean distance for each subgroup
(dZ99), where we take all stars AM; = 3 mag above and
AMy = 1 mag below the ZAMS line. Hoogerwerf originally
selected only those stars within AM = 1.5 mag above the
ZAMS, but this could inadvertently omit younger members
or binaries. The selection box contained 1353 ACT and
TRC stars in LCC and 1874 stars in UCL. In order to target
low-mass, solar-type stars with G—K spectral types, we
retained only those stars with Johnson (B—7") > 0.58 mag
(the unreddened color of GO dwarfs; Drilling & Landolt
2000). No red B—V limit was imposed. After the color-
magnitude selection, we retained only those stars that were
identified as kinematic members in both the ACT and
TRC astrometric catalogs. This final color selection of
the ACT/TRC lists resulted in 785 UCL candidates and
679 LCC candidates.

In order to further filter the target list, we selected only
those ACT/TRC candidates that had ROSAT All-Sky Sur-
vey Bright Source Catalog (RASS BSC) X-ray counter-
parts. Voges et al. (1999) cross-referenced the RASS BSC
with the Tycho catalog and found that 68% of the optical—
X-ray correlations were within 13", and 90% of the correla-
tions were within 25”. In plotting a histogram of the separa-
tion distance between RASS BSC X-ray sources and ACT/
TRC stars, we independently find 40” to be an optimal
search radius. No constraints on X-ray hardness ratio were
imposed in the target selection. In order to calculate X-ray
luminosities, we assume the X-ray energy conversion factor
for the ROSAT PSPC detector from Fleming et al. (1995).
The linearity of this X-ray efficiency relation spans the tem-
perature range of stellar coronae from inactive subdwarf
stars to extremely active RS Canum Venaticorum and
T Tauri stars. Not surprisingly, the kinematic selection of

2The ACT (Urban, Corbin, & Wycoff 1998) and TRC catalogs (Hog et
al. 1998) were used for target selection for this project in 1999, but we use
the photometry and astrometry from the Tycho-2 catalog (available in
2000; Hog et al. 2000a, 2000b) in the data analysis. The Tycho-2 catalog
was a joint USNO/Copenhagen project, and its data supersede the contents
of the ACT and TRC catalogs.
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ACT/TRC stars also selected many of the same stars as in
the Hipparcos sample (HIP 57524, 59854, 62445, 65423,
66001, 66941, 67522, 75924, 76472, 77135, 77524, 77656,
and 80636). These stars are retained in the Hipparcos sample
(Table 1) and are omitted from the RASS-ACT/TRC list
(Table 2). The final target list of 96 RASS-ACT/TRC stars
(40 LCC and 56 UCL) is given in Table 2.

3. OBSERVATIONS

Blue and red optical spectra of the PMS candidates were
taken simultaneously with the dual-beam spectrograph
(DBS) on the Siding Spring 2.3 m telescope on the nights of
2000 April 20-24. The DBS instrument is detailed in
Rodgers, Conroy, & Bloxham (1988). Using a 2" wide slit,
we used the B600 line mm~! grating in first order on the blue
channel, yielding 2.8 A FWHM resolution from 3838-5423
A. The red channel observations were done with the R1200
line mm~! grating in first order, yielding 1.3 A FWHM reso-
lution over 6205-7157 A. The five nights of bright time were
predominantly clear to partly cloudy. Signal-to-noise ratios
of ~50-200 per resolution element were typically reached
with integration times of 120-720 s. Flat fields and bias
frames were observed at the beginning and end of each
night. NeAr A-calibration arcs and spectrophotometric
standards were observed every few hours. The spectra were
reduced using standard IRAF routines. In order to remove
low-order chromatic effects from the band-ratio measure-
ments, we spectrophotometrically calibrated all of the target
spectra using two standard stars from Hamuy et al. (1994).
A total of 118 program stars (§§ 2.1 and 2.2) and 20 MK
spectral standards (§ 4.1.1) were observed. The major stellar
absorption features of one of the single standard G stars
were shifted to a zero-velocity wavelength scale. The spectra
of all of the stars were then cross-correlated against this
standard star using the IRAF task FXCOR and then shifted
to the common, rest-frame wavelength scale. This was done
to ensure proper identification of weak lines, as well as to
make sure that the band-ratio measurements were sampling
the same spectral range in each stellar spectrum.

4. ANALYSIS OF SPECTRA

4.1. Spectral Types and Luminosity Classification
4.1.1. Standard Stars

We observed 20 spectral standards including dwarfs and
subgiants (luminosity classes IV and V) and a few giants
(I11). A summary of their properties is listed in Table 3. To
permit quantitative examination of trends in the strengths
of spectral features, as well as interpolation between spectral
types, we adopt the numerical subtype scaling of Keenan
(1984; i.e., here listed as “ Sp.,” where GO = 30, G2 = 31,
KO = 34, etc.). All of the standard stars are classified on the
MK system by Keenan & McNeil (1989), except for HR
7061 (Garcia 1989). Table 3 also lists their spectral types as
given in the Michigan Spectral Survey atlases of N. Houk
(e.g., Houk 1978). The sample standard deviation of a linear
fit between the Keenan and Houk spectral types for dwarfs
and subgiants, on Keenan’s subtype scale, is o(Sp.) = 0.6
subtypes. The ~0.6 subtype uncertainty probably represents
the best that can be done using spectral types determined by
different authors.

0.2

o
=

FHR 5553 (K0.5V) 2

o

o

Lo @ V dwarfs
m [V subgiants

o
=

~2.510g(A4071/24077) [mag]

Py " HR 4287 (KO+1II) A JIT giants
F s o x Hipparcos
F o o RASS—ACT/TRC
0.2 j GX@X\ i
L A ,
- CO G5 KO K1 K2 K3 K4 K5 |
gl ‘ L
0 0.1 0.2

MI6 [mag]

FiG. 1.—MI6 band ratio (7,g indicator) vs. Fe 1 A4071/Sr u A4077 band
ratio (surface gravity indicator). The solid line is a polynomial fit to only
the dwarf standards. The dashed lines separate dwarfs, subgiants, and
giants. The dwarf-subgiant dashed line is —2 times the o-residual below the
dwarf regression, whereas the subgiant-giant boundary is placed somewhat
arbitrarily to resolve the observed subgiant and giant loci. Empirically, this
diagram suggests that most of the target stars are consistent with being
G- and K-type subgiants, with few giant and dwarf interlopers. A few early
K standards are noted for reference.

The adopted spectral types are those of Keenan &
McNeil’s; however, the luminosity classification was veri-
fied (and some changed) by virtue of (1) the position of the
stars on a color-magnitude diagram based on Hipparcos
data, (2) the position in a temperature versus Sr 1w \4077/
Fe1 4071 diagram (see § 4.1.3, Fig. 1), and (3) the published
log g estimates. Although changing the classification of
some standards may appear imprudent, the H-R diagram
positions, Sr/Fe line ratio, and derived log g values (Cayrel
de Strobel, Soubiran, & Ralite 2001) are all consistent with
our new adopted luminosity classes.> In every case, the differ-
ence was only half of a luminosity class, and only five out of
20 of the stars were changed. Notes on the revised luminos-
ity classifications are given in Appendix B.

4.1.2. Visual Classification

The blue spectrum of each star was assigned a spectral
type visually by E. M. through comparison with the stan-
dards in Table 3. In order to distinguish subtypes, we
focused on several features such as the G band (A\4310), Ca1
M227, Cr 1 A4254 and nearby Fe lines, and the Mg b lines
A5167, A5173, and A5184. Balmer lines were ignored
because of chromospheric emission. After making an initial
guess through comparison with a wide range of spectral

3 Hipparcos data also led Keenan & Barnbaum (1999) to revise the lumi-
nosity classes of a few giant star standards at the half luminosity class level.
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TABLE 3
SPECTRAL STANDARD STARS
V T+ o, B-V
HD HR MK Sp.Type (mag) (mas) (mag) [Fe/H] Adopted MSS Sp.Type Adopted Sp.Type Notes
182640 ............. 7377 FOIV 3.36 65.1+0.8 0.32 . F2v FOIV ab
173677 ... 7061 FoVv 4.19 524 +0.7 0.48 —0.1 . FoIv-v ¢
84117 o 3862 FoV 4.93 67.2+£0.7 0.53 GOV Fov
121370 ... 5235 GOV 2.68 88.2+0.8 0.58 0.2 GOIV b
89010 ............... 4030 G1.51V-V 5.95 329+0.9 0.66 0.0 . G1.51V-V
126868 ............. 5409 G21vV 4.84 242+ 1.0 0.69 0.0 G3V G2 III-1V ad
161239 ............. 6608 G2 I11b 5.73 26.1 £ 0.6 0.68 . o G21V
146233 ............. 6060 G2Va 5.49 71.3+0.9 0.65 0.0 G5V G2V 4
94481 ... 4255 G4 111 5.65 8.0+ 0.8 0.83 . KO II+(G) G4 111
117176 ............. 5072 G4V 4.97 552 40.7 0.71 —0.1 . G41V-vV ¢
188376 ............. 7597 G551V 4.70 42.0+09 0.75 —0.1 G3/5111 G51V f
115617 ............. 5019 G6.5V 4.74 117.3 £0.7 0.71 0.0 G5V G6.5V
114946 ............. 4995 G71V-V 5.31 259 +0.7 0.86 —0.1: G8III/1V G771V
188512 ... 7602 G81V 3.71 73.0+0.8 0.86 0.0: . G81V 4
165760 ............. 6770 G811 4.64 13.7+£0.8 0.95 —0.1 . G811
95272 i 4287 KO0+ III 4.08 187+ 1.0 1.08 —0.1: K111 KO-+I1I
131511 ... 5553 K0.5V 6.00 86.7 £ 0.8 0.84 K0.5V a
165438 ............. 6756 K11V 5.74 28.6 +0.8 0.97 0.0 K01V K11V
131977 ..o 5568 K4V 5.72 169.3 £ 1.7 1.02 0.0 K4V K4V
120467 ............. K6 Va 8.16 70.5+ 1.0 1.26 K6V

NotEes.—(MSS) Michigan Spectral Survey, Vols. 1-5 (Houk & Cowley 1975; Houk 1978, 1982; Houk & Smith-Moore 1988; Houk & Swift 1999). The
[Fe/H] estimate is adopted from the compilation of published values in Cayrel de Strobel et al. 2001. A semicolon after the [Fe/H] value indicates consider-

able scatter (greater than 0.2 dex) in the published estimates.

4 SIMBAD lists as variable or suspected variable, but Hipparcos finds scatter in H, < 0.015 mag. The typical scatter for the other standard stars was

0.005 mag in H), (Hipparcos magnitude), with none greater than 0.01 mag.
b Spectroscopic binary.

