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ABSTRACT

Many astrophysical flows occur in inhomogeneous (clumpy) media. We present results of a numerical
study of steady, planar shocks interacting with a system of embedded cylindrical clouds. Our study uses a
two-dimensional geometry. Our numerical code uses an adaptive mesh refinement, allowing us to achieve suf-
ficiently high resolution both at the largest and the smallest scales. We neglect any radiative losses, heat con-
duction, and gravitational forces. Detailed analysis of the simulations shows that interaction of embedded
inhomogeneities with the shock/postshock wind depends primarily on the thickness of the cloud layer and
arrangement of the clouds in the layer. The total cloud mass and the total number of individual clouds is not
a significant factor. We define two classes of cloud distributions: thin and thick layers. We define the critical
cloud separation along the direction of the flow and perpendicular to it, distinguishing between the interact-
ing and noninteracting regimes of cloud evolution. Finally, we discuss mass loading and mixing in such
systems.

Subject headings: hydrodynamics — ISM: clouds — planetary nebulae: general — shock waves —
stars: mass loss

1. INTRODUCTION

Mass outflows play a critical role in many astrophysical
systems, ranging from stars to the most distant active gal-
axies. Virtually all studies of mass outflows to date have
focused on flows in homogeneous media. However, the typi-
cal astrophysical medium is inhomogeneous, with the
‘‘ clumps ’’ or ‘‘ clouds ’’ arising on a variety of scales. These
inhomogeneities may arise because of initial fluctuations of
the ambient mass distribution, the action of instabilities,
variations in the flow source, etc. Whatever the origin of the
clumps, their effect can be dramatic. The presence of inho-
mogeneities can introduce not only quantitative but also
qualitative changes to the overall dynamics of the flow.

A number of studies have attempted to understand the
role of embedded inhomogeneities via (primarily) analytical
methods (Hartquist et al. 1986; Hartquist & Dyson 1988;
Dyson & Hartquist 1992, 1994; Redman, Williams, &
Dyson 1998). In these pioneering works it was suggested
that interactions of the global flow with inhomogeneities
may cause significant changes in the physical, dynamical,
and even chemical state of the system. Two major conse-
quences of the presence of clumps are mass loading (i.e.,
seeding of material, ablated from the surface of inhomoge-
neities, into the global flow) and transition of the global flow
into a transonic regime irrespective of the initial conditions.
The papers cited above considered the potential effects of
mass loading on the global properties of a number of objects
in which inhomogeneities can be resolved. Such objects
include planetary nebulae, e.g., NGC 2392 (O’Dell, Weiner,
& Chu 1990; Phillips & Cuesta 1999) and NGC 7293 (Bur-
kert & O’Dell 1998), Wolf-Rayet stars, primarily RCW 58,
which is believed to be mass-loading–dominated (Hartquist
et al. 1986; Arthur, Henney, &Dyson 1996), and others.

A number of numerical studies of single-clump interac-
tions have been performed (Klein, McKee, & Colella 1994,
hereafter KMC94; Anderson et al. 1994; Jones, Ryu, & Tre-

gillis 1996; Gregori et al. 1999, 2000; Jun & Jones 1999;
Miniati, Jones, & Ryu 1999; Lim & Raga 1999). In these
papers, the basic hydrodynamics or MHD of wind-clump
and shock-clump physics have been detailed (often with
microphysical processes included). A few studies of shock
waves overrunning over multiple clumps exist in the litera-
ture (e.g., Jun, Jones, & Norman 1996). A detailed study of
multiple clumps, however, where an attempt is made to
articulate basic physical processes and differentiate various
parameter regimes, has not yet been carried out. In this
paper (and those that follow) we address the problem of
clumpy flows, providing a description of the dynamics of
multiple dense clouds interacting with a strong, steady
planar shock.

The large parameter space and complexity of the problem
require significant computational effort. To provide the nec-
essary resolution of the flow, we have used an adaptive mesh
refinement method. This is a relatively new computational
technology, and because of this we have chosen to investi-
gate so-called adiabatic flows, in which radiative cooling is
not considered. In this regard our approach is similar to that
described by Klein et al. (1994) for single clumps, and we
utilize their results in understanding our multiclump
simulations. We note that preliminary results, appropriate
to active galactic nuclei (AGNs), were presented in
Poludnenko, Frank, & Blackman (2002).

The plan of the paper is as follows. In x 2 we describe the
numerical experiments, the code used, and the formulation
of the problem. In x 3.1 we consider the general properties
of the shock-cloud interaction in the context of the multi-
cloud systems; primarily we focus on the four major phases
of the interaction process. In x 3.2 we discuss the role of
cloud distribution in determining the dynamics of the
system evolution. In x 3.3 we define several key parameters
that allow us to distinguish between various regimes of
shock-cloud interaction. Finally, in x 3.4 we address the
issue of mass loading in such systems.
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2. NUMERICAL EXPERIMENTS

2.1. Description of the Code Used

The code we used for this project is the AMRCLAW
package, which implements an adaptive mesh refinement
algorithm for the equations of gasdynamics (Berger & Le-
Veque 1998; Berger & Jameson 1985; Berger & Colella
1989; Berger & Oliger 1984). In the AMRCLAW approach,
the computational domain is associated with a logically rec-
tangular grid that represents the lowest level of refinement
(level 1) and that embeds the nested sequence of logically
rectangular meshes with finer resolution (levels 2, 3, . . .).
The temporal and spatial steps of all grids at a level L are
refined with respect to the level L� 1 grids by the same fac-
tor, typically 4 in our calculations. The mesh ratios Dt=Dx
and Dt=Dy are then the same on all grids, ensuring stability
with explicit difference schemes.

The solution on each grid is advanced via a second-
order–accurate Godunov-type finite-volume method in
which second-order accuracy is achieved via flux-limiting
and proper consideration of transverse wave propagation.
The multidimensional wave-propagation algorithm is based
on the traditional dimensional splitting with the Riemann
problem solved in each dimension by means of a Roe-
approximate Riemann solver (LeVeque 1997). It should be
noted that our implementation of the Riemann solver,
based on the Roe linearization, does not use any additional
procedures to ensure satisfaction of the entropy condition,
as usually employed for this type of Riemann solver. Our
analysis shows that the numerical diffusion present in the
system is sufficient to prevent entropy-violating waves from
propagating in the system.

The hydrodynamic equations we solve are appropriate to
a single-fluid system, although a passive tracer is introduced
in order to track advection andmixing of the cloudmaterial.
This was implemented as an additional wave family in the
Roe solver.

Our numerical experiments were performed on a coarse
grid with the resolution of 50� 100 cells and with the maxi-
mum number of refinement levels equal to 3 (meaning that
the coarse grid associated with the computational domain
embeds not more than two nested higher resolution levels).
Each higher level has a temporal and spatial step refined by
the factor of 4 in comparison with the next lowest level, and
we kept this refinement ratio constant for all levels. Such a
setup provides the equivalent resolution1 of 800� 1600
cells. In order to facilitate comparison of our numerical
experiments with those of KMC94, we describe the resolu-
tion not in terms of the equivalent resolution but in terms of
the number of cells that fit in the original maximal cloud
radius a0, following the convention of KMC94. Then all of
the runs described here in our paper have 32 cells per cloud
radius.

KMC94 suggested that a minimum resolution of 120 cells
per cloud radius is necessary. We have performed the simu-
lations of the cloud-shock interaction with the resolution of
120, 75, and 55 cells per cloud radius. Although we do not
describe the details of those runs in this paper, the principal
difference between the cases with maximum and minimum

resolution, i.e., 120 and 32 cells per cloud radius, is the rate
of instability formation at the boundary layers.2 This does
not seem to have any significant effect on the global proper-
ties of the interaction or the averaged characteristics of the
individual cloud ablation processes. Therefore, we find the
resolution of 30 cells per cloud radius and above to repre-
sent accurately the global properties of the interaction proc-
ess under consideration. Moreover, 30 cells per cloud radius
is a reasonable compromise between maximizing the size of
the computational domain and capturing as many small-
scale features of the interaction process as possible. We
emphasize that our problem requires a compromise between
the resolution needed for simulating details of individual
cloud structures and capturing the global flow pattern.

Finally, another aspect of this problem is the connection
between the spatial resolution (which naturally sets the
smallest scale resolvable in the simulations) and the diffu-
sion and thermal conduction length scales. As we show in
x 3.1.4, viscous diffusion and thermal conduction in a real
physical system operate at length scales comparable to the
size of a computational cell at the highest refinement level
used in our simulations. Therefore, in a real system, features
smaller than the ones that can be resolved with our resolu-
tion could not survive over the dynamical timescales rele-
vant to the problem. We will address this in greater detail
when we discuss the mixing phase of cloud evolution. Of
course, numerical diffusion must also be considered but, as
discussed above, our compromise resolution appears to
satisfy the need to capture both small- and large-scale
behavior.

