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ABSTRACT

We present a detailed nonspherical modeling of dark matter halos on the basis of a combined analysis of
high-resolution halo simulations (12 halos withN � 106 particles within their virial radius) and large cosmo-
logical simulations (five realizations with N ¼ 5123 particles in a 100 h�1 Mpc box size). The density profiles
of those simulated halos are well approximated by a sequence of the concentric triaxial distribution with their
axis directions being fairly aligned. We characterize the triaxial model quantitatively by generalizing the uni-
versal density profile, that has previously been discussed only in the framework of the spherical model. We
obtain a series of practically useful fitting formulae in applying the triaxial model: the mass and redshift
dependence of the axis ratio, the mean of the concentration parameter, and the probability distribution func-
tions of the axis ratio and the concentration parameter. These accurate fitting formulae form a complete
description of the triaxial density profiles of halos in cold dark matter models. Our current description of the
dark halos will be particularly useful in predicting a variety of nonsphericity effects, to a reasonably reliable
degree, including the weak and strong lens statistics, the orbital evolution of galactic satellites and triaxiality
of galactic halos, and the nonlinear clustering of dark matter. In addition, this provides a useful framework
for the nonspherical modeling of the intracluster gas, which is crucial in discussing the gas and temperature
profiles of X-ray clusters and the Hubble constant estimated via the Sunyaev-Zeldovich effect.

Subject headings: cosmology: theory — dark matter — galaxies: clusters: general — galaxies: halos —
methods: numerical

On-line material: color figures

1. INTRODUCTION

The density profiles of dark matter halos have attracted a
lot of attention recently since Navarro, Frenk, & White
(1996, 1997, hereafter NFW) discovered the unexpected
scaling behavior in their simulated halos. Subsequent inde-
pendent higher resolution simulations (e.g., Fukushige &
Makino 1997, 2001; Moore et al. 1998; Jing 2000; Jing &
Suto 2000) confirmed the validity of the NFW modeling, in
particular the presence of the central cusp, although the
inner slope of the cusp seems somewhat steeper than they
originally claimed. Those previous models, however, were
based on the spherical average of the density profiles.
Actually, it is also surprising that the fairly accurate scaling
relation applies after the spherical average despite the fact
that a departure from the spherical symmetry is quite visible
in almost all simulated halos (e.g., Fig. 1 of Jing & Suto
2000).

A more realistic modeling of dark matter halos beyond
the spherical approximation is important in understanding
various observed properties of galaxy clusters and nonlinear
clustering (especially the high-order clustering statistics) of
dark matter in general. In particular, the nonsphericity of
dark halos is supposed to play a central role in the X-ray
morphologies of clusters (Jing et al. 1995; Buote & Xu
1997), in the cosmological parameter determination via the
Sunyaev-Zeldovich effect (Birkinshaw, Hughes, & Arnaud
1991; Inagaki, Suginohara, & Suto 1995; Yoshikawa, Itoh,

& Suto 1998), and in the prediction of the cluster weak lens-
ing and the gravitational arc statistics (Bartelmann et al.
1998; Meneghetti et al. 2000, 2001; Molikawa & Hattori
2001; Oguri, Taruya, & Suto 2001; Keeton &Madau 2001).
Nevertheless, useful analytical modeling of the nonspheric-
ity is almost impossible, and numerical simulations are the
only practical means of providing statistical information.

While the nonsphericity of dark matter halos is a poorly
studied topic, some seminal studies do exist that attempt to
detect and characterize the nonspherical signature (e.g.,
Barnes & Efstathiou 1987; Warren et al. 1992; Dubinski
1994; Jing et al. 1995; Thomas et al. 1998; Yoshida et al.
2000; Meneghetti et al. 2001; Bullock 2001). Nevertheless,
there is no systematic and statistical study to model and
characterize the density profiles of simulated halos. This is
exactly what we will present in the rest of the paper. In par-
ticular, much higher mass and spatial resolutions of our cur-
rent N-body simulations enable us to characterize the
statistics of the halo nonsphericity with an unprecedented
precision.

This paper is organized as follows: two different sets ofN-
body simulations that we extensively analyze here are
described in x 2. In x 3, we discuss how to define the isoden-
sity surfaces of dark matter halos from simulation data and
then argue that they are well approximated by a sequence of
the concentric triaxial model. Section 4 characterizes the
statistical distribution of the triaxial model parameters.
Finally, x 5 is devoted to summary and discussion.
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2. SIMULATIONS FOR DARK MATTER HALOS

We use two different simulations for the current purpose.
The first is our new set of cosmological N-body simulations
withN ¼ 5123 particles in a 100 h�1 Mpc box, and the other
is a set of high-resolution halo simulation runs. We describe
the two simulations in the next subsections in order.

2.1. Cosmological Simulations

The first set of simulations is our new runs withN ¼ 5123

particles in a 100 h�1 Mpc box. These runs were carried out
in 2001 with our particle-particle-particle-mesh (P3M) code
on the vector-parallel machine VPP5000 at the National
Astronomical Observatory of Japan. The code adopts the
standard P3M algorithm (Hockney & Eastwood 1981;
Efstathiou et al. 1985), is vectorized (Jing & Suto 1998), and
has been recently parallelized. Amesh of 12003 grid points is
used for the particle-mesh (PM) force computation with the
optimized Green function (Hockney & Eastwood 1981).
The short-range force is compensated for the PM force cal-
culation at a separation less than � ¼ 2:7H, where H is the
mesh cell size (Efstathiou et al. 1985). The linked-list techni-
que has been used for computing the short-range particle-
particle (PP) interaction with 4483 linked-list cells. The com-
puter has a total of 64 processors, and we use NCPU ¼ 8–32
processors, upon their availability, to run our code. The
most important advantage of the machine for our work is
that each processor has a big memory of 16 Gbyte, sufficient
for storing all the information of the code. The PM compu-
tation can be easily parallelized, and it is crucial to parallel-
ize the PP computation that dominates the CPU
computation time for a strongly clustered simulation such
as our present case. We sliced the simulation box in one
direction (e.g., z-axis) with the thickness chosen to be the
cell size of the linked-list cell. Those 448 slices in total are
sorted in descending order according to the number of par-
ticles they contain. We distribute the PP force computation
among the different processors in a simple way: the nth pro-
cessor (n ¼ 1 toNCPU) is assigned the force computation for
those slices with indices of jNCPU þ n, where j runs from 0 to
jmax � 448=NCPU � 1. The PP interaction of the particles in
the same slice and in the adjacent lower slice is considered,
so the interaction for each pair of particles is computed only
once. With this computation partition, we find that the
load-balance problem, which becomes progressively serious
for P3M simulations in the later strongly clustered regime,
can be overcome to a satisfactory degree; even at the final
stage of our simulation runs, the CPU time for the PP part is
nearly inversely proportional to the number of processors
used. This implies that the code has achieved a good paralle-
lization efficiency.