¢ From standard list of Garcia 1989 and originally in Johnson & Morgan 1953, but not listed in either Keenan & Yorka 1988 or Keenan & McNeil 1989.
4 HR 5409 is a resolved binary (separation of 5”) listed by SIMBAD as a variable star, but Hipparcos found the scatter in the H, band to be only 0.015

mag.

¢ HR 5072 is the planet host 70 Vir. Keenan & McNeil 1989 call it G4 V, however it is G5 V in virtually every other reference (e.g., Gray, Graham, & Hoyt

2001). We retain Keenan’s classification.
! Hipparcos ““ G” binary.

types, a final visual spectral type was assigned through com-
parison to standards within +2 subtypes of the initial guess.

To test the accuracy of our visual classification, we com-
pared our spectral types to those of quality 1 or 2 in the
Michigan Spectral Survey. The average difference is not sig-
nificant: —0.4 + 0.6 (1 o sample standard deviation) sub-
types (on Keenan’s scale). The 12 Hipparcos stars were later
visually typed a second time. Between the two estimates for
each star, we estimate that the 1 o uncertainty in our visual
spectral types is 0.6 subtypes. This is comparable to the dis-
persion between the Keenan and Houk spectral types for
the standards themselves.

4.1.3. Quantitative Spectral Type Estimation

A two-dimensional quantitative spectral type (subtype
plus luminosity class) can be estimated using integrated
fluxes over narrow bands sensitive to temperature and sur-
face gravity. We tested various ratios defined by Malyuto &
Schmidt-Kaler (1997) and Rose (1984) for this purpose, as
well as from Gray’s (2000)* spectral atlas. In testing band
ratios as temperature indicators for our standards, we
noticed that some had slight surface gravity dependencies.
A surface gravity dependence in our temperature indicators
could systematically affect our T,y estimates. We first dis-
cuss our surface gravity indicator and then define our tem-

4 See http://nedwww.ipac.caltech.edu/level5/Gray/.

perature estimators using only subgiant and dwarf
standards, thus mitigating the effects of surface gravity.

The most widely used surface gravity diagnostic for G
and K stars is the ratio between Sr 11 A4077 and nearby Fe
lines (e.g., Keenan & McNeil 1976; Gray 2000). In thin and
thick disk dwarfs, the abundance ratio [Sr/Fe] is within
~0.1 dex of solar for most stars (Mashonkina & Gehren
2001). A quantitative surface gravity (luminosity class) indi-
cator was established by Rose (1984) from low-resolution
spectra using the maximum absorption line depth for Sr i1
A4077 and the average for the atomic Fe A\4045 and A\4063
lines. We measure the fluxes in 3 A bands centered on the
Sr 11 A4077 line and the Fe 1 \4071 line. Ratios between the
M077 line and the other nearby Fe lines (A4045 and \4063)
did not distinguish subgiants and giants.

For a temperature estimator, we adopted index 6 of
Malyuto & Schmidt-Kaler (1997) (A\S5125-5245/ 5245
5290), hereafter referred to as ““ M16.” The temperature sen-
sitivity of this indicator largely reflects differing amounts of
line blanketing in these two wavelength regimes—mainly by
the Mg b lines (A5167, A5173, and A5184) and many Fe lines
(e.g., Fe 1 A\5270). Although the Mg b lines are somewhat
surface gravity sensitive, within the log g and T, regime of
our standards and program stars, the temperature sensitiv-
ity is dominant. The difference in central wavelength
between the two bandpasses is only 82 A, and the effects of
reddening are negligible (Mathis 1990). For a temperature
indicator, we fitted a low-order polynomial to MI6 versus
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Sp. for the dwarf and subgiant standard stars (see Appendix
C) that has a 1 o sample standard deviation of 0.6 subtypes.

Figure 1 plots the temperature-sensitive M16 index versus
our surface gravity discriminant (Sr 11 A4077/Fe 1 A4071).
The dwarf standards form a very narrow sequence in Figure
1, confirming the lack of cosmic scatter in [Sr/Fe] values
among field stars and the insensitivity of log g to spectral type
for G-K dwarfs. The polynomial fit to the dwarf data is
given in Appendix C. There is a gap between the dwarf and
subgiant loci between ~1 and 2.5 o (sample standard devia-
tion) of the dwarf locus polynomial, and we set the sub-
giant/dwarf separation at 2 o. We classify stars within 2 o of
the solid dwarf line in Figure 1 as dwarfs (four of 96 RASS-
ACT/TRC stars and four of 20 HIP stars) and three stars
near the giant locus (TYC 8992-605-1, HIP 68726, and HIP
74501) as giants. We classify the rest as subgiants.

Gray (2000) suggests Y 1 \4376/Fe 1 A4383 as a surface
gravity indicator for late G stars using low-resolution spec-
tra. From the solar spectral atlas of Wallace, Hinkle, & Liv-
ingston (1998), it appears that Gray’s low-resolution Y 1
M376 feature is actually a blend of several lines of nearly
equal strength. In order to test the properties of this band
ratio, we measure the flux in 3 A windows centered on wave-
lengths 4383.6 and 4374.5 A. Plotting this ratio against spec-
tral type for the standard stars showed a very tight locus for
the dwarfs; however; luminosity classes IV-V, IV, and III
were indistinguishable from the dwarfs and each other. We
found this ratio unsuitable for the purposes of luminosity
classification of our targets, but we find it to be an excellent
temperature estimator for FGK dwarfs, subgiants, and
giants. Among the 20 standards, the measurement of the
A374 /74383 band ratio versus spectral type gives a tight
correlation (sample standard deviation 1 o = 0.6 subtypes).
We adopt the \4374/A4383 band ratio as our third inde-
pendent estimator of spectral type (polynomial fit is given in
Appendix C).

4.1.4. Final Spectral Types

The three temperature-type estimates agree well for the
majority of the program stars. The mean difference between
the M16 and visual spectral types is 0.7 subtypes. The mean
difference between the \4374/)\4383 band-ratio types and
the visual types is 0.6 subtypes. We calculate a mean spectral
type and standard error of the mean using the three classifi-
cations. The mean is unweighted since all three relations
appeared to have 1 o sample standard deviations of x0.6
subtypes in their accuracy. The average standard error of
the mean is 0.5 subtypes. We believe that using multiple
techniques mitigates the effects that rapid rotation, binarity,
etc., can introduce into visual classification alone. The spec-
tral types are listed in Tables 4, 5, and 6.

4.2. Additional Spectroscopic Diagnostics
4.2.1. Chromospheric Ha Emission

Medium-to-low resolution spectra of chromospherically
active stars show the Ha line to be partially filled in or even
fully in emission. We measure the equivalent width (EW) of
the entire Ha feature; our resolution is insufficient to sepa-
rate the ““core” chromospheric emission from the photo-
spheric Ha absorption line. A significant number of our
stars show Ha emission (19% of the RASS-ACT/TRC G-
K type stars). We characterize our targets stars as chromo-
spherically active or inactive through comparing the Ha
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Fi6. 2.—Ha EWs for the PMS candidates compared with inactive field
dwarfs and subgiants. Symbols are the same as for Fig. 1. The solid line is
the average EW(Ha) for dwarf and subgiant standard stars. The dashed
line represents the 42 o residual scatter in the relation (encompassing all of
the standards). Stars above this line are clearly chromospherically active;
however, those within the 2 o scatter have Ha emission similar to older field
stars.

EW to that of standards of identical spectral type. Figure 2
shows the EW(Ha) data for our targets and standard stars.
Stars more than 20 above the dwarf/subgiant EW(Ha) rela-
tion (a quadratic regression; see Appendix C) are considered
to be active. The stars with Ha in emission (negative EWs)
have an “¢”” appended to their spectral types in Tables 4, 5,
and 6. The Ho EWs for each star are also listed in these
tables.

4.2.2. Li1 A6707 Equivalent Width

The presence of strong Li absorption in the spectra of
late-type stars is a well-known diagnostic of stellar youth.
Because of the extended timescale for significant Li deple-
tion in stars of ~1 M, strong Li absorption is necessary but
not a sufficient indicator of PMS nature for G stars. How-
ever, it is a powerful age discriminant when combined with
our surface gravity indicator.

Many studies have shown that the EW of Li1 A6707 can
be overestimated at low spectral resolution (e.g., Covino et
al. 1997), especially for G-K stars. With a resolution of 1.3
A, we consider our EWs to be approximate. The EWs were
measured with Voigt profiles in the IRAF routine SPLOT.
The continuum level was estimated from nearby pseudocon-
tinuum peaks. We subtract the contribution from the neigh-
boring Fe 1 A\6707.4 A feature using the prescription of
Soderblom et al. (1993). In order to test the validity of our
Li EWs, we divided several of our Li-rich targets by stan-
dard stars of the same spectral type. The ratioed spectra
exhibit only a major absorption feature at A\6707. The divi-
sion also removes the effects of blending by Fe lines (assum-
ing the same stars have similar EWs). The EWs of this
feature in the divided spectra corresponded well with our
previous measurements; however, the uncertainties in the
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SCO-CEN OB ASSOCIATION 1681
TABLE 6
RASS-ACT/TRC AND Hipparcos STARS REJECTED As SCO-CEN MEMBERS
P, P, EW(Ha) EW(Li)
Name « (J2000.0) 6(J2000.0) (%) (Y0) Sp. (A) (;\) log (Lx/ Lol Type
M @ 3) “) %) (6) @) ®) (©) (10)
TYC 8222-105-1....... 113503.76 —485022.0 71 93 F8.5V 2.7 0.19 —-34 ZAMS
TYC 8982-3046-1..... 1204 14.42 —641851.7 97 99 GlV 2.0 0.20 -3.1 ZAMS
TYC8990-701-1....... 131328.11 —600044.6 9 48 FovV 2.2 0.11 —-34 ZAMS
TYC 8285-847-1....... 14165791 —495642.3 43 87 G251V 2.2 0.00 -39 Subgiant (CAB)
TYC7833-1106-1..... 1508 00.55 —433624.9 4 53 G211V 0.6 0.00 -3.5 Active subgiant
TYC8293-92-1 ........ 150927.93 —465057.2 28 71 KOIV 0.7 0.05 —-34 Active subgiant
TYC7318-593-1....... 153121.93 —332939.5 94 98 Gos5V 0.0 0.15 -33 Active dwarf
TYC 7858-526-1....... 1638 38.47 —393303.5 98 100 F8.51V 2.5 0.02 —4.0 Active subgiant (CAB)
HIP63797.......c........ 1304 30.96 —655518.5 9 73 G351V 2.4 0.00 < —45 Subgiant
HIP 654232.. 1324 35.12 —555724.2 99 100 GOV 2.1 0.18 —3.6 ZAMS
HIP 68726... 1404 07.12 —371550.5 60 93 GO0.5111 1.9 0.00 < =51 Giant
HIP 72070... . 1444 30.96 —395920.6 62 91 GlV 2.6 0.16 < —42 ZAMS
HIP 74501 ................ 151329.22 —554354.6 3 61 GL.51II 2.4 0.03 < —49 Giant
HIP77015......ccceee 1543 29.86 —385738.6 61 91 G0.5V 2.8 0.06 <—4.1 Dwarf
HIP 79610... 16 1443.02 —383843.5 37 74 G0.5V 2.7 0.03 < —42 Dwarf
HIP 81775 164210.36 —313015.0 14 67 GlIV 2.8 0.04 < —4.1 Subgiant

Notes.—Col. (1): name from Tycho-2 or Hipparcos catalogs; cols. (2) and (3): J2000.0 position; col. (4): membership probability (with vgis, = 1 km s~ b;
col. (5): membership probability (with vgis, = 3 km s™1); col. (6): spectral type (see § 4.1); col. (7): equivalent width of Ho A6562.8; col. (8): corrected EW of
Li1 \6707.8; col. (9): logarithm of ratio between X-ray and bolometric luminosities (approximate upper limits assume RASS PSPC detection limit of 0.05 ct

s~'and HR1 = 0); col. (10): class of object.

a HD 116402. Cutispoto et al. 2002 measure EW(Li) = 220 mA, and v sin i = 35kms 1,

EW appear to be ~20-50 mA (with the maximum value
being for spectroscopic binaries).

