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ABSTRACT

Using cosmological N-body simulations, we investigate the influence of the matter density parameter �m

and the linear theory power spectrum PðkÞ on statistical properties of the dark matter halo population—the
mass function nðMÞ, two-point correlation function �ðrÞ, and pairwise velocity statistics v12ðrÞ and �12ðrÞ.
For fixed linear theory PðkÞ, the effect of changing �m is simple: the halo mass scale M� shifts in proportion
to �m, pairwise velocities (at fixed M=M�) are proportional to �0:6

m , and halo clustering at fixed M=M� is
unchanged. If one simultaneously changes the power spectrum amplitude �8 to maintain the ‘‘ cluster nor-
malization ’’ condition �8�

0:5
m ¼ const, then nðMÞ stays approximately constant nearM � 5� 1014 h�1 M�,

and halo clustering and pairwise velocities are similar at fixedM. However, the shape of nðMÞ changes, with
a decrease of �m from 0.3 to 0.2, producing a�30% drop in the number of low-mass halos. One can preserve
the shape of nðMÞ over a large dynamic range by changing the spectral tilt ns or shape parameter C, but the
required changes are substantial—e.g., masking a decrease of �m from 0.3 to 0.2 requires Dns � 0:3 or
D� � 0:15. These changes to PðkÞ significantly alter the halo clustering and halo velocities. The sensitivity of
the dark halo population to cosmological model parameters has encouraging implications for efforts to con-
strain cosmology and galaxy bias with observed galaxy clustering, since the predicted changes in the halo
population cannot easily be masked by altering the way that galaxies occupy halos. A shift in�m alone would
be detected by any dynamically sensitive clustering statistic; a cluster normalized change to �8 and �m would
require a change in galaxy occupation as a function of M=M�, which would alter galaxy clustering; and a
simultaneous change to PðkÞ that preserves the halo mass function would change the clustering of the halos
themselves.

Subject headings: cosmology: theory — dark matter — galaxies: formation — galaxies: halos —
large-scale structure of universe

1. INTRODUCTION

In cosmological models dominated by cold dark matter
(CDM) and an unclustered energy component (such as a
cosmological constant), gravitational instability of primor-
dial density fluctuations produces a population of dark mat-
ter halos, each in approximate virial equilibrium.
Depending on their mass, these halos may host individual
galaxies, galaxy groups, or rich galaxy clusters. Provided
that one focuses on systems of overdensity �=��� � 200, and
regards higher density structures as subsystems within their
parent halos, one finds that the halo population itself is
insensitive to the gas pressure forces that influence the sub-
dominant baryon component. In this paper, we investigate
whether changes to cosmological parameters—specifically
the matter density parameter �m and parameters that
describe the shape and amplitude of the primordial power
spectrum—always produce measurable changes in the dark
halo population, or whether two models with different com-
binations of these parameters can give rise to halo popula-
tions that are effectively indistinguishable.

Our interest in this question is spurred by recent develop-
ments in the theory of biased galaxy formation. The uncer-
tain relation between galaxies and dark matter is the
primary limitation in testing cosmological models against
observations of galaxy clustering. The ‘‘ halo occupation

distribution ’’ (HOD) characterizes this relation statistically
in terms of the probability distribution PðNjMÞ that a halo
of virial mass M contains N galaxies of a specified type,
together with prescriptions that specify the relative spatial
and velocity distributions of galaxies and dark matter
within these halos. Numerous recent papers have shown
that the HOD framework is a powerful tool for analytic and
numerical calculations of clustering statistics, for modeling
observed clustering, and for characterizing the results of
semianalytic or numerical studies of galaxy formation (e.g.,
Kauffmann, Nusser, & Steinmetz 1997; Jing, Mo, & Börner
1998; Kauffman et al. 1999; Benson et al. 2000; Ma & Fry
2000; Peacock & Smith 2000; Seljak 2000; Berlind & Wein-
berg 2002; Bullock, Wechsler, & Somerville 2002; Marinoni
& Hudson 2002; Scoccimarro et al. 2001; Yoshikawa et al.
2001; White, Hernquist, & Springel 2001). In particular,
Peacock & Smith (2000), Marinoni & Hudson (2002), and
Berlind & Weinberg (2002) have argued that the HOD can
be determined empirically from observed galaxy clustering,
given an assumed cosmological model that determines the
mass function and spatial and velocity clustering of the dark
halo population. Empirical determinations of the HOD can
provide insight into the physics of galaxy formation, and
they may sharpen the ability of large-scale structure studies
to test cosmological models, since a model with an incorrect
dark halo population may be unable to match the data for
any choice of HOD (see Berlind & Weinberg 2002 for fur-
ther discussion).

Suppose that we find a combination of cosmology and
HOD that reproduces all aspects of observed galaxy cluster-
ing. Can we infer that the cosmology and the derived HOD
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are both correct? If there is another cosmological model that
predicts an indistinguishable halo population, then the
answer is clearly no, since the combination of this alterna-
tive cosmology with the same HOD would predict identical
galaxy clustering. These cosmological models would be
degenerate in the sense that they could not be distinguished
by galaxy clustering data without relying on a predictive
theory of galaxy formation (which might yield different
HODs for the two cosmologies). Cosmological models that
predict distinguishable halo populations could still be
degenerate in this sense, if changes to the HOD can mask
the differences in the halo populations; we will speculate on
this point in x 4, but we reserve a quantitative examination
of it to future work.

We focus our analyses on CDM cosmological models
with Gaussian initial density fluctuation fields. Motivated
by cosmic microwave background measurements (Netter-
field et al. 2002; Pryke et al. 2002), we restrict our attention
to spatially flat models with a cosmological constant or
�m ¼ 1; however, we demonstrate in passing that galaxy
clustering data at z ¼ 0 probably cannot distinguish a flat
model from an open model with the same �m. The parame-
ters that define our cosmological models are the matter den-
sity parameter �m; the normalization �8 of the power
spectrum PðkÞ, which is the rms fluctuation of the linear
density field filtered with a top-hat filter of radius
8 h�1 Mpc; and the shape of PðkÞ, which we characterize by
the spectral index ns of the inflationary power spectrum and
the shape parameter C of the matter transfer function (see,
e.g., Efstathiou, Bond, & White 1992). Although existing
data impose constraints on these parameters, individually
or in combination, here we allow each to vary independently
over a fairly broad range so that we can isolate the physical
effects of the matter density, the amplitude of mass fluctua-
tions, and the shape of the power spectrum on the resulting
halo population. We concentrate entirely on the halo popu-
lations at z ¼ 0, since this is where galaxy clustering data
will be good enough to allow empirical HOD determina-
tions in the near future.

