This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Close this notification

Click here to close this overlay, or press the "Escape" key on your keyboard.

Click here to close this overlay, or press the "Escape" key on your keyboard.

A publishing partnership

Experimental Demonstration of How Strapping Fields Can Inhibit Solar Prominence Eruptions

and

Published 12 December 2001 © 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, ,

1538-4357/563/2/L183

Abstract

It has been conjectured that the eruption of a solar prominence can be inhibited if a much larger scale, arched magnetic field straddles the prominence and effectively straps it down. We have demonstrated this effect in a laboratory experiment where a vacuum strapping field acts on a scaled simulation of a solar prominence. The required magnitude of the strapping field is in good agreement with a theoretical model that takes into account the full three-dimensional magnetic topology.

Export citation and abstract BibTeX RIS

References

  • Amari, T., & Luciani, J. F. 1999, ApJ, 515, L81

    IOPscienceADS

  • Antiochos, S. K. 1998, ApJ, 502, L181

    IOPscienceADS

  • Bateman, G. 1978, MHD Instabilities (Cambridge: MIT Press)

    ADS

  • Bellan, P. M. 2000, Spheromaks (London: Imperial College Press)

    CrossrefADS

  • Bellan, P. M., & Hansen, J. F. 1998, Phys. Plasmas, 5, 1991

    CrossrefADS

  • Burlaga, L. F. 1988, J. Geophys. Res., 93, 7217

    CrossrefADS

  • Chen, J. 1996, J. Geophys. Res., 101, 27499

    CrossrefADS

  • Kahler, S. W., Moore, R. L., Kane, S. R., & Zirin, H. 1988, ApJ, 328, 824

    CrossrefADS

  • Lin, J., & Forbes, T. G. 2000, J. Geophys. Res., 105, 2375

    CrossrefADS

  • Martens, P. C. H., & Kuin, N. P. M. 1989, Sol. Phys., 122, 263

    CrossrefADS

  • Mikić, Z., Barnes, C., & Schnack, D. D. 1988, ApJ, 328, 830

    CrossrefADS

  • Mikić, Z., & Linker, J. A. 1994, ApJ, 430, 898

    CrossrefADS

  • Miyamoto, K. 1976, Plasma Physics for Nuclear Fusion (Cambridge: MIT Press)
  • Nakagawa, Y., Raadu, M. A., Billings, D. E., & McNamara, D. 1971, Sol. Phys., 19, 72

    CrossrefADS

  • Rust, D. M. 1994, Geophys. Res. Lett., 21, 241

    CrossrefADS

  • Shafranov, V. D. 1966, Rev. Plasma Phys., 2, 103

    ADS

  • Tandberg-Hanssen, E. 1995, The Nature of Solar Prominences (Dordrecht: Kluwer)

    CrossrefADS

  • van Tend, W., & Kuperus, M. 1978, Sol. Phys., 59, 115

    CrossrefADS

  • Vrsnak, B., Ruzdjak, V., & Rompolt B. 1991, Sol. Phys., 136, 151

    CrossrefADS

Export references: BibTeX RIS

Citations

  1. Reverse Current Model for Coronal Mass Ejection Cavity Formation
    Magnus A. Haw et al. 2018 The Astrophysical Journal Letters 862 L15

    IOPscience

  2. Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes
    C E Myers et al 2017 Plasma Physics and Controlled Fusion 59 014048

    IOPscience

  3. Apex Dips of Experimental Flux Ropes: Helix or Cusp?
    Pakorn Wongwaitayakornkul et al. 2017 The Astrophysical Journal 848 89

    IOPscience

  4. Apex expansion of magnetized plasma loops in a laboratory experiment
    J Tenfelde et al 2014 Plasma Physics and Controlled Fusion 56 055011

    IOPscience

  5. FlareLab: early results
    H Soltwisch et al 2010 Plasma Physics and Controlled Fusion 52 124030

    IOPscience

  6. Partial Torus Instability
    Oscar Olmedo and Jie Zhang 2010 The Astrophysical Journal 718 433

    IOPscience

  7. Astrophysics in 2002
    Virginia Trimble and Markus J. Aschwanden 2003 Publications of the Astronomical Society of the Pacific 115 514

    IOPscience

  8. Three-dimensional Model of the Structure and Evolution of Coronal Mass Ejections
    M. Tokman and P. M. Bellan 2002 The Astrophysical Journal 567 1202

    IOPscience

Export citations: BibTeX RIS