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ABSTRACT
We use numerical simulations to study the evolution of triaxial elliptical galaxies with central black

holes. In contrast to earlier studies which used galaxy models with central density ““ cores,ÏÏ our galaxies
have steep central cusps, as observed in real ellipticals. As a black hole grows in these cuspy triaxial
galaxies, the inner regions become rounder owing to chaos induced in the orbital families that populate
the model. At larger radii, however, the models maintain their triaxiality, and orbital analyses show that
centrophilic orbits there resist stochasticity over many dynamical times. While black holeÈinduced evolu-
tion is strong in the inner regions of these galaxies and reaches out beyond the nominal ““ sphere of
inÑuence ÏÏ of a black hole, our simulations do not show evidence for a rapid global transformation of the
host. The triaxiality of observed elliptical galaxies is therefore not inconsistent with the presence of
supermassive black holes at their centers.
Subject headings : black hole physics È galaxies : elliptical and lenticular, cD È

galaxies : kinematics and dynamics È galaxies : nuclei È galaxies : structure È
methods : n-body simulations

1. INTRODUCTION

Observations indicate that most, and perhaps all, ellip-
tical galaxies harbor supermassive black holes at their
centers (e.g., Gebhardt et al. 2000 ; Richstone et al. 1998 ; but
see Gebhardt et al. 2001b). In fact, best-Ðt models of black
hole demography indicate that roughly 97% of ellipticals
contain such black holes (Magorrian et al. 1998). The
masses of these black holes seem to be correlated with
properties of the host bulge ; current dynamical estimates
have yielded black hole masses of order 0.001 Mbulge(Kormendy & Richstone 1995 ; Magorrian et al. 1998 ; van
der Marel 1999). There is also apparently a trend between
black hole mass and galaxy velocity dispersion, implying
that there is a fundamental plane even in the four-
dimensional space deÐned by andlog MBH, log L , log p

e
,

(Gebhardt et al. 2001a ; Ferrarese & Merritt 2001).log R
eThese correlations suggest that galaxy formation and the

formation of central black holes are deeply connected.
It is believed that a central supermassive black hole can

profoundly inÑuence the evolution of its host galaxy.
Massive black holes dominate the galactic potential inside a
radius of inÑuence pc, whererBH B 100(MBH,9/p0,2002 ) MBH,9is the black hole mass in units of 109 and is theM

_
p0,200central velocity dispersion in units of 200 km s~1. Within

the three-dimensional structure and phase space ofr\ rBH,
a galaxy will be determined largely by the black hole. More-
over, the e†ects of a central black hole can reach far beyond

Owing to discrete encounters with individual stars,rBH.
central black holes will ““ wander,ÏÏ in a manner akin to
molecular Brownian motion (see, e.g., Chatterjee, Hern-
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quist, & Loeb [2001] for a recent analysis of this
phenomenon), e†ectively increasing During galaxy can-rBH.
nibalism, supermassive black holes disrupt even dense low-
mass companions in radial encounters (Holley-Bockelmann
& Richstone 2000 ; Merritt & Cruz 2001) and may tidally
torque debris into a nuclear disk following mergers from
eccentric orbits (Holley-Bockelmann & Richstone 2000).
Black hole binaries created during galaxy mergers may
explain the Ñat density proÐles seen in the inner regions of
the largest ellipticals (Makino & Ebisuzaki 1996 ; Quinlan
& Hernquist 1997).

Central black holes can induce secular evolution as well.
According to one long-standing suggestion, the growth of a
massive black hole in a triaxial potential can destabilize
centrophilic box orbits through stochastic di†usion, driving
the global shape of a galaxy toward axisymmetry in a few
crossing times (Gerhard & Binney 1985 ; Norman, May, &
van Albada 1985 ; Merritt & Quinlan 1998 ; Wachlin &
Ferraz-Mello 1998 ; Valluri & Merritt 1998). If this picture
of black holeÈinduced evolution away from triaxiality is
correct, it will have serious ramiÐcations for our under-
standing of the fueling of active galactic nuclei (AGNs) and
the observed correlations between the properties of black
holes and their host galaxies. Indeed, such evolution could
lead to a self-regulation of AGN activity and black hole
growth in ellipticals. If triaxiality is linked to AGN fueling,
as a consequence of gas being unable to settle into closed
orbits in such a potential (Norman & Silk 1983), then an
evolution toward axisymmetry would naturally lead to a
reduction in the feeding of a central black hole. Such a
scenario might also explain, at least in part, the correlation
between black hole and bulge mass in early-type galaxies
(Valluri & Merritt 1998).

While theoretical arguments paint a compelling picture
for a link between central black holes and the loss of tri-
axiality in galaxies, observational support remains some-
what problematic, owing to the difficulty of inferring the
three-dimensional structure of galaxies from their projected
properties. However, recent studies indicate that at least
some luminous ellipticals are triaxial (Binney 1976 ; Franx,
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van Gorkum, & de Zeeuw 1991 ; Tremblay & Merritt 1995 ;
Bak & Statler 2000). The triaxiality of these systems indi-
cates either that they contain at most low-mass black holes
(insufficient to drive evolution) or that the coupling between
black holes and galaxy shape is not well understood. The
former possibility appears to be inconsistent with the
notion that luminous AGNs are preferentially found in
luminous ellipticals.

These considerations emphasize the need for realistic
models of galaxies containing central black holes. Earlier
theoretical studies have employed either triaxial models
with constant density cores (Norman, May, & van Albada
1985 ; Merritt & Quinlan 1998) or spherical models with
central density cusps (e.g., Sigurdsson, Hernquist, &
Quinlan 1995). Neither of these two choices is entirely satis-
factory. Observations of ellipticals made with the Hubble
Space Telescope show that these galaxies typically