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ABSTRACT

We study the intermittency and field-line structure of theMHD turbulence in plasmas with very large mag-
netic Prandtl numbers. In this regime, which is realized in the interstellar medium, some accretion disks, pro-
togalaxies, galaxy-cluster gas, the early universe, etc., magnetic fluctuations can be excited at scales below the
viscous cutoff. The salient feature of the resulting small-scale magnetic turbulence is the folded structure of
the fields. It is characterized by very rapid transverse spatial oscillation of the field direction, while the field
lines remain largely unbent up to the scale of the flow. Quantitatively, the fluctuation level and the field-line
geometry can be studied in terms of the statistics of the field strength and of the field-line curvature. In the
kinematic limit, the distribution of the field strength is an expanding lognormal, while that of the field-line
curvature K is stationary and has a power tail �K�13/7. The field strength and curvature are anticorrelated,
i.e., the growing fields are mostly flat, while the sharply curved fields remain relatively weak. The field, there-
fore, settles into a reduced-tension state. Numerical simulations demonstrate three essential features of the
nonlinear regime. First, the total magnetic energy is equal to the total kinetic energy. Second, the intermit-
tency is partially suppressed compared to the kinematic case, as the fields become more volume-filling and
their distribution develops an exponential tail. Third, the folding structure of the field is unchanged from the
kinematic case: the anticorrelation between the field strength and the curvature persists, and the distribution
of the latter retains the same power tail. We propose a model of back-reaction based on the folding picture
that reproduces all of the above numerical results.

Subject headings: galaxies: magnetic fields — ISM: magnetic fields — magnetic fields — MHD —
plasmas — turbulence

1. INTRODUCTION

In turbulentMHD systems where the ratio of fluid viscos-
ity and magnetic diffusivity (the magnetic Prandtl number
Pr m ¼ �=�) is very large, there exists a broad range of sub-
viscous scales available to magnetic fluctuations, but not to
hydrodynamic ones. This MHD regime is encountered, for
example, in such astrophysical environments as the inter-
stellar medium and protogalactic plasmas, where Prm can be
as large as 1014–1022 (Kulsrud 1999). Since the ratio of the
resistive and viscous cutoff wavenumbers is k�=k� � Pr

1=2
m ,

this gives rise to subviscous-scale ranges 7–11 decades wide.
Since the fluid is highly conducting, the magnetic field

lines are (nearly) perfectly frozen into the fluid flow. The
fluid motions, even though restricted to the scales above the
viscous cutoff, can excite magnetic fluctuations at much
smaller scales via stretching and folding of the field lines.
This possibility was first indicated by Batchelor (1950). The
weak-field (kinematic) limit has been an attractive object of
analytical study since the seminal work of Kazantsev
(1967). The spectral theory of the kinematic dynamo driven
by a random velocity field predicts exponential growth of
the magnetic energy and its accumulation at the resistive
scales (see Kazantsev 1967; Kulsrud & Anderson 1992;
Gruzinov, Cowley, & Sudan 1996; Schekochihin, Boldyrev,
& Kulsrud 2002a, and references therein). More recently, it
was realized that small-scale magnetic fields generated by

this ‘‘ stretch-and-fold ’’ dynamo possess a distinctive spa-
tial folding structure (Fig. 1): the smallness of the field scale
is due to rapid transverse spatial oscillation of the field
direction, while the field lines remain largely unbent up
to the scale of the flow (Ott 1998; Kinney et al. 2000;
Schekochihin et al. 2002c, hereafter SCMM02).

With the dramatic increase in the reach of the numerical
experiment, the nonlinear regime became increasingly ame-
nable to detailed study. The pioneering work of Meneguzzi,
Frisch, & Pouquet (1981) was in recent years followed by a
number of numerical investigations (Cattaneo, Hughes, &
Kim 1996; Brandenburg et al. 1996; Zienicke, Politano, &
Pouquet 1998; Kinney et al. 2000; Cho & Vishniac 2000;
Brandenburg 2001; Chou 2001; Brummell, Cattaneo, &
Tobias 2001; Maron, Cowley, & McWilliams 2002, here-
after MCM02). However, the physical difference between
the Pr m ¼ 1 and Pr m41 regimes is not always realized.