Using N-body simulations described in x 2, we measure
(in x 3) mass functions, two-point correlation functions,
mean pairwise radial velocities, and pairwise velocity disper-
sions of dark matter halos. First, we consider models that
have the same initial power spectrumPðkÞ but different mat-
ter density parameter �m. We then move to cluster normal-
ized models in which �8 is changed to compensate the
change in �m so that the amplitude of the halo mass func-
tion is kept approximately fixed at a cluster scale. Finally,
we investigate models in which both the amplitude and the
shape of PðkÞ are changed in order to match the amplitude
and slope of the halo mass function at the cluster scale. We
review our results and briefly discuss their implications for
cosmological tests in x 4. Our results overlap previous
numerical studies of the halo mass function and halo clus-
tering (recent examples include Jing 1998; Governato et al.
1999; Colberg et al. 2000; Jenkins et al. 2001), but they differ
in the examination of controlled parameter sequences rather
than specific cosmological models. Also, while some of these
studies have focused on the large-scale correlations of clus-
ter mass halos, we devote considerable attention to the
lower masses and smaller spatial scales that are important
for nonlinear galaxy clustering. Throughout the paper, we
adopt a Hubble constant H0 ¼ 100 h km s�1 Mpc�1 ¼
70 km s�1 Mpc�1 (Freedman et al. 2001).

2. NUMERICAL METHODS AND TESTS

In this work, statistics are mainly based on simulations
run with a particle-mesh (PM) N-body code (Park 1990).
We run PM simulations with different combinations of den-
sity and power spectrum parameters. Each simulation fol-
lows the evolution of 2003 particles in a periodic cube 200
h�1 Mpc on a side, with a 4003 mesh to compute the gravita-
tional force starting at z ¼ 19 and advancing to z ¼ 0 in 40
equal steps of expansion factor a. The mass of each particle
is 2:78� 1011�m h�1 M�. We adopt the parameterization
of Efstathiou et al. (1992) for the fluctuation power spec-
trum PðkÞ. We divide our simulations into three categories
corresponding to parameter changes in the matter density
and the normalization and the shape of the initial fluctua-
tion power spectrum. For each category, four cosmological
models are investigated with ð�m; ��Þ ¼ ð0:2; 0:8Þ, (0.3,
0.7), (0.4, 0.6) and (1.0, 0.0). We generally regard the (0.3,
0.7) model as the central one for comparison. In the central
model, the spectral index is ns ¼ 1:0, the spectral shape
parameter is � ¼ 0:20, and the rms mass fluctuation within
spheres of radius 8 h�1 Mpc is �8 ¼ 0:9, which is consistent
with the observed abundance of clusters (Eke, Cole, &
Frenk 1996). For each model, we generate four independent
realizations, and we use the dispersion among these realiza-
tions to estimate the statistical error bars on our clustering
measures associated with the finite simulation volume. The
total volume is comparable to that expected for the Sloan
Digital Sky Survey (York et al. 2000) out to its median red-
shift zmed � 0:1. We use a friends-of-friends (FOF) algo-
rithm (Davis et al. 1985) to identify the dark matter halos,
and unless explicitly stated otherwise, the linking length is
0.2 times the mean interparticle separation. With this link-
ing length, the FOF algorithm picks out structures of typical
mass overdensity �=��� � 200 (Davis et al. 1985).

The advantage of a PM code is that it is relatively cheap
to run multiple simulations with a large dynamic range in
mass. The limitation of a PM code is its moderate force reso-
lution, but this limitation is not too serious for our pur-
poses, since we only identify halos and do not attempt to
measure their internal structure. We perform two tests to
make sure that the PM resolution is adequate for our pur-
pose. First, we make a comparison between PM simulations
and simulations run with the GADGET tree code (Springel,
Yoshida, & White 2001). Second, we perform a self-similar
scaling test for the PM code.

GADGET is a publicly availableN-body code that calcu-
lates particle accelerations by the hierarchical tree method
of Barnes & Hut (1986). Its advantages over the PM algo-
rithm are its spatial and temporal adaptability. The gravita-
tional softening length � can be set significantly smaller than
the initial particle grid spacing to increase force resolution;
however, if � is too small, two-body relaxation effects will
begin to influence the halo population. Particles have indi-
vidual timesteps, which can vary continuously to ensure
accurate time integration given the adopted force resolu-
tion. GADGET has fully periodic boundary conditions for
comoving integrations via the Ewald summation method
(Hernquist, Bouchet, & Suto 1991).

We have compared the results of two simulations with
1003 particles in a 100 h�1 Mpc box, one evolved with the
PM code using a 2003 mesh (thus having equal resolution to
the larger simulations on which our results will be based),
and one evolved with GADGET using � ¼ 0:3 h�1 Mpc.
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The initial conditions of the two simulations were identical
to each other and used the parameters of the central model
described above. Slices through these simulations are plot-
ted for comparison in Figure 1. The structures formed in the
two simulations are very similar at the level of detail discern-
ible in this plot. The halo mass functions of the two simula-
tions, also shown in Figure 1, trace each other nearly
exactly. The PM simulation produces slightly (�10%) fewer
halos below 1013 h�1 M�, which is to be expected given its
lower force resolution; the diameter of an overdensity 200
sphere of 1013 h�1 M� is 1.04 h�1 Mpc, or about two PM
grid cells. When the mesh size on this PM simulation was
increased to 3003, the resulting mass function was consistent
with the GADGET simulation even on these small-mass
scales.

In addition to the halo mass function, the quantities
important to our analysis are the correlation functions for
both the mass distributions and the halo populations, which
are shown in Figure 2. As with the halo mass functions, the
matter correlation functions for the PM and GADGET
simulations match very well. They begin to deviate at sepa-
rations smaller than �0.5 h�1 Mpc, or under one mesh cell.

The halo correlation functions produced by the two meth-
ods are also consistent. Larger simulations and multiple
realizations of each model are efficiently produced with the
PM code, which takes up to an order of magnitude less com-
puting time at the force resolution adopted here.