We consider two representative cold dark matter (CDM)
models: a low-density flat cosmological model (LCDM)
with �0 ¼ 0:3 and �0 ¼ 0:7, and the Einstein–de Sitter

model with �0 ¼ 1 (SCDM). The primordial density fluctu-
ation is assumed to obey the Gaussian statistics, and the
power spectrum is given by the Harrison-Zeldovich type.
The linear transfer function for the dark matter power spec-
trum is taken from Bardeen et al. (1986). The shape and the
normalization of the linear power spectrum are specified by
the shape parameter, � ¼ �0 h, and �8, respectively, where
h is the Hubble constant in 100 km s�1 Mpc�1 and �8 is the
rms linear density fluctuation within a sphere of radius
8 h�1 Mpc. Table 1 summarizes the physical and simulation
parameters used for these simulations. We adopted �8 ¼ 0:9
for LCDM and 0.55 for SCDM, both of which are slightly
smaller than those in our previous simulations (Jing & Suto
1998) but seem more consistent with recent observations
(e.g., Seljak 2002; Lahav et al. 2002). With the adopted val-
ues for those physical parameters, the LCDM model satis-
fies almost all current observations while the SCDM model
is known to have many difficulties. Therefore, we mainly
analyze the LCDM model for our purpose and sometimes
use the SCDM simulation just for comparison.

The box size of our cosmological simulations
is 100 h�1 Mpc, so the particle mass is mp ¼ 6:2� 108

and 2:1� 109 h�1 M�, respectively, for the LCDM and
SCDM simulations (Table 1). The force resolution is
� ¼ 20 h�1 kpc for the linear density softening form (Efsta-
thiou et al. 1985; this roughly corresponds to �=3 for the
Plummer-type softening length). The simulations are
evolved by 1200 time steps from the initial redshift zi ¼ 72.
Two realizations are computed for each model. One addi-
tional LCDM simulation (LCDMa) uses a smaller force
softening � ¼ 10 h�1 kpc and is evolved with 5000 time
steps in order to check the possible effect of the force soften-
ing on the final dark matter distribution especially at small
scales. As far as the shape of the virialized halos is con-
cerned, we made sure that both simulations (LCDM and
LCDMa) yield almost identical results. In what follows,
therefore, we do not distinguish between LCDM and
LCDMa and simply refer to them as LCDM.

2.2. Identification of Dark Halos in the
Cosmological Simulations

The friends-of-friends (FOF) method is a widely used
algorithm to identify dark matter clumps in N-body data.
The mean overdensity within the clumps is approximately
proportional to b�3, where b is the bonding length. It has
been shown that the FOF clumps with b ¼ 0:2�dd, where
�dd � L=N1=3 is the mean separation of particles, approxi-
mately correspond to the virialized dark matter halos of
mean overdensity 180 (e.g., Davis et al. 1985; Lacey & Cole
1994). On the other hand, a large fraction of the FOF
clumps identified with b ¼ 0:2�dd are known to form a system
of multiple virialized halos that are bridged via thin fila-
ments (e.g., Suto, Cen, & Ostriker 1992; Suginohara & Suto

TABLE 1

Model Parameters for Cosmological Simulations withN ¼ 5123 in a 100 h�1
Mpc Box

Model �0 �0 �8 C

mp

(h�1M�)
�

(h�1 kpc) Time Steps Realizations

LCDM......... 0.3 0.7 0.9 0.2 6.2 � 108 20 1200 2

SCDM......... 1.0 0.0 0.55 0.5 2.1 � 109 20 1200 2

LCDMa....... 0.3 0.7 0.9 0.2 6.2 � 108 10 5000 1
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1992; Jing & Fang 1994, hereafter JF94). JF94 proposed to
compute the overdensity around the local potential minima
within each FOF clump to separate the virialized halos.
While this can effectively achieve the goal, it is time consum-
ing to find the local potential minima (because there may be
multiple minima within a single FOF clump).

Here we propose to use an alternative method that works
faster. The thin bridges connecting the halos identified with
b ¼ 0:2�dd can be effectively eliminated by reducing b. By trial
and test, we found that the thin bridges almost disappear if
we adopt b ¼ 0:1�dd. With this recipe, however, the resulting
FOF clumps have a smaller size and a higher overdensity
than those defined according to the spherical collapse
model. Therefore, our scheme should be interpreted to iden-
tify first the central parts or the substructures of the entire
halo. Next, for each FOF clump of b ¼ 0:1�dd, we compute
the gravitational potential of every member particle. The
position of the particle of the minimum potential is defined
as the center of the hosting halo. Then the spherical over-
density is computed around the halo center with increasing
the radius, and the virial radius rvir is found when the over-
density reaches the value predicted in the spherical collapse
model. Here we use the fitting formula of Bryan & Norman
(1998) for the spatially flat [�ðzÞ þ �ðzÞ ¼ 1] models:

DvirðzÞ �
3Mvir

4�r3vir�crit
¼ 18�2 þ 82 �ðzÞ � 1½ � � 39 �ðzÞ � 1½ �2 ;

ð1Þ

where �crit is the critical density of the universe. Since our
choice b ¼ 0:1�dd preferentially selects smaller clumps than
those predicted in the spherical model, some fraction of such
clumps turn out to be substructures within the virial radius
of a larger halo defined in the above equation. If the virial
spheres of more than one halo overlap, we simply retain the
most massive clump and throw away the others from the
final halo list.

2.3. High-Resolution Halo Simulations

Our cosmological simulations that we described above
have a sufficient spatial resolution to discuss the statistics
concerning the halo shapes and the concentration of the
density profile (xx 4 and 5) as was conducted by Jing (2000)
in the framework of the spherical approximation. Actually,
except for the delicate problem of determining the slope of
the central cusp at r5 0:01rvir, a larger simulation volume is
more important than higher resolution for the current pur-
pose. Nevertheless, we also use our higher resolution halo
simulations (Jing & Suto 2000; hereafter simply referred to
as halo simulations) to demonstrate that our triaxial model-
ing indeed provides a better description for halo profiles
than the conventional spherical modeling (x 3).