Figure 3 shows the Li1 A6707 EWs for our RASS-ACT/
TRC and Hipparcos targets, separated according to their
luminosity class (§ 4.1.3). Effective temperatures (7,g) come
from the final spectral type (see § 6.2). Most points lie above
the Li 1 A6707 EWs that characterize young open clusters,
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FiG. 3.—EWs for Li1 A6707 for the program stars compared with regres-
sion fits for stars in young open clusters (see § 4.2.2). We discuss assignment
of dwarf and subgiant luminosity classes in § 4.1.3. The PMS candidates
form an obvious locus, and we select all stars above the solid line as
* Li-rich.”

plotted as low-order polynomial fits for the IC 2602 (30
Myr; Randich et al. 1997), Pleiades (70-125 Myr; Soder-
blom et al. 1993; Basri, Marcy, & Graham 1996), and M34
clusters (250 Myr; Jones et al. 1997). The comparison is not
completely fair, however, since the cluster ZAMS stars will
be roughly 10% less massive than the corresponding PMS
stars. Even if most of our program stars were older ZAMS
stars, they still would be Li-rich compared with stars in the
well-studied open clusters. We select as ““ Li-rich” those
stars above the solid line in Figure 3. Considering the uncer-
tainties in our EW(Li) measurements and the lack of any
other ~10-20 Myr old PMS G—K type stellar samples with
which to compare, we are not compelled to subdivide our
sample further. We will reserve a more detailed investiga-
tion of the Li abundances for a future high-resolution spec-
tral study. For the present, we are content to have
demonstrated that we have identified a population that
appears to be more Li-rich than ZAMS stars.

5. DEFINING THE PTTS SAMPLE
5.1. Membership Status

Our survey was designed to identify the PMS G- and K-
type stars in the Sco-Cen OB association. We classified the
late-type stars according to their positions in Figures 1, 2,
and 3 (Table 7). We consider the 110 stars (85/96 RASS-
ACT/TRC and 16/30 Hipparcos) classified as “Li-rich,”
“subgiant,” and “active” as bona fide PTTSs (““PMS”).
Li-rich stars with subgiant surface gravities and Ho EWs
similar to the standard field stars (i.c., “ inactive ) are called
“PMS?” Only three of the RASS-ACT/TRC stars, and six
of the HIP stars are classified as PMS?. The lone object with
giant-like surface gravity in the RASS-ACT/TRC X-ray—
selected sample (TYC 8992-605-1) is Li-rich, and we also
classify it as a PMS PTTS. The nine PMS? stars were
included in our statistics concerning the star formation his-
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TABLE 7
STELLAR CLASSIFICATION SCHEME

Luminosity

Adopted Classification Li-rich Ha Excess Class N(R-T) N(HIP)
PMS. e Yes Yes v 94 7
PMS? s Yes No v 3 6
PMSCTTS oo Yes Strong v 1 0
Young dwarf (ZAMS)........ Yes Yes/No A% 4 1
Activedwarf ... No Yes v 1 0
Active subgiant .................. No Yes v 4 0
Subgiant ........cceeeeevienieennen. No No v 1 2
Giant ...ooooeeveviniiiieee No No 111 0 2
Dwarf (MS) ...oooveiieeiieens No No A% 0 2
CABP ..oooviieeeeeeen No No (wide) v 2 0

Total oo 107 20

Notes.—N(R-T) is number in RASS-ACT/TRC sample. N(HIP) is number in Hipparcos
sample. ““ Li-rich ” implies significant Li absorption and above the line in Fig. 3. “ Active ”’ means
that the Ha equivalent widths are greater than 2 times the o residual above the regression of
values for field standard stars (Fig. 2; Appendix C), implying that chromospheric emission is
filling in the absorption line. Luminosity classes are assigned according to a star’s placement in

Fig. 1.
4 Included in PMS sample count.
b Included in subgiant sample count.

tory and disk frequency of the sample (§ 7) for a total of 110
candidate lower mass members of the LCC and UCL sub-
groups. All 13 stars selected in the RASS-ACT/TRC
sample that overlapped with dZ99’s membership lists were
found to be PMS candidates. Our RASS-ACT/TRC sam-
ple (including the 13 dZ99 stars also selected) yielded a PMS
hit rate of (88 + 13)/(96 + 13) = 93%. Of the 30 dZ99 can-
didates we observed, 22/30 (73%) are classified as PMS or
PMS?. The numbers of stars by membership class are listed
in Table 7. PMS stars in the Hipparcos sample are listed in
Table 4, and those in the RASS-ACT/TRC sample are
given in Table 5. Li-rich stars with dwarflike surface gravity
(N = 5) were considered young main-sequence field stars
(ZAMS) and are listed along with other interlopers in
Table 6.

5.2. Sample Contamination

The primary contaminants one would expect from an
X-ray—and proper-motion-selected sample are X-ray—lumi-
nous ZAMS stars (ages ~ 0.1-1 Gyr). Field ZAMS stars
could occupy the same region of UV velocity space and be
selected in our study by virtue of their proper motions and
X-ray emission. However, our selection of candidate Sco-
Cen members uses a surface gravity criterion that should
minimize contamination. Even if our surface gravity indica-
tor was in error, we claim ZAMS stars do not dominate our
sample. Field ZAMS stars exhibit a large spread in Li EWs
(especially for the late G and early K stars); however, this is
not observed in Figure 3. The star just below the * Li-rich
line in Figure 3 (TYC 7318-593-1; G9, EW(Li) ~ 150 mA)
happens to be the sole RASS-ACT/TRC star with inferred
log g higher than that of the dwarf standards in Figure 1.
We consider TYC 7318-593-1 to be a field ZAMS star candi-
date because of its intermediate Li strength and high surface
gravity.

We can rule out most of the PMS candidates being Li-rich
post-MS stars. Based on the surveys of Li abundances in
field subgiants by Randich et al. (1999) and Pallavicini, Cer-
ruti-Sola, & Duncan (1987), we do not expect to find any

post-MS subgiants with EW(A6707) > 100 mA. Even if our
measured EWs for the Li 1 A6707 line are overestimated
because of low spectral resolution, the overestimate would
have to be greater than a factor of 2 to reconcile our sources
with even the most Li-rich subgiants found in the Randich
et al. survey. Our spectral analysis suggests that the majority
of our sample stars are both Li-rich and above the main
sequence (i.e., PMS).

Could some of our stars be post-MS chromospherically
active binaries (CABs) or RS CVn systems? The light from
an RS CVn system would be dominated by a rapidly rotat-
ing, evolved (subgiant) primary. Only six of our targets are
Li-poor subgiants (HIP 63797, HIP 81775, TYC 8293-92-1,
TYC 7833-1106-1, TYC 7858-526-1, and TYC 8285-847-1).
The first three appear to be normal subgiants. TYC 7833-
1106-1 is possibly a spectroscopic binary. TYC 7858-526-1
has a wide, broad Ha absorption line. It appears to be a
multiple late F star (we classify it as F8.5; Houk 1982 classi-
fies it as F5), so the star could hide a cosmic Li abundance
because of the increased ionization of Li 1 in F stars (and
correspondingly lower EW(Li)). The system could be a
legitimate member, but we exclude it from the PMS sample.
The subgiant TYC 8285-847-1 (HIP 69781 = V636 Cen) is
probably a CAB. It is a previously known, grazing, eclipsing
binary (e.g., Popper 1966), and its saturated X-ray emission
argues for being a true CAB. Finally, the Li-rich star TYC
8992-605-1 (star 19; KO +III) is the only RASS-ACT/TRC
star that appears in the giant regime of Figure 1. The star is
an obvious spectroscopic binary of nearly equal mass. We
believe this star is probably a PMS binary, and include it in
our PMS? sample. It appears that CABs are a negligible
contaminant when using X-ray and kinematic selection in
tandem with medium-dispersion spectroscopy to identify
PMS populations.

5.3. Sample Completeness

We can make a rough estimate of how many stars our
selection procedure should have detected by counting the
number of massive Sco-Cen members in a certain mass
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range and assuming an initial mass function. We assume a
complete membership census within a limited mass range
(the revised B-star Hipparcos membership from dZ99) and
then extrapolate how many stars we should have seen in our
survey. We produce a theoretical H-R diagram for the sub-
groups’ B stars (discussed at length in § 7.2) and calculate
masses from the evolutionary tracks of Bertelli et al. (1994;
Z = 0.02). We choose 2.5 M, as our lower mass boundary
(roughly the lower limit for B stars) and adopt 13 M, as the
upper mass boundary (slightly higher than the highest
inferred mass from the main-sequence members). In this
mass range, we count 32 LCC members and 56 UCL mem-
bers. We use a Kroupa (2001) initial mass function (IMF) to
predict how many low-mass stars might belong to the OB
subgroups. Down to the hydrogen-burning limit (0.08 M),
a total population of 12007300 stars in LCC and 2200 + 300
stars in UCL is predicted (Poisson errors).> Between 1.1 and
1.4 M, the mass range of a 15 Myr old population that our
survey can probe (see § 7.1 and Fig. 6), the Kroupa IMF
predicts a population of 29"¢ stars in LCC and 51§ stars in
UCL. In this mass range, our survey detects 36 PMS stars in
LCC and 40 PMS stars in UCL. The number of observed
PMS stars with 1.1-1.4 M, corresponds to +1.1 o and —1.6
o of the predicted number for LCC and UCL, respectively.
This suggests that our survey is fairly complete for LCC,
but we might be missing ~10 members with masses of 1.1-
1.4 M in the more distant UCL subgroup, if the subgroup
mass function is consistent with the field star IMF. The
missing members of the UCL OB subgroup could be X-ray
faint (Lx < 10302 ergs s 1) stars that we were capable of
detecting in the closer LCC subgroup. The IMF extrapola-
tion does suggest that we have likely found at least the
majority of stars in this mass range in both OB subgroups (if
not a complete census for LCC) and that our samples are
representative of the total population.