Another defining physical feature of the MHD regime we
are considering is the absence of an externally imposed uni-
form magnetic field. The difference is essential. First, a fixed
uniform field implies a nonzero net flux through the system.
Second, in the presence of a strong such field, magnetic-field
lines cannot be bent, so the physics of the subviscous-scale
magnetic fluctuations is more akin to that of scalar turbu-
lence (cf. Cho, Lazarian, & Vishniac 2002).

In the astrophysical context, the main question has been
of the impact small-scale magnetic fluctuations have on the
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feasibility of generating the large-scale galactic magnetic
field by means of a turbulent dynamo. In particular, one
wonders how the accumulated small-scale magnetic energy
affects the applicability of the mean field �� dynamo
theory, which in one form or another has been at the center
of all attempts to build a theoretical understanding of the
galactic magnetic fields (Beck et al. 1996). This issue remains
unresolved in both the theoretical and numerical senses of
the word. We note that because of the large-scale separa-
tions that have to be captured, the brute-force numerical
solution of this problem remains beyond the capacity of cur-
rently available computational resources. On the other
hand, the physics of small-scale magnetic turbulence can be
effectively studied as a separate problem and accessed (if
only just) by numerical experiment. We hope that by devel-
oping a thorough physical understanding of small-scale
magnetic fluctuations, we can approach the problem of their
interplay with the large-scale fields andmotions.

In this work, we concentrate on the structural properties
of the small-scale magnetic fields, namely, the intermittency
of their spatial distribution and the geometry of the field
lines. Quantitatively, these are studied in terms of the one-
point statistics of the field strength and of the field-line
curvature.

We consider the nonlinear turbulent dynamo to be
described by the equations of incompressibleMHD,

d

dt
u ¼ �Du�

D

pþ B x

D

B þ f ; ð1Þ

d

dt
B ¼ B x

D

uþ �DB ; ð2Þ

where d=dt ¼ @t þ u x

D

is the convective derivative, uðt; xÞ
is the velocity field, Bðt; xÞ is the magnetic field, and f ðt; xÞ
is a random (white in time) large-scale forcing. The density �
of the plasma is taken to be constant. The incompressibility
condition

D

x u ¼ 0 is, therefore, added to the equations
above and serves to determine (or indeed, to define) pres-
sure. For the sake of convenience, the pressure p and the
magnetic field B have been normalized to � and ð4��Þ1=2,
respectively.

The plan of further proceedings is as follows. In x 2 we
review the necessary facts about the kinematic regime of the
dynamo. These are important, for they form the basis of our
understanding of the dynamo and remain surprisingly rele-
vant in the nonlinear regime. The latter constitutes our main
object of study. In x 3 we describe the results of our numeri-
cal experiments and propose a heuristic physical model that
explains these results. Conclusions are drawn in x 4.

2. THE KINEMATIC REGIME

In the weak-field (kinematic) limit, MHD turbulence
reduces to the problem of passive advection of a vector field
by a turbulent velocity field. The magnetic energy grows
exponentially, and the small-scale folding structure is
formed at the timescale associated with the eddies that turn
over the fastest (i.e., in Kolmogorov turbulence, the vis-
cous-scale eddies). Physically, this follows from the fact that
the turbulent eddies act on the small-scale fields as a
sequence of random linear-shear transformations (see
Fig. 1, x 2.3). An expanding lognormal distribution of the
field strength emerges, which is qualitatively explained in
terms of the central limit theorem.

2.1. The Kazantsev-KraichnanModel

All of the above results can be derived analytically in the
framework of the Kraichnan (1968) model of passive advec-
tion, which replaces the turbulent velocity with a Gaussian
random field �-correlated in time:

huiðt; xÞujðt0; x0Þi ¼ �ðt� t0Þ�ijðx� x0Þ : ð3Þ

In the context of the small-scale dynamo, this model was
first proposed by Kazantsev (1967). While the Kazantsev-
Kraichnan velocity field is, of course, highly artificial and
does not approximate the real turbulent velocity field in any
controlled sense, its performance in capturing the essential
qualitative, and in some cases also quantitative, features of
the passive advection has been very impressive (on the pas-
sive scalar, see the recent review by Falkovich, Gawedzki, &
Vergassola 2001; on the kinematic dynamo, see Kinney et
al. 2000; SCMM02; MCM02; Schekochihin et al. 2002d).
This seems to suggest that the statistics of passive advection
may be largely universal with respect to the structure of the
ambient random flow.