2.2. Formulation of the Problem

We set up a two-dimensional computational volume,
associated with the initial condition of N different clouds of
radius ai and density �i embedded in the ambient medium of
density �a, and an incident shock wave. Since all of the
experiments were performed in the Cartesian geometry, the
clouds are actually cross sections of the infinitely long cylin-
ders. We will address the importance of the cloud shape in
more detail in subsequent work, where we will consider the
fully three-dimensional case of the shock interaction with
spherical clouds. Denoting the maximum cloud radius
present in the system as amax, our computational domain is
25amax � 50amax. This allows us to track the dynamical evo-
lution of the system over greater temporal and spatial inter-
vals compared to the 6amax � 16amax domain considered by
KMC94.

All our calculations were performed in a fixed reference
frame in which both the clouds and the ambient medium are
stationary at time t ¼ 0. In this reference frame the horizon-
tal axis is taken to be the x-axis, and the vertical axis the y-
axis. Initially, both the clouds and the surrounding inter-
cloud medium are assumed to be in pressure equilibrium
and have pressure P0. Typically, the extent of the region
occupied by the cloud distribution at time t ¼ 0 is taken to
be not more than 30%–35% of the horizontal extent of the
computational domain with XL offset by 5% from the left
boundary of the computational domain and XR offset by
35%–40%. Table 1 below, describing the numerical experi-
ments discussed in this paper, provides the details of the

1 By equivalent resolution hereafter we mean the resolution of a uniform
grid covering all of the computational domain and possessing the temporal
and spatial step of the highest refinement level.

2 For the case of lower resolution, the lower rate of instability formation
may be somewhat compensated by the use of the compressive flux limiters.
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cloud distribution in each simulation. Figure 1 illustrates
the setup of the computational domain at t ¼ 0.

In the most general case, we assume each cloud to have
the same nonuniform density profile. The clouds have con-
stant density up to a smoothing transition region at the
cloud edge, which is achieved through a linear or tanhðrÞ
function. We typically set the extent of the transition region
to the outer 20% of a cloud radius ai and use the tanhðrÞ-
type smoothing function. Therefore, the cloud density pro-
file is of the form

�iðrÞ ¼
�i ¼ const ; 0 � r � ri ;

�a þ �i
2

þ �a � �i
2

tanh½r� ðai þ riÞ=2�
tanh½ðai � riÞ=2�

ri � r � ai ;

8<
: ð1Þ

Although there is very little observational data available
concerning the internal structure of embedded clouds, this
particular choice of the density profile seems to be a suffi-
ciently good approximation to the real physical clouds and
inhomogeneities.

In the simple adiabatic interaction of a cloud with a shock
wave, there are two dimensionless parameters that com-
pletely define the problem: the Mach number of the blast
wave, MS, and the density contrast between the cloud and
the intercloud medium,

�i �
�i
�a

: ð2Þ

The range of values spanned by the density contrast � can
be quite large and is the most important parameter of the
problem. For the astrophysical situations of interest, this
range can often cover up to 5 orders of magnitude (from 10
to 106), presenting a significant challenge both for the
numerical modeling and for the subsequent interpretation
and analysis of the results. In order to decrease the extent of
this dimension of the parameter space, we chose a ‘‘ com-
promise ’’ value of the parameter � to be 500. Although the
runs we discuss in this paper all use this value of the density
contrast, we briefly discuss numerical experiments with

10d�d1000 in the results section, particularly in the con-
text of the problem of mass loading. We will provide a more
comprehensive study of scaling with density contrast in the
subsequent work.

Another important parameter is the shock-wave Mach
number MS, defined with respect to the ambient medium
sound speed Ca ¼ ð�P0=�aÞ1=2. We consider a planar,
steady, strong shock wave propagating into the computa-
tional domain from the left. Since we operate in the refer-
ence frame in which both the clouds and the ambient
medium are stationary, the shock-wave Mach number com-
pletely defines the shock velocity as well as the conditions of
the postshock flow. The conditions in the postshock flow,
namely the postshock density �PS, pressurePPS, and velocity
vPS, are determined using the Rankine-Hugoniot relations
in the usual manner (Landau & Lifshitz 1959).3

Shock-wave Mach numbers in astrophysical situations
can cover a large range of values. However, for strong
shocks the problem becomes practically independent of the
Mach number.4 Indeed, the results of KMC94 show that for
the difference in MS of 2 orders of magnitude (10–1000),
time evolution of the system does not differ by more
than 15%. We will see that our analytical results fully cor-
roborate the presence of Mach scaling in the problem under
consideration.

We assume that the structure of the postshock flow does
not change in time for the duration of the simulations. An
example of such steady postshock flow is the wind from a
post-AGB star driving a shock with a constant postshock
flow structure into a slow wind ejected during the previous
stages of evolution. This frees us from having to use the
pressure variation timescale tP, as defined by KMC94, to
constrain a cloud size, since we can set tP ! 1. On the
other hand, for blast waves one cannot assume a steady
time-independent postshock flow (for example, supernova
remnant blast waves), and the size of the clouds is con-
strained by the condition tCC5 tP, as discussed by KMC94.
Here tCC is the time necessary for the cloud internal shock
to traverse its radius (see eq. [10] for a more rigorous
definition).

It should be mentioned that the maximum cloud size is
still constrained by the condition of the shock-front planar-
ity. This condition is less restrictive than the one discussed
above; however, it still requires a cloud diameter not to
exceed 5%–10% of the global shock wave front radius. This
condition is satisfied, for example, in the case of the inhomo-
geneities, or the cometary knots, observed in such planetary
nebulae as NGC 2392 and NGC 7293 (e.g., Burkert &
O’Dell 1998).

The timescale we use to define time intervals in our
numerical experiments is the time required for the incident
shock wave to sweep across an individual cloud, called the
‘‘ shock-crossing time,’’

tSC ¼ 2amax

vS
; ð3Þ

where amax ¼ a0 for cloud distributions with identical

3 In our discussion we assume the perfect gas, i.e., � ¼ const ¼ 5=3 for
cloud, intercloud, and postshockmaterial.

4 This conclusion is true with a restriction that the shock speed vS is held
fixed.

Fig. 1.—Setup of the computational domain. Shown is the setup for the
run M14. The ‘‘ x-spacing ’’ and ‘‘ y-spacing ’’ are the parameters used in
Table 1 for the description of the runs. Note that this is not drawn to scale.
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clouds, and amax ¼ maxðaiÞ for cloud distributions of vary-
ing size clouds.

Because of the scale-invariance of our simulations, one
can, using specific values for the shock velocity and the size
of the inhomogeneities, easily convert the time units used in
our discussion into physical ones. The parameter tSC is par-
ticularly useful in characterizing the problem, since it has
clear physical meaning and does not depend on a specific
density contrast, which is important in the case of systems
containing clouds of different density.

Note that except for the very short period of time when a
cloud interacts with the shock front, the former finds itself
immersed in a postshock flow or ‘‘ wind,’’ the pressure and
density of which vary only by several percent over the large
range of Mach numbers. Since KMC94 showed that the ini-
tial interaction with the shock front does not alter the evolu-
tion of the system for the varying Mach number, the details
of the evolution should not change after the shock front has
passed the cloud. Therefore, conclusions about Mach scal-
ing should be valid both for the durations of cloud-wind
interactions discussed by KMC94 and for the much longer
durations in our experiments.

One final remark should be made concerning the boun-
dary conditions used in our experiments. In all runs we
imposed a constant inflow at the left boundary, described
by the postshock conditions, which is determined using the
Rankine-Hugoniot relations, and open boundary condi-
tions at the right, top, and bottom boundaries. Those out-
flow boundary conditions were implemented via zero-order
extrapolation.

2.3. Description of the Runs

All of the runs discussed in this paper contain a Mach 10
shock wave as a part of the initial conditions and embedded
clouds with the density contrast of 500. Table 1 presents a
summary of our numerical experiments.

In addition to the dependence on the shockMach number
and the cloud density contrast, there are other degrees of
freedom present even in the simplest adiabatic case. We con-
sidered how the dynamical evolution, e.g., rate of momen-
tum transfer from the shock wave and shock deceleration,

mass loading, mixing of cloud material, etc. of the system
depend on (1) the number of clouds present in the system,
(2) the total cloud mass, (3) the spatial arrangement of
clouds, and (4) the individual cloud sizes andmasses.

In most of the runs we constrained ourselves to the case
of identical clouds, varying only their number and arrange-
ment. Radii of the clouds in all runs except M14r is 2% of
the horizontal extent of the computational domain. In order
to simplify consideration of the dependence on a specific
cloud arrangement, most runs have a regular cloud distribu-
tion, in which the clouds are placed in the vertices of the
mesh formed by the centers of the clouds in the run M14. In
addition, we considered a more general case of a random
cloud distribution with random cloud spatial positions and
radii.

All of our numerical experiments were run for about 100
tSC.

5 By this time, each individual cloud has almost com-
pletely lost its identity and gained a velocity comparable to
the velocity of the global flow. Mixing of cloud material
with the global ambient flow is nearly completed by 100 tSC
as well.

In order to facilitate our analysis, we track temporal evo-
lution of the global averages and one-dimensional spatial
distributions of two quantities, namely (1) the kinetic energy
fraction, �kin ¼ Ekin=Etot, and (2) the volume filling factor,
�.

Because of the adiabatic nature of our simulations, the
kinetic energy fraction also allows us to track the comple-
mentary quantity, the thermal energy fraction �term ¼
Eterm=Etot ¼ 1� �kin.