6. H-R DIAGRAM

In order to investigate the star formation history of the
LCC and UCL OB subgroups, we convert our observation-
al data (spectral types, photometry, distances) into esti-
mates of temperature and luminosity. We then use
theoretical evolutionary tracks to infer ages and masses for
our stars.

6.1. Photometry

The primary sources of photometry for our sample of
association member candidates are the Tycho-2 catalog
(Hog et al. 2000a, 2000b) and 2MASS working database.
However, the Tycho and 2MASS bandpasses are nonstan-
dard and must be converted to standard photometric sys-
tems to enable comparison with intrinsic colors of normal
stars and the interstellar reddening vector. To convert the
Tycho photometry to the Johnson system, we fitted low-
order polynomials to the data in Table 2 of Bessell (2000;
relations given in Appendix C). A caveat is that Bessell’s cal-
ibrations are for B-G dwarfs and K-M giants. The majority
of our stars appear to be PMS G—K stars, whose intrinsic
colors should more closely match those of dwarfs rather
than giants. To convert the 2MASS JHK data to the system

5 For low-number statistical uncertainties, we use the 1 ¢ values from
Gebhrels (1986) throughout.
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of Bessell & Brett (1988), we use the conversions of Carpen-
ter (2001). The original optical and near-IR photometry for
our target stars is given in Tables 1 and 2.

6.2. Temperature Scale

To fix stellar properties as a function of spectral type, we
adopt relations (i.e., intrinsic colors, bolometric corrections
[BCs]) from Table AS of Kenyon & Hartmann (1995). Pre-
vious studies have shown that colors and BCs as a function
of Ty are largely independent of surface gravity over the
range of interest for this study (e.g., Bessell, Castelli, & Plez
1998). However, Ty decreases with lower log g for FGK
stars. After some investigation (see Appendix A), we
decided to adopt the dwarf T,y scale of Schmidt-Kaler
(1982; which Kenyon & Hartmann 1995 also use) with a
—35 K offset to account for the effects of lower log ¢ in our
sample stars. The scatter in published dwarf T, scales is 60
K (1 o) among G stars, so while the shift is systematic, its
magnitude is of the order of the uncertainties. The uncer-
tainties in T4 given in column (9) of Tables 4 and 5 include
the uncertainty in spectral type and the scatter in published
T scales. The typical 1 o uncertainties in T for the PMS
stars is ~100 K.

6.3. Secular Parallaxes

All of the stars in our sample have published proper
motions, but only a few dozen have trigonometric paral-
laxes measured by Hipparcos. The stars are distributed over
hundreds of square degrees of sky and inhabit stellar associ-
ations that are tens of parsecs in depth. Adopting a standard
distance for all of the stars in the association introduces
unwanted scatter in the H-R diagram. With accurate proper
motions available, we calculate individual distances to the
PMS candidates using moving cluster or ““secular” paral-
laxes (e.g., Smart 1968). We adopt the equations and for-
malism of de Bruijne (1999b), as well as his space motions
and convergent points for the LCC and UCL OB sub-
groups. The uncertainties in the secular parallaxes are domi-
nated by the uncertainties in the proper motion (o o< 0,,),
but contain a term added in quadrature accounting for a
projected 1 km s~! internal velocity dispersion (see § 4 of de
Bruijne 1999b). The secular parallax is only meaningful if
the star is indeed a member of the group. Our spectroscopic
survey has confirmed that most of the candidate stars are
legitimately PMS, and that they are most likely members of
the OB subgroups. Secular parallaxes for older, interloper
stars are meaningless and ignored. In Tables 4 and 5, we list
the secular parallaxes and membership probabilities for the
PMS stars in our survey. We calculate membership proba-
bilities Py and P (using eqs. [4] and [6] from dZ99), which
have assumed internal velocity dispersions of 1 km s~! (de
Bruijne 1999b) and 3 km s—! (dZ99), respectively.

The robustness of our method can be illustrated (Fig. 4)
by comparing the secular parallaxes (7g.) to the Hipparcos
trigonometric parallaxes (myp). The uncertainties are typi-
cally 1-2 mas for the Hipparcos parallaxes and 0.5-1 mas
for our secular parallax estimates. The secular and trigono-
metric parallaxes agree quite well for the few PMS stars in
our sample for which Hipparcos measured the parallax. The
secular parallaxes yield distance uncertainties of ~5%—15%
for most of the PMS stars.
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Fi16. 4.—Comparison between Hipparcos astrometric parallaxes and our
secular parallaxes calculated using the moving group method. Data points
are PMS (and PMS?) association members from Tables 4 and 5.

6.4. Luminosities

With five-band photometry, a temperature and/or spec-
tral type estimate, and a secular parallax, we calculate stellar
luminosities for the PMS candidates. We adopt the absolute
bolometric magnitude of the Sun (Myg o = 4.64) from
Schmidt-Kaler (1982). In order to compromise between the
uncertainties in luminosity due to reddening, photometric
uncertainties, and possible K-band excess, we calculate the
My, using the dereddened 2MASS J magnitude. We esti-
mate the visual extinction from a weighted mean of A4 esti-
mates from the color excess in B— 1V and V—J. We took the
E(B—V) formula from Drilling & Landolt (2000), and the
value of 4,/ Ay (=0.294) was taken from the near-IR extinc-
tion law of Mathis (1990) for a central wavelength 1.22 um.
The reddening A4, typically ranged from 0 to 0.35 mag with
formal uncertainties of ~0.1 mag. The typical uncertainty in
log (L/L) for the PMS candidates is ~0.08 dex. With the
luminosities and X-ray fluxes from the RASS BSC catalog
(Voges et al. 1999), we calculate the ratio of X-ray to bolo-
metric radiation for the stars with X-ray counterparts. The
derived values of log (Lx/Ly,) are in the range of 10728 to
10738, indicating coronal X-ray emission elevated above
most ZAMS G-type stars (e.g., Pleiads; Stauffer et al. 1994).

6.5. Evolutionary Tracks

In order to infer theoretical masses and ages from our
PMS candidates, we use the evolutionary tracks from
D’Antona & Mazzitelli (1997, hereafter DM97; Z = 0.02,
xp = 2 x 1073), Siess, Dufour, & Forestini (2000, hereafter
SDF00; Z =0.02), and Palla & Stahler (2001, hereafter
PSO1). Ages and masses for a given log T,y and log (L/L.)
were calculated using an interpolation algorithm. Given the
mean observational errors (oflog Teg, log (L/L:)] = 0.007,
0.078 dex for LCC PMS stars, and oflog T.y, log
(L/L:)] = 0.009, 0.084 dex among UCL PMS stars), we

Age [Myr]

FiG. 5.—Histogram of the inferred ages from the DM97 and SDF00
tracks for a hypothetical LCC PMS star with average H-R diagram point
[Ten, log (L/ L)) and Gaussian uncertainties. The extreme right bin retains
all points older than 40 Myr. The standard deviations are calculated using
only stars with ages between 1 and 100 Myr.

estimate the isochronal age uncertainties for an individual
star to be approximately 4, 5, and 7 Myr (DM97; PSO01;
SDF00) in LCC and 4, 5, and 5 Myr (DM97; PS01; SDF00)
in UCL, as illustrated in Figure 5. The uncertainties in the
interpolated masses are 0.1 M, for all three sets of tracks.
Figure 6 shows the H-R diagram for the PMS candidates
overlaid with the evolutionary tracks of DM97.

7. RESULTS

The ages of the low-mass population of LCC and UCL
have not been estimated before, although de Geus et al.
(1989) and de Zeeuw & Brand (1985) give main-sequence
turnoff ages. In § 7.1, we estimate the PMS ages for the two
subgroups and put an upper limit on the intrinsic age
spread. In § 7.2, we calculate new turnoff ages for the sub-
groups using early B stars from the revised Hipparcos mem-
bership lists of dZ99.

7.1. PMS Ages and Age Spread

The H-R diagram for our PMS and PMS? stars is shown
in Figure 6, overlaid with the evolutionary tracks of
D’Antona & Mazzitelli (1997). The temperatures and lumi-
nosities of the PMS stars are given in columns (9) and (10)
of Tables 4 and 5, along with their inferred masses and ages
(cols. [15]-17]). One notices immediately that the bulk of
isochronal ages are in the range of ~10-20 Myr. The age
range is nearly identical for both groups. To assess the
effects of our magnitude limit in biasing our mean age esti-
mates, in Figure 7 we plot the mean PMS age (with standard
errors of the mean) for the PMS subgroup samples as a
function of minimum log 7,q cutoff. The magnitude bias of
our survey is clearly apparent: the mean age systematically
decreases when stars with log 7.t < 3.73 are included in the
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FiG. 7.—Illustration of the effects of magnitude bias on our mean age
estimates for the PMS populations. The abscissa is the minimum log Ty
threshold for evaluating the mean sample ages (using DM97 tracks). The
ordinate is calculated mean age with standard errors of the mean (shown;
typically &1 Myr). At cooler temperatures (later than KO0), the magnitude
limit of our survey biases the sample toward more luminous stars, thereby
decreasing the mean age estimate. From this diagram, we choose log
Ter = 3.73 (vertical dashed line) as the lower T cutoff for evaluating the
mean PMS ages. Known spectroscopic binaries are included here but
excluded in the final age estimates presented in Table 8. The observed
isochronal ages and spread are 16 + 5 Myr for LCC and 14 £+ 5 Myr for
UCL.
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calculation. In calculating the PMS ages of the OB
subgroups, we explicitly omit the PMS stars with
log Tor < (30% of our sample). This temperature threshold
intersects our magnitude limits at ages of ~25 Myr for stars
of 1 M, on the DM97 tracks. That the lines in Figure 7 are
nearly flat for log T.g > 3.73 suggests that (detectable) stars
with ages of greater than 25 Myr are not a significant com-
ponent of either subgroup (also see discussion in § 8.1).
Figure 8 displays histograms of the isochronal ages for
the PMS stars in the LCC and UCL subgroups derived
using DM97 and SDFO00 evolutionary tracks. These tracks
represent the extrema in age estimates for our sample
(DM97 is youngest, and SDFO00 is oldest). The 1 o age dis-
persion among the unbiased samples (log Tey > 3.73) is 5-9
Myr for both groups. If we remove the known spectroscopic
binaries (see notes in Tables 4 and 5), the age dispersions are
4-8 Myr. Because there may be additional unresolved
binaries, this observed age spread places an upper limit on
the intrinsic age spread. As illustrated in Figure 5, the indi-
vidual H-R diagram positions of the PMS samples have
log Te and log (L/ L) errors that fold onto the evolution-
ary tracks with age uncertainties of 4-7 Myr. From this
analysis, we conclude that the intrinsic 1 o age dispersions in
each subgroup must be less than 2-8 Myr (i.e., roughly two-
thirds of the star formation took place in less than 4-16
Myr). Using the DM97 PMS ages, which agree best with the
turnoff age estimates (§ 7.2), we find intrinsic 1 o age disper-
sions of 2 Myr (LCC) and 3 Myr (UCL). This implies that
68% of the low-mass star formation took place within less
than 4-6 Myr, and 95% within less than 8—12 Myr in the OB
subgroups. Our observational uncertainties and lack of
knowledge about the unseen binarity of the PMS sample
stars do not allow us to constrain the age spread more pre-
cisely than this. The mean age estimates for our unbiased
PMS samples (log Tr > 3.73, SBs removed) are shown in
Table 8. Counter to previous studies, we find that LCC is
slightly older than UCL by 1-2 Myr (at 1-3 o significance),
independent of which evolutionary tracks we use. From
Figure 8, we also conclude that star formation ceased
approximately ~5-10 Myr ago in the subgroups.