These halos are simulated with about a million particles
within their virial radii (see Table 1 of Jing & Suto 2000).
For mass scales of clusters, groups, and galaxies, there are
four halos, respectively, and thus 12 halos in total. They are
simulated in the LCDM model except the fact that the fluc-
tuation amplitude, �8 ¼ 1 (Kitayama & Suto 1997), is a bit
larger than our current choice �8 ¼ 0:9. Another advantage
of the halo simulations is that those halos are simulated with
almost an equal number of particles independently of the
mass of the halos, and thus the resolution relative to the
virial radius and the halo mass is kept constant. This is not

the case for the cosmological simulations in which massive
halos would have a better resolution in terms of the number
of particles involved. Thus, the possible artificial effect
due to the variable resolution is suppressed in the halo
simulations.

After Jing & Suto (2000) was published, we completed
runs of two additional halos with a galactic mass and with a
group mass. Those new halos are referred to as GX 5 and
GR5, respectively, according to our previous convention
(see Table 2). While we add these two, we also eliminate two
previous halos from the list of halos that we examine below:
GR2, which shows a clear bimodal structure, and GX 1,
which is seriously disrupted at z � 0:5 because of the tidal
force of a nearby massive object. This is because the major
purpose of analyzing the halo simulation catalogs is to
check the validity of the triaxial modeling for typical halos.
The fraction of those atypical halos is properly taken into
account in the statistics drawn from the cosmological simu-
lations. Thus, the above replacement does not bias our
conclusion.

3. MODELING THE NONSPHERICAL DENSITY
PROFILES OF DARK MATTER HALOS

In this section, we propose that a nonsphericity in the
density profiles of dark halos is well described by a triaxial
model on the basis of the detailed analysis of the halo simu-
lations. In fact, we demonstrate that the triaxial modeling
significantly improves the fit to the simulated profiles, at
least for relatively relaxed halos, compared to the conven-
tional spherical model. The statistical description including
the probability distribution functions for axis ratios and the
concentration parameters will be discussed in the next sec-
tion using the cosmological simulations.

3.1. Defining the Isodensity Surfaces inside Individual Halos

The shapes of dark halos have been previously studied by
many authors (e.g., Barnes & Efstathiou 1987; Warren et al.
1992; Jing et al. 1995; Thomas et al. 1998), and it is already
well known that they exhibit a significant amount of depar-
ture from spherical distribution. Those previous studies first
compute the inertial tensor for each halo and then compute
the distribution of the axial ratios and the correlation of the
direction of the principal axes. While this is a well-defined
method of characterizing the shape of halos in principle, we
do not employ it for two reasons.

First, this method assumes that we know in advancewhich
particles belong to each halo. In reality, this is not the case
since we usually attempt to determine the member particles
of a halo and its shape simultaneously. This is serious
because the inertia tensor is sensitive to the outer boundary

TABLE 2

Properties of the New Simulated Halos in the LCDMModel

with �0 ¼ 0:3, �0 ¼ 0:7, h ¼ 0:7, �8 ¼ 1, and � ¼ 0:21

IdentificationNumber

Ma

(h�1M�) Np
b

rvir
c

(h�1Mpc)

GX 5 ............................. 6.1 � 1012 945,864 0.373

GR 5 ............................. 5.5 � 1013 644,839 0.776

a Mass of the halo within its virial radius.
b Number of particles within its virial radius.
c The virial radius of the halo.
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of the halo where the membership of particles is also difficult
to define. Previous studies get around the problem by apply-
ing the procedure iteratively: first, all particles within a cer-
tain spherical radius from the center of the halo are included
to compute the inertial tensor and the resulting ellipsoidal
configuration. Next, those particles outside the ellipsoid are
thrown away from the member particles of the halo, and the
inertia tensor is recalculated. This procedure is repeated
until the solution converges. While this method seems to
work well in previous low-resolution N-body data, we were
not able to obtain a good convergence in the case of our
high-resolution halos. This is ascribed to the fact that our
high-resolution halos retain a significant amount of sub-
structures that have been artificially erased because of the
overmerging effect in previous lower resolution simulations.
The iteration procedure is not stable in the presence of sig-
nificant substructures especially at the boundary region of
halos, since the inertial tensor is quite sensitive to them.

Second, our main interest here is not simply to define the
overall shape of halos but to characterize the density profile.
Therefore, we would like to have a sequence of isodensity
surfaces with different overdensities. The ellipsoidal surface
obtained from the above procedure, even if it converges, is
not related to those isodensity surfaces and thus not so use-
ful after all for our purpose here.

With the above problems of the previous method in mind,
we propose another approach to find the isodensity surfa-
ces. This begins with the computation of a local density at
each particle’s position. We adopt the smoothing kernel
widely employed in the smoothed particle hydrodynamics
method (e.g., Hernquist &Katz 1989):

Wðr; hiÞ ¼
1

�h3i

1� 3

2

r

hi

� �2

þ 3

4

r

hi

� �3

ðr � hiÞ

1

4
2� r

hi

� �3

ðhi < r < 2hiÞ

0 otherwise ;

8>>>>>><
>>>>>>:

ð2Þ

where hi is the smoothing length for the ith particle. We use
32 nearest neighbor particles to compute the local density
�i, and hi is set to be one-half the radius of the sphere that
contains those 32 neighbors. Using �i, we construct the iso-
density surfaces corresponding to the five different thresh-
olds:

�
ðnÞ
s ¼ AðnÞ�crit ; ð3Þ

AðnÞ ¼ 100� 5n�1 ðn ¼ 1 � 5Þ : ð4Þ

In practice, we collect all particles satisfying 0:97�
ðnÞ
s <

�i < 1:03�
ðnÞ
s to define the nth isodensity surface. The typical

sizes (the mean radii) of those surfaces are 0.6, 0.4, 0.25,
0.12, and 0.06 times the virial radius of the halo, respec-
tively. Note that �

ðnÞ
s is the local density, and thus the mean

density of the halo inside the corresponding radius of �
ðnÞ
s is

generally much higher.
Actually, a straightforward application of equation (3)

results in many small distinct regions with the identical den-
sity threshold inside an individual halo. This is again due to
the presence of the strong substructures in the halo. Since
we are interested in the isodensity surfaces that represent the
overall density profile of the parent halo, we have to elimi-

nate those small regions corresponding to the substructures.
For this purpose, we again use the FOF technique but with
a different bonding length from that we used when identify-
ing the virialized halos. After some trial and error, we find
that an adaptive (i.e., dependent on each isodensity value)
bonding length of bn ¼ 3ð�ðnÞs =mpÞ�1=3 works well (cf. Suto
et al. 1992).