We next perform a self-similar scaling test for the PM
code. Assuming an Einstein–de Sitter universe (�m ¼ 1), we
use a pure power-law power spectrum PðkÞ / k�ns with
ns ¼ �1 (and no transfer function modulation) for the ini-
tial density fluctuations of the scale-free model. A 4003 force
mesh is used to follow the gravitational evolution of 2003

particles. The normalization of the power spectrum is set so
that the nonlinear mass M� at the final output corresponds
to 400 particles. We define M� by the condition
�ðM�Þ ¼ �c ¼ 1:69, where �ðM�Þ is the rms linear mass
fluctuation on mass scale M�. The rms fluctuation is
� ¼ 1:0 at about 1/26 of the box size. If we identify this scale
as 8 h�1 Mpc, the implied size of the periodic simulation
cube is then 207.62 h�1 Mpc at z ¼ 0. Earlier outputs can be
identified with higher redshifts or with larger volumes at
z ¼ 0. In the language of the redshift description, the simu-
lation is evolved for 40 time steps from z ¼ 19, with four

Fig. 1.—Comparison of PM andGADGET simulations evolved from the same initial conditions. Top panels show slices through the particle distributions,
100 h�1 Mpc on a side and 10 h�1 Mpc thick. Bottom panels show cumulative halo mass functions; in the right panel these are divided by the Jenkins et al.
(2001) analytic mass function to allowmore detailed comparison. Theminimum groupmass plotted corresponds to 10 simulation particles.
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outputs (at redshifts z ¼ 1:00, 0.60, 0.25, and 0.00), when
the corresponding M� values are 50, 100, 200, and 400 par-
ticles, respectively. The following results are averaged over
four independent realizations of the simulation, and the
error bars represent the dispersion among the four realiza-
tions divided by

ffiffiffi
3

p
to yield the error on the mean.

Efstathiou et al. (1988) performed the first study on scale-
free cosmological models using N-body simulations and
showed that many quantities in scale-free models have well-
defined scaling behaviors. In an Einstein–de Sitter scale-free
model, the cumulative halo mass functions at redshifts z1
and z2 have the scaling behavior

NðM > M2; z2Þ ¼
1þ z2
1þ z1

� �6=ð3þnsÞ
NðM > M1; z1Þ ;

M1 ¼
1þ z2
1þ z1

� �6=ð3þnsÞ
M2 : ð1Þ

The left panel of Figure 3 shows the cumulative halo mass
function at different redshifts in our scale-free simulations

(solid curves). The dotted curves in Figure 3 are derived by
scaling the mass function at z ¼ 0 according to the above
scaling rule. The scaling properties shown in the figure are
generally very good. The high-mass end of the mass func-
tion drops systematically below the self-similar scaling as
M� increases, a likely result of the finite simulation volume,
which suppresses the amplitude of fluctuations on the larg-
est scales. Comparison of the first and last outputs suggests
that this effect becomes noticeable above M � 2� 1015

h�1 M� at z ¼ 0 (for our adopted �8 ¼ 1:0 scaling), or a
mass scale �0.1% of the total simulation mass (10% in
length scale).

The N-point correlation functions �ðrÞ are expected to
have a similarity transformation with the variable
s ¼ rð1þ zÞ2=ð3þnsÞ for an Einstein–de Sitter universe (Efsta-
thiou et al. 1988). The scaling rule for the correlation func-
tions at redshifts z1 and z2 is then

�ðr2; z2Þ ¼ �ðr1; z1Þ; r1 ¼
1þ z2
1þ z1

� �2=ð3þnsÞ
r2 : ð2Þ

Fig. 2.—Matter and halo correlation functions of the PM (dotted lines) and GADGET (solid lines) simulations shown in Fig. 1. The upper left panel shows
the matter correlation functions, and remaining panels show halo correlation functions for three different mass ranges, centered on M�=2, M�, and 2M�,
whereM� ¼ 1:03� 1013 h�1 M� is the characteristic nonlinearmass (corresponding to 123 particles in these simulations). Results are averaged over four real-
izations, and error bars show the run-to-run dispersion divided by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
¼

ffiffiffi
3

p
to yield the uncertainty in the mean.
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From Figures 3 and 4 it is clear that mass correlation func-
tions and halo correlation functions at different values of
M=M� obey the scaling rule quite well. There are some
noticeable departures from self-similar scaling in the M�=2
panel at the two earliest output times (especially the ear-
liest), when M�=2 corresponds to 25 and 50 particles,
respectively.

The clustering of halos is biased relative to that of the
matter. The halo bias factor bh can be defined via
�hðrÞ ¼ b2h�mðrÞ, where �h and �m are the two-point correla-
tion functions of halos and matter, respectively. The rela-
tion between the clustering of halos and that of the matter
has been extensively studied based on analytical models and
numerical simulations (e.g., Cole &Kaiser 1989; Kashlinsky
1991; Mo &White 1996; Jing 1998, 1999; Porciani, Catelan,
& Lacey 1999; Sheth & Lemson 1999; Sheth & Tormen
1999; Sheth, Mo, & Tormen 2001, and references therein).
Mo&White (1996) give an analytic formula for the bias fac-
tor of halos of a given mass based on an extended Press-
Schechter analysis (Press & Schechter 1974). This formula is
quite accurate for halos with M > M�. Jing (1998) empiri-
cally modifies the formula to also fit the N-body simulation
results for halos of lower mass,

bhðM; zÞ ¼ 1

2�4
þ 1

� �ð0:06�0:02nsÞ
1þ �2 � 1

�c; 0

� �
;

� ¼ �cðzÞ=�ðMÞ ; ð3Þ

where �ðMÞ is the rms fluctuation of the mass density at a
mass scaleM, �cðzÞ is the threshold density contrast for col-
lapse of a homogeneous spherical overdense region at red-
shift z, and �c; 0 � 1:69 for an Einstein–de Sitter universe.
For ns ¼ �1 here, � ¼ ðM=M�Þ2=3. We derive the square of
the bias factor numerically as a function ofM=M� at differ-
ent redshifts by averaging �hðrÞ=�mðrÞ over comoving sepa-
rations between 5 and 30 h�1 Mpc. In this range, the ratio is
almost constant. We compare the computed bias factor with
that given by Jing’s fitting formula in Figure 5. Two conclu-

sions can be drawn immediately from the comparison. First,
since bias factors at different redshifts overlap with each
other when plotted as a function of M=M�, the simulation
displays the correct scaling behavior. Second, the bias fac-
tors agree well with Jing’s fitting formula. At higher mass,
the computed bias is somewhat lower than that given by
Jing’s formula. In fact, the same trend can be found in Jing’s
plot (see his Fig. 2). We attribute this slight deviation in part
to a sample volume effect and in part to systematic errors in
the approximate analytic formula given by Mo & White
(1996; see Sheth et al. 2001).