7.2. Turnoff Ages

De Geus et al. (1989) published the most recent age esti-
mates for the LCC and UCL groups; however, in light of

TABLE 8
AGE ESTIMATES oF LCC AND UCL

Age (LCC) Age (UCL)

Tracks Method (Myr) (Myr)
4 PMS 17+ 1 15+ 1

5 PMS 21 £2 19+1

6 PMS 23 +£2 22 +1

7 Turnoff 16 £1 17+1

8 Turnoff 11-12 14-15
8,9 Turnoff 10-11 12-13

NotEes.—Uncertainties are standard errors of the mean. PMS age esti-
mates exclude known SBs and stars with log Ty < 3.73, which bias the
calculated ages. The turnoff ages from this work are determined using only
early B stars classified as members by de Zeeuw et al. (1999).

REFERENCES.—(1) This work; (2) de Geus et al. 1989; (3) de Zecuw &
Brand 1985; (4) D’Antona & Mazzitelli 1997; (5) Palla & Stahler 2001; (6)
Siess et al. 2000; (7) Bertelli et al. 1994; (8) Maeder 1981; (9) B. Cogan
(private communication cited in de Zeeuw & Brand 1985).
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Fic. 8.—Histograms of the isochronal ages for PMS and PMS? candidates in Tables 4 and 5 from the models of DM97 and SDF00. The filled bins are for
stars with log T > 3.73, and the unfilled bins are for the entire (magnitude-biased) sample. Mean isochronal ages (with standard errors of the means and 1 o
uncertainties) are given for the unbiased sample (log 7. > 3.73). Outliers with isochronal ages of greater than 40 Myr are counted within the 40 Myr bin.

the new Hipparcos distances and subgroup membership
lists, we feel it is worthwhile to reevaluate the subgroups’
turnoff ages. We construct a theoretical H-R diagram for
the B-type subgroup members of UCL and LCC listed both
in Table C1 of dZ99 and Tables A2 and A3 of de Bruijne
(1999b). Several of the “ classical ° stars rejected as mem-
bers by Hipparcos from dZ99 are included as well. For input
data, we use the following databases in order of availability:
(1) ubvy photometry from the database of Hauck &
Mermilliod (1998), (2) UBV photometry from Slawson,
Hill, & Landstreet (1992), and (3) UBV photometry from
SIMBAD. For distances, we use the secular parallaxes (7g)
given in column (4) of Tables A2 and A3 of de Bruijne
(1999b) when available, or the Hipparcos parallaxes (myp).
We deredden the stars with ubvy3 photometry to the B-star

6 < Classical ” members are early-type stars which were included in Sco-
Cen membership lists before the Hipparcos studies of dZ99.

sequence of Crawford (1978) using the prescription of Shob-
brook (1983). For stars with Stromgren photometry, we cal-
culate T, using the temperature relation of Napiwotzki,
Schonberner, & Wenske (1993). If no ubvy( photometry is
available, we use UBV photometry to calculate the redden-
ing-free index Q (Crawford & Mandwewala 1976) to infer
the star’s unreddened color. A polynomial fit to Table 15.7
from Drilling & Landolt (2000) is used to calculate T, as a
function of (B—V)y. The BC versus T, relation of Balona
(1994) is used for all stars. We linearly interpolate between
the isochrones from Bertelli et al. (1994; Y = 0.28,
Z = 0.02, convective overshoot) to infer ages for the sub-
group B stars. The theoretical H-R diagram is shown in
Figure 9.

UCL has a well-defined MS turnoff composed of the Hip-
parcos members HIP 67464 (v Cen; B2 IV), HIP 68245
(¢ Cen; B2 IV), HIP 68282 (v! Cen; B2 IV-V), HIP 71860
(o Lup; B1.5 I1I), HIP 75141 (6 Lup; B1.5 1V), HIP 78384
(n Lup; B2.5 1V), and HIP 82545 (12 Sco; B2 1V), as well as
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log (L/L), log Tey = 4.0, 4.43] was excluded from the UCL turnoff age
estimate.

classical members (but Hipparcos nonmembers) HIP 82514
(11 Sco; B1.5 Vp) and 73273 (5 Lup; B2 111)’. The variable
star HIP 67472 (u Cen; B2 Vnpe) was excluded. Using the
Bertelli et al. (1994) tracks, the mean age of the seven turnoff
Hipparcos members is 17 + 1 Myr. Including the two classi-
cal members has a negligible effect on the mean age estimate.
Our MS turnoff age estimate for UCL is slightly older than
de Geus et al.’s (14-15 Myr) and is close to the mean PMS
ages that we found in § 7.1 (15-22 Myr).

LCC lacks a well-defined turnoff; however, we have
enough early B stars in the middle of their MS phase with
which to make an age estimate. We estimate the age for
LCC from the following main-sequence B stars: HIP 59747
(6 Cru; B2 1V), HIP 60823 (o Cen; B2 V), HIP 61585 («
Mus; B2 1V-V), HIP 63003 (x! Cru; B2 IV-V), and HIP
64004 (£2 Cen; B1.5 V). The mean age for these five stars is
16 £ 1 Myr, similar to what we found for UCL, and it
agrees well with the younger end of our PMS age estimates
(17-23 Myr). This age estimate is significantly older than
previous estimates (10—-12 Myr) and warrants more critical
examination (§ 8.3).

The new results yielded by our age analysis of the OB sub-
groups are (1) two-thirds of the low-mass star formation in
each subgroup took place in less than a ~5 Myr span (and
95% took place within ~10 Myr), (2) the PMS and B-star
ages for LCC and UCL are in approximate agreement, (3)
the B-star subgroup memberships defined by Hipparcos
have ages of 16 £ 1 Myr and 17 &+ 1 Myr for LCC and

7 Note that the two Hipparcos nonmembers were found to be probable
members by Hoogerwerf (2000) if the long-baseline ACT (HIP 73273) and
TRC (HIP 82514) proper motions were used instead of the Hipparcos
values.
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UCL, respectively. We discuss the implications of these
resultsin § 8.

7.3. The Census of Accretion Disks

An important question both for star and planet forma-
tion is the lifetime of accretion disks around young stars.
Statistics for the frequency of active accretion disks around
low-mass stars come predominantly from near-IR surveys
of young associations and clusters (Hillenbrand & Meyer
1999; Haisch et al. 2001). The samples of low-mass stars sur-
veyed are dominated by embedded associations with ages of
less than 3 Myr (e.g., Tau-Aur, Cha I, etc.) and older open
clusters with ages of 30-100 Myr (e.g., Pleiades, IC 2602, «
Per, etc.). Few well-studied PMS stars of 3-30 Myr old ages
have been surveyed. The situation has recently been slightly
ameliorated by the discoveries of the TW Hya association
and 7 Cha cluster (Kastner et al. 1997; Webb et al. 1999;
Mamajek, Lawson, & Feigelson 1999). Yet these samples
are small (~10-20 stars) and dominated by K- and M-type
stars with masses of 0.1-0.8 M. Our PMS star sample is
unique in its mass (~1-1.5 M) and age range (~10-20
Myr), so measuring its disk frequency provides a valuable
datum. i

Stars with EW(Ha) > 10 A in emission are usually called
CTTSs, which show spectroscopic signatures of accretion,
as well as near-IR excesses (e.g., Hartigan, Edwards, &
Ghandour 1995). Stars lacking the strong Ha emission and
near-IR excesses are called WTTSs. This can be explained
as a correlation between the presence of magnetospheric
accretion columns and an inner accretion disk (e.g., Meyer,
Calvet, & Hillenbrand 1997; Muzerolle, Hartmann, &
Calvet 1998). Our Ha EW measurements are discussed in
§4.2.1, and here we quantify the K-band excess of our tar-
gets. We calculate the intrinsic J— K color excess E(J—K) as
defined by Meyer et al. (1997):

E(J-K)o = (J=K)gps — (J—K)o — Ay(4y — Ax) , (1)

where (J—K)qp 18 the observed color and (J/—K), is the
intrinsic color of an unreddened dwarf star of appropriate
spectral type (Kenyon & Hartmann 1995). Uncertainties in
each quantity were propagated in order to estimate the sig-
nal-to-noise ratio (S/N) of the intrinsic color excess. The
distribution of measured E(J—K), values indicate a system-
atic offset of a few hundredths of a magnitude. Our near-IR
data set is from the 2MASS working database, so we suspect
that the absolute calibration or uncertainties in color correc-
tion could be responsible and apply a small color correction
to account for it. After the correction, the distribution of
E(J—K), values is symmetric about zero, with a few positive
and negative ~2 ¢ points. There is only one star with
a E(J—K), color excess with S/N > 2.5: star 34 (=TYC
9246-971-1) has an intrinsic color excess of
E(J—K)y=0.26 £ 0.06, implying a K-band excess. This
star also happens to be the only CTT identified in our opti-
cal spectra [EW(Ha) = —39 A]. TYC 9246-971-1 (=PDS
66, Hen 3-892) was originally identified as an emission-line
star by Henize (1976) and classified as a CTT in the Pico dos
Dias Survey of stars in the IRAS PSC catalog (Gregorio-
Hetem et al. 1992). By virtue of its position, proper motion,
and spectral characteristics, we find that TYC 9246-971-1 is
a~8 Myr old, ~1.2 M, (DM97 tracks) member of the LCC
subgroup. Our secular parallax for TYC 9246-971-1 yields a
distance of 86f§ pc; the third nearest of the LCC PMS stars
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in our sample and among the nearest CTTSs known. Only
one out of 58 (1.7749%; 1 o Poisson) of PMS stars in LCC
are classified as bona fide CTTSs, along with none (0/42) of
the PMS members of UCL. For our accretion disk fre-
quency statistics, we use the isochronal ages derived from
the DM97 evolutionary tracks (which agree well with the
turnoff ages) and include the entire sample of 110 PMS stars
(including the cooler stars that bias the mean to younger
ages). Only one out of 110 (0.9724%; 1 ) of 1.3 £ 0.2 (1 0)
M stars with ages of 13 £ 1 (s.e.) £ 6 (1 o) Myr are CTTS:s.
This implies that accretion terminates in solar-type stars
within the first 15 Myr of their evolution.