3.2. Triaxial Model Fits to the Isodensity Surfaces

Figure 1 plots typical examples of the projected particle
distributions within the isodensity surfaces for four different
halos (CL3, GR1, GR5, and GX 3) after particles in strong
substructures are eliminated as described above. Those
plots clearly suggest that the isodensity surfaces are typi-
cally approximated as triaxial ellipsoids. Thus, we per-
formed the following triaxial fit to the isodensity surfaces
with five different thresholds separately:

R2ð�sÞ ¼
X 2

a2ð�sÞ
þ Y 2

b2ð�sÞ
þ Z2

c2ð�sÞ
: ð5Þ

The origin of the coordinates is always set at the center of
mass of each surface, and the principal vectors a, b, and c
(a � b � c) are computed by diagonalizing the inertial ten-
sor of particles in the surface (Fig. 2). The projected views of
the corresponding fitted ellipsoids are shown in the bottom
panels of Figure 1, which imply that the ellipsoid fitting is a
good approximation (at least visually).

Figure 3 plots the dependence of the axis ratios, a=c and
b=c, on the isodensity threshold �s. Naturally, each halo
exhibits different behavior that may reflect the different
merging history and/or tidal force field. Nevertheless, sev-
eral systematic dependences are quite visible. The halos of
cluster mass generally have smaller axial ratios than those
of galactic mass, implying that the halos of the galactic mass
are rounder on average than those of cluster mass. This
mass dependence will be quantified with a large sample of
halos from the cosmological simulations in x 4.

On the other hand, we also note that the axial ratios
decrease with increasing density; the isodensity surfaces
become more elongated in the central region than in the
outer region. The mean (with the error bar of the mean) of
the axial ratios computed from the 12 halos are plotted in
the right panels of Figure 3 (symbols). The solid lines show
the single power-law fit for the mean axis ratios:

a

c
¼ 0:56

�s=�crit
2500

� ��0:052

ð6Þ

b

c
¼ 0:71

�s=�crit
2500

� ��0:040

: ð7Þ

Figure 4 shows the degree of alignment of the axis direc-
tions among isodensity surfaces at different densities (radii).
We define h11 as the angle between the major axis of the iso-
density surfaces and that of the Að3Þ ¼ 2500 isodensity sur-
face as shown in Figure 2. Similarly, h22 is defined with
respect to their middle axes. According to our definition,
cos �11 ¼ cos �22 ¼ 1 at �s=�crit ¼ Að3Þ ¼ 2500.

We find that the major axes align pretty well within a
halo; for about 70% of the halos cos �11 at different radii is
larger than 0.7. For about one-half of the sample, cos �11 is
larger than 0.9. In a few cases (three of 12 halos), however,
the alignment of the major axes is poor. When we check
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Fig. 1a Fig. 1b

Fig. 1c Fig. 1d

Fig. 1.—Examples of projected particle distribution in four halos: (a) CL3, (b) GR1, (c) GR5, and (d ) GX 3. The size of each box is 2rvir of each halo. For
each halo, particles in the isodensity shells with A � �s=�crit ¼ 100, 2500, and 6:25� 104 are plotted on the (x, y)-, (y, z)-, and (z, x)-planes ( from left to right).
The bottom panels show the triaxial fits to five isodensity surfaces projected on those planes.



these halos individually (e.g., GR1), it turns out that b=c for
the two halos is quite close to unity, indicating that they are
oblate halos with b � c and thus the direction of the major
axis is difficult to measure (if b ¼ c, the direction of the
major axis is arbitrary within a plane). Thus, the apparent
misalignment of their major axes is not meaningful. Only
for the one remaining halo (GX 3; Fig. 1), the major axes of
the outer and the innermost isodensity surfaces are indeed
perpendicular to that at the middle. This is the real case
where the major axes are significantly misaligned.

The alignments of the middle axes show similar behavior:
for most of the halos the degree of alignment is satisfactory.
For those that show significant misalignment of the middle
axes, their a=b or b=c ratio is usually quite close to unity and
the direction of the middle axes (and the minor or major
axes) can be poorly determined at best. It is only in a case
like GX 3 that no simple ellipsoid description can be found,

but this is fairly exceptional. The alignment seems slightly
better for cluster-sized halos, but this would be simply
because galactic halos are more spherical and thus the direc-
tion of the major axis is less accurate than that for cluster-
sized halos.

3.3. Triaxial versus Spherical Modeling of Dark Halos

In the last subsection, we have seen that the isodensity
ellipsoids at different radii are approximately aligned and
the axial ratios of the ellipsoids are nearly constant. These
facts suggest the possibility that the internal density distri-
bution within a halo can be approximated by a sequence of
concentric ellipsoids of constant axis ratio. To show this to
be an improved description over the conventional spherical
description, we compute the quadrupole of the particle dis-
tribution within a spherical shell (Qs) or an ellipsoid shell
(Qe). For a spherical shell, the positions of particles inside
the shell can be described by

x ¼ r sin � cos�

y ¼ r sin � sin�

z ¼ r cos �

8><
>: ; ð8Þ

with r being the (conventional) spherical radius. Similarly,
the positions of the particles in an ellipsoidal shell can be
described by

X ¼ R
a

c

� �
sin� cos�

Y ¼ R
b

c

� �
sin� sin�

Z ¼ R cos�

8>>>><
>>>>:

; ð9Þ

where X-, Y-, and Z-axes are the principal vectors of the
ellipsoidal shell and a=c and b=c are the axis ratios. In the
rest of the paper, we preferentially use the capital R to refer
to the length of the major axis defined in the triaxial model.

Then the quadrupole moments of the isodensity surfaces
in the spherical and triaxial models, Qs and Qe, are com-

Fig. 4.—Degree of alignment of the directions of the ellipsoid axes. Left:
Results for individual halos. The dashed lines are for cluster halos, the dot-
ted lines for group halos, and the solid lines for galactic halos. Right: Sym-
bols indicate the mean and its 1 � error from the halo simulations. The
upper and lower panels show for the major and middle axes, respectively.
[See the electronic edition of the Journal for a color version of this figure.]

Fig. 2.—Schematic illustration of the triaxial model for the isodensity
surface of dark matter halos. The axis lengths are defined to be a � b � c,
and h11 (h22) measures the angle between the longest (middle) axis of the iso-
density surface with that ofAð3Þ ¼ 2500 (eq. [4]).

