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ABSTRACT

The nature of the inner engine that accelerates and collimates the relativistic flow at the cores of gamma-ray
bursts (GRBs) is the most interesting current puzzle concerning GRBs. Numerical simulations have shown that
the internal shocks’ light curve reflects the activity of this inner engine. Using a simple analytic model, we clarify
the relations between the observed gamma-ray light curve and the inner engine’s activity and the dependence
of the light curve on the inner engine’s parameters. This simple model also explains the observed similarity
between the observed distributions of pulses’ widths and the interval between pulses, and the correlation between
the width of a pulse and the duration of the preceding interval. Our analysis suggests that the variability in the
wind’s Lorentz factors arises because of a modulation of the mass injected into a constant energy flow.
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On-line material: color figures

1. INTRODUCTION

According to the current fireball model, gamma-ray bursts
(GRBs) are produced when a relativistic flow is slowed down
via relativistic shocks. At the core of a GRB is a hidden inner
engine that accelerates the flow. Since there are no direct ob-
servations of the inner engine, its nature is the most mysterious
puzzle within the GRB phenomenon. GRB light curves provide
the best clues on the nature of this inner engine. Using the
variability seen in the majority of the light curves, Fenimore,
Madras, & Nayakshin (1996) and Sari & Piran (1997) dem-
onstrated that GRB shocks must be internal. These shocks re-
quire a continuous and variable inner engine that operates dur-
ing the whole duration of the GRB and varies on the observed
variability timescale.

Numerical simulations (Kobayashi, Piran, & Sari 1997, here-
after KPS97; Daigne & Mochkovitch 1998; Ramirez-Ruiz &
Fenimore 2000; Spada, Panaitescu, & Me´száros 2000) involv-
ing different physical processes and different assumptions on
the nature of the relativistic flow produced synthetic light
curves. KPS97 revealed that the gamma-ray light curve repro-
duces the temporal activity of the “inner engine.” Following
simulations have shown this result. The goal of our analytic
model presented here is to explain this result and to show the
relationship between the behavior of the inner engine and the
observed light curve.

The observed pulses width and the intervals betweendt
pulses have similar distributions, and is correlated withDt Dt
the consecutive (Nakar & Piran 2002, hereafter NP02; seedt
also Quilligan et al. 2002). We show that in internal shocks
with equal-energy shells (within the same burst), both anddt

reflect the initial separation between the shells,L. Therefore,Dt
both observational results arise naturally in this model. If, in-
stead, the shells’ masses are constant, still reflects the shells’Dt
separation, but depends also on the distribution of the shells’dt
Lorentz factors. In this case, the variance ing wipes out both
the - similarity and the correlation. We confirm the analyticdt Dt
results using numerical simulations. These results suggest that
the inner engine produces a variable Lorentz factor flow by
modulating the mass of a constant energy flow. These results
provide yet another strong support for the internal-shock model.
They also give a new clue on the nature of the inner engine.

While calculating the pulse width, we assume that the cool-
ing time is shorter than other physical timescales. This as-
sumption holds for a large region of the parameter space
(KPS97; Piran 1999; Wu & Fenimore 2000). It may break down
for large radii (where the shells’ densities are low) or for small
radii (where the shells may be optically thick). Since the cooling
time influences only the pulse width, the observed similarities
and the correlation between the two provide further indepen-
dent support for this assumption and an indication of the con-
ditions within the emitting regions.

2. THE ANALYTIC MODEL

In our model, the inner engine emits relativistic shells that
collide and produce the observed light curve. We make the
following simplifying assumptions: (1) The shells are discrete
and homogeneous. Each shell has a well-defined boundary and
a well-definedg. (2) The colliding shells merge into a single
shell after the collision. The merged shell properties are ob-
tained using energy and momentum conservation as described
in KPS97. (3) Only efficient collisions produce an observable
pulse. The efficiencye is defined as the ratio between the
postshock internal energy and the total energy. We consider
only collisions with .e 1 0.05

Under these assumptions, each shell (labeledi) is defined by
four parameters: the ejection time , the mass , the Lorentzt mi i

factor , and the shell’s width . We define as the intervalg l Li i i, j

between the rear end of theith shell and the front of thejth
shell. Note that .1L ≈ t � (t � l )i, i�1 i�1 i i

Consider, first, a single collision between two shells with
widths and , a separation , and ejection timesl l L t ≈ t �1 2 2 1

. We define and ( ). The collision(l � L) g { g g { ag a 1 11 1 2

efficiency depends strongly ona (Piran 1999);e(a p 2) ≈
, and it decreases fast with decreasinga. Hence, we con-0.05

sider only collisions with .a 1 2
The collision takes place at 2 2 2R ≈ g L [2a / (a � 1)] ≈s

. Note that as long as , depends rather weakly on22g L a 1 2 Rs

. The emitted photons from the collision reach the observerg2

1 Hereafter, we take . This relation is only approximate since the shell’sc p 1
velocity is almost (but not exactly)c.
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Fig. 1.—Types of multiple collisions that result in two consecutive pulses.
[See the electronic edition of the Journal for a color version of this figure.]