Both the GADGET simulation test and the scale-free
model test assure that the numerical artifacts in the PM sim-
ulations have almost negligible effect on the statistics we
care about in this paper. For example, the mass scales that
we are concerned with are generally higher than the level
where the PM and GADGET halo mass functions begin to
deviate slightly. Moreover, the correlation functions are
measured at scales e0.5 mesh cells, where the PM and
GADGET results are consistent. The PM simulations
reproduce the expected scaling behaviors in the scale-free
model, which also demonstrates that we canmeasure masses
of halos and their spatial distribution correctly based on
these simulations. The scaling tests and code comparison
suggest that there are some inaccuracies when the halo mass
is lower than 50 particles or more than 0.1% of the total
mass in the simulation, but even in these regimes there
should be little impact on our conclusions because we com-
pare different cosmologies evolved with the same code and
numerical parameters. The PM code is therefore an ideal
tool for our purpose in this paper.

3. COMPARISON OF HALO POPULATIONS

3.1. Changing�m with �8, ns, and C Fixed

We start with a simple case in which we fix the power
spectrum (as linearly evolved to z ¼ 0, with ns ¼ 1:0,

Fig. 3.—Test of self-similar scaling in PM simulations with scale-free initial conditions. Solid lines in the left panel show halo mass functions at four evolu-
tionary stages, whenM� ¼ 50, 100, 200, and 400 particles ( from left to right). Dotted lines show the rightmost solid line scaled according to eq. (1). Points in
the right panel show two-point correlation functions of the mass at these four epochs. Dotted lines are derived by scaling the mass correlation function of the
final output, whenM� ¼ 400Mp, according to eq. (2). Results are averaged over four simulations, and error bars on �ðrÞ show the dispersion among four inde-
pendent runs, divided by

ffiffiffi
3

p
. For clarity, error bars are plotted only for the stage of M� ¼ 400Mp, and error bars for other stages have similar magnitude.

Physical scales are assigned by treating the final output as z ¼ 0 and adopting �8 ¼ 1:0, which implies a comoving size Lbox ¼ 207:62 h�1 M� of the simulation
cube and a total massM ¼ 2:49� 1018 h�1 M� in the cube.
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�8 ¼ 0:9, � ¼ 0:20) and change �m. In linear theory, the
evolved fluctuations in these models are identical, and this
independence of �m holds in the Zeldovich approximation
(Zeldovich 1970) as well as its extension, the adhesion
approximation, as emphasized by Weinberg & Gunn
(1990). In fact, it holds remarkably well into the fully non-
linear regime, as shown in the top and middle panels of Fig-
ure 6, where slices of particle distributions at z ¼ 0 for
models with different �m but identical initial conditions are
compared. These slices are taken from GADGET simula-
tions that evolve the particle distribution from z ¼ 19. Par-
ticle distributions of three spatially flat models with
different values of �m and one open model with �m ¼ 0:2
are extremely similar to each other (although particle veloc-
ities are higher for higher �m). Nusser & Colberg (1998)
extend the Zeldovich/adhesion analytic explanation for this
similarity of evolved structure by showing that the equa-
tions of motion of a collisionless gravitating system of par-
ticles in an expanding universe can be put in a form with
almost no dependence on �m and ��, if the linear perturba-
tion growth factor is used as the time variable. The evolu-
tionary histories of the four models in Figure 6 are different,

but this difference is captured almost entirely by the depend-
ence of the linear growth factor on redshift. The bottom two
panels demonstrate this point, showing the particle distribu-
tions of the flat �m ¼ 1:0 and �m ¼ 0:2 models at the red-
shifts when the linear growth factor is 0.5, redshifts z ¼ 1:0
and z ¼ 1:74, respectively (we define the growth factor to be
unity at z ¼ 0). In most comparisons ofN-body simulations
with different �m, the amplitude and/or shape of PðkÞ is
adjusted in concert with �m. Such adjustments are well
motivated by observational and theoretical considerations,
but they mask the fact that the influence of �m at fixed PðkÞ
is extremely simple. Earlier examples of matched compari-
sons like those in Figure 6 include Figure 1 of Davis et al.
(1985) and Figure 5 of Nusser & Colberg (1998).

Figure 6 suggests that halo mass functions for different
models in this case should be nearly the same when mea-
sured as a function of particle number, i.e., mass divided by
�m. This expectation is confirmed in Figure 7, which shows
mass functions (from PM simulations) of four spatially flat
models. In the left panel, all four (cumulative) mass func-
tions have a similar shape and only shift horizontally rela-
tive to each other. When the halo masses are divided by �m,

Fig. 4.—Test of self-similar scaling of the halo correlation functions, in mass ranges centered onM�=2,M�, 2M�, and 4M�, as indicated. Points show halo
correlation functions at the four evolutionary stages when M� ¼ 50, 100, 200, and 400 particles. Dotted lines are obtained by scaling the result of the
M� ¼ 400 output (solid line) to earlier stages, according to eq. (2). Error bars show the dispersion among four independent runs, divided by

ffiffiffi
3

p
.
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the four curves become nearly identical and overlap with the
�m ¼ 1 curve. To allow a closer inspection, in the right
panel we plot the ratio of the scaled mass functions to that
calculated using Jenkins et al.’s (2001) fitting formula for
the central model. The maximum relative difference between
the four scaled mass functions is only about 10%.

The 10% residual differences reflect slight changes in the
characteristic densities and profiles of halos in different cos-
mologies. For Figure 7, we have identified halos with our
standard FOF linking length parameter b ¼ 0:2, which
picks out structures with mean overdensity �=��� � 200
(Davis et al. 1985; Lacey & Cole 1993), close to the value
�=��� � 178 predicted for the post-virialization overdensity
in the spherical collapse model for an �m ¼ 1 universe
(Gunn & Gott 1972; Peacock 1999). If we instead use
b ¼ 0:16, roughly doubling the overdensity threshold
(0:23=0:163 � 1:95), then halo masses drop by�20% as pre-
viously linked particles are unlinked, but the level of agree-
ment among different cosmological models stay the same.
Another fairly common procedure is to scale b�3 in propor-
tion to the virial overdensity predicted by the spherical col-
lapse model, thus using a different b for each cosmological
model. If we adopt this approach, taking the virial overden-
sities from Eke et al. (1996), then the discrepancy of the
scaled mass functions reverses sign and rises in amplitude to
a maximum�20%. We conclude that the effect of a pure �m

change is described by the simple scaling of halo masses to
an accuracy �10% for halos defined at fixed overdensity,
that the discrepancies reflect the expected cosmology
dependence of the characteristic virial overdensity, but that
the magnitude of the cosmology correction predicted by the
spherical collapse model is too large. Jenkins et al. (2001)
also find better agreement among halo mass functions of
different cosmological models for halos defined at constant
overdensity rather than overdensities scaled according to

the spherical collapse model. Henceforth we will use the
fixed linking length b ¼ 0:2 for all models, but our results
would not be substantially different if we used b ¼ 0:16 or
scaled bwith cosmology.