Fig. 3.—Axis ratios for the triaxial model fits to 12 halos. Left: Results
for individual halos. The dashed lines are for cluster halos, the dotted lines
for group halos, and the solid lines for galactic halos. Right: Symbols indi-
cate the mean and its 1 � error from the halo simulations, while the solid
lines show the single power-law fit (eq. [6]). The upper and lower panels
show a=c and b=c, respectively. [See the electronic edition of the Journal for
a color version of this figure.]
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puted as

Qs �
1

5Np

Xþ2

m¼�2

X
j

Y2mð�j; �jÞ

�����
�����
2

�1 ; ð10Þ

Qe �
1

5Np

Xþ2

m¼�2

X
j

Y2mð�j;�jÞ

�����
�����
2

�1 ; ð11Þ

where the summation over j runs for all particles (Np) in the
isodensity surface and Ylm is the spherical harmonics. If the
spherical (triaxial) model is exact, Qs ðQeÞ vanishes. Using
these measures, we will show the extent to which the triaxial
model indeed provides a significantly improved description
for the simulated halos.

In practice, we compute QsðrÞ and QeðRÞ for five shells of
each halo at r ¼ R ¼ 0:65rvir, 0:35rvir, 0:2rvir, 0:12rvir, and
0:065rvir with the shell thickness Dr=r ¼ DR=R ¼
ln 10� 0:1 ¼ 0:23. Those shells are centered at the potential
minimum of the halo. In the triaxial model, we assume that
the shells have the same axis ratios and the same principal axis
directions as measured from the isodensity surface at
Að3Þ ¼ 2500. Thus, those shells do not necessarily corre-
spond to the isodensity surfaces that we have discussed.
Actually, this treatment is important because otherwise the
triaxial model (with more degrees of freedom) should
always provide a better fit. In addition, this approximation
is most likely what one would like to apply statistically to
halos of visible objects, which would yield a practical and
fair comparison between the spherical and triaxial models.

In the top and middle panels of Figure 5, we present the
quadrupole momentsQs andQe for the 12 halos. The quad-
rupole Qs for the spherical modeling increases nearly
monotonically with the radius. The Qe for our ellipsoidal
modeling (in its simplified version as described above) stays
flat at R < 0:3rvir but increases with the radius at the larger
radius. The ratio of the two quadrupoles is shown in the bot-
tom panel of Figure 5, which indicates that our triaxial
model, even simplified, fits the simulated halo profiles much
better than the spherical model. For 10 of 12 halos, the
ratio, QeðRÞ=QsðrÞ, is much smaller than 1 at all scales
(r ¼ R). Even for the remaining two halos (GX 3 and GR5),
the ratio exceeds unity a bit only at the largest radius, and
the triaxial description shows a significant improvement
over the spherical model. The ratio QeðRÞ=QsðrÞ seems to
approach unity as r becomes closer to rvir. The reason might
be that the subclustering is more prominent in the outskirt
region than in the central region, since the subhalos are
tidally stripped when they fall into the central region (see
Fig. 1 of Jing & Suto 2000). The strong subclustering makes
it difficult for both the spherical model and the ellipsoidal
model to accurately describe the complicated density distri-
bution at rvir. However, the figure also clearly shows that
our triaxial model works significantly better than the spheri-
cal model for r < 0:7rvir � r200, i.e., almost the entire halo
(the definition for r200 will be given shortly).

3.4. Density Profiles in the TriaxialModel

The next important task is to describe the density profiles
in the triaxial model generalizing the previous results in the
spherical approximation (NFW; Moore et al. 1998; Jing &
Suto 2000; Klypin et al. 2001). In the same spirit as the pre-
vious subsection, we do not perform the fit to the isodensity
surfaces that we identified but rather compute the mean

density �ðRÞ at the simplified triaxial shells (i.e., the same
axis ratios and axis directions for the entire halo as those
measured from its isodensity surface at Að3Þ ¼ 2500) within
a thickness of DR=R ¼ 0:12.

Figure 6 plots the density profiles measured in this way
for individual halos as a function of R. As in the spherical
case, we adopt the following form:

�ðRÞ
�crit

¼ 	c

R=R0ð Þ
 1þ R=R0ð Þ3�

; ð12Þ

where R0 is a scale radius and 	c is a characteristic density.
Again following the definition of r200 in the spherical model
(within which the mean matter density is 200�crit), we define
a radius Re so that the mean matter density within the ellip-
soid of the major axis radiusRe is De�crit with

De ¼ 5Dvir
c2

ab

� �0:75

: ð13Þ

The nontrivial dependence of De on the axis ratios in the
above equation is chosen so thatRe becomes a fixed fraction
of the virial radius rvir (see Fig. 7 below).

Fig. 5.—Quadrupole moments defined in the triaxial model (Qe) and in
the spherical model (Qs) for five shells at radii from 0:05rvir to 0:65rvir. They
are presented in the top two panels, and their ratio Qe=Qs is in the bottom
panel. The dashed lines are for cluster halos, the dotted lines for group
halos, and the solid lines for galactic halos. [See the electronic edition of the
Journal for a color version of this figure.]
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The best fits to equation (12) for each halo are shown in
Figure 6 for 
 ¼ 1:5 (solid lines) and for 
 ¼ 1:0 (dotted
lines). Up to the resolution limit of the halo simulations
(R=Re � 0:02), equation (12) yields a good fit both for

 ¼ 1 and for 
 ¼ 1:5. If we compare the fits to the simula-
tion data more carefully, however, 
 ¼ 1 works better for
the halos of cluster mass and 
 ¼ 1:5 better for those of
galactic mass, which is consistent with the finding of Jing &
Suto (2000) in the spherical model (but see Fukushige &
Makino 2001 for a different point of view).

We also introduce a concentration parameter in our triax-
ial model:

ce �
Re

R0
; ð14Þ

which is plotted in the upper panel of Figure 7 adopting

 ¼ 1:0 (crosses) and 
 ¼ 1:5 ( filled circles) in the fit. In
what follows we will not address the issue related to the
inner slope of the density profiles, and adopt 
 ¼ 1. It
should be noted, however, that our statistical results pre-
sented in the next section can be readily applied to the

 ¼ 1:5 case since the ratio ceð
 ¼ 1:5Þ=ceð
 ¼ 1Þ is always
close to 1

2.
Before moving to the statistical analysis of halos in the

cosmological simulations, we note that the value of Re and
thus that of ce are dependent on our specific definition of De

(eq. [13]). As the middle and bottom panels in Figure 7 indi-
cate, both Re=rvir and ce=cvir (where cvir is the ratio of the
virial halo radius to the scale radius rs in the spherical
model) remain constant (�0.45) independently of the mass
of the halos when we adopt equation (13) for De. This prop-
erty is quite useful in applying our results for a variety of
theoretical predictions, since for a halo of given virial mass
Mvir,

Mvir ¼
4�

3
r3virDvir�crit ; ð15Þ

the radius Re in our triaxial model is easily computed. It is
also known that the cvir is a function of the halo mass
(NFW; Eke, Navarro, & Steinmetz 2001) with the scatter
described by the lognormal distribution function (Jing 2000;
Bullock et al. 2001). Therefore, once the shape of a halo at a
given mass is specified, the density profile of the halo is com-
pletely fixed. The statistical distribution function of the halo
shape is discussed in the next section.