In order to obtain those quantities from the complex data
structure of the adaptive mesh simulations, we project the
values of the state vector from each grid of the AMR grid
hierarchy onto a uniform grid with the resolution of the
highest refinement level and that is associated with the com-
putational domain. Such a projection does not cause loss of
data or its precision. When this projection is done, we define

TABLE 1

Summary of the Runs Discussed

Run

Number of

Cloudsa Distribution

Number

of Rows x-Spacing y-Spacingc

M1 ................. 1 regular 1 . . . . . .

M2................. 2 regular 1 . . . 4

A2.................. 2 regular 1 . . . 12

M3................. 3 regular 1 . . . 4

A5.................. 5 regular 1 . . . 4

M14 ............... 14 regular 3 7b 4

M14r .............. 14 random . . . 6.34d 6.34d

a Total number of clouds present in the system.
b Spacing between the centers of clouds in two different rows, projected onto the x-axis, in

units of the maximum cloud radius amax.
c Spacing between the centers of clouds in the same row, projected onto the y-axis, in units

of the maximum cloud radius amax, except for the runM14r.
d Maximum absolute spacing between the cloud centers in any direction in the units of

the average cloud radius for the distribution.

5 For comparison, the experiments considered in KMC94, that have
comparable initial cloud–ambient medium density contrast, were run for
about 25 tSC.
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the global averages of the first quantity above as

h�kini2D ¼
PNi

i¼1

PNj

j¼1 �kin;ij

NiNj

�
R xmax

xmin

R ymax

ymin
�kinðx; yÞ dx dy

ðxmax � xminÞðymax � yminÞ
; ð4Þ

where Ni and Nj are the numbers of cells of the projected
grid in the x- and y-directions, respectively. Such averaging
allows us to follow momentum transfer from the shock
wave to the system of clouds, in the case of h�kini2D, and via
the complementary quantity of the global thermal energy
fraction h�termi2D, heating of the cloud system and inter-
cloud material.

We also define the one-dimensional spatial average of
that quantity as

h�kini1DðxÞ ¼
PNj

j¼1 �kin;ij

Nj
�
R ymax

ymin
�kinðx; yÞdy

ðymax � yminÞ
: ð5Þ

Our code follows advection of a passive tracer marking
cloud material. In order to follow mixing of the cloud mate-
rial with the global flow, we define the global average of the
volume filling factor h�i2D as the ratio of the total number
of cells containing cloud material to the total number of
cells in the computational domain. We also define the one-
dimensional spatially averaged volume filling factor h�i1D
as the variation with the coordinate x of the ratio of the
number of cells containing cloud material in each vertical
row of the computational grid to the total number of cells in
the vertical dimension.

3. RESULTS

3.1. General Properties of the Shock-Cloud Interaction

Figures 2–5 show the time evolution of a shock wave
interacting with a single cloud (run M1), three clouds (run
M3), 14 identical clouds in the regular distribution (run
M14), and 14 clouds of random size in a random distribu-
tion (run M14r). Shown are the synthetic Schlieren images
of the system at four different times for all four sequences.
Each image is obtained by calculating the density gradient
at each point,6 plotted on a gray scale with the white denot-
ing zero and black the maximum density gradient. Every
image in each sequence roughly illustrates transitions
between the evolutionary phases discussed below.

3.1.1. Initial Compression Phase

After the initial contact, an external shock transmits an
internal forward shock into a cloud. This causes cloud com-
pression and heating. At the same time, a bow shock forms
around the cloud. KMC94 subdivide this phase into two
stages: initial transient and shock compression. Our numeri-
cal experiments show that, in general, their description is
applicable for all cloud distributions except for the cases
when individual clouds are almost in contact at time t ¼ 0.
The cloud interior is dominated by the forward shock wave.
In addition, it undergoes further compression because of
the ram pressure from the global upstream postshock flow.

A reverse shock forms at the downstream surface of the
cloud as a result of the backflow, caused by the global shock
convergence behind the cloud. This reverse shock in our
simulations never detaches from the downstream surface of
the cloud, but instead propagates some small distance
upstream (toward the internal forward shock) together with
the cloud downstream surface. Moreover, typically the
reverse shock is fairly weak, with shock Mach numbers not
exceeding 1.2–1.3. This leads to lower maximum densities in
the cloud interior reached during this compression phase
compared to KMC94; we typically see �i;maxd6�i;0 as
opposed to �i;maxd10�i;0 quoted by KMC94. The latter
value was obtained analytically by KMC94 using the
assumption of the collision of two strong shocks, as
opposed to the collision of a strong and a weak shock in

6 To be more precise, the calculated quantity is the gradient of the den-
sity logarithm. This makes the images clearer and easier to understand.

Fig. 2.—Run M1. Time evolution of a system containing a single cloud
and interacting with a MS ¼ 10 shock wave. Shown are the synthetic
Schlieren images of the system at times 22:47tSC, 35:23tSC, 50:54tSC, and
68:40tSC.
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reality. Figure 6 illustrates the major flow structures present
in the system during the initial compression phase.

Propagation of the forward shock in the cloud allows us
to define another important timescale governing the evolu-
tion of the system and defining the duration of the compres-
sion phase, the ‘‘ cloud-crushing time,’’ tCC. This is the time
necessary for the internal forward shock to cross the cloud
and reach its downstream surface,7

tCC ¼ 2amax

vCS
: ð6Þ

In the above expression vCS is the internal forward shock

velocity and amax is again defined as a0 in the cases of cloud
distributions with identical clouds, and as maxðaiÞ in the
cases of cloud distributions with clouds of varying size. Fol-
lowing KMC94, the velocity of the internal forward shock
can be written as

vCS ’ vS
�1=2

�
Fc1Fst

�1=2
; ð7Þ

where vS is the velocity of the external shock. The factor Fst

relates the external postshock pressure far upstream with
the stagnation pressure at the cloud stagnation point and
has the form (Klein et al. 1994)

Fst ’ 1þ 2:16

1þ 6:55��1=2
: ð8Þ

7 This was the principal timescale in the study of KMC94, although they
defined it as the time necessary for the internal forward shock to cross the
cloud radius. We have changed the definition in our work, since the defini-
tion of KMC94 did not actually correspond to the duration of the compres-
sion phase. Therefore, tCC in our work is about twice the tCC defined by
KMC94.

Fig. 3.—Run M3. Time evolution of a system containing three identical
clouds and interacting with aMS ¼ 10 shock wave. Shown are the synthetic
Schlieren images of the system at times 22:47tSC, 35:23tSC, 50:54tSC, and
68:40tSC.

Fig. 4.—Run M14. Time evolution of a system containing 14 identical
clouds in a regular distribution and interacting with aMS ¼ 10 shock wave.
Shown are the synthetic Schlieren images of the system at times 22:47tSC,
35:23tSC, 50:54tSC, and 69:09tSC.
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The factor Fc1 relates the stagnation pressure with the pres-
sure just behind the internal forward shock and has an
approximate value of 1.3, determined from numerical
experiments (Klein et al. 1994).

While we primarily use the shock-crossing time as
the major timescale, we occasionally give time in terms
of the cloud-crushing time to facilitate comparison
with the results discussed by KMC94. For this pur-
pose, we express the cloud-crushing time in terms of
the shock-crossing time. Recalling the definition of tSC
(eq. [3]), we have

tCC ¼ �1=2
�
Fc1Fst

��1=2
h i

tSC : ð9Þ

Therefore, for the case of � ¼ 500,

tCC ¼ 12tSC ; ð10Þ

which agrees to about a few percent with the results
of the numerical experiments.

The global properties of the flow at this stage are charac-
terized by the onset of individual bow shocks around each
cloud in a time of the order of tSC. By the end of the initial
compression phase, those individual bow shocks merge into
a single bow shock.8

Finally, the downstream flow, i.e., the flow right behind
the external forward shock front, is affected by the onset of
turbulence in the tails behind the clouds.

Fig. 5.—RunM14r. Time evolution of a system containing 14 clouds in a
random distribution and interacting with a MS ¼ 10 shock wave. Shown
are the synthetic Schlieren images of the system at times 9:71tSC, 22:47tSC,
45:43tSC, and 69:09tSC.

Fig. 6.—Flow structure during the initial compression phase. Shown is
the Schlieren image of the run M1 at time 5:1tSC. GS, external global for-
ward shock; RB, external reverse bow shock; IF, internal forward shock;
IR, internal reverse shock; BF, back flow, caused by global forward shock
convergence on the symmetry axis; V1, primary vortex sheets, caused by
regular reflection of the bow shock; M1, primary Mach reflected shocks,
caused by Mach reflection of the global forward shock at the symmetry
axis; S1, primary Mach stem (more precisely, two primary Mach stems);
T1, primary triple points; V2, secondary vortex sheets, caused by the pri-
maryMach reflection of the global forward shock (note the two stem bulges
formed at the base of the secondary vortex sheets near the symmetry axis);
M2, secondary Mach reflected shocks; S2, secondary Mach stems; T2,
secondary triple points.