The mass correlation functions �mðrÞ for these four mod-
els are identical at large scales and gradually depart from
each other at small scales (r < 1 h�1 Mpc), where the higher
overdensities for lower �m boost �mðrÞ. We calculate the
two-point correlation function for halos of mass M by
counting pairs of halos with masses in the range (M=

ffiffiffi
2

p
,ffiffiffi

2
p

M). Figure 8 shows halo correlation functions �hðrÞ for
four values of M=M�. In each case, the four �m models are
indistinguishable from each other, as we would expect, since
M� scales with �m, and comparisons at fixed M=M� there-
fore remove any dependence on �m. The difference in �mðrÞ
arises from differences in spatial structure within the halos
themselves (which are difficult to discern in Fig. 6). We also
calculate the halo bias factor from the mass and halo corre-
lation functions (not shown). When plotted as a function of
M=M�, the bias factors of the four models are almost the
same, as expected, and they agree with Jing’s (1998) fitting
formula to a similar degree as seen in Figure 5. The halo cor-
relation function plummets at small r because two halo cen-
ters cannot be separated by less than the sum of their virial
radii. Halos for different �m have the same virial radius at a
given M=M� (in simulation terms, the scaling of M� with
�m comes from the particle mass, not a change in halo size),
so even this exclusion signature is the same in different
models.

Although mass functions and spatial clustering of halos
are nearly identical as a function ofM=M�, different values
of �m produce different velocity fields. Figure 9 shows
the mean pairwise radial (inward) velocity, v12 �
�ðv1 � v2Þ x ðr1 � r2Þ=jr1 � r2j, and the pairwise velocity dis-
persion, �12 � hv212i � hv12i2, at M ¼ M� and M ¼ 8M�.
Here vi and ri (i ¼ 1; 2) are the velocities and positions of a
halo pair, and the average is over all halo pairs with separa-
tions around r. Both v12ðrÞ and �12ðrÞ drop as�m drops. The
mean pairwise radial velocity v12ðrÞ increases for massive
halos and increases much faster for pairs with small separa-
tions, a sign of the nonlinear infall velocities induced by
high-mass halos. The velocity dispersion �12ðrÞ continues
rising out to large separations, and its amplitude at large
scales seems to be nearly independent of halo mass. Linear
perturbation theory predicts a relation between the peculiar
velocity and matter density fields,

vðxÞ / f ð�mÞ
Z

�ðxÞ ðx
0 � xÞ

jx0 � xj3
d3x0 ; ð4Þ

where �ðxÞ is the mass density contrast and f ð�mÞ � �0:6
m

(see, e.g., Peebles 1993). In the four cosmological models
considered here, the mass density contrasts �ðxÞ should be
the same, so linear velocity fields simply scale with �0:6

m . The
dotted curves in Figure 9 show the effect of dividing v12ðrÞ
and �12ðrÞ by �0:6

m ; the agreement of these curves with each
other and with the �m ¼ 1 curve demonstrates that the
impact of a pure �m change on halo peculiar velocities is
well described by the linear theory scaling even on nonlinear
scales.

Figure 6 suggests that the agreement of appropriately
scaled halo mass functions, correlation functions, and pair-
wise velocity statistics should hold at other epochs for which
the linear growth factors are equal. Although we do not

Fig. 5.—Halo bias factor as a function ofM=M� in the scale-free simula-
tions. Points show b2 at the four evolutionary stages when M� ¼ 50, 100,
200, and 400 particles. The solid line is calculated using Jing’s (1998) for-
mula.
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Fig. 6.—Insensitivity of darkmatter clustering to the values of�m and��. The top andmiddle panels show slices of particle distributions at z ¼ 0 from sim-
ulations that have identical linear theory PðkÞ and Fourier phases but different combinations of �m and ��, as indicated. The two bottom panels are slices for
models (1.0, 0.0) and (0.2, 0.8) at redshifts corresponding to a linear growth factor of 0.5. All slices have the size of 100� 100� 10 h�1 Mpc3. All simulations
were performed with GADGET using 1003 particles in a ð100 h�1 MpcÞ3 volume and a force resolution of � ¼ 0:3 h�1 Mpc.
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Fig. 8.—Influence of �m on the halo correlation function, for halos in mass ranges centered on M�=2, M�, 4M�, and 8M� as indicated. Curves in each
panel, nearly superposed, show �hðrÞ for the four indicated combinations of ð�m; ��Þ. To preserve visual clarity, we plot error bars only on the central (0.3,
0.7) model, but error bars for other models have similar magnitude. In each panel, open circles show themass correlation function of the central model.

Fig. 7.—Influence of�m on the halo mass function. The left panel shows cumulative halo mass functions from simulations with four different combinations
of ð�m; ��Þ as indicated. A second curve for each low-�m model shows the result of dividing halo masses by �m before computing N(>M). These scaled
curves are almost perfectly superposed on the solid curve representing the �m ¼ 1:0 model, demonstrating that a change to �m alone simply shifts the mass
scale of the halo mass function. The right panel allows closer inspection of this result, suppressing dynamic range by dividing each mass function by the ana-
lytic fitting formula of Jenkins et al. (2001) computed for the parameters of the central model ð�m ¼ 0:3; �� ¼ 0:7Þ.
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show the results here, we have verified explicitly that the
matching of scaled statistical measures in Figures 7, 8, and 9
holds equally well at the redshifts when the four models
have growth factors of 0.5 (z ¼ 1:0, 1.36, 1.50, and 1.74 for
�m ¼ 1:0; 0.4, 0.3, and 0.2). Thus, for models with the same
PðkÞ shape and the same �8 at z ¼ 0, the influence of�m and
�� on the evolutionary history of the halo population is
entirely encoded in the linear growth factor.

3.2. Cluster-normalizedModels with Fixed PðkÞ Shape
Changing �m on its own preserves the shape of the halo

mass function but shifts the mass scale in proportion to �m.
This scaling implies that the threshold volume for collapse is
independent of �m, given the same power spectrum. If we
require that the four cosmological models that differ in �m

have halo mass functions that match in amplitude at some
physical mass scale (rather than M=M�), we need to adjust
the power spectrum in a way that builds more massive halos
in low-�m models and fewer massive halos in high-�m mod-
els. In other words, we need a larger threshold volume for

collapse in a low-�m model so that its nonlinear mass M�
increases. Therefore, if the shape of the power spectrum is
kept unchanged, a higher �8 is necessary in a lower �m

model in order to compensate for the lower mean mass
density.