In the limit of large Prm, the magnetic fluctuations are
mostly excited deep in the subviscous range, in which the
fluid motions are strongly damped by viscous dissipation.
The velocity field ‘‘ seen ’’ by the magnetic field is, therefore,
regular and in fact effectively constitutes a single-scale flow.
Most of the relevant statistical results turn out to depend
just on the first few coefficients of the Taylor expansion of
the velocity correlation tensor:

�ijðyÞ ¼ �0�
ij � 1

2�2 y2�ij � 1
2 y

iyj
� �

þ 1
4�4y

2 y2�ij � 2
3 y

iyj
� �

þ � � � ð4Þ

(some of the coefficients in the expansion are fixed by the
incompressibility constraint). Physically, �2 � k�u is the
stretching rate, while �4 sets the scale of the flow
(�4=�2 � k2�) and is responsible for bending the field lines.

Fig. 1.—Folding-structure formation via stretching of the field lines.
Bold arrows indicate directions in which volumes are stretched by random
shear.
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2.2. Intermittency

One of the simplest and most basic features of the kine-
matic diffusion-free regime is the lognormality of the distri-
bution of the magnetic field strength (see, e.g., Boldyrev &
Schekochihin 2000; SCMM02). On the most fundamental
level, the lognormal character of the distribution of B
already follows from the form of the induction equation (2)
(without the diffusion term). Indeed, it is linear with respect
to the magnetic field, which is multiplied by a random exter-
nally prescribed velocity-gradient matrix

D

u. The Gaussian-
ity of logB then follows by the central limit theorem.

Within the framework of the Kazantsev-Kraichnan
model, this result can be derived exactly. The one-point
probability-density function (PDF) of the magnetic field
strength in the diffusion-free regime can easily be shown to
satisfy the following Fokker-Planck equation:

@tP ¼ 1

4
�2

@

@B
B4 @

@B

1

B2
P : ð5Þ

Equation (5) written in log variables is simply a one-dimen-
sional diffusion equation with a drift and has the following
Green’s function solution,

Pðt; BÞ ¼ e�ð1=2Þ�2tffiffiffiffiffiffiffiffiffi
��2t

p
Z 1

0

dB0

B0 P0ðB0Þ

� exp �
�
lnðB=B0Þ � ð1=4Þ�2t

�2
�2t

( )
; ð6Þ

where P0ðBÞ is the initial distribution. The lognormality
means that the PDF develops considerably spread-out tails
at both large and small values of B, i.e., the fluctuating mag-
netic fields in the kinematic regime possess a high degree of
intermittency. The moments hBni of the magnetic field have
growth rates that increase quadratically with n:
hBni / exp

�
nðnþ 3Þ�2t=4

�
. The exponential growth of the

moments of B is the manifestation of the dynamo action of
the turbulence. It measures the effect of the stretching of the
field lines by the ambient random flow.

Note that these results apply to the diffusion-free situa-
tion (i.e., to an ideally conducting medium) and therefore
hold during the time it takes the magnetic excitation to
propagate from the velocity scales, at which it is assumed to
be initially concentrated, to the resistive scales. This process
occurs exponentially fast (Kulsrud & Anderson 1992;
Schekochihin et al. 2002a), so the corresponding time can be
estimated as t � ��1

2 log Pr
1=2
m , which amounts to several

eddy turnover times. The PDF of B with account taken of
diffusion has not as yet been found, although Chertkov et
al. (1999), under certain additional assumptions, did derive
the moments hBni in the diffusive regime. While the specific
expressions for the growth rates of the moments are sub-
stantially modified, they still increase as n2, as would be the
case for a lognormal distribution, so the intermittency is not
diminished.

2.3. The Folding Structure

The geometry of the magnetic field lines can be studied in
terms of the statistics of their curvature K ¼ b̂b x

D

b̂b (here
b̂b ¼ B=B). The evolution equation for the curvature can be

derived from the induction equation,

d

dt
K ¼ K x

D

uð Þ x
�
I� b̂bb̂b

�
� b̂bKb̂b:

D

u� 2Kb̂bb̂b:

D

u

þ b̂bb̂b:

DD

uð Þ x
�
I� b̂bb̂b

�
; ð7Þ

where we have dropped diffusion terms. For the Kazantsev-
Kraichnan velocity, the PDF of the curvature satisfies the
following Fokker-Planck equation (SCMM02),