8 It should be noted that a bow wave forms instead of a bow shock if the
external postshock flow is subsonic, i.e., if

MPS ¼ vPS

�
�PPS

�PS

��1=2

� 1 :

With the postshock conditions �PS, PPS, and vPS determined from the Ran-
kine-Hugoniot relations (Landau & Lifshitz 1959), the above criterion is
satisfied for the following values of the external shockMach number:

MS �
�
�� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4��

p
2�

�1=2

� 2:758 for � ¼ 5

3
;

where

� ¼ 4� 2�ð� � 1Þ; � ¼ �2 � 6� � 7; � ¼ 2� þ 2 :

Since in this paper we consider the external shocks,Mach numbers of which
are typically above 5.0, we hereafter do not consider the possibility of a
bowwave formation.
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3.1.2. Re-expansion Phase

This phase is initiated after the cloud internal forward
shock reaches the back of the cloud. Two major processes
then occur: lateral expansion of the cloud and the onset of
instabilities at its upstream surface. At this stage Rayleigh-
Taylor type instabilities dominate at the cloud/ambient
flow interface. These are driven in part by the cloud expan-
sion and incipient large-scale fragmentation. The flow
downstream with respect to the clouds is dominated by
Kelvin-Helmholtz instabilities operating in the growing tur-
bulent region. The combined action of the lateral expansion
and the instabilities causes the clouds to take the
‘‘ umbrella-type ’’ shape and eventually break up.

In the context of those two processes, the initial cloud
separation becomes of key importance in defining the
subsequent behavior of the whole system. We show
below that it can be used to distinguish between the two
regimes of cloud evolution, interacting and noninteract-
ing, and can serve as the basis for classification of cloud
distributions. In x 3.3 we give a more rigorous discussion
of the role of cloud separation. For now we give a quali-
tative illustration.

Clouds located far enough from each other are not
greatly influenced by their neighbors, and their interaction
with the flow proceeds independently, as described by
KMC94. This case is illustrated in Figure 7. Compared to
the evolution of a single cloud system, shown in Figure 2,
the two clouds evolve up to the point of their destruction
very similarly to the single-cloud case. However, cloud sepa-
rations can be small enough for the mutual interaction to
manifest early during the re-expansion phase, as in Figure 8.
This mutual interaction causes changes primarily in the flow
between clouds. As a result, the lateral expansion and
growth of the Rayleigh-Taylor instabilities in the cloud
material is affected. The tails behind the clouds are also
deformed outward (see, e.g., also Fig. 3).

The unperturbed supersonic flow that forms behind the
external shock wave undergoes a transition from a super-
sonic to a subsonic regime as it passes through a cloud bow
shock. As a consequence, it suffers a significant velocity
drop whose magnitude is larger for smaller cloud separa-
tions, because of the larger volume of the stagnation zone in
front of the clouds. Clouds, acting as de Lavalle nozzles,
then cause the flow material to reaccelerate. The flow
reaches a sonic point next to a cloud core for the regions of
the flow adjacent to a cloud, and farther downstream for the
regions of the flow located farther from the clouds. It is
important to note that this reacceleration results in rarefac-
tion of the flow and a gradual decrease of both thermody-
namic and dynamical pressure. Eventually, as a result of
acceleration in the intercloud region, the flow becomes
highly supersonic and finally shocks down through a sta-
tionary shock formed downstream of the clouds to the
regime close to the unperturbed flow behind the external
shock (see Figs. 7–8).

From the above discussion it is clear that the lateral
expansion velocity depends critically on the cloud separa-
tion. For sufficiently low flow speeds, the cloud material will
expand at the cloud internal sound speed. With increasing
global flow velocities (or, equivalently, with increasing
velocities of the external shock front), the lateral expansion
velocity will increase as well. This velocity is limited, in prin-
ciple, by the terminal expansion velocity into vacuum.

For a fixed unperturbed upstream flow, the flow velocity
near a cloud lateral surface (facing the space in between the
clouds) will be highest in the case of a single cloud or a cloud
located far from the neighboring ones. With decreasing
cloud separation this velocity will decrease as well, causing
higher dynamical pressure on the lateral surface, and there-
fore lower lateral expansion velocities. This occurs because
the velocity drop across a bow shock in the cases of small
cloud separations is much larger, because of a stronger stag-
nation effect in between the bow shock and the clouds.
Therefore, flow adjacent to the cloud does not reach veloc-
ities as high as in cases of large cloud separations.9 Another
way to look at this process is as follows. The flow adjacent

Fig. 7.—Run A2. Illustration of the noninteracting regime of cloud evo-
lution: interaction of aMS ¼ 10 shock wave with a system of two identical
clouds with the cloud center separation of 12:0a0 � 2:86dcrit. Shown are the
synthetic Schlieren images of the system at times 22:47tSC, 35:23tSC,
50:54tSC, and 68:40tSC.

9 It should be noted that eventually the velocities reached by the flow
downstream after passing the region between clouds are much higher, and
consequently the strength of the stationary shock downstream is much
larger in the case of small cloud separations.
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to the cloud surface passes through a sonic point, but in the
cases of small cloud separations, densities in the stagnation
region are much higher. Thus, flow densities at the sonic
point near the cloud lateral surface are much higher. This
leads to lower sound speeds, and therefore lower flow
speeds.

Following KMC94, the effective lateral expansion veloc-
ity vexp can be defined as the internal cloud sound speed,

vexp ¼ CC ¼ vCS
2�ð� � 1Þ½ �1=2

� þ 1
; ð11Þ

where vCS is the velocity of the cloud internal forward shock
(eq. [7]). Our numerical experiments prove this to be a very
good approximation during almost all of the re-expansion
phase. The expansion velocity exceeds this value by the end
of the re-expansion phase because of stagnation pressure in
the regions, formed by the Rayleigh-Taylor instability.

We are now in a position to articulate the temporal evolu-
tion of a cloud radius in the direction perpendicular to the
upstream flow, a?ðtÞ. From the moment of their initial con-
tact with the external shock to the moment of their destruc-
tion, the clouds first undergo slight compression in the
direction perpendicular to the flow and subsequently re-
expand. KMC94’s analytic model did not explicitly include
cloud compression but instead tried to account for its effect
via a reduced monotonic expansion rate from t ¼ 0. Since
a?ðtÞ is intimately related to the drag exerted on a cloud by
the global flow, the theoretical rate of momentum pickup by
a cloud (or the rate of cloud deceleration in the reference
frame used by KMC94) differed from the numerical result.
Namely, in Figure 12b of the paper by KMC94 numerical
and theoretical results are practically the same up to the
time �2.0tCC, when the rate of cloud deceleration suddenly
increases and the numerical and theoretical results drasti-
cally diverge. This moment of time corresponds to the
beginning of the re-expansion phase, when the cloud cross
section starts to increase, causing an increase of the rate of
the momentum transfer from the flow to the cloud. To avoid
this problem and simplify an expression for a?ðtÞ, we use
the following form for evolution of a cloud radius normal to
the flow:

a?ðtÞ ¼
a0 t � tCC ;

a0 þ CCðt� tCCÞ tCC � t � tCD :

�
ð12Þ

Here CC is given by equation (11), and tCD is the cloud
destruction time, defined below in equation (13).

3.1.3. Cloud Destruction Phase

Depending on the cloud separation, via the process of re-
expansion clouds may come into contact and merge into a
single coherent structure. This subsequently interacts with
the flow as a whole and eventually breaks up. Thus, for the
case of small cloud separations we can define the moment of
cloud merging as the onset of the cloud destruction phase.
For large cloud separations in which individual clouds get
destroyed before ever merging, it is difficult to define the
precise onset of the destruction phase, as it may be effec-
tively viewed as a part of the re-expansion phase.

We define the end of the cloud destruction phase as the
time at which the largest cloud fragment contains less than
50% of the initial cloud mass. For single-cloud systems or
systems of weakly interacting clouds, we define the total
time from t ¼ 0 until the end of the cloud destruction phase
as the ‘‘ cloud destruction time,’’ tCD,

tCD ¼ �tCC ¼ �0tSC : ð13Þ

Typically � � 2:0, consistent with KMC94, and using equa-
tion (10) we find �0 � 24 in our simulations.

In addition to tCD there is also a cloud system destruction
time, tSD, which we define as the time when the largest frag-
ment of a cloud located farthest downstream contains less
than 50% of its initial mass. For thick-layer systems (to be
described later), including strongly interacting cloud distri-
butions, tCD becomes less relevant as a description of the
system than tSD, because tCD < tSD.

3.1.4. Mixing Phase

After the end of the destruction phase, the cloud material
velocity is still only a small fraction of the global flow veloc-

Fig. 8.—Run M2. Illustration of the interacting regime of cloud evolu-
tion: interaction of a MS ¼ 10 shock wave with a system of two identical
clouds with the cloud center separation of 4:0a0 � 0:95dcrit. Shown are the
synthetic Schlieren images of the system at times 22:47tSC, 35:23tSC,
50:54tSC, and 68:40tSC.
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ity (see eq. [36] below). The velocity difference promotes
Kelvin-Helmholtz instabilities at the cloud material–global
flow interfaces, and therefore the transition of the system to
a turbulent regime. Typically, by the beginning of this phase
each cloud has lost its identity as a result of merging with
neighboring clouds. As the individual fragments become
smaller and the velocity of the global flow relative to the
cloud material decreases, Kelvin-Helmholtz instabilities
grow faster than the Rayleigh-Taylor–type ones. This even-
tually results in complete domination by the former of the
small-scale fragmentation and causes mixing of cloud mate-
rial with the flow (Klein et al. 1994).