Putting this idea in quantitative form, White, Efstathiou,
& Frenk (1993) argued that the observed abundances of
massive clusters of galaxies impose the constraint
�8 � 0:57��0:56

m , with little dependence on the assumed
shape of PðkÞ. Many authors have revisited, refined, and
recalibrated this ‘‘ cluster normalization ’’ constraint (see
Pierpaoli, Scott, & White 2001 and references therein). One
widely used formulation is that of Eke et al. (1996), who
found �8 ¼ ð0:52� 0:04Þ��0:52þ0:13�m

m for a spatially flat
universe. Inspired by these results, we now consider a
sequence of cluster normalized models in which we keep the
shape of PðkÞ fixed but scale the amplitude as
�8 ¼ 0:9ð�m=0:3Þ�0:5.

Figure 10 shows cumulative halo mass functions for these
cluster normalized models. Mass functions of models with
�m ¼ 0:2, 0.3, and 0.4 match in amplitude at a cluster scale

Fig. 9.—Influence of �m on the mean pairwise velocity (top) and the pairwise velocity dispersion (bottom) of halos with massM � M� (left) andM � 8M�
(right). Error bars are plotted only for the central model; they increase with �m and are about twice as large for �m ¼ 1 as for �m ¼ 0:2. Dotted curves are
obtained by dividing the velocity by �0:6

m ; their agreement with the �m ¼ 1 curve demonstrates that the �m influence is captured almost entirely by the linear
theory velocity scaling.
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(M � 5� 1014 h�1 M�). The mass function of the �m ¼ 1
model crosses the others at a somewhat lower mass scale,
M � 2� 1014 h�1 M�. The discrepancy in matched mass
scale just shows that the �8 / ��0:5

m scaling does not hold all
the way to �m ¼ 1, and the Eke et al. (1996) formula indeed
implies that we should adopt a somewhat higher �8 for
�m ¼ 1. However, the crucial result for our purposes is that
the mass functions of these cluster normalized models have
systematically different shapes, and there is no value of �8

we could choose that would make the �m ¼ 1 model match
the others at more than a single mass scale. Over the smaller
range �m ¼ 0:2 0:4, the cluster normalization condition
keeps the halo mass functions reasonably well aligned over
about a decade in mass, but by M � 1013 h�1 M� the halo
space densities of the �m ¼ 0:2 and 0.4 models differ from
those of the central model by�30%, and from each other by
nearly a factor of 2.

The reason that cluster normalization does not preserve
the shape of the halo mass function is that raising �8

increasesM� but simultaneously drives down the space den-
sity of M� clusters by increasing the scale of nonlinearity.
For models with the same PðkÞ shape and the same value of
M�, the space density of halos at fixed M=M� is propor-
tional to �m (see eq. [7] below). The mass functions of clus-
ter normalized models with different �m must therefore
cross at different values of M=M�, and because the shapes
remain the same as a function of M=M�, they cannot stay
aligned as a function ofM.

In these cluster normalized models, the amplitude of
�mðrÞ increases as �m decreases, as shown in the upper left
panel of Figure 11. At large scales, where the mass density
field is still linear, �mðrÞ is just proportional to the amplitude
of its Fourier transform, the linear power spectrum, and
hence to �2

8. The roughly constant logarithmic offset in Fig-
ure 11 shows that this multiplicative scaling holds approxi-
mately even into the strongly nonlinear regime. However,
the remaining panels of Figure 11 show that the halo corre-
lation functions are very similar at a fixed physical mass.
Qualitatively, this similarity makes sense, since a given mass
scale corresponds to a higher value of M=M� when �m is
higher, and the correspondingly higher halo bias tends to

compensate for the lower mass clustering amplitude. How-
ever, it is impressive just how well this cancellation between
mass clustering and halo bias works quantitatively. The
halo exclusion signature does shift to a larger scale for lower
�m because of the larger virial radii needed to compensate
for the lower mass density.

Figure 12 shows that the mean pairwise velocity and pair-
wise dispersion increase with �m in this cluster normalized
sequence, but the dependence is weak, especially at large
separations. As in Figure 9, more massive halos have higher
pairwise velocities, especially at small separations. The weak
dependence on �m at large scales can be understood with
the help of equation (4). In linear theory, velocity is propor-
tional to f ð�mÞ�8, which, when combined with the cluster
normalization condition, reduces to approximately �0:1

m .
Nonlinear evolution at small separations amplifies the dif-
ference between models, but only slightly.

3.3. MatchingMass Functions

By varying the amplitude of the power spectrum with �m,
we can match the amplitudes of the cumulative halo mass
functions at a given mass scale. However, this combination
of parameter changes does not guarantee a match between
the shapes of the mass functions at that mass scale. In order
to match both the amplitude and the shape of the halo mass
functions, we must adjust the relative amplitudes of fluctua-
tions at different scales, or, in other words, the shape of
PðkÞ. We therefore need to determine the appropriate com-
binations of parameters (�8 and parameters related to the
shape of the power spectrum) for each �m model so that all
models produce halo mass functions that agree in both
amplitude and shape.

3.3.1. Analytic Solution to Parameter Combinations

Instead of searching the parameter space to obtain the
right power spectrum combinations, we make use of the
analytic form of the halo mass function. There are three
commonly used analytic formulae for halo mass functions.
Press & Schechter (1974) developed the first theoretical
framework based on the spherical collapse model (also see

Fig. 10.—Halo mass functions for cluster normalized models, in which the shape of PðkÞ is fixed but the amplitude is scaled by �8 / ��0:5
m . The left panel

shows halo mass functions from simulations with four different ð�m; ��Þ, as indicated. In the right panel, these mass functions are divided by the Jenkins et al.
(2001) fitting formula for the central (0.3, 0.7) model.
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Bond et al. 1991) and provided the first theoretical formula
(PS formula) for the halo mass function, which is still widely
used. The PS formula is known to underestimate the halo
abundance in the high-mass tail (see Jenkins et al. 2001 and
references therein). Sheth & Tormen (1999) give an analytic
formula (ST formula) obtained by fitting to the results ofN-
body simulations, which turns out to be consistent with the
ellipsoidal collapse model (Sheth et al. 2001). On the basis
of more simulation results, Jenkins et al. (2001) provide the
most accurate fitting formula for halo mass functions. How-
ever, this formula includes an absolute value of a function,
which makes it difficult to use for our present purpose:
obtaining an analytic solution of parameter combinations
that lead to a good match in halo mass functions. We there-
fore use the slightly less accurate ST formula.