TABLE 1
and for the Three Collisions TypesDt dt1, 2

Type Dt

Equal Mass Equal Energy

dt1 dt2 dt1 dt2

I . . . . . . . . l � L � l � L2 2, 3 3 3, 4

L1, 2l �c2 a

L3, 4l �c4 b
l � Lc 1, 22

l � Lc 3, 44

II . . . . . . . l � L2 2, 3

L1, 2l �c2 a

�L a2, 3L1, 2l � �c3 � bb a
l � Lc 1, 22

�2
l L � Lc � 1, 2 2, 33 5

III . . . . . .
′L1, 2

(ab � 1)

L2, 3l �c3 a
1

′ �L ab1, 2a
a L �� 2, 3b (ab � 1)

No efficient collisions No efficient collisions

Note.— and are the width at the ejection and the width at the collision ( with no spreading). is the′l l l p l Li c i c 1, 2i i

separation between the first and second shells at the time that the second and third shells collide. The approximations
are valid for .a 1 2i, j

at

2t ≈ t � l � R /(2g ) ≈ t � l � L ≈ t . (1)obs 1 1 s 1 1 2

These photons are observed almost simultaneously with a hy-
pothetical photon emitted from the inner engine at togethert2

with the faster shell. This result explains the numerical results
of KPS97 (and others) that the observed light curves reproduce
the activity of the inner engine.

Since we are interested in comparing the characteristics of
two consecutive pulses, we identify the three types of collisions
(from which the complete light curve can be produced) that
produce two consecutive pulses (see Fig. 1): (1) two collisions
between four consequent shells with and ,g p ag g p bg2 1 4 3

in which the collisions are between the first and second shells
and between the third and fourth shells; (2) two collisions
between three consequent shells with , ing p g /a p g /b1 2 3

which the two front shells collide and then the third shell col-
lides with the merged one; and (3) same as the type II collisions,
but here the rear shells collide first.

Type I collisions result in two observed pulses, at and att2

, separated by . In type IIt Dt ≈ t � t ≈ l � L � l � L4 4 2 2 2, 3 3 3, 4

collisions, the pulses are at and , andt t Dt ≈ t � t ≈ l �2 3 3 2 2

. In type III collisions, the last shell takes over the secondL2, 3

one, and the first pulse is observed at . Then the merged shellt3

takes over the first one, releasing another pulse observed at
∼t3.

2 Therefore, type III collisions result in a single wide pulse.
Detailed calculations (E. Nakar & T. Piran 2002, in prepa-

ration) show that these results are accurate up to an order of
, where . This factor is small for efficient�2 �2a a { g /g ai, j i, j i j i, j

collisions. These results depend weakly on the shell’s mass
distribution.

The relevant timescales that determine the pulse width are
(Piran 1999) as follows: (1) the angular time , which resultstang

from the spherical geometry of the shells ( ,2t ≈ R /2gang c sh

(2) the hydrodynamic time , which arises from the shell’sthyd

width and the shock crossing time ( , where is thet ≈ l lhyd c cin in

width of the inner shell at the time of the collision), and
(3) the cooling time (either the cooling time of the emitting
electrons in transparent shells or the radiation diffusion time
in opaque shells). As stated in § 1, we assume that this time
is shorter than and . This assumption is well justifiedt tang hyd

for most of the parameter space for synchrotron emission
(KPS97; Wu & Fenimore 2000). Therefore, the pulse width is

.3dt ≈ t � t ∼ tang hyd ang

Unlike the pulse’s timing, the pulse’s width depends strongly
on the shells’ masses. This follows from the strong dependence
of the Lorentz factor of the shocked region, , on the ratiogsh

of shells’ masses. We examine two possible cases: equal-mass
shells and equal-energy shells. Table 1 summarizes the intervals
and the pulses’ widths for the two different mass distributions
for the three types of collisions.

3. NUMERICAL SIMULATION

The analytic model demonstrates that the properties of the
light curve depend on the dominant type of collisions. In order
to determine which collision type dominates, we performed
numerical simulations. These simulations also verify the va-
lidity of some of the approximations used in the analytic toy
model. All collisions are taken into account in the simulations,
and we do not apply the efficiency constrain, .a 1 2

Each simulation included 50 shells. Using the intuition
gained by the analytic model, we choose a lognormalL dis-
tribution with and (chosen inm(log L) p �0.5 j(log L) p 0.9
order to fit the observations). The initial shell’s width is taken
as a constant of 0.1 s. We obtain similar light curves for either
the constant width or spreading shell model. The results pre-
sented are for a uniform Lorentz factor distribution (g pmin

2 Detailed calculations show that the interval between these two pulses is
shorter than the pulses’ widths.

3 Usually, . Under extreme widening, .t ≥ t t ∼ tang hyd hyd ang



No. 2, 2002 NAKAR & PIRAN L141

Fig. 2.—Pulses’ width, , intervals between pulses, , and the separationdt Dt
between shells,L. (a) Equal-mass shells’ simulation. (b) Equal-energy shells’
simulation. [See the electronic edition of the Journal for a color version of
this figure.]