In our numerical experiments, as can be seen in Figures
2–5, turbulent mixing produces a two-phase filamentary
system. The appearance of such a two-phase system results
because our code does not include viscous diffusion or ther-
mal conduction, restricting all dissipative effects to numeri-
cal diffusion only. The latter acts at the length scales
comparable to a cell size at the highest refinement level.

Real dissipative effects also constrain the overall stability
of cold dense plasma embedded in a tenuous hotter
medium. KMC94 considered the overall effect of thermal
conduction on the stability of such two-phase media against
evaporation. They concluded that the cloud ablation time
due to evaporation, expressed in terms of the shock-crossing
time tSC, defined in equation (3), has the form

tab ¼ �

9Fð	0
0Þ

 
2

� þ 1

!1=2�
Fc1Fst

��1=2

tSC ; ð14Þ

where Fð	0
0Þ is typically of order unity (Klein et al. 1994).

Therefore, for the case of our simulations, the typical abla-
tion time is tab � 30tSC, or comparable to the cloud destruc-
tion time.

One can also estimate an effective depth over which diffu-
sion and thermal conduction will disrupt the boundary layer
between the two phases over a dynamical timescale, tSC.
This can be estimated as follows (see Kuncic, Blackman, &
Rees 1996 and references therein). For viscous diffusion

ddiff � ðDdiff tSCÞ1=2 ¼
 

2ffiffiffi
�

p
a0

MSn0	p

!1=2

: ð15Þ

Here Ddiff ¼ 
vT ;p is the coefficient of viscous diffusion, 
 is
the effective path length between collisions in the cloud
material, vT ;p ¼ ðkTp=mpÞ1=2 is the proton thermal velocity
in the ambient postshock gas, tSC is the shock-crossing time,
defined by equation (3), n0 is the initial cloud number den-
sity, 	p is the proton collisional cross section, and MS is the
global shock Mach number. If we assume n0 � 1000 cm�3,
then for the cases presented in our simulations, ddiff is about
1% of the initial cloud radius or, equivalently, is about 13 of a
cell of the computational domain at the highest refinement
level. For thermal conduction, the effective depth is

dterm � ðDtermtSCÞ1=2 ¼
2ffiffiffi
�

p
a0

MSn0	p

�
mp

me

�1=2
" #1=2

¼ ddiff

�
mp

me

�1=4

; ð16Þ

where Dterm ¼ 
vT ;e is the thermal diffusion coefficient, 
 is
again the effective path length between collisions in the

cloud material, vT ;e ¼ ðkTe=meÞ1=2 is the thermal electron
velocity in the ambient postshock gas,10 me is the electron
mass, and other quantities have the same meaning as in
equation (15). Then dterm is about 6% of a0, or equivalently,
about twice the size of a computational cell at the highest
refinement level. Therefore, should we have included real
dissipative effects, they would destroy the smallest resolv-
able structures over the dynamically relevant timescales.
Consequently, any further increase in resolution without
providing for appropriate mechanisms able to significantly
inhibit diffusion and thermal conduction would not provide
additional insights into the real physical evolution of a
system.

The importance of the dissipative effects is therefore two-
fold: on the one hand, for the dynamical stability of small-
scale structures and, on the other, for the overall stability of
the system as a whole. Consider the stability of the initial
system against destruction due to thermal conduction and
diffusion. From the arguments given above, dissipative
effects prevent survival of the system for any dynamically
significant amount of time. As a solution to this problem,
KMC94 suggested that weak magnetic fields inhibit thermal
conduction and diffusion. Indeed, as shown by Mac Low et
al. (1994), evolution of weakly magnetized clouds during
the compression and re-expansion phases does not differ sig-
nificantly from the purely hydrodynamic description. How-
ever, the presence of magnetic fields would raise other
issues. During the mixing phase the system undergoes tran-
sition to turbulence, which may amplify the initially dynam-
ically insignificant magnetic fields. Turbulence can lower
values of the plasma parameter � ¼ Pg=PB, where Pg is the
ideal gas pressure and PB ¼ B2=8� is the magnetic pressure,
to 1 or even smaller values. This may alter the evolution of
the system during the later periods of the mixing phase. In
this respect only, a fully magnetohydrodynamic study of the
evolution of a system of clouds interacting with a strong
shock is fully self-consistent (for a series of single cloud
MHD studies, see Mac Low et al. 1994; Gregori et al. 1999,
2000; Jones et al. 1996; Miniati et al. 1999; Jun & Jones
1999).

3.2. Role of Cloud Distribution

In order to characterize the global properties of the
shock/cloud system interaction, we plotted the time evolu-
tion of the global quantities defined in x 2.3 for the runsM1,
M2, M3, A5, M14, and M14r. Those plots are presented in
Figures 9–10.

The important feature of those plots is the striking simi-
larity of the behavior of systems containing similar cloud
distributions. The systems containing from one to five
clouds arranged in a single layer exhibit exactly the same
rate of momentum transfer from the global flow. This is
manifested by the linear rates of fractional kinetic energy,
h�kini2D, increase from t ¼ 0 up to t ¼ 24tSC (see Fig. 9).
The value of the slope for those five cases is 0:193� 1:6%.
The thermal energy, h�termi2D, behaves complementarily.
Such behavior of single-layer systems contrasts with that of
the multiple-layer systems, namely, the runsM14 andM14r,
which we now discuss.

The two 14 cloud runs have different cloud distributions

10 We assume that electron temperature and proton temperature are
equal,Te ¼ Tp.
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(regular as opposed to random), different total cloud mass,
and different cloud sizes. Nevertheless, the evolution of their
fractional energies is similar. The rate of the kinetic energy
increase during compression and re-expansion is the same
for both M14 and M14r, and yet is different from that for
single-layer cases. The slope in the multilayer cases is also
practically constant throughout the two phases, with values
of 0:146� 4:5%.

Note that for all cases the kinetic (thermal) energy reaches
its maximum (minimum) at the time t ¼ 24tSC, or the time
defined above as the cloud destruction time tCD, even
though for the 14 cloud runs the cloud system destruction
time tSD, defined in x 3.1.3, is greater than tCD. The fact that
the kinetic energy peaks at t ¼ 24tSC signifies that the cloud
destruction time is the characteristic timescale for the onset
of the fully developed turbulence in the system, which limits
the ultimate growth of the kinetic energy fraction. We dis-
cuss this in greater detail in x 3.3.2.

After passing through its maximum, the kinetic energy
fraction begins to decrease as a result of the transition to
turbulence, and consequently turbulent energy dissipation.
It is difficult to define a value of the slope for the mixing
phase because of the complex nature of the turbulent flow,
but the average rate of kinetic energy dissipation in the sys-

tem is �0:013� 27% for the single-layer systems and
�0:015� 25% for the multiple-layer ones. The proximity of
these two values (within the standard error) is evidence that
the systems have lost any unique details of the initial cloud
distribution and developed turbulence that depends primar-
ily on the rate of energy input at the largest scale, i.e., on the
relative velocity of the global flow with respect to the cloud
material.

The time evolution of the volume filling factor, h�i2D, is
another example of the similarity in behavior of single-
versus multiple-layer systems. As can be seen in Figure 10,
the rate of cloud material mixing into the global flow is simi-
lar for the single-layer systems but is different from that in
multiple-layer ones. The higher mixing rate in the case of
multiple-layer distributions results because upstream clouds
pick up momentum faster than the downstream ones.
Upstream clouds promote destruction of the downstream
ones and consequently the overall mixing of the system. The
most important feature is that the slopes of the two 14
clump runs, which have different cloud distributions and
different total clump mass, from time t ¼ 0 to roughly
t ¼ 35tSC, when they both reach their maximum, is the
same, with dh�i2D=dt � 0:196� 3:9%. In cases of single-
layer runs the differences are somewhat greater
(dh�i2D=dt � 0:067� 25:9%). However, this is primarily
due to the fact that small numbers of clumps exhibit statisti-
cal behavior to a lesser extent, and details of individual
clump evolution are more important. With increasing num-
ber of clumps, even though the distribution does not
change, the slopes become more similar: for the runs M3
and A5, the slope value is dh�i2D=dt � 0:078� 7:1%. Note
that all of the single-layer runs undergo a slight break
around t ¼ 25tSC, which is associated with clump
breakup.11

These results lead us to conclude that cloud distribution
plays a more important role than the number of clouds or
the total cloud mass. We use this conclusion in the next sec-
tion as the foundation for classifying possible cloud distri-
butions and defining the general type of the cloud system
evolution in each category.

3.3. Critical Density Parameter

We have seen that the cloud distribution plays the defin-
ing role in determining the evolution of a shock-cloud sys-
tem. We now quantify this statement and define criteria for
determining the behavior of a given system.