@tP ¼ 7

4
�2

@

@K
K 1þ K2

� � @

@K

1

K
Pþ 20

7
P

� �
; ð8Þ

where K has been rescaled by K� ¼ ð12�4=7�2Þ1=2 � k�.
From this equation, one immediately finds that the curva-
ture attains a stationary distribution:

PðKÞ ¼ 7

5

K

1þ K2ð Þ10=7
: ð9Þ

This PDF has a power tail �K�13/7, which is in very good
agreement with numerics (SCMM02). Naturally, if the
resistive regularization is introduced, the power tail is cut off
at K � k� � Pr

1=2
m k�. The bulk of the curvature distribution

is concentrated at values of curvatureK � k� , which reflects
the prevailing straightness of the field lines at subviscous
scales. The field lines are significantly curved only in the
bends of the folds. While these bends occupy a small frac-
tion of the volume, there is a high degree of intermittency in
the distribution of the characteristic scales associated with
them. This is reflected by the power tail of the curvature
PDF.

Furthermore, the field strength and the curvature are anti-
correlated, i.e., the growing fields are mostly flat, while the
curved fields in the bends of the folds remain relatively weak
(cf. Drummond &Münch 1991; Brandenburg, Procaccia, &
Segel 1995). It is not difficult to realize that the nature of this
anticorrelation, which is derived as a statistical property in
SCMM02, is in fact dynamical. Since this fact is important
in our discussion of the nonlinear back-reaction in
x 3.2, we would like to explain it in more detail.

Let us examine what happens when a typical element of
the folding structure (Fig. 2) is stretched by linear shear. Let
Bf and Kf be the magnetic field strength and curvature asso-
ciated with the flat part of the fold and Bb andKb their coun-
terparts in the curved part (the bend). In addition, let lk be
the length of the fold (parallel scale of the field), l? its thick-
ness (perpendicular scale of the field), and lb the length of
the bend. Figure 2 can be thought of as a two-dimensional
cross section of a typical magnetic folding structure in three
dimensions. It is assumed that the characteristic scale in the
direction perpendicular to the page is approximately the
same along the fold. Consider then the volume whose cross
section is indicated by the shaded area in Figure 2: all the
flux is through the surfaces whose cross sections are repre-
sented by bold lines. Then, by flux conservation, we must
have

Bf l? � Bblb : ð10Þ

Suppose that the fold is stretched by a factor s in the parallel
direction. Then, lk ! slk, lb ! slb, and, by volume and flux
conservation, Bf ! sBf , so the field is amplified in the flat
part of the fold. We now observe that Kf � 1=lk and
Kb � 1=l?, whence Bf Kf � Bf =lk, and using equation (10),
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BbKb � Bb=l? � Bf =lb. Both of these ratios remain
unchanged during the stretching event. We conclude that
linear shear transformation preserves

KB � const ð11Þ

throughout the fold: hence, the anticorrelation between B
and K. Note that equation (11) can be regarded as equiva-
lent to the conjecture by Brandenburg et al. (1995) that flux
tubes straighten at the same rate as the corresponding mag-
netic fields grow.

The perceptive reader might wonder about the consis-
tency of equation (11) with our previously stated results that
while the statistics of the field strength are lognormal, the
curvature distribution has a power tail. The explanation is
as follows. The argument that led to equation (11) was
based on approximating the ambient flow by a linear shear
and thus described the effect of the first derivatives of the
velocity on the magnetic field. We now observe that the cur-
vature evolution equation (7) also contains the second
derivatives of velocity, which enter as a source term. Their
role is to bend the field lines at the scale of the flow (see Fig.
1): once the field becomes too flat (i.e., flatter than the flow),
it is bent within one eddy turnover time and K � k� is re-
stored. Therefore, the curvature cannot remain below val-
ues of the order of k� for a long time (or in many places). In
formal terms, the second derivatives of the velocity break
the scale invariance of equation (7) and consequently of the
associated Fokker-Planck equation (8) (this is reflected in
the presence of unity in the first term on the right-hand side).
A stationary distribution with a power tail is thereby made
possible. In fact, this power tail is a limiting envelope for a
lognormal tail produced by the action of the linear shear
(see SCMM02).