8. DISCUSSION

We can address several interesting questions regarding
the star formation history of Sco-Cen with data from our
survey. Could the Sco-Cen progenitor giant molecular
cloud (GMC) have produced a substantial population of
low-mass stars for an extended period (greater than 5-10
Myr) before conditions were right to form an OB popula-
tion? Conversely, is there evidence for any low-mass star
formation after the bulk of the high-mass OB stars formed?
The OB star formation in LCC and UCL has apparently
destroyed the progenitor GMC through supernovae and
stellar winds (e.g., de Geus 1992; Preibisch & Zinnecker
2000). However, the region is not totally devoid of molecu-
lar gas (e.g., the Lupus complex). We will first examine
whether there is any evidence of star formation prior to the
formation of the OB subgroups (§ 8.1) and then assess the
evidence for more recent star formation in the UCL region
(§ 8.2). We will address the age of LCC in § 8.3 and discuss
the formation of the subgroups in § 8.4. Throughout the dis-
cussion, we adopt the DM97 ages, since they agree more
closely with the turnoff ages than do the SDF00 and PS01
ages.

8.1. Is There Evidence for Star Formation before the
Primary Bursts?

Is our survey sensitive to older stars that may have pre-
ceded the primary star formation episode? Three PMS stars
in our sample have isochronal ages of greater than 25 Myr
(or undefined as lying below the ZAMS); however, given the
uncertainties in T.g and log (L/L.) (Fig. 5), even a coeval
~15 Myr old population would be expected to have statisti-
cal outliers. Here we explore three possible ways in which
older ZAMS stars could have escaped our attention.

One could argue that our surface gravity indicator is bias-
ing our sample against identifying ZAMS stars members (if
they exist). If we disregard surface gravity as a criterion, we
gain only four more RASS-ACT/TRC stars (all between
F8.5 and G1), and only one of those would have an isochro-
nal age greater than 25 Myr (TYC 8222-105-1; ~30 Myr). If
they were legitimate, older members with real ages of
greater than 25 Myr, they should also be among the stars
with the oldest isochronal ages in our sample, which they are
not. This suggests that their secular parallaxes, hence their
luminosities, are unjustified, and that they are not members
of the OB subgroups. Coincidently, TYC 8222-105-1 is one
of the earliest type stars in our sample (F8.5), where our sur-
face gravity indicator has the least fidelity (Fig. 1). We can
state that only one of the Li-rich stars showing dwarf gravity
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signatures that is comoving with LCC and UCL has an H-R
diagram position and gravity suggestive of ZAMS status.

If a significant ZAMS population existed in LCC and
UCL, would our magnitude and X-ray flux limits allow
their detection? X-ray surveys of the ZAMS-age clusters IC
2602 and IC 2391 (~30-50 Myr) by Randich et al. (1995)
and Patten & Simon (1996) found that late F and early G
ZAMS stars have X-ray luminosities of Ly ~ 1020 to 1030
ergs s—!, with Ly/Ly ranging from 10730 to 10-*3. The
X-ray and optical flux limits imposed by the ROSAT All-
Sky Survey and the Tycho catalog allow us to detect ZAMS
sources with Ly /Lo > 10732 within 140 pc if they exist. If
we adopt the X-ray luminosities of the G stars in IC 2602
and IC 2391 as representative for a ~30 Myr old popula-
tion, we should have detected roughly one-third of a puta-
tive Sco-Cen ZAMS population between masses of 1 and
1.2 M. We can put a rough upper limit on the number of
greater than 25 Myr old stars in our mass range. Assuming
that TYC 8222-105-1 is a ZAMS member and that its H-R
diagram position is not a statistical fluctuation from the
locus of ~15 Myr old stars, we detect one ZAMS star with
an age greater than 25 Myr in the mass range (1-1.2 M,).
Accounting for the two-thirds of the ZAMS stars that
would have undetectable X-ray emission and extrapolating
over a Kroupa (2001) IMF, this implies a population of
~100 stars with masses greater than 0.1 M. This is <10%
of the stellar population predicted to exist in each OB sub-
group (~1000-2000; § 5.3).

Could such ZAMS stars have left the region we probed?
If we postulate that the population was very centrally con-
centrated and gravitationally bound until the OB stars
destroyed the GMC some ~10 Myr ago (de Geus 1992),
then a 2 km s~! motion radially away from the subgroup
center would have moved the star 20 pc in the past 10 Myr.
This distance is the approximate radius of both of the sub-
groups today (see Fig. 9 of dZ99). Hence, if an older popula-
tion was concentrated at center of the gravitationally bound
GMC until the high-mass stars destroyed the cloud, we
would find them within the projected boundaries of the sub-
groups so long as they inherited velocities of less than 2 km
s~!. The kinematic selection procedure of Hoogerwerf
(2000) would have selected such stars, since a large velocity
dispersion (3 km s~!) was initially assumed.

We conclude that there is no evidence for significant star
formation in the LCC and UCL progenitor GMCs before
the primary star formation episodes. Our findings are con-
sistent with the idea that molecular clouds form stars over a
range of masses and dissipate within timescales of ~10 Myr.

8.2. Ongoing Star Formation?

Two obvious sources of young stars may be contaminat-
ing the UCL PMS sample. The youngest, unembedded OB
subgroup of Sco-Cen is US, with a nuclear age of 5-6 Myr
(de Geus et al. 1989). US borders UCL near Galactic longi-
tude 343°, and its space motion and distance are very similar
to that of UCL (dZ99). The Lupus molecular clouds are also
in the western region of UCL (roughly in the range
335 < 1< 345° and +5° < b < 25°). The T Tauri star pop-
ulation within the major Lupus clouds was surveyed by
Hughes et al. (1994), and the region was recently mapped in
I2CO by Tachihara et al. (2002). Dozens of pre-main-
sequence stars were identified outside of the main cores by a
pointed ROSAT survey (Krautter et al. 1997) and the All-
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FiG. 10.—Map of the UCL and LCC subgroups of the Sco-Cen OB
association (Sco OB2). The B-star population from de Zeeuw et al. (1999) is
shown by filled squares. The PMS (and PMS?) sample from this survey is
shown as open circles. Pre-ROSAT T Tauri stars in the HBC catalog
associated with the Lupus cloud are shown as crosses (Herbig & Bell 1988).

Sky Survey (Wichmann et al. 1997b). The clouds lie at
d = 140 pc (Hughes, Hartigan, & Clampitt 1993), situated
spatially between the US and UCL subgroups of Sco-Cen
(both d ~ 145 pc). Figure 10 illustrates the positions of the
primary Lupus clouds, the pre-ROSAT Lupus T Tauri star
population, the PMS stars from our survey, and the B-star
population of the OB subgroups.

How does the presence of US and the Lupus molecular
clouds (and their associated T Tauri stars) affect our find-
ings regarding the mean age of the UCL subgroup? We split
our unbiased (log Tor > 3.73) PMS and PMS? members of
UCL into two groups using the Galactic longitude line 335°
as a division. Most of the molecular cloud mass in the Lupus
region lies in the range 335° < I < 345° (see Fig. 2 of Tachi-
hara et al. 2002). Using the DM97 tracks, we find that the
“eastern” UCL PMS sample surrounding the Lupus clouds
has a mean age of 13 + 1 Myr, while the ““western” UCL
sample is somewhat older (16 = 1 Myr). The UCL stars
with ages of less than 10 Myr are found in greater numbers
near the Lupus clouds and US border, supporting the idea
that our UCL sample is probably contaminated by more
recent star formation. The age estimate of UCL for the stars
west of /= 335" is probably more representative of the
underlying UCL population.

Three of the youngest stars (HIP 81380, TYC 7858-830-1,
and TYC 7871-1282-1; 5-9 Myr; DM97 tracks) in our entire
survey are positioned near a clump of eight B stars at (/,
b) = (343°, +4°). These three PMS stars also have secular
parallax distances of ~200 pc, similar to what de Bruijne
(1999b) found for the group of B stars. The secular paral-
laxes may be biased, however, if this clump has slightly dif-
ferent kinematics than the average UCL motion. This
clump may represent substructure within UCL. However,
de Bruijne (1999b) was unable to demonstrate that the
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clump had distinct kinematics or age. The mean Hipparcos
distance of the clump B stars is 175 pc, with HIP 82514
(1! Sco; B1.5 Vp) and HIP 82545 (1% Sco; B2 IV) as the most
massive members. Our identification of three new PMS stars
in the same region with similar secular parallaxes supports
the notion that this may be a separate subgroup.

Some of our PMS stars were also identified in the ROSAT
surveys of the Lupus region by Krautter et al. (1997) and
Wichmann et al. (1997b; see notes in Table 5). The presence
of a significant population of PMS stars outside of star-
forming molecular clouds has been attributed by various
authors to be because of one or more of the following: (1)
slow diffusion (1-2 km s~!) from existing molecular clouds
(e.g., Wichmann et al. 1997a), (2) ejection from small N-
body interactions (Sterzik & Durisen 1995), (3) formation in
situ from short-lived cloudlets (Feigelson 1996), or (4) fossil
star formation associated with the Gould Belt (e.g., Guillout
et al. 1998). Wichmann convincingly showed that most of
the young RASS stars in the Lupus region are at a distance
of around ~150 pc (similar to previously published dis-
tances for the Lupus clouds and UCL), and that the stars
are roughly 10 Myr old. Wichmann concludes that the dis-
persed PMS population is most likely a manifestation of the
Gould Belt. The OB subgroups of Sco-Cen are major sub-
structures of the Gould Belt (as defined by age and kine-
matics; Frogel & Stothers 1977), i.e., UCL is the dominant
Gould Belt substructure in the Lupus region. We interpret
the presence of dozens of PMS stars near the Lupus clouds
to be primarily the low-mass membership of the UCL OB
subgroup. Our analysis suggests that younger US or Lupus
stars are a minor contaminant to our UCL sample.