We define a set of all possible cloud distributions for a
given number of clouds N. We consider only the clouds of
equal or comparable size and density contrast. We define
each set of cloud distributions 
N for any given number of
clouds N to be a set of all possible N pairs of cloud center
coordinates satisfying two conditions: (1) each pair of
clouds is separated by some minimum distance rmin, and (2)
clouds are confined to a layer extending from the position
XL to the positionXR (see Fig. 1):

8N 	 1 : 
N �
n
ðxi; yiÞ; 1 � i � N : rij ¼

h
ðxi � xjÞ2

þ ðyi � yjÞ2
i1=2

	 rmin � 2a0; xi 2 ½XL;XR�
o
: ð17Þ

Fig. 9.—Time evolution of the global average of the kinetic energy
fraction h�kini2D for the runsM1,M2,M3, A5,M14, andM14r.

Fig. 10.—Time evolution of the global average of the volume filling
factor h�i2D for the runsM1,M2,M3, A5,M14, andM14r.

11 The presence of the maximum values in h�i2D in Figure 10 for all runs
is due to the eventual loss of the cloud material through the outflow boun-
daries.
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Next, we consider the complete set of all possible cloud dis-
tributions � for all possible cloud numbers defined as

� ¼ [
N	1

f
Ng : ð18Þ

We define two subsets within this set �: a subset of ‘‘ thin-
layer ’’ cloud distributions�I , and a subset of ‘‘ thick-layer ’’
cloud distributions�M , so that

�I [ �M ¼ � and �I \ �M � ; : ð19Þ

In our numerical experiments those two subsets are associ-
ated with the single-row andmultiple-row distributions.

In order to give a precise definition of those two funda-
mental classes of cloud distributions, we need to introduce
several auxiliary quantities.

3.3.1. Cloud Velocity and Displacement

We now estimate the distance that the cloud material will
travel before the cloud breakup, i.e., within the time tCD.

The equation of motion of a cloud in the stationary refer-
ence frame of the unshocked ambient medium takes the
form

mC
dvC
dt

¼ 1

2
CD�PS vPS � vCð Þ2ACðtÞ ; ð20Þ

wheremC is the mass of the cloud, vC is the cloud velocity in
the stationary reference frame, CD is the cloud drag coeffi-
cient, �PS is the undisturbed postshock flow density, and
ACðtÞ is the cloud cross section area normal to the flow. It
should be noted that this equation is valid only until the
cloud destruction is complete, i.e., until t � tCD. From this
point on we assume that the drag coefficient CD � 1, which
is a rather good approximation for a cylindrical body
embedded in a supersonic flow of MPS ¼ 1:31 (see Klein et
al. 1994; Bedogni &Di Fazio 1998;Miller & Bailey 1979).

Let us assume for a moment that the clouds have finite
extent in the z-direction, z0. Note that then

mC ¼ �0�a
2
0z0 ; ð21Þ

where �0 is the cloud density and a0 and z0 are the cloud
dimensions at time t ¼ 0.Moreover, the cross section area is

ACðtÞ ¼ 2a?ðtÞz0 ; ð22Þ

where a?ðtÞ is the cloud radius in the direction normal to the
flow. Substituting equations (21) and (22) into equation (20)
and using equation (12) for a?ðtÞ, we get the modified equa-
tion of motion12

dvC
dt

¼ �PS

�0�a
2
0

vPS � vCð Þ2a?ðtÞ : ð23Þ

This equation describes motion of the cloud as a result of its
interaction with the postshock wind. However, we also need
to account for the velocity that the cloud material acquires
after its initial contact with the external shock front. This
velocity may be comparable to the velocity acquired during
the compression and re-expansion phases, and therefore
must be carefully taken into consideration.

Recall that the initial contact of the incident shock front
drives an internal forward shock into the cloud with velocity
vCS. Cloud material behind the internal shock front gains a
velocity vC;PS that can be determined from the Rankine-
Hugoniot relations in the usual manner,

vC;PS ¼ 2vCS
� þ 1

�
1� 1

M2
CS

�
: ð24Þ

HereMCS is theMach number of the cloud internal forward
shock, which can be expressed in terms of the external shock
Mach number as

MCS ¼ vCS
CC;0

¼ MS

�
Fc1Fst

�1=2
; ð25Þ

where CC;0 denotes the sound speed in the unshocked cloud
material, and we have used equation (7) for vCS. For the
simulations discussed in this paper (� ¼ 500 and � ¼ 5=3),
the internal cloud shock Mach number is
MCS ¼ 1:86MS ¼ 18:6.

Substituting equation (7) for vCS and equation (25) for
MCS into equation (24), and expressing the external shock
velocity vS in terms of the unperturbed upstream postshock
velocity vPS, we obtain the following expression for the
velocity of the cloud material due to the cloud interaction
with the external shock front:

vC;PS ¼ vPS

�
Fc1Fst

�1=2
M2

S �
�
Fc1Fst

��1
h i

�1=2
�
M2

S � 1
�

8<
:

9=
; ¼ vPS� : ð26Þ

For the case ofMS ¼ 10, � ¼ 0:084. Note that for the limit-
ing case MS ! 1, the value of C remains practically
unchanged at 0.083, which corroborates the previously dis-
cussedMach scaling.

Finally, making use of the fact that the relative velocity of
the postshock flow with respect to the cloud is now
ðvPS � vC;PS � vCÞ, we can integrate equation (23) and
obtain the following form of the cloud velocity:

vCðtÞ ¼

vPS 1� 1

Atþ ð1� �Þ�1

" #
t � tCC ;

vPS

n
1� ½ABðt� tCCÞ2

þ Aðt� tCCÞ þ C��1
o

tCC � t � tCD ;

8>>>>>><
>>>>>>:

ð27Þ

where we introduced the quantities

A ¼ �PSvPS
�0�a0

¼ 1

tSC�

�

2

2

� þ 1

�
1� 1

M2
S

�	 
�1

�1

( )�1

; ð28Þ

B ¼ CC

2a0
¼ 1

tSC�1=2

�
Fc1Fst

�1=2 3�ð� � 1Þ
4ð� þ 1Þ

	 
1=2
; ð29Þ

C ¼ 12AtSC þ ð1� �Þ�1 : ð30Þ

The unperturbed postshock quantities �PS and vPS are deter-
mined from the Rankine-Hugoniot conditions (Landau &
Lifshitz 1959), Cc is the sound speed in the shocked cloud,
defined by equation (11), and the factor Fst is defined by the
relation given in equation (8).

The first quantity, A, relates the specific momentum of
the postshock wind to the cloud inertia (mass). Thus, it

12 Note that from now on we omit the cloud drag coefficient, considering
it to be equal to 1.
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defines the rate of the momentum pickup by a cloud during
the compression phase, when the cloud dimension trans-
verse to the flow does not increase. The second quantity, B,
is the inverse sound crossing time in a compressed cloud,
i.e., at the end of the compression phase, again for the cloud
dimension transverse to the flow. This quantity determines
the rate of the cloud lateral expansion. Therefore, during
the re-expansion phase the regular momentum transfer
from the wind to the cloud, described by A, is augmented by
the cloud lateral expansion, described by B, which comes as
an additional factor in the quadratic dependence on t. The
quantity C ensures continuity of the cloud velocity during
the transition from the compression to the re-expansion
phase.

Next, integrating equation (27) from time t ¼ 0:0 up to
the cloud destruction time t ¼ tCD, we can determine the
displacement of cloud material during the compression and
re-expansion phases,

LCðtÞ

¼

vPS t� 1

A
ln ð1� �ÞAtþ 1½ �

� �
0 � t � tCC ;

vPS

 
t� 1

A

�
2

q
tan�1 ðt� tCCÞq

ðt� tCCÞ þ 2C=A

þ ln ð1� �ÞAtCC þ 1½ �
�!

tCC � t � tCD ;

8>>>>>>>>><
>>>>>>>>>:

ð31Þ

where q ¼ 4BC=A� 1ð Þ1=2. This allows us to estimate the
total displacement a cloud incurs before its destruction,
called the ‘‘ cloud destruction length,’’

LCD ¼ LCðtCDÞ : ð32Þ

In order to get a clearer understanding of the general
equations (27) and (31), let us consider two cases: the case
presented in our simulations withMS ¼ 10, and the limiting
case of MS ! 1. We assume in both cases a density con-
trast of � ¼ 500:0 and � ¼ 5=3.

First, we rewrite equation (27) as

vCðtÞ ¼

vPS 1�
� t

tSC
a1 þ a2

��1
	 


t � tCC ;

vPS

(
1�

"�
t

tSC
� 12

�2

b1

þ t

tSC
a1 þ a2

#�1)
tCC � t � tCD :

8>>>>>>>>>><
>>>>>>>>>>:

ð33Þ

In the first case ofMS ¼ 10, the coefficients a1, a2, and b1
have the values

a1 ¼ 1:79� 10�3 ; a2 ¼ 1:09; b1 ¼ 8:35� 10�5 : ð34Þ

Substituting these into equation (33), we find that at the end
of the compression phase, i.e., at the time t ¼ 12tSC, the
cloud velocity is 10% of the postshock velocity vPS and 7.5%
of the shock velocity vS. On the other hand, at the end of the
re-expansion phase, i.e., at the time t ¼ 24tSC, the cloud
velocity is 12.66% of vPS and 9.4% of vS.