The most important consequence is that the field settles
into a reduced-tension state: the tension force can be esti-
mated by B x

D

B � kkB2 � KB2 � k�B2 on the average. A
simple reductio ad absurdum argument can be envisioned

to further support this statement. Let us write the evolution
equation for F ¼ B x

D

B,

d

dt
F ¼ F x

D

uþ BB:

DD

u ; ð12Þ

where the diffusion terms are again dropped. Suppose for a
moment that the field is chaotically tangled, i.e., F � kkB2

with kk � k?4k�. Then, the term in equation (12) that
involves the second derivatives of the velocity field can be
neglected, and equation (12) becomes formally identical to
the evolution equation for B. The moments of F must,
therefore, grow at the same rates as the moments of B, and
we estimate hF 2i=hB4i / hB2i=hB4i, which decays exponen-
tially fast in time. An exact statistical calculation for the
Kazantsev-Kraichnan velocity shows that, indeed,

hjB x

D

Bj2i
hB4i ! 28

9

�4

�2
� k2� ð13Þ

asymptotically with time, starting from any initial condi-
tions (SCMM02). The convergence is exponentially fast at
the stretching (eddy turnover) rate. We conclude that even
an initially chaotically tangled magnetic field will quickly
develop the folding structure.

Thus, the nonlinear saturation, which is due to the
Lorentz tension balancing the stretching action of the flow,
occurs when the energy of the field becomes comparable to
the energy of the turbulent eddies. Note that in a hypotheti-
cal chaotically tangled field with kk � k?, the tension would
be much larger, B x

D

B � k�B2, so saturation would already
be possible at very lowmagnetic energies.

3. THE NONLINEAR REGIME

3.1. Numerical Results

No satisfactory analytical description of the nonlinear
state is as yet available, so one must be guided by results of
numerical experiments. The main obstacle in the way of a
definitive numerical study is the tremendously wide range of
scales that must be resolved in order to adequately simulate
the large-Pr MHD: indeed, one must resolve two scaling
intervals, the hydrodynamic inertial range and the subvis-
cous magnetic one. Since this is not feasible, we propose to
simulate the initial stage of the nonlinear evolution up to the
point when the total energy of the magnetic field equalizes
with the energy of the viscous-scale turbulent eddies. This
stage can be studied in the viscosity-dominated MHD regime
in which the hydrodynamic Reynolds number Re is of the
order of 1 and the external forcing models the energy supply
from the larger eddies (cf. Cattaneo et al. 1996; Kinney et al.
2000). Moreover, one can argue (MCM02; Schekochihin et
al. 2002b) that once the magnetic energy does equalize with
that of the smallest eddies, the following scenario takes
place. The magnetic back-reaction leads to suppression of
the shearing motions associated with the viscous-scale
eddies. Larger scale eddies, which are more energetic (but
have slower turnover rates), continue to drive the small-
scale magnetic fluctuations by the same stretching mecha-
nism that the viscous-scale ones did, until the magnetic field
becomes strong enough to suppress these eddies as well.
This process continues until all field-stretching motions
throughout the inertial range are suppressed (see Schekochi-
hin et al. 2002b for further discussion). Speculatively, this

Fig. 2.—Stretching of a fold by linear shear. The bold arrows indicate
the stretching direction of the shear. The dotted lines correspond to surfaces
whereB ¼ 0.
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could be thought of as some effective renormalization of Re,
so that the final statistics of the magnetic field would again
be described by the low-Re MHD model. Some numerical
evidence supporting this picture is given byMCM02.

In our simulations, we choose the parameters so that the
forcing and the viscous scales are comparable and the statis-
tics of the subviscous-range magnetic fluctuations can
already be studied at 1283 resolution. The numerical setup
and the spectral MHD code used are exhaustively described
in MCM02. The forcing is large scale, nonhelical, and white
in time. The units are based on box size 1 and forcing power
1. In these units, setting � ¼ 5� 10�2 effectively leads to
Re � 1.

After the initial kinematic growth stage, saturation is
achieved where the total magnetic and hydrodynamic ener-
gies are equal.1 We then measure the PDFs of the magnetic
field strength and curvature in the saturated state. Our find-
ings are as follows.