TABLE 2
Best-Fit Parameters of and in thedt Dt

Equal-Energy Simulationsa

Parameters

Dt
(s)

dt
(s)

m 1 j m 1 j

Simulated . . . . . . 1.4 0.6–3.4 1 0.5–2
Observed. . . . . . 1.3 0.5–3.1 1 0.5–2.2

a Compared with the observed values (NP02). Note
that this fit was achieved by tuning only andm(log L)

.j(log L)

, ).4 The shell’s mass is either constant (equal30 g p 2000max

mass) or proportional to (equal energy).�1g
We identify the shells’ collisions. Each collision produces a

pulse (also the inefficient ones). The duration of a pulse is
taken as . All the pulses have a fast-rise, slow-decayt � tang hyd

shape, with a ratio of 3 : 1 between the decay and the rise
times. The area below a pulse is equal to its radiated energy.
Using these pulses, we prepare a binned (64 ms time bins) light
curve. We analyze this light curve using the Li & Fenimore
(1996) peak finding algorithm, obtaining the observed pulses’
timings and widths.

In both the equal-energy and equal-mass simulations, the
number of observed pulses is between a third and a half of the
total ejected shells. Efficient ( ) type I and type II col-e 1 0.05
lisions compose about 80% of the collisions. There are more
type I collisions in the equal-mass model and more type II
collisions in the equal-energy model. There are almost no ef-
ficient type III collisions in the equal-energy model. The ef-
ficiency in both models is about 20%–30%. This is, of course,
the kinetic efficiency of the conversion of kinetic energy to
internal energy. Since we do not simulate the emission process,
we cannot determine what the ultimate gamma-ray production
efficiency is. The efficiency decreases to 10% when the Lorentz
factor is uniform between 100 and 1000. Most collisions takes
place at radii larger than 1013 cm and smaller than 1015.5, where
the shells are transparent and the cooling time is short. This
justifies our fast-cooling assumption.

Figure 2 illustrates the histograms of , , andL as obtaineddt Dt
by the simulations. In the equal-mass model (Fig. 2a), re-Dt
flects theL distribution, while is much shorter. In the equal-dt
energy model (Fig. 2b), both distributions of and reflectDt dt
the L distribution, and both are consistent with the same log-
normal distribution. By tuning only and , wem(log L) j(log L)
obtain a perfect agreement between the and distributionsdt Dt
in the simulations and the observed ones (NP02). The best-fit
parameters for the equal-energy simulations and the observa-
tions are described in Table 2.

The analytical results obtained in § 2 explain these results.
The similarity between the interval distribution in both models’
simulations follows from the weak dependence of the pulses’
timings on the mass distribution. The similarity of the pulses’
widths in the equal-energy model and the shells’ initial sepa-
rations, L, is explained by the analytical result . Thedt ∝ L
deviation from a lognormal distribution and the short pulses
found in the equal-mass model are explained by the analytical
result .dt ∝ L/a

NP02 find a correlation between an interval duration and the

4 While the efficiency depends on this distribution, the light curves are
similar for other Lorentz factor distributions, such as being uniform in the log
or ranging between and .g p 100 g p 1000min max

consecutive pulse. In the equal-energy model, we find a highly
significant correlation between the interval duration and the
consecutive pulse. There is no significant correlation in the
equal-mass model. This result is explained again by the equal-
mass relation . Since the variations ina are larger thandt ∝ L/a
the variations inL, they wipe out the correlation.

4. DISCUSSION

KPS97 simulations of internal shocks have shown that the
resulting light curves reflect the activity of the inner engine.
This feature arises in all subsequent simulations. KPS97 show
that this follows from the fact that the pulse timing is approx-
imately equal to the ejection time of one of the colliding shells.
We explain this feature (eq. [1]). Moreover, in most collisions
(types I and II), the pulses are distinguishable, and each pulse
reflects a single collision. The number of observed pulses is
30%–50% of the number of ejected shells. Therefore, the light
curve reflects the emission time of one-third to one-half of the
shells. The inner engine is slightly more variable than the ob-
served light curve.

The observed similarity between the and distributionsDt dt
is explained naturally in the equal-energy shells’ model. Both
parameters reflect the separation between the shells during their
ejection. In the equal-mass shells’ model, only reflects theDt
initial shells’ separation, and therefore such a similarity is not
expected. Our numerical simulations confirmed these predic-
tions. Note that many of the simplifying assumptions can be
relaxed with no significant change in the results. We will present
a more detailed model and more elaborated simulations else-
where (E. Nakar & T. Piran 2002, in preparation). The equal-
energy simulations fitted the observations very well. These
results imply that the inner engine most likely ejects equal-
energy shells. These results provide more strong support for
the internal-shock model. They also give one of the first clues
on the nature of the inner engine.
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