4. STATISTICS OF TRIAXIAL DENSITY PROFILES

High-resolution halo simulations, like those used in the
last section, are well suited for studying the detailed internal
structures of individual halos, but the number of such halos
is too small for a statistical description. Therefore, we
switch to the halo catalogs constructed from our cosmologi-
cal simulations in order to study the probability distribution
of the shape of halos. As emphasized in x 2, the cosmological
simulations employ N ¼ 5123 particles in a 100 h�1 Mpc
box and thus the mass resolution is even better than that of
individual halo simulations in the original NFW paper, for
instance.

We consider halos that contain more than 104 particles
within the virial radius. The lower mass limits are 6:2� 1012

and 2� 1013 M� in the LCDM and SCDMmodels, respec-
tively. We also consider three epochs at redshifts z ¼ 0, 0.5,
and 1.0 to examine the time dependence. At these redshifts,
we have 2494, 2160, and 1534 halos in the LCDM model
and 1806, 879, and 263 halos in the SCDM model,
respectively.

4.1. Probability Distribution of Axis Ratios

Following the prescription presented in the last section,
we determine the halo shapes at the isodensity surfaces with
Að3Þ ¼ 2500. Since the typical radius of the surfaces is about
0:3rvir, they are well resolved in our cosmological simula-

Fig. 6.—Radial density profiles in our triaxial model of the simulated halos of galaxy (left), group (middle), and cluster (right) masses. The solid and dotted
curves represent fits to eq. (12) with 
 ¼ 1:5 and 1.0, respectively. For reference, we also show �ðRÞ / R�1 and R�1.5 in dashed and solid lines. The vertical
dashed lines indicate the force-softening length that corresponds to our resolution limit. For illustrative purposes, the values of the halo densities are multiplied
by 1, 10�1, 10�2, and 10�3 from top to bottom in each panel. [See the electronic edition of the Journal for a color version of this figure.]
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tions; the force-softening length is typically smaller by 1
order of magnitude.

The left panels of Figures 8 and 9 present the ratio a=c of
the minor axis a to the major axis c for halos from the cos-
mological simulations in the LCDM and SCDM models,
respectively; solid, dotted, and dashed histograms indicate
the results for 104 � Nhalo < 2� 104, 2� 104 � Nhalo <
6� 104, 6� 104 � Nhalo, where Nhalo is the number of par-
ticles within the virial radius of each halo; in those figures
we use M4 � Nhalo=104, and thus M4 ¼ 1 corresponds to
Mvir ¼ 6:2� 1012 and 2:1� 1013 h�1 M� for our LCDM
and SCDMmodels). The top, middle, and bottom panels of
Figures 8 and 9 show the results at z ¼ 0, 0.5, and 1.0.

Two systematic trends are visible: the ratio is slightly
larger for less massive halos and decreases at higher red-
shifts. This motivates us to attempt the following empirical
scaling for the axis ratio a=c:

~rrac �
a

c

� �
sc
¼ a

c

� � Mvir

M	

� �0:07½�ðzÞ�0:7

; ð16Þ

where M	 is the characteristic nonlinear mass at z so that
the rms top-hat smoothed overdensity at the scale �ðM	; zÞ

is 	c ¼ 1:68. The M* at z ¼ 0, 0.5, and 1.0 are 9:4� 1012,
2:0� 1012, and 3:8� 1011 h�1 M�, respectively, for LCDM
and 8:5� 1012, 9:7� 1011, and 1:4� 1011 h�1 M�, respec-
tively, for SCDM.

Such scaled axis ratios ~rrac show a fairly universal distribu-
tion almost independently of the mass and the epoch (histo-
grams in the right panels of Figs. 8 and 9). The universal
probability distribution function of the ratio ~rrac is well fitted
to the following Gaussian:

pð~rracÞd~rrac ¼
1ffiffiffiffiffiffi
2�

p
�s

exp �ð~rrac � 0:54Þ2

2�2
s

" #
d~rrac ð17Þ

with �s ¼ 0:113.
Next we decompose the joint probability distribution

function of the axis ratios as

pða=c; b=cÞdða=cÞdðb=cÞ ¼ pða=cÞdða=cÞpðb=cja=cÞdðb=cÞ
¼ pða=cÞdða=cÞpða=bja=cÞdða=bÞ

ð18Þ

in terms of the conditional probability distribution func-
tions, pðb=cja=cÞ and pða=bja=cÞ. The second equality holds
because once a=c is fixed, the distribution of a=b is uniquely
determined from that of b=c. Since we have shown that the
distribution function pða=cÞ is well approximated by equa-
tions (16) and (17), we compute the conditional probability
distribution pða=bja=cÞ. Figures 10 and 11 plot the results
for the LCDM and SCDM models, respectively. Different
panels correspond to pða=bja=cÞ for different ranges of a=c.
Solid, dotted, and dashed histograms indicate pða=bja=cÞ at
z ¼ 0, 0.5, and 1.0, respectively.

The conditional functions appear to be insensitive to the
redshift. In both cosmological models, they are accurately
fitted to

pða=bja=cÞ ¼ 3

2ð1� rminÞ
1� 2a=b� 1� rmin

1� rmin

� �2
" #

ð19Þ

for a=b 
 rmin, where rmin ¼ a=c for a=c 
 0:5 and rmin ¼
0:5 for a=c < 0:5. pða=bja=cÞ ¼ 0 for a=b 
 rmin.

4.2. Probability Distribution of the Concentration Parameter

We apply the triaxial density profile (eq. [12]) obtained in
the halo simulations to the halo catalogs in the cosmological
simulations. Considering the resolution limits, we adopt

 ¼ 1 and use the data points at � < Re < rvir in the fit,
where � is the force-softening length (see x 2). Since we do
not address the innermost structures of the halos and rather
focus on the value of the concentration parameter ce, this
catalog has sufficient resolution to yield an unbiased esti-
mate (e.g., Jing 2000; Bullock et al. 2001; Eke et al. 2001 for
discussion). As already found in the spherical model (Jing
2000), the distribution of ce in the triaxial model has a signif-
icant scatter even if the range of halo mass is fairly specified
reflecting the dependence of the merging history of the indi-
vidual halo.