1. The level of intermittency is lower than in the kinematic
case, with the field-strength distribution developing an expo-
nential tail. The kurtosis of the field decreases to
hB4i=hB2i2 � 4 after growing exponentially during the kine-
matic stage (for a Gaussian three-dimensional random field,
the kurtosis would have been 5=3).
The partial suppression of intermittency indicates a plausi-
ble scenario for the onset of nonlinearity (see Fig. 3). As we
saw in x 2.2, the kinematic dynamo gave rise to a highly
intermittent lognormal spatial distribution of the field
strength. Already early on, when the total magnetic energy
is only a fraction of its saturated value, there are tiny regions
in which the magnetic energy density locally approaches
values comparable to, and greater than, the energy density
of the fluid motions. This activates the nonlinear back-reac-
tion in these regions, so as to suppress further growth of the
field there. As the overall amount of the magnetic energy
grows, the fraction of the volume in which the nonlinearity
is at work increases until the nonlinear state is globally
established. In the process, the magnetic fields become more
volume-filling and consequently less intermittent (cf.
Brandenburg et al. 1996; Cattaneo 1999a, 1999b). The final
PDF in the fully nonlinear regime has an exponential tail
(Fig. 3): still considerably intermittent, but less so than the
lognormal distribution.
2. The folding structure of the field is unchanged from the

kinematic case. The anticorrelation between the field
strength and the curvature persists (see Fig. 4, which
illustrates the dynamical nature of this anticorrelation
discussed in x 2.3). Their correlation coefficient
rK ;B ¼ hK2B2i=hK2ihB2i � 1 � �0:7 in our simulations,
which is quite close to its minimum allowed value of �1.
Even more remarkably, the distribution of the curvature
retains the same power tail �K�13/7 (Fig. 5). We find this
last feature particularly striking: indeed, not only does a
kinematic theory based on the synthetic Kraichnan velocity

field predict a quantitatively correct nontrivial scaling for
the tail of the curvature PDF, but this scaling also survives
in the fully nonlinear case!

Finally, we would like to offer the following caveat with
regard to the numerical study of the small-scale magnetic
turbulence by means of spectral methods. We have found
that if the amount of dissipation applied to the magnetic
field is not sufficiently large to completely override the effect
of dealiasing (see Canuto et al. 1988), the folding structure
is destroyed, and incorrect curvature statistics are obtained
(cf. MCM02). The resulting resolution constraints tend to
be quite stringent: it is not enough to simply make sure that
the UV cutoff of the magnetic energy spectrum is resolved.
We believe that the destruction of the structural properties
of the field by dealiasing is due to the nonlocal nature of the
corresponding operator. Consistently with this view, hyper-
diffusion does not exhibit the same adverse effect (see
Fig. 5).

3.2. AModel of Back-Reaction

The physical reason for the preservation of the folding
structure is, of course, that the fluid motions at subviscous
scales are strongly damped and cannot ‘‘ unwrap ’’ the folds.
Here we use the folding picture to devise a simple ad hoc
physical model that explains the two key quantitative results
that have emerged from our numerics: the exponential tail
of the PDF of the magnetic field strength and the unchanged
kinematic power tail of the curvature PDF.

It is clear that once the magnetic fields grow strong
enough, they will resist further stretching by the ambient
velocity shear. This increased rigidity of the field can be
modeled by adding a nonlinear relaxation term to the

z281 

Fig. 3.—PDFs of the field strength: onset of nonlinearity and saturation.
The field strength is normalized to its rms value for each PDF. The intermit-
tency at earlier times is thus clearly seen to be stronger than during the
saturated stage.

1 See the argument at the end of x 2.3. The equipartition only holds
asymptotically with Prm. When the magnetic diffusivity is too large, satura-
tion occurs at smaller magnetic energies (for more details, see Schekochihin
et al. 2002b, 2002d). This probably accounts for the subequipartition satu-
rated states seen in some of the simulations of small-scale dynamos (e.g.,
Brummell et al. 2001). We note, however, that the lower magnetic energy
levels in the saturated state do not alter either the intermittency- or the
structure-related properties of the small-scale fields.
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induction equation,

d

dt
B ¼ B x

D

uext � ��1
r ðBÞB ; ð14Þ

where uext is the part of the velocity field due to the external
forcing and �rðBÞ is some effective nonlinear relaxation
time.2

In view of the heuristic way in which the nonlinearity has
been introduced into the induction equation, equation (14)
cannot be expected to, and indeed, does not, correctly model
the spatial properties of the magnetic field. What it effec-
tively amounts to is a simple local one-point closure. If the
external velocity field is modeled by the Kazantsev-
Kraichnan velocity, the Fokker-Planck equation (5) derived
in the kinematic case can easily be amended to include the
nonlinearity:

@tP ¼ @

@B
B

1

4
�2B

3 @

@B

1

B2
Pþ ��1

r ðBÞP
� �

: ð15Þ

This equation has one normalizable stationary solution:

PðBÞ ¼ constB2 exp � 4

�2

Z B

0

dB0

B0 �
�1
r ðB0Þ

� �
: ð16Þ

In order to make an intelligent guess about the B-depend-
ence of ��1

r ðBÞ, we have to invoke our understanding of the
field structure at subviscous scales. The relaxation term in
equation (14) is due to the suppression of the velocity shear
by the Lorentz back-reaction. The latter can be thought of
as inducing a certain magnetic component um of the velocity
field that counterbalances the external shear, so ��1

r ðBÞ �D

um. Since we are considering a viscosity-dominated regime,D

um should be estimated by balancing the viscous damping
and the magnetic tension:

��Dum � B x

D

B : ð17Þ

The characteristic scale of um cannot be smaller than the vis-
cous scale: otherwise, um would be viscously damped at a
shorter timescale than that of the external shear and could
not provide an effective counteraction to it. We have,
therefore,

��1
r ðBÞ � k�um � B x

D

B

�k�
� KB2

�k�
: ð18Þ

We emphasize that the above relation represents a local
force balance in a particular fold. Now, in a typical case, the

Fig. 4.—Instantaneous cross sections of the field strength B (left) and curvature K (right) during the nonlinear stage of a simulation with � ¼ 5� 10�2,
� ¼ 2� 10�4 (Prm ¼ 250). Darker areas correspond to larger values. Detailed anticorrelation betweenB andK is manifest.

z474 
z471 
z473 

Fig. 5.—PDFs of the field-line curvature in the nonlinear regime. The
solid curve is for a simulation that used eighth-order hyperdiffusion. At
curvatures approaching resistive cutoff,K � k�, the scaling is destroyed.

2 A model of nonlinear feedback mathematically very similar to this one
was studied by Zeldovich et al. (1987) in the problem of self-excitation of a
nonlinear scalar field in a randommedium.
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folding structure would implyK � k�, so

��1
r ðBÞ � B2

�
; B � Btypical ; ð19Þ

where Btypical � Brms is the typical value of the back-reacting
magnetic field in the system. This regime corresponds to
what is sometimes referred to as the the viscous relaxation
effect (Chandran 1998; Kinney et al. 2000). Substituting the
expression (19) for ��1

r ðBÞ into equation (16), we find a
Gaussian PDF (cf. Boldyrev 2001) with Brms � ð�2�Þ1=2,
which approximately corresponds to the magnetic energy
equalizing with the energy of the viscous-scale eddies and
accounts for the energy equipartition we have seen in our
simulations.

However, these arguments are only appropriate in appli-
cation to the statistics of the typical values of the magnetic
field strength, i.e., to the core of the distribution function
(cf. Boldyrev 2001). In order to understand the tail of the
PDF, one must consider rare events, specifically, the instan-
ces (or places) where B is atypically large. In the framework
of the ‘‘ stretch-and-fold ’’ small-scale dynamo mechanism,
such events can occur if the magnetic field gets ‘‘ over-
stretched ’’ (for instance, because the shear has acted coher-
ently in one direction for an atypically long time). The local
relation between the curvature and the field strength
associated with it is given by equation (11), whence
KB � k�Btypical. Inserting this into equation (18), we find

��1
r ðBÞ � BBtypical

�
; B4Btypical ; ð20Þ

which, upon substitution into equation (16), gives the expo-
nential tail evidenced by the numerics.

The persistence of the kinematic curvature statistics in the
face of nonlinear effects can also be understood in these
terms. Essentially, the tail of the curvature PDF remains
unaffected by the back-reaction because it describes areas of
anomalously large curvature (K4k�), where due to the anti-
correlation property, the field is weak. On a slightly more
quantitative level, we argue that the effect of the back-
reaction on the curvature can also be modeled by a simple
nonlinear relaxation term, as in equation (14):

d

dt
K ¼

�
rhs of eq: 7ð Þ with

D

uext
�
� ��1

r ðBÞK : ð21Þ

Here ��1
r ðBÞ is again estimated via equations (18) and (11).