8.3. Is LCC Older than UCL?

Although our PMS and turnoff age estimates for LCC
agree rather well, they are substantially older (by ~50%)
than previous values. The de Geus et al. (1989) age estimate
(11-12 Myr) appears to hinge primarily on the H-R diagram
position of ¢ Cen, with § Cru, o Mus, and &2 Cen defining
the rest of the turnoff isochrone. The latter three stars were
confirmed as members by dZ99, but ¢ Cen (the most mas-
sive) was rejected. Although our age for ¢ Cen is consistent
with de Geus’s, we omitted it from our LCC age estimate. If
one uses the long-baseline proper motion for € Cen from the
new Proper Motions of Fundamental Stars catalog
(Gontcharov et al. 2001) and adopts the LCC space motion,
convergent point, and formulae of dZ99 (with vy, = 3 km
s71), e Cen has a 100% membership probability. The result-
ing secular parallax (7g. = 9.6 + 2.0 mas) agrees well with
the Hipparcos astrometric parallax (ryp = 8.7 & 0.8 mas),
further strengthening the interpretation that e Cen is a bona
fide LCC member. Including e Cen with the other five turn-
off stars discussed in § 7.2 does not change our turnoff age
estimate, however (16 =1 Myr). If one ignores the stars
with masses less than that of € Cen, then the 12 Myr Bertelli
isochrone would appear to be an acceptable fit for LCC.
Because the turnoff is poorly defined, we give equal weight
to the next five Hipparcos members down the mass spectrum
(6 Cru, o Cen, a Mus, ¢! Cru, and &2 Cen), which yields an
age older than de Geus’s.

The star € Cen is one of several classical LCC early B-type
member candidates rejected as members of Sco-Cen using
the Hipparcos astrometry. These stars have been included in
Sco-Cen candidate membership lists on and off over the past
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half-century: HIP 59196 (6 Cen; B2 IVne), HIP 60718A
(ol Cru A; B0.5 V), HIP 62434 (3 Cru; B0.5 IV), and HIP
68702 (5 Cen; Bl III). These stars are ~10-20 M, stars,
with inferred ages of ~5-15 Myr and distances of ~100-150
pc. Such stars are extremely rare, and their presence in the
LCC region appears to be more than coincidental. Are they
all LCC members whose Hipparcos proper motions are per-
turbed because of binarity? 4/ five systems are flagged (field
No. 59) in the Hipparcos catalog as stars with unusual
motions due to either unseen companions or variability. A
kinematic investigation of these stars and their potential
membership in LCC is beyond the scope of this study but is
necessary for understanding the global star formation his-
tory of the Sco-Cen region. Are these stars bona fide mem-
bers? If so, why are they so much younger than the other
members (both PMS and mid B stars)? If they are not bona
fide members, where did they come from? Although our age
estimates for the PMS sample and Hipparcos early B mem-
bers appear to be consistent, the presence of these young,
B0-B2 classical members (Hipparcos nonmembers) hints
that the story of star formation in Sco-Cen is more complex
than our results reveal.

8.4. A Star Formation History of Sco-Cen?

Preibisch & Zinnecker (2000) reviewed the recent star for-
mation history of Sco-Cen (less than 5-10 Myr) in the
region of US, UCL, and p Oph. They present evidence for
external supernovae triggering in the formation of the sub-
groups. They claim that supernovae shock waves from UCL
passed through the US progenitor GMC approximately 5
Myr ago and caused the cloud to collapse. The US group
appears to have had at least one supernova in the past ~1
Myr, possibly a deceased massive companion to the run-
away 09.5 V star ¢ Oph. This supernova contributed to
destroying the GMC and producing the US superbubble (de
Geus 1992; Hoogerwerf, de Bruijne, & de Zeeuw 2001). The
US subgroup appears to be currently triggering star forma-
tion in the p Oph cloud core. Here we speculate on the
global star formation history of the Sco-Cen complex.

The formation of LCC and/or UCL may have been simi-
larly triggered. However, it is unclear if one triggered the
formation of the other or vice versa. Our PMS age estimates
are consistent with LCC being slightly older than UCL by a
few Myr, although they could be coeval. What was the ori-
gin of these large OB subgroups? The gas associated with
the Sco-Cen complex appears to be part of the Lindblad
Ring, a torus of H 1 and molecular clouds hundreds of par-
secs in radius. It is centered roughly near the a Persei cluster
and Cas-Tau OB association (Blaauw 1991; Péppel 1997).
The young stars that have formed from this gas complex
(i.e., the Gould Belt) share a systematic expansion consis-
tent with a localized origin for the whole complex—prob-
ably an expanding gas shell from a large star formation
event (e.g., Moreno, Alfaro, & Franco 1999). The gas asso-
ciated with Sco-Cen appears to be part of a ““ spur” of neu-
tral hydrogen and molecular clouds that runs from near
LCC (including Coalsack, Musca, and Chamaeleon
clouds), through Lupus and Ophiuchus, and into the Aquila
and Vulpecula Rift regions (see Fig. 3-18 of Poppel 1997). It
is likely that LCC and UCL were among the first clumps in
the Lindblad Ring to collapse and form stars (see § 4 of
Blaauw 1991), either from self-gravity or triggered from
external supernovae events. The LCC and UCL regions
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formed a large population of OB stars, and their stellar
winds and supernovae may indeed have triggered the col-
lapse of the US group. The process might continue over the
next 10 Myr as the supernovae from the US and p Oph sub-
groups send shock waves into the vast reservoir of atomic
and molecular gas associated with the Aquila Rift (see § 3.4
of Poppel 1997, and references therein). On the other side of
Sco-Cen, there appears to be little gas westward of LCC
until one reaches the Vela complex some 400 pc away. The
lack of a sufficient gas reservoir probably explains why trig-
gering did not proceed to form OB subgroups west of LCC.

The Sco-Cen subgroups have formed their own network
of superbubbles with radii of ~100 pc (de Geus 1992). The
superbubbles appear to be largely H 1, presumably gas from
the progenitor Sco-Cen GMC, as well as the swept-up inter-
stellar medium. In some region, they are associated with
well-known nearby molecular cloud complexes: Coalsack,
Musca, Chamaeleon, Corona Australis, Lupus, and numer-
ous small high Galactic latitude clouds (e.g., Bhatt 2000).
The Lupus clouds are spatially coincident with the western
side of the US superbubble; however, no kinematic analysis
has been yet undertaken to determine whether the Lupus
clouds share in the bubble expansion. The CrA molecular
clouds are embedded within the UCL superbubble shell,
and the space motion of the T Tauri star population is mov-
ing radially away from UCL (Mamajek & Feigelson 2001).
Other young stars in the field toward the fourth Galactic
quadrant, including the 1 Cha cluster, TW Hya association,
and (3 Pic group, all have ages of ~10 Myr and are moving
radially away from LCC and UCL. Perhaps these stars
formed in small molecular clouds that accumulated within
the expanding LCC/UCL superbubble shells.

9. CONCLUSIONS

From our spectroscopic survey of an X-ray—selected and
kinematically selected sample of late-type stars in the Sco-
Cen OB association, we summarize our main findings as
follows:

1. We have identified a population of low-mass stars in
the Lower Centaurus—Crux (LCC) and Upper Centaurus—
Lupus (UCL) OB subgroups with the following properties:
(1) G-K spectral types, (2) subgiant surface gravities, (3)
lithium-rich, (4) strong X-ray emission (Lx ~ 103° to 103!
ergs s~1), and (5) proper motions consistent with the high-
mass members. We classify stars that show these character-
istics as bona fide PMS stars or PTTSs. X-ray and kinematic
selection (the RASS-ACT/TRC sample) yielded a hit rate
of 93% for selecting probable PMS stars, while kinematic
selection alone (dZ99 Hipparcos sample G-K dwarfs and
subgiants) yielded 73%.

2. We estimate the mean age of the PMS population in
the LCC subgroup to be 17 + 1 Myr (DM97 tracks), 21 + 2
Myr (PSO01), and 23 + 2 Myr (SDF00). For UCL, the PMS
population’s mean age is 15 + 1 Myr (DM97), 19 + 1 Myr
(PSO1), and 22 + 1 Myr (SDF00). The UCL PMS estimate
appears to be slightly biased toward younger ages (by ~1
Myr) through contamination by Lupus or US members. We
also calculate new MS turnoff ages of 16 + 1 Myr for LCC
and 17 + 1 Myr for UCL using the dZ99 Hipparcos mem-
bership and Bertelli et al. (1994) evolutionary tracks. The
UCL PMS and turnoff age estimates are roughly self-consis-
tent and similar to previously published estimates. Our age
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estimates for LCC (PMS and turnoff) are older than pre-
vious estimates and are equal to or slightly older than UCL.

3. We find that 68% of the low-mass star formation in
each subgroup took place within a less than 4-6 Myr span,
and 95% took place within less than 8-12 Myr (using DM97
tracks). The conditions were right for producing low-mass
stars in the LCC and UCL progenitor molecular clouds for
less than 10 Myr.

4. We find the frequency of CTTSs among a PMS popu-
lation in an OB association with masses of 1.3 + 0.2 (1 o)
M, and ages of 13 £ 1 (s.e.) £ 6 (1 o) Myr (DM97 tracks)
to be only 0.9%:{2% (1/110). The younger age results from
using our entire (i.e., magnitude-biased) sample of PMS
stars. Only one star in our sample showed both strong Ho
emission and a K-band excess: the previously known CTTS
TYC 9246-971-1 (star 34 = PDS 66 = Hen 3-892). This
suggests that the disk accretion phase lasts <10-20 Myr in
the evolution of solar-type stars in OB associations.

5. We demonstrate that a surface gravity indicator for
classifying field G and K stars (Sr 11 A4077 to Fe1 A4071) can
be used to distinguish whether Li-rich stars are PMS or
ZAMS in nature. When this indicator is used in tandem with
other youth diagnostics (Li abundance, X-ray emission, Ho
emission, and kinematics), one can confidently classify a
star as PMS in nature.
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APPENDIX A
THE PRE-MAIN-SEQUENCE T, SCALE

Pre-main-sequence stars lie between dwarfs (V) and sub-
giants (IV) on color—-absolute magnitude or temperature-
luminosity H-R diagrams. A given visual spectral type will
correspond to cooler temperatures as surface gravity
decreases (e.g., Gray 1991; de Jager & Nieuwenhuijzen
1987). Dwarf temperature scales are often adopted for PMS
populations, but it is prudent to account for the effects of
surface gravity.