In the notation of Jenkins et al. (2001), the mass function
is defined in terms of the dimensionless function

f ð�Þ � M

�0

dnðMÞ
d ln��1

; ð5Þ

and the ST formula for the halo mass function can be

expressed as (Sheth & Tormen 1999)

f ð�Þ ¼ A

ffiffiffiffiffi
2a

�

r
1þ ða�2Þ�p� �

exp
�a�2

2

� �
; � ¼ �c

�ðMÞ ; ð6Þ

where nðMÞ is the abundance of halos with mass less than
M, �c � 1:69 is the threshold density contrast for collapse,
�ðMÞ is the rms fluctuation of the mass density at a mass
scale M, �0 is the mean density of the current universe,
A ¼ 0:3222, a ¼ 0:707, and p ¼ 0:3. The mass function can
be written as

dn

d lnM
¼ dn

d ln��1

d ln��1

d lnM
¼ �

�0
M

f ð�Þ ; ð7Þ

where � ¼ d ln��1=d lnM ¼ ð3þ neffÞ=6 characterizes the
local index neff of the power spectrum and is determined by
the shape of the power spectrum. The slope of the mass
function is

d

d lnM

dn

d lnM

� �
¼ dn

d lnM
�
d ln f

d ln �
� 1þ d ln�

d lnM

� �
: ð8Þ

Fig. 11.—Mass and halo correlation functions for cluster normalizedmodels. The upper left panel shows the mass correlation function. The remaining three
panels show correlation functions of halos in mass ranges centered onMc, 4Mc, and 8Mc, whereMc ¼ 1:03� 1013 h�1 M� corresponds toM� of the central
(0.3, 0.7) model. Open circles show themass correlation function for the central model. Error bars are plotted for the central model and have similar magnitude
for other models.
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We use a power law to locally approximate the power spec-
trum (so that the last term on the right-hand side of eq. [8]
reduces to zero).

We require that the halo mass function of a given cosmo-
logical model match as closely as possible that of the central
model at some mass scale. In other words, at this mass scale,
both the amplitudes (eq. [7]) and the slopes (eq. [8]) of the
two halo mass functions should be equal. We thus solve
these two equations for two unknowns (�, �) for each cos-
mological model. All the information contained in the
power spectrum is fully embedded in (�, �). Therefore, by
solving for these two parameters at a given mass scale, we
can also determine the normalization �8 and shape of the
power spectrum.

The power spectrum can be expressed as PðkÞ /
knsT2ðk; �Þ, where ns is the spectral index of the inflation-
ary power spectrum and Tðk; �Þ is the transfer function
with shape parameter C. A change in either ns or C leads to a
change in the shape of the power spectrum. We first keep C
fixed and only tilt PðkÞ. Since � ¼ ð3þ neffÞ=6 and neff is
simply the sum of ns and an index given by the transfer func-
tion, it is straightforward to obtain the change in ns with
respect to that of the central model: Dns ¼ 6D�. Once the

shape of PðkÞ is determined, the normalization �8 can be
obtained from �. Assuming that mass functions are matched
against that of the central model at a cluster mass scale
M ¼ 5� 1014 h�1 M�, we calculate ns and �8 as a function
of �m. The left panel of Figure 13 shows that both ns and �8

increase sharply toward low �m and drop slowly toward
high �m. In order to match with the halo mass function of
the central model, we need ns ¼ 1:33, 0.82, 0.42 and
�8 ¼ 1:16, 0.78, 0.55 for models with �m ¼ 0:2, 0.4, and 1.0,
respectively.

Alternatively, we can keep the spectral index ns fixed
(ns ¼ 1 in our calculation) and change the shape parameter
C. The right panel of Figure 13 shows C as a function of �m

when halo mass functions are matched at M ¼ 5�
1014 h�1 M�. The shape parameter C also has a sharp
increase toward low �m and a slow drop toward high �m.
For models with �m ¼ 0:2, 0.4, and 1.0, solutions to C are
0.35, 0.14, and 0.06, respectively. In this case, the normaliza-
tion �8 of each model is almost identical to that of the tilted
model, which indicates that the two ways of changing the
shape of the power spectrum are equivalent at this mass
scale. Although pure-ns and pure-C changes alter the power
spectrum in different ways, they produce power spectra (and

Fig. 12.—Halo velocity statistics for cluster normalized models. Top panels show the mean pairwise radial velocities for halos with M � Mc (left) and
M � 8Mc (right), where Mc ¼ 1:03� 1013 h�1 M� corresponds to M� of the central model. Bottom panels show pairwise radial velocity dispersions. Error
bars are plotted for the central model and have similar magnitude for other models.
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thus mass functions) that match closely over a fairly large
dynamic range, covering most of the regime in which � is on
the order of unity. The near degeneracy can be broken by
examining the low-mass end of the halo mass functions.
More generally, we could allow both ns and C to change. In
that case, for each value of �m, there would be a one-dimen-
sional locus in the ns-� plane along which models would sat-
isfy the requirement of matching the central model’s halo
mass function at some mass scale. However, we expect that
results from this more general case would be similar to those
of the two simple cases.

3.3.2. Simulation Results

Using the power spectrum parameters given by the above
analytic solutions, we run simulations and make compari-
sons with the central model. Here we only show results for

different tilt models, since models with different values of C
give similar results.

Figure 14 shows cumulative halo mass functions for the
four cosmological models. The mass functions agree with
each other quite well over a large mass range (from�1013 to
�1015 h�1 M�), with only �10% relative differences. We do
not expect the cumulative mass functions to match exactly,
in amplitude and slope at M ¼ 5� 1014 h�1 M�, for three
reasons. First, the ST formula is not a perfect fit to the halo
mass functions in the simulations. Second, we locally
approximate the power spectrum as a power law in order to
obtain analytic solutions for the power spectrum parame-
ters. Third, we require a match for differential mass func-
tions instead of cumulative mass functions. Nevertheless,
the cumulative mass functions trace each other remarkably
well. The nonlinear mass scales are quite different for these
four models: M� ¼ 3:10� 1013, 1:03� 1013, 3:66� 1012,

Fig. 13.—Changes in power spectrum parameters required to match the amplitude and slope of the halo mass function atM ¼ 5� 1014 h�1 M�. The left
panel shows the values of �8 (dotted line) and ns (solid line) required to match the mass function of a model with �m ¼ 0:3, �8 ¼ 0:9, ns ¼ 1:0, and � ¼ 0:2,
when C is fixed at 0.2. The values of �8 we adopt for cluster-normalized models with fixed PðkÞ shape are plotted as a dashed line, for comparison. The right
panel shows the required value of C if ns is held fixed at 1.0; the corresponding values of �8 are nearly identical to those in the left panel. Curves are calculated
using the Sheth-Tormen (1999) analytic mass function, as discussed in the text.