The resulting probability distribution functions for ce are
presented in Figure 12, which are well fitted by the lognor-
mal distribution:

pðceÞdce ¼
1ffiffiffiffiffiffi
2�

p
�ce

exp �ðln ce � ln�cceÞ2

2�2
ce

" #
d ln ce ð20Þ

Fig. 7.—Fitting results of the triaxial model to 12 halos.Top:Concentra-
tion parameter ce for 
 ¼ 1 (crosses) and for 
 ¼ 1:5 ( filled circles);middle:
ratio of ce to that of the spherical counterpart cvir for 
 ¼ 1; bottom: ratio
of Re to the virial radius rvir in the spherical model. [See the electronic edi-
tion of the Journal for a color version of this figure.]
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with a dispersion of �ce � 0:3 in both the SCDM and
LCDM models. The dispersion is slightly larger than the
value estimated in the spherical model (�0.2) for equili-
brium halos but is comparable to the value for all halos put
together (Jing 2000). It should be noted here that despite the
fact that the triaxial model is superior in describing the den-
sity distribution of halos, the scatter in ce is comparable to
the scatter of concentrations in spherical profile fits, which
probably means that the scatter originates from the halo
merger histories rather than nonsphericity of the halos.

The probability distribution (eq. [20]) is completed by
specifying the mean of the concentration parameter �cce. The
result from our simulations is plotted in Figure 13 as a func-
tion of the halo mass at z ¼ 0, 0.5, and 1.0. NFW proposed
a semianalytic fitting formula for the concentration cvir in
the spherical model.1 More recently, Bullock et al. (2001)
have shown that in their LCDM model (the parameters are
similar to those of our LCDM model here) cvir of a given
mass decreases with z proportionally as ð1þ zÞ�1. The red-
shift dependence is stronger than that predicted in the NFW

recipe. Thus, Bullock et al. (2001) have proposed another
recipe that successfully describes the concentration cvir.
Since we have already shown that the ratio ce=cvir is almost
constant (Fig. 7), it is interesting to see whether the formula
of Bullock et al. (2001) also describes the behavior of ce in
our triaxial model.

In the LCDMmodel, we find that the redshift dependence
of ce for a given mass is approximately proportional to
ð1þ zÞ�1, in good agreement with their result. In the SCDM
model, however, our result of ce shows a stronger redshift
dependence than their prediction. It is also likely that the fit-
ting formula of Bullock et al. (2001) was designed to fit
spherical concentrations, cvir, and is not applicable to the
nonspherical case because of the evolution of ce=cvir.

Following NFW and Bullock et al. (2001), we propose a
new fitting formula for �cce in the triaxial model:

�cceðM; zÞ ¼ Ae

ffiffiffiffiffiffiffiffiffiffiffi
�ðzÞ
�ðzcÞ

s
1þ zc
1þ z

� �3=2

: ð21Þ

In the above, zc is the collapse redshift of the halo of massM
(NFW):

erfc
	cðzcÞ � 	cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½�2ð fMÞ � �2ðMÞ�
p ¼ 1

2
; ð22Þ

Fig. 8.—Distribution of the axis ratio a=c of the halos in the cosmological simulations of the LCDM model before (left) and after (right) the scaling
described in the text. Top, middle, and bottom panels correspond to z ¼ 0, 0.5, and 1.0, respectively. Solid, dotted, and dashed histograms indicate the results
for halos that have the number of particles of M4 � ðNhalo=104Þ within the virial radius. The smooth solid curves in all the panels represent our fit (eq. [17]).
[See the electronic edition of the Journal for a color version of this figure.]

1 Originally NFW defined the concentration parameter as c200 � r200=rs,
where r200 is the radius within which the mean overdensity is 200�crit. Their
recipe, however, can be easily generalized to cvir, since r200=rv is almost con-
stant for a given cosmology.
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where �ðMÞ is the rms top-hat mass variance at z ¼ 0,
	c ¼ 1:68, 	cðzÞ ¼ 1:68=DðzÞ, DðzÞ is the linear growth fac-
tor, and f ¼ 0:01. Solid lines in Figure 13 indicate the pre-
dictions of equation (21), implying that the formula
describes our simulation results very accurately. In those
plots, we adoptAe ¼ 1:1 and 1.0 for the LCDM and SCDM
models, respectively.

We also made sure that the formula also agrees well with
our halo simulations in the LCDM model, while the results
appear 10%–20% higher (i.e., Ae ¼ 1:2 1:3) than those of
the cosmological simulations (Ae ¼ 1:1). Considering both
the typical 30% scatter in ce and the limited number of high-
resolution halos (12 in total), the above level of difference
may not be interpreted so seriously at this point. In fact, the
difference may be attributed partly to the fact that halos
with significant substructures (like GR2) have been elimi-
nated in the high-resolution halo samples (x 2) while we have
not attempted such a selection in the cosmological simula-
tions. Indeed, Jing (2000) has noted that halos in equili-
brium are systematically more centrally concentrated than
those with significant substructures. We also note that most
previous studies, including NFW and Eke et al. (2001), have
preferentially selected isolated halos in resimulating with
higher resolution, which would have fewer substructures
and therefore have slightly higher concentration than aver-
age. If one is interested in halos nearly in equilibrium, the
best-fit value of Ae should become 1.3. Since ce=cvir remains

constant (Figs. 7 and 15), the fitting formula (eq. [21]) can
also be used for predicting cvir in CDMmodels.

Finally, we have checked whether the fitted values of Re

and ce are dependent on the shapes of halos. Figure 14
presents the ratio of Re to the virial radius rvir as a function
of the axis ratio a=b. Clearly, Re=rvir is independent of a=b
and of the redshift (or equivalently the halo mass in units of
M	; see also Fig. 7) and approximately given by 0.45. Simi-
larly, we find that Re=rvir is independent of b=c and a=c. On
the other hand, the concentration parameter ce is slightly
dependent on the halo shape. Figure 15 indicates that halos
with smaller a=c are less centrally concentrated.

In terms of the scaled axis ratio ða=cÞsc (eq. [16]), the ratio
of the mean concentration ce for a given ~rrac ¼ ða=cÞsc and
the overall average �cceðM; zÞ (eq. [21]) is well approximated
by

ce½~rrac;M; z�
�cceðM; zÞ ¼ 1:35 exp � 0:3

~rrac

� �2
" #

: ð23Þ

This fit is plotted with the solid line in Figure 15, which is in
good agreement with the simulation data for different halo
masses and in both the LCDM and SCDMmodels.