For the case MS ! 1, the above coefficients have the
values13

a1 ¼ 1:83� 10�3 ; a2 ¼ 1:09 ; b1 ¼ 8:51� 10�5 : ð35Þ

Substitution into equation (33) gives us the maximum val-
ues of the velocity that a cloud can reach in the case of an
infinitely strong shock:

vC;max ¼ 10:1� 10�2vPS ¼ 7:55� 10�2vS

for the compression phase ; ð36Þ
vC;max ¼ 12:8� 10�2vPS ¼ 9:57� 10�2vS

for the re-expansion phase :

Similarly, we can determine the values of cloud displace-
ment for the two cases considered above. Equation (31) for
LC can be rewritten as

LCðtÞ

¼

a0c1
t

tSC
� 1

a1
ln

t

tSC

� a1
a2

�
þ 1

	 
� �
0 � t � tCC ;

a0c1

	
t

tSC

�c2 tan�1
t=tSC � 12

t=tSCc4 þ c5

� �
� c3



tCC � t � tCD ;

8>>>>>>><
>>>>>>>:

ð37Þ

where for the case MS ¼ 10 the coefficients a1 and a2 have
the values defined in equation (34), and for MS ! 1 the
values defined in equation (35).

In the case MS ¼ 10 the coefficients c1, c2, c3, c4, and c5
have the values

c1 ¼ 1:49 ; c2 ¼ 104:17 ; c3 ¼ 10:89 ;

c4 ¼ 9:34� 10�2 ; c5 ¼ 113:72 :

Substitution into equation (37) gives us the displacement
that the cloud material undergoes by the end of the com-
pression and re-expansion phases: 1:6a0 and 3:5a0, respec-
tively.

In the limiting case MS ! 1, the values of the coeffi-
cients c1, c2, c3, c4, and c5 are

c1 ¼ 1:5 ; c2 ¼ 103:22 ; c3 ¼ 10:9 ;

c4 ¼ 9:43� 10�2 ; c5 ¼ 112:56 :

Substituting these coefficients into equation (37) we find
that by the end of the compression phase the cloud is dis-
placed by the distance of 1:65a0, whereas by the end of the
re-expansion phase the displacement is 3:53a0.

It is clear from the results obtained above that both the
velocity and cloud displacement values in the case MS ¼ 10
are practically identical to the maximum values achieved in
the limiting case of MS ! 1. Therefore, our results
obtained for the case of a Mach 10 shock can be considered
as the limiting ones for the cases of strong shocks.

These results, derived for single clouds or systems with
large separation, are in good agreement with numerical

13 Note that the assumption here is the same as in the discussion ofMach
scaling, namely, while increasing the shock Mach number, we keep the
shock front velocity in the stationary reference frame constant.
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experiments. Typically, the maximum difference between
numerical and analytical values of cloud velocity and posi-
tion never exceeds 10%. The analytical results are usually an
overestimate of the numerical ones. This is due to a slight
overestimation of the initial velocity gain after the contact
with the external shock front and because we assumed the
cloud cross section to be constant during the compression
phase, whereas it undergoes a small decrease in the experi-
ments.

Therefore, the maximum distance a cloud with a density
contrast of 500 can travel before its destruction after the ini-
tial interaction with a strong shock is

LCD;max � 3:5a0 : ð38Þ

Finally, it should be noted that the values of the maxi-
mum cloud velocity at the moment of breakup, vC;max, given
in equation (36), and the maximum cloud destruction
length, LCD;max, given in equation (38), are still functions of
the cloud–ambient medium density contrast �. Therefore,
for a different value of � the values of vC;max and LCD;max

should be determined by direct evaluation of equations (27)
and (31).14 Although the change in vC;max can be quite signif-
icant, we find that LCD;max does not change so prominently
with varying �. For example, for � ¼ 40:0, which is more
than an order of magnitude less than the value � ¼ 500:0
used above, vC;max ¼ 36:5� 10�2vPS, which is almost 3
times the value given in equation (36). However, the corre-
sponding value of LCD;max � 3:54a0, which is only a 1%
increase compared to the value in equation (38). This is due
to the fact that clouds with lower density accelerate faster,
although their destruction time is shorter. Therefore, even
though the value of the cloud velocity at the time of breakup
should be evaluated for each particular value of �, the cloud
destruction length value given in equation (38) can be used
with a sufficiently high accuracy over the full range of den-
sity contrasts considered in this work, i.e., � ¼ 10 1000.

3.3.2. Critical Cloud Separation

We first define the average cloud separation between a
clump and its nearest neighbor, projected on to the direction
of the flow, hDxNi, and perpendicular to it, hDyNi, for a
given cloud distribution,

hDxNi ¼
1

N

XN
i¼1

min
j 2 ½1;N�

fjxi � xjjg ; ð39Þ

hDyNi ¼
1

N

XN
i¼1

min
j 2 ½1;N�

fjyi � yjjg : ð40Þ

We can also define a maximum cloud separation pro-
jected onto the direction of the flow, or the ‘‘ cloud layer
thickness,’’

ðDxNÞmax ¼ max
i; j 2 ½1;N�

fjxi � xjjg : ð41Þ

Nowwe are in a position to give a precise definition of the
‘‘ thin-layer ’’ and ‘‘ thick-layer ’’ systems. We define a distri-
bution of clouds to belong to the subset �I if its maximum
cloud separation ðDxNÞmax does not exceed the cloud

destruction length, LCD. The distribution belongs to the
subset �M in all other cases:

�I � f
N : ðDxNÞmax � LCDg ;

�M � f
N : ðDxNÞmax > LCDg :
ð42Þ

Amore intuitive way to look at this classification is as fol-
lows. As we have seen, a cloud interacting with the post-
shock flow re-expands and breaks up before it proceeds into
the mixing phase. The above criterion tells us if any cloud or
a row of clouds will complete its destruction phase prior to
encountering any other clouds located downstream. The
definition (42) appears to rather accurately draw the line
between cloud systems of two types.

In practice, the maximum cloud separation ðDxNÞmax (eq.
[41]) is simply the thickness of the layer of inhomogeneities
in a real system and should be compared to the cloud
destruction length. This thickness can be obtained from the
observations of a particular object, or it can be found ana-
lytically, e.g., via consideration of instabilities at the inter-
face between two flows.

Having defined the two classes, or subsets, of cloud distri-
butions, we now consider the behavior of the clouds in each
class. First we consider �I , the ‘‘ single-row ’’ distributions.
On average, by the time the clouds are displaced by the dis-
tance LCD, all of them will be destroyed and will proceed to
the mixing phase. Thus, the time of the destruction should
be approximately tCD ’ tSD.

The question arises whether clouds will interact during
the process of re-expansion and destruction. We can give a
formal criterion for this. Consider two clouds with separa-
tion hDyNi ¼ d and ðDxNÞmax � LCD. Both clouds will
expand laterally at the velocity vexp defined by equation
(11). Consequently, the time for the clouds to come into
contact is

tmerge �
d � 2a0
2vexp

: ð43Þ

Such re-expansion starts after the cloud compression phase,
i.e., after the time tCC, and cannot proceed beyond the cloud
destruction time tCD. Therefore, setting tmerge ¼ tCD � tCC,
we find the following critical cloud separation transverse to
the global flow:

dcrit ¼ 2 a0 þ vexpðtCD � tCCÞ
� 


: ð44Þ

Substituting equation (11) explicitly for the expansion
velocity and equation (13) for the cloud destruction time
into the equation (44), we obtain

dcrit ¼ 2a0

(
tCD � tCC

tSC

 
Fc1Fst

�

!1=2
3�ð� � 1Þ
� þ 1

	 
1=2
þ1

)
:

ð45Þ

In other words clouds whose separation transverse to the
flow is less than dcrit will come into contact andmerge before
their destruction is completed. Therefore, their evolution
during the destruction phase (and for the most part of the
re-expansion phase) cannot be considered as the evolution
of two independent clouds.

The critical separation does not depend on the global
shock Mach number, which is consistent with the Mach
scaling, discussed above. Therefore, this parameter is

14 Note that dependence on � also comes via the cloud destruction time
tCD, which should be substituted into eqs. (27) and (31).

No. 2, 2002 STRONG SHOCKS IN INHOMOGENEOUS MEDIA. I. 845



universal for all strong shocks and for all possible distribu-
tions from the subset �I . For the case � ¼ 5=3 and � ¼ 500,
we find the critical cloud separation to be approximately

dcrit � 4:2a0 : ð46Þ

For cloud distributions from the subset �I that have an
average separation hDyNi4dcrit, the evolution of the system
will proceed in the noninteracting regime. On the other
hand, for the distributions for which hDyNiddcrit, the
cloud-cloud interactions are important throughout the re-
expansion and destruction phases, placing them in an inter-
acting regime.

It is more difficult to formulate a unified criterion for
the behavior of the systems in the class �M . When
hDxNi > LCD, such systems can be considered as a set of
thin layers with an average separation greater than LCD, i.e.,
each row can be considered as a system from the subset �I .
Consider, for example, the run M14, presented in Figure 4.
From Table 1, the average separation hDxNi for this run is
equal to 7, i.e., hDxNi > LCD. Indeed, the evolution of the
leftmost row of clouds proceeds as a simple single-row case,
and its destruction is completed by the time tCD. This results
in the fractional kinetic energy reaching a maximum at the
time tCD � 24tSC (see Fig. 9). However, it is clear from Fig-
ure 4 that the evolution of the downstream rows is altered
by the destruction of the leftmost one. Therefore, when
hDxNi > LCD one must account for the fact that the destruc-
tion of an upstream layer of clouds will change the proper-
ties of the global flow for the next, downstream layer. The
new averaged values of the velocity, density, and pressure in
the global flow should then be used as an input for the
analysis of the downstream cloud layer.