The nonlinear relaxation term in equation (21) is then

���1
r ðBÞK � �ðKBÞ2

�k�
n̂n � �

k�B
2
typical

�
n̂n ; ð22Þ

where n̂n ¼ K=K. With this correction, the Fokker-Planck
equation (8) for the PDF of curvature becomes

@tP ¼ 7

4
�2

@

@K
K 1þ K2

� � @

@K

1

K
Pþ 20

7
P� �

K
P

� �
; ð23Þ

where � is a numerical constant of the order of unity, and as
before, K is rescaled by K� � k�. It is a straightforward
exercise to show that the stationary PDF is now given by

PðKÞ ¼ const
Ke� arctanðKÞ

1þ K2ð Þ10=7
; ð24Þ

which has the same power tail �K�13/7 as its kinematic
counterpart in equation (9).

Finally, we would like to stress the qualitative character
of the ideas and results put forward in this section. A more
quantitative nonlinear theory based on these ideas may be
feasible but is left for future work. Another important issue
that requires careful quantitative treatment is the role of
Ohmic diffusion. Based on the model of back-reaction pro-
posed here, we seem to be able to understand the nonlinear
regime without including the resistive terms. These terms
are difficult to treat analytically due to the usual closure
problem associated with the diffusion operator. Numeri-
cally, we have confirmed that the field structure is unaffected
by a switch to hyperdiffusion (see Fig. 5), but the locality of
the dissipation operator probably does matter (see remarks
at the end of x 3.1). Further investigation of the universality
of the statistics of the small-scale magnetic turbulence with
respect to the form of the UV regularization is also left for
the future.

4. CONCLUSIONS

We have found that the folding structure of subviscous-
scale magnetic fluctuations that is formed via the kinematic
‘‘ stretch-and-fold ’’ small-scale dynamo mechanism
remains the essential feature of the nonlinear regime. The
scale separation is of crucial importance here: while small-
scale structure can be generated and maintained in large-
scale random flows, these flows lack the ability to coherently
undo the structure, even when acting in concert with the
magnetic back-reaction.

Both our theoretical arguments and our numerical experi-
ments were based on viewing the turbulent velocity field as a
single-scale random flow. In real turbulence, Re is, of
course, fairly large (104 in the ISM), so many hydrodynamic
scales come into play. Unfortunately, the resulting scale
ranges are too broad to be adequately simulated. It is inter-
esting, however, that the results presented above appear to
hold in simulations with more realistic Re (up to 103) but
relatively small Pr (down to values of the order of 1), in
accordance with the arguments presented at the beginning
of x 3. We believe, therefore, that the physics and the
numerics we have laid out provide at least a semiquantita-
tive description of the statistical properties of the small-scale
MHD turbulence in high-Pr m plasmas.

The implications for astrophysical objects can be signifi-
cant. For the large-scale galactic dynamo, small-scale fields
must be taken into consideration if a nonlinear �� theory is
to be constructed. If the net effect of the accumulated small-
scale magnetic energy is to suppress �, an alternative theory
will have to be sought. The nonlinear evolution of the small-
scale magnetic turbulence in protogalaxies (Kulsrud et al.
1997) and in the early Universe (see, e.g., Son 1999; Chris-
tensson, Hindmarsh, & Brandenburg 2001) determines the
energy and the coherence scale of the seed field inherited by
newly formed galaxies. The structure of tangled magnetic
fields in the intracluster gas crucially affects thermal conduc-
tion in the galaxy clusters (see, e.g., Chandran & Cowley
1998; Malyshkin 2001; Narayan & Medvedev 2001). In
accretion-disk physics, the presence of large amounts of
small-scale magnetic energy could lead to new models for
angular momentum transport (Balbus & Hawley 1998) and
for the acceleration of jets (see, e.g., Heinz & Begelman
2000). In solar astrophysics, the possibility was recently
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raised that a substantial part of the magnetic energy in the
quiet photosphere of the Sun resides in small-scale magnetic
fluctuations (Cattaneo 1999b). Indeed, it is natural to expect
that just as turbulence itself, small-scale random magnetic
fields are ubiquitous in the universe.

Finally, constructing a self-consistent physical theory of
small-scale magnetic turbulence constitutes a fascinating
task in its own right. Although 50 years have passed since
Batchelor (1950) took the first steps down this road, an
inquisitive researcher will still find surprises at every turn,
and it might well be short-sighted to claim that we are able
to discern the contours of the final destination.
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