We quantify the effects of log g on the Sp. versus Ty rela-
tion using two data sets. First, we fitted a polynomial sur-
face to Toi(Sp., log g) using the data from Gray (1991,
Table 2). As with most compilations of T.5(Sp.) in the FGK
star regime, we find that a trinomial is the best low-order fit,
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and that a linear dependence on log g adequately accounts
for the effects of surface gravity on temperature. Our second
method finds a similar surface fit to 7T.x(Sp., log g) using
published T.; and log g values (Cayrel de Strobel et al.
2001) for the GK standards of Keenan & McNeil (1989)
and F standards of Garcia (1989; those within 0.3 dex of
solar [Fe/H], and luminosity class IV and V only). We
adopt the isochrones from D’Antona & Mazzitelli (1997)
for a fiducial log ¢g value as a function of Ty for a coeval
15 Myr old population.

Both assessments yield essentially the same result: dwarf
temperature scales for G—K stars should be lowered by 35 K
for a 15 Myr old population. The temperature decrement
increases for younger ages: 70-40 K for GO-K2 10 Myr old
stars, 235-105 K for GO-K2 5 Myr old stars, and 260-180 K
for G3-K2 1 Myr old stars. Both techniques yielded a linear
dependence of log g on Toi(Sp., log ¢g), and the slopes were
similar: 0Tegr/0logg ~ 220 K [log (cm s~ 1)]~! for the
Keenan standards with Cayrel de Strobel stellar atmosphere
data, and OT.r/0logg ~ 190 K [log (cm s~ H]~! for the
interpolation of Gray’s (1991, Table 2). Since the evolution-
ary model isochrones are parallel to the main sequence
when the stars are on the radiative tracks (i.e., ~10-30 Myr
for ~1 M., stars), the Alog g between a 15 Myr isochrone
and the main sequence is fairly constant over the G-K spec-
tral types. Hence, one naively expects a linear offset in
Tei(Sp., log g) between the 15 Myr isochrone and the main
sequence.

With the 1 o scatter between published 7,4(Sp.) relations
being ~60 K among G stars, the systematic shift is nearly
negligible. Upon comparing several temperature scales from
the literature, we adopt the dwarf T, scale from Schmidt-
Kaler (1982) and apply a —35 K offset to correct for the
effects of lower surface gravity for a putative 15 Myr old
population. We conclude that adopting dwarf T.y versus
Sp. scales for PMS stars younger than ~10 Myr will system-
atically overestimate their 7,.g values and, in turn, their
masses inferred from evolutionary tracks. This could have
deleterious systematic effects on derived IMFs for young
associations.

APPENDIX B

STANDARDS WITH QUESTIONABLE
LUMINOSITY CLASS

Several of the standard stars we observed had H-R dia-
gram positions, published log g values, and Sr 1 \M4077 /Fe 1
4071 ratios (Sr/Fe) that differed from what is expected for
their luminosity classes given in Keenan & McNeil (1989).
The differences are only at the half of a luminosity-class
level. We adopted the Keenan temperature types for all of
his standard stars, but we revised the luminosity classes of
these stars to bring their H-R diagram positions, Sr/Fe
index, and published logg estimates into harmony
(Table 9). The Sr/Fe indices for the vast majority of the
standards formed loci according to luminosity class (Fig. 1),
so we are comfortable using the index as an additional dis-
criminant. The dwarf regression line in the gravity indicator
versus temperature indicator plot (Fig. 1) was constructed
using only Keenan standards for which his luminosity clas-
sification agreed with published log g values and the H-R
diagram position.
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TABLE 9
REVISED LUMINOSITY CLASSES OF STANDARD STARS

Published log g Sr/Fe H-R Diagram Adopted
Star Lum. Class Estimates Class Position Luminosity Class
HR 5072 .......... \% 3.8-3.9(IV-V) IvV-v vV-v Iv-v
HR 4995 .......... IvV-v 3.0-3.7 (I1I/1V) v v v
HR 5409 .......... v 3.3-3.9(1I/1V) I-1v II-1v MI-1v
HR 6608 .......... I1Ib . v v v

Notes.—Published luminosity classes from Keenan & McNeil 1989. The range of published log g
estimates come from the compilation of Cayrel de Strobel et al. 2001. “ Sr/Fe class”’ is from measuring
the Fe 1 AM4071/Sr 11 M071 ratio in our spectra and intercomparison to the spectral standards in Table 3
(see Fig. 1). The luminosity class from the H-R diagram position uses the V" and B—V data from Hipparcos
and the standard relations from Appendix B of Gray 1991.

APPENDIX C
POLYNOMIAL FITS

M6 versus Spectral type.—This flux ratio is Index 6 of Malyuto & Schmidt-Kaler (1997). We measure the index in magni-
tudes (MI6 = —2.5 log [ /(AA5125-5245) /£ (AN5245-5290)]) and find the following relation for Keenan and Garcia FO-K6
ITI-1V standards (Table 3) within 0.3 dex of solar metallicity:

B { 33.26 4 0.07 + (22.75 4 0.48)MI6 if 0.06 < MI6 < 0.26 ,
P 7 130.82 4 0.16 + (105.38 £ 8.28)MI6 — (711.74 + 173.81)MI6> if — 0.04 < MI6 < 0.06 ,

where Sp. is the spectral type on Keenan’s (1984) scale, i.e., F5 =28, F8 =29, G0 = 30, G2 = 31, G5 = 32, G8 = 33,
KO =34, K1 =35, and K2 = 36. Intermediate types can be assigned e.g., G9 = 33.5, G9.5 = 33.75, KO+ = 34.25,
KO0.5 = 34.5, etc. The first equation applies to KO-K6 stars, and the second equation applies to FO-KO stars. The 1 o
dispersion in these fits is 0.6 subtypes. . .

374/ 4383 versus spectral type—This band ratio consists of two 3 A bands centered on 4374.5 and 4383.6 A. We measure
the index in magnitudes as Y /Fe = —2.5 log [ f(\4374.5)/f(\4383.6)]. We find the following relation between the band ratio
and Sp. for FO-K6 ITI-V stars:

(C1)

Sp. = 25.97 4 0.30 + (20.47 +0.90)Y /Fe . (C2)

The residual standard deviation to the fit (using 20 Keenan FO-KS5 III-V standards within 0.3 dex of solar metallicity) is 0.6
subtypes.

Surface Gravity Index Fe 1 \4071/Sr 11 M4077 versus spectral type—We measure a surface gravity index using the flux ratio
of two 3 A bands centered on Fe 1 M071.4 and Sr m X076.9. We measure the flux ratio in magnitudes:
Sr/Fe = —2.5 log [ f(A4071)/f(A4077)], and plot against our MI6 spectral type index. The Keenan standard dwarfs confirmed
as being main-sequence stars define a narrow locus:

Sr/Fe = —0.078 + 0.005 + (2.123 4 0.261)MI6 — (8.393 4 2.945)MI6> + (15.487 + 8.672)MI6° . (C3)

The 1 o sample standard deviation of this fit is 0.0094 mag in Sr/Fe. The boundary between dwarfs and subgiants in Figure |
is —2 o of the dwarf locus. This relation is valid for F9—K6 stars.

Ha versus spectral type.—In Figure 2, we fitted the equivalent widths of the Ha feature (at low resolution, the photospheric
absorption plus the chromospheric emission) as a function of spectral type for FO-K6 dwarf and subgiant standard stars
(Table 3) with the following polynomial:

EW(Ha) = 2.983 £ 0.066 — (0.456 4 0.027)(Sp. — 30) + (2.574 £ 0.378) x 10~2(Sp. — 30)? . (C4)

EW(Ha) is measured in angstroms. Sp. is spectral type on Keenan’s scale (as before). The sample standard deviation of the
polynomial fit to 11 standards was 0.20 A.

Converting Tycho B— V to Johnson/ Cousins System.—The Hipparcos catalog gives linear relations between By — Vg, B—V,
V, and Vr for stars of a wide range in spectral types. Bessell (2000) compared the Hipparcos/Tycho photometry and that of
the E region photometric standards and refined the relations between the two systems. Table 2 of Bessell (2000) gives a stan-
dard relation between By — V7, Johnson/Cousins B—V, and (V'— V) for B-G dwarfs and K-M giants. We fitted the following
relations to Bessell’s tables:

V=Vr+97x10*—=1.334 x 107 (By — V) + 5486 x 107 2(Br — V7)* — 1.998 x 107 2(By — V7)*,  (C5)
B—V = (Br — V) + 7813 x 1073 (B — V) — 1.489 x 107" (By — V) +3.384 x 10°%(By — V1), (C6)
B—V = (By — V7) —0.006 — 1.069 x 107" (By — V1) + 1.459 x 10~ (B; — V7)* . (C7)
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The V(Vr, By — V1) polynomial equation (C5) applies to stars from —0.25 < (By — V) < 2.0 (B-M types). Equation (C6)
is for stars with 0.5 < (B7 — V1) < 2.0, and equation (C7) is for stars with —0.25 < (B7 — V7) < 0.5. We do not quote
uncertainties in the polynomial coefficients, since the Bessell relations are already smoothed. These equations fit Bessell’s

standard relations to 1-2 mmag.
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ERRATUM: “POST-T TAURI STARS IN THE NEAREST OB ASSOCIATION”
(AJ, 124, 1670 [2002])

Eric E. MaAMAJEK
Harvard-Smithsonian Center for Astrophysics

AND

MicHAEL R. MEYER AND JAMES LIEBERT
Steward Observatory

In Table 3 the F6 V—type spectral standard star HR 7061 is mistakenly aliased as HD 173677 but should be HD 173667. In §7.2 HIP
68282 is mistakenly aliased as ' Cen (‘“nu 1) but should be v! Cen (“upsilon 1”’) according to the Bright Star Catalog (D. Hoffleit &
W. H. Warren, Jr. [New Haven: Yale Univ. Obs.; 1991]). The same error in SIMBAD has since been corrected. In Appendix A, third
paragraph, the units of slope should be K [log (cm s’z)]fl, not K [log (cm sfl)]fl. In Appendix C there is an incorrect sign in the
second term in equation (C6), and incorrect color ranges were published for equations (C6) and (C7). Equations (C6) and (C7) provide
polynomial transformations between the Tycho (B — V1) and Cousins-Johnson (B — V) colors. The correct equation (C6), applicable
over the color range (By — V7)€[0.40, 2.00], is

B—V =(Br —Vr)—17.813x107%(Br — Vr)
— 1489 x 107" (Br — V7)* +3.384 x 107 2(Br — V7)*. (C6)

The correct formula (C6) was applied in the paper but transcribed incorrectly to the manuscript. Equation (C7) was published correctly, but
the published color range is incorrect. For the color range (Br — Vr)€[—0.25, 0.40], equation (C7) should be used (same as published):

B—V =(Br —Vr)—0.006 — 1.069x 10~ (B — V'7)
+1.459x 107" (B; — V)% (C7)

We thank John Carpenter for bringing the error in equation (C6) to our attention and Frangois Bonnarel and Christian Nitschelm for
pointing out the stellar misidentifications.
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