In this section, we used the halos identified from cosmo-
logical simulations that have N > 104 particles. The small-
est halos are resolved much more poorly than the largest
halos and the high-resolution halos (x 3) that consist of

Fig. 9.—Same as Fig. 8, except for the halos in the SCDM simulations. [See the electronic edition of the Journal for a color version of this figure.]
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�106 particles. In order to make sure that our results are
robust to the mass resolution, we repeat the same analysis of
the axis ratios and the density profile by randomly selecting
N ¼ 104 particles from each of the 12 high-resolution halos
of the previous section. The results are compared in Figure
16 with those obtained in the last section where we consider
all particles. Both the axis ratios and the concentration of
the randomly selected sample agree well with those of the
original halo sample; the typical dispersion of the axis ratios
between the two samples is �10%, and the concentration ce
of the randomly selected sample is slightly lower (�8%).
This comparison indicates that the mass resolution does not
affect our results in this section significantly.

5. SUMMARY AND DISCUSSION

This paper has presented a triaxial modeling of the dark
matter halo density profiles extensively on the basis of the
combined analysis of high-resolution halo simulations (12
halos with N � 106 particles within their virial radius) and
large cosmological simulations (five realizations with
N ¼ 5123 particles in a 100 h�1 Mpc box size). In particular,
we found that the universal density profile discovered by
NFW in the spherical model can be also generalized to our
triaxial model description. Our triaxial density profile is
specified by the concentration parameter ce and the scaling
radius R0 (or the virial radius Re in the triaxial modeling) as
well as the axis ratios a=c and a=b.

We have obtained several fitting formulae for those
parameters that are of practical importance in exploring the
theoretical and observational consequences of our triaxial
model (in doing so we have adopted 
 ¼ 1 since the precise
value of the inner slope is difficult to reliably determine even
with the resolution of the current simulations):

1. the mass and redshift dependence of the axis ratio, or
equivalently the definition of the scaled axis ratio
~rrac � ða=cÞsc: equation (16);

2. the probability distribution of the axis ratio pð~rracÞ:
equation (17);
3. the conditional probability distribution of the axis

ratios pða=bja=cÞ: equation (19);
4. the mean value of the concentration parameter

�cceðM; zÞ: equation (21);
5. the dependence of the concentration parameter on the

axis ratio~rrac: equation (23); and
6. the probability distribution of the concentration

parameter pðceÞ: equation (20).

Since ce=cvir remains constant (Figs. 7 and 15), the fitting
formula (eq. [21]) can also be used for predicting cvir in
CDMmodels.

We have focused on the triaxial modeling and character-
ization of dark halos in the present paper and plan to show
specific applications elsewhere. Nevertheless, it would be
worthwhile to mention several important examples of the
current model.

Fig. 10.—Conditional distribution of the axis ratio a=b of the halos in the cosmological simulations of the LCDMmodel for a given range of a=c. Halos at
different redshifts are represented with different lines as indicated in the bottom right panel. The smooth solid curves in all the panels represent our fit (eq. [19]).
[See the electronic edition of the Journal for a color version of this figure.]
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Fig. 11.—Same as Fig. 10, except for the halos in the SCDM simulations. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 12.—Distribution of the concentration ce of the halos in the LCDM (left) and in the SCDM (right) models for different halo mass M4 � ðNhalo=104Þ.
The smooth solid curves represent our lognormal fit (eq. [20]).



The results of the paper are applicable in a fairly direct
manner to the following three areas. (1) The weak and
strong lens statistics: the comparison with the weak lensing
observations provides information on the degree of triaxial-
ity of observed clusters, mainly at outer regions. In addition,
the frequency of the lensing arc is known to be sensitive to
the nonsphericity of the halo mass profile, especially in the
central regions (e.g., Bartelmann et al. 1998; Meneghetti et
al. 2000, 2001; Molikawa & Hattori 2001; Oguri 2002). (2)
Predictions of the nonlinear clustering of dark matter based
on the halo model (e.g., Mo, Jing, & Börner 1997; Ma & Fry
2000; Hamana et al. 2001; Kang et al. 2002): the high-order
statistics of clustering, e.g., the three-point correlation and
the bispectrum, should be quite sensitive to the nonspheric-
ity. (3) Dynamics of galactic satellites: recently this has been
argued to be very sensitive to the nonsphericity of the host
halo (e.g., Ibata et al. 2001). The combination of those three
approaches would even yield a direct test of the cold dark
matter paradigm (Spergel & Steinhardt 2000; Yoshida et al.
2000).

Of course, the nonsphericity of dark matter halos is crit-
ical to understanding that of the gas density profile of clus-
ters of galaxies. Since gasdynamics is characterized by the
isotropic pressure tensor, gas does not directly follow the
dark matter distribution in halos. In fact, most hydrody-
namic simulations of galaxy clusters suggest that the gas dis-
tribution is generally rounder than that of dark matter.
Nevertheless, we would like to mention a couple of impor-
tant examples where the nonsphericity in the gas distribu-
tion has crucial and observable consequences. (4) The gas

Fig. 13.—Mean of the concentration �cce as a function of the virial mass in
the LCDM and SCDM models. The solid curves represent our fitting for-
mula (eq. [21]) at z ¼ 0, 0.5, and 1.0 from top to bottom. The data point,
labeled Moore99, is taken from the result of Moore et al. (1999) and is
scaled according to our fitting formula (eq. [21]). [See the electronic edition
of the Journal for a color version of this figure.]

Fig. 14.—Ratio ofRe to the virial radius for halos with different shapes in the LCDM (left) and SCDM (right) models at different redshifts
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and temperature profiles of X-ray clusters: almost all pre-
vious analytical models for the X-ray profiles of galaxy clus-
ters have adopted the spherical approximation perhaps
because of the lack of any specific model for the nonspheric-
ity. Since our triaxial model specifies the gravitational
potential of the hosting halos, one may compute the gas or
temperature profiles, with an additional assumption of the
hydrostatic equilibrium, for instance, as performed in the
NFW model (e.g., Makino, Sasaki, & Suto 1998; Suto,
Sasaki, & Makino 1998; Komatsu & Seljak 2001). If com-
bined with the observed surface brightness distribution of
clusters, one may in principle solve for the gas and tempera-
ture profiles simultaneously for a given nonspherical distri-
bution of dark matter (Silk & White 1978; Yoshikawa &
Suto 1999; Zaroubi et al. 1998). (5) The systematic bias and
statistical distribution of the Hubble constant estimated via
the Sunyaev-Zeldovich effect: in view of the ongoing obser-
vational projects, it is of vital importance to reevaluate the
reliability of the estimates taking account of the nonspheric-
ity effect of the clusters. With the above modeling of the gas
and temperature profiles for individual clusters, one may
discuss the statistical properties of the estimates of the Hub-
ble constant (e.g., Fox & Pen 2002), combining the extensive
fitting formula for the probability distribution functions of

the triaxial model parameters and the halo mass function
(e.g., Sheth & Tormen 1999; Jenkins et al. 2001).
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