Fig. 14.—Halo mass functions for models that have been matched at M ¼ 5� 1014 h�1 M� by changing ns and �8. As expected, the change in ns yields
much better agreement of the mass functions than found for cluster normalized models with no change to the shape of PðkÞ (see Fig. 10).
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and 7:50� 108 h�1 M�, for �m ¼ 0:2, 0.3, 0.4, and 1.0,
respectively.

Figure 15 shows two-point correlation functions of the
mass and halos. Mass is more strongly clustered in low �m

models, having a correlation function that is steeper and
higher in amplitude than in higher�m models. However, the
clustering of halos exhibits the opposite trend. Halos in the
�m ¼ 1 model are highly biased with respect to those of
other models, as one might guess from the low nonlinear
mass of this model, and this bias more than compensates for
the weaker mass clustering. Conversely, at the mass scale
M ¼ 1:03� 1013 h�1 M�, shown in the upper right panel of
Figure 15, halos in the �m ¼ 0:2 model are actually anti-
biased with respect to the mass. Figure 11 shows that for
cluster normalized models with fixed PðkÞ shape, the effects
of bias almost exactly cancel the change in �8, leaving �hðrÞ
nearly independent of �m. Since our mass function match-
ing approach imposes a redder PðkÞ shape (lower ns or C)
for higher �m, and increased large-scale power amplifies the
importance of bias, it is not surprising that bias overcompen-
sates mass clustering changes in these models, leaving �hðrÞ
steadily dependent on�m.

Figure 16 shows the mean pairwise radial velocity and
pairwise velocity dispersion for the four cosmological mod-
els. As in the case of cluster normalized models, models with
higher �m have larger mean pairwise velocities and velocity
dispersions than lower�m models. The dependence on�m is
stronger and more systematic than that in Figure 12, again a
sign of the redder power spectrum of higher�m models.

4. SUMMARY AND DISCUSSION

We have examined how changes to the matter density
parameter �m and the shape and amplitude of the linear
power spectrum PðkÞ affect the halo mass function, the two-
point halo correlation function, and the first and second
moments of the halo pairwise velocity distribution. A
change in �m, at fixed PðkÞ, simply shifts the halo mass
scale. Therefore, if halo masses are scaled in proportion to
�m, halo populations of different �m models have identical
mass functions and clustering properties. However, mean
pairwise velocities and pairwise velocity dispersions, which
scale as �0:6

m on large scales (and fairly far into the nonlinear
regime), break this degeneracy. A change of the power spec-

Fig. 15.—Mass and halo correlation functions for the four models of Fig. 14, in the same format as Fig. 11. Halo mass ranges are centered onMc, 4Mc, and
8Mc, where Mc ¼ 1:03� 1013 h�1 M� corresponds to M� of the central model. Open circles in these three panels show the mass correlation function of this
model. Error bars are plotted for the central model and have similar magnitude for other models. Changing ns to match the shapes of the halo mass functions
leads to substantial differences in halo clustering, in contrast to Fig. 11.
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trum amplitude (�8) along with �m, maintaining a cluster
normalization condition �8 / ��0:5

m , produces halo popula-
tions that have nearly identical spatial clustering at a fixed
physical mass scale and systematic but small differences in
the mean pairwise velocities and pairwise velocity disper-
sions. However, while these cluster-normalized models have
the same halo space density at M � several� 1014 M�, the
shapes of their mass functions are systematically different. If
we further allow the shape of the power spectrum to change
(either by tilting it or by changing its shape parameter C),
we can produce halo populations whose mass functions
match very well in both amplitude and shape, over a large
mass range. However, the changes to the power spectrum
shape cause correlation functions, mean pairwise velocities,
and velocity dispersions for halos in the same mass range to
differ. We conclude that the halo populations produced by
distinct cosmological models are not degenerate. If they are
indistinguishable by one statistic, they can be told apart
using another statistic.

Our results imply that a perfect knowledge of the halo
population and its properties would allow us to pin down
the underlying cosmological parameters—specifically, the
value of �m and the shape and amplitude of PðkÞ—even

before bringing in constraints from other cosmological
measurements. However, a galaxy redshift survey detects
galaxies rather than halos. Could changes to the halo occu-
pation distribution (HOD) mask the differences in the halo
populations of different cosmological models? Models that
differ only in �m lead to the same halo mass function and
halo clustering in terms of M=M�, but with M� / �m.
Their halos could thus be populated the same way as a func-
tion of M=M� to produce indistinguishable galaxy spatial
clustering. However, any dynamically sensitive statistics—
virial masses of clusters and groups, pairwise velocity dis-
persions, the parameter combination �0:6

m =b inferred from
redshift-space distortions, the galaxy-mass correlation func-
tion from galaxy-galaxy lensing—would distinguish models
with different values of �m immediately. Velocity bias
within halos could mask some of these changes, but not all
of them (Berlind & Weinberg 2002). Cluster-normalized
models with different �m and the same PðkÞ shape have dif-
ferent halo mass functions, and they would therefore
require a different PðNjMÞ in order to keep the galaxy den-
sity fixed. This change would likely cause differences in the
galaxy clustering even though the halo clustering is similar,
since galaxy clustering is highly sensitive to PðNjMÞ (Ber-

Fig. 16.—Halo velocity statistics for the four models shown in Figs. 14 and 15, in the same format as Fig. 12. Error bars are plotted for the central model;
they increase with�m and are about twice as large for�m ¼ 1 as for�m ¼ 0:2. Changing ns to match the halo mass function shapes leads to significant system-
atic differences in the mean pairwise velocities and pairwise velocity dispersions as a function of�m, larger than those in Fig. 12.
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lind &Weinberg 2002 and references therein). Changing the
shape of PðkÞ by the amount required to match mass func-
tion shapes makes substantial differences to the halo cluster-
ing and velocities, which seem unlikely to be masked by a
change in the HOD.

These speculations suggest that distinct cosmological
models, which produce nondegenerate halo populations,
cannot have galaxy populations that are indistinguishable
in every spatial and velocity statistic, even if one allows com-
plete freedom in the way that galaxies occupy these halos.
We reserve a detailed investigation of this issue for future
work. If our optimistic speculation holds true, then high-

precision measurements of galaxy clustering and galaxy-
galaxy lensing should impose strong constraints on cosmo-
logical models without reliance on a priori models of galaxy
bias.
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