3.4. Mass Loading

One of the principal questions concerning the effects of
shock/cloud-system interactions is the role of mass loading
(Hartquist & Dyson 1988). Mass loading is defined as the
feeding of material into the global flow by nearly stationary
clouds. Analytical studies have predicted a number of
important changes when mass loading occurs. The most
important of these is the transition of the flow to a tran-
sonic regime (Hartquist et al. 1986; Hartquist & Dyson
1988; Dyson & Hartquist 1992, 1994). In our numerical
experiments we consider whether mass loading indeed is
prominent.

Mass loading can occur only from time t ¼ 0 up to the
moment of cloud destruction at time t ¼ tCD. In our experi-
ments the cloud destruction time is fairly short compared to
the total age of most relevant astrophysical objects. Indeed,
cloud destruction is practically completed by the time the
shock wave reaches the right boundary of the computa-
tional domain, i.e., by the time the shock wave travels the
distance of about 20–30 cloud sizes. This could, for exam-
ple, be compared with clump systems in planetary nebulae
(PNs). Assuming typical size for PNs clouds to be about 100
AU (which is the size of cometary knots in NGC 7293;
Burkert & O’Dell 1998), a density contrast of 500, and a
shock wave velocity of 100 km s�1, we find that clouds get
completely destroyed within approximately 100–150 yr.
This is much less than the typical age of the PN (104–105 yr).

Thus, clouds with low density contrast, �i � 10 100, can-
not provide significant mass loading because of the ease
with which they are advected and destroyed by the global

flow. On the other hand, clouds with higher density con-
trasts, �i > 100, retain their low velocities with respect to
the global flow for much longer periods of time, and there-
fore may potentially be efficient mass-loading sources.
However, it should be noted that this higher relative velocity
of a cloud increases the efficiency of the instability forma-
tion, thereby promoting cloud destruction and its mixing
with the flow.

We can also consider the amount of mass seeded into the
flow, i.e., stripped off from the clouds and assimilated into
the global flow, before cloud destruction. Typically, in our
experiments the amount of seeded cloud material does not
exceed a few percent of the total cloud mass, which is
unlikely to be enough to switch the flow into a mass-loaded
regime. Figure 11 shows the distribution of cloud material
along the direction of the flow or, to be more precise, the dis-
tribution of the parameter h�i1DðxÞ for the three-cloud run
M3. There the clouds have the separation hDyNi � 0:95dcrit.
The first graph corresponds to the end of the compression
phase, while the second corresponds to the end of the
destruction phase. The graphs show that cloud material
remains localized in the vicinity of the cloud cores until the
moment of cloud destruction, and the system does not
exhibit any significant mass loading. Moreover, the graphs
3 and 4 of Figure 11, showing cloud material distribution
early in the mixing phase, indicate that even after destruc-
tion cloud material remains localized within the region of
about 8 cloud radii and retains almost the same average
velocity with respect to the global flow. Only further on in
the mixing phase does cloud material spread significantly.

In conclusion, we can say that for the cloud density con-
trast values in the range �i � 10 1000 and practically all
values of the global shock waveMach number, the flows are
not likely to be subject to mass loading. This is due to the
fact that such relatively low density clumps on one hand
accelerate rather rapidly, and on the other fairly quickly
become destroyed by instabilities. These flows will be domi-
nated by the mixing of cloud material with the global flow
that occurs after cloud destruction. Systems with very dense
clouds, �i41000, may provide sites suitable for mass load-
ing. Future numerical studies are required to verify this.

4. CONCLUSIONS

We have numerically investigated the interaction of a
strong, planar shock wave with a system of inhomogene-
ities. These ’’clumps ’’ are considered to be infinitely long
cylinders embedded in a tenuous, cold ambient medium.We
have assumed constant conditions in the global postshock
flow, thereby constraining the maximum size of the clouds
only by the condition of the shock front planarity. Our
results are applicable to strong global shocks with Mach
numbers 3dMSd1000. The range of the applicable cloud/
ambient density contrast values is 10–1000.

We considered four major phases of the cloud evolution
due to the interaction of the global shock and postshock
flow with a system of clouds. These are: initial compression
phase, re-expansion phase, destruction phase, and mixing
phase. We describe a simple model for the cloud accelera-
tion during the first three phases, i.e., prior to its destruc-
tion, and derive expressions for the cloud velocity and
displacement. The results of that model are in excellent
agreement with the numerical experiments. The difference
in the values of cloud velocity and displacement between

846 POLUDNENKO, FRANK, & BLACKMAN Vol. 576



analytical and numerical results is d10%. The maximum
cloud displacement due to its interaction with a strong
shock (prior to its destruction) does not exceed 3.5 initial
maximum cloud radii. The maximum cloud velocity is not
more than 10% of the global shock velocity.

The principal conclusion of the present work is that the
set � of all possible cloud distributions can be subdivided

into two large subsets, �I and �M . The first subset is �I ,
thin-layer systems. This subset is defined by the condition
that the maximum cloud separation along the direction of
flow, or the cloud layer thickness, is not greater than the
cloud destruction length, ðDxNÞmax � LCD. The thick-layer
systems, �M , are defined by the condition ðDxNÞmax > LCD.
The evolution of cloud distributions within each subset
exhibit striking similarity in behavior. We conclude that the
evolution of a system of clouds interacting with a strong
shock depends primarily on the total thickness of the cloud
layer and the cloud distribution in it, as opposed to the total
number of clouds or the total cloud mass present in the sys-
tem. The key parameters determining the type of cloud sys-
tem evolution are therefore the critical cloud separation
transverse to the flow, dcrit (this is also the critical linear
cloud density in the layer), and the cloud destruction length,
LCD.

For a given astrophysical situation, our results indicate
that one might determine, either from observations or from
theoretical analysis, the thickness of the cloud layer
ðDxNÞmax. This will then determine the class of the given
cloud distribution, �I or �M . For cloud distributions from
the set �I with average cloud separation hDyNi > dcrit, evo-
lution of the clouds during the compression, re-expansion,
and destruction phases will proceed in the noninteracting
regime, and the formalism for a single-cloud interaction
with a shock wave (e.g., Klein et al. 1994; Jones et al. 1996;
Mac Low et al. 1994; Lim & Raga 1999) can be used to
describe the system. On the other hand, if the cloud separa-
tion is less than the critical distance, the clouds in the layer
will merge into a single structure before their destruction is
completed. Although throughout the compression phase
they can still be considered independently of each other,
their evolution during the re-expansion and destruction
phases clearly proceeds in the interacting regime.

When the distribution belongs to the subset �M , it is nec-
essary to determine the average cloud separation projected
onto the direction of the flow hDxNi, defined by equation
(39), and compare it to LCD: if hDxNi > LCD, evolution of
the cloud system can be roughly approximated as the evolu-
tion of a set of distributions from the subset �I , and the
above ‘‘ thin-layer case ’’ analysis applies. If, on the other
hand, hDxNi � LCD (especially if hDyNi < dcrit), the system
evolution is dominated by cloud interactions, and a thin-
layer formalism is inappropriate.

Finally, we have considered the role of mass loading.
Here our principal conclusion is that the mass loading is not
significant in the cases of strong shocks interacting with a
system of inhomogeneities for density contrasts in the range
10–1000. In part this is due to short survival times of clouds
under such conditions, and in part it is due to the very low
mass-loss rates of the clouds even during the times prior to
their destruction. Mass loading may well be important in
higher density clouds (Dyson &Hartquist 1994).

The major limitation of our current work is the purely
hydrodynamic nature of our analysis, which does not
include any consideration of magnetic fields. As discussed in
x 3.1.4, cold dense inhomogeneities (clouds) embedded in
tenuous hotter medium are inherently unstable against the
dissipative action of diffusion and thermal conduction. This
evaporates the clouds on the timescales comparable to, or
shorter than, the timescales of the dynamical evolution of
the system. It was suggested that the magnetic fields may
play a stabilizing role against the action of the dissipative

Fig. 11.—Distribution of cloud material along the horizontal dimension
of the computational domain for the run M3. Shown are the one-
dimensional spatial averages of the volume filling factor h�i1D at times
12:26tSC, 25:02tSC, 37:78tSC, and 50:54tSC.
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mechanisms. Although weak magnetic fields that are
dynamically insignificant up to the moment of cloud
destruction can inhibit thermal conduction and diffusion,
those magnetic fields may become dynamically important as
a result of turbulent amplification during the mixing phase.
A fully magnetohydrodynamic description of the interac-
tion of a strong shock with a system of clouds will need to be
carried forward in future works.

This work was supported in part by the NSF grant AST
97-02484 and the Laboratory for Laser Energetics under
DOE sponsorship. The most recent results and animations
of the numerical experiments, described above and not men-
tioned in the current paper, can be found at http://
www.pas.rochester.edu/~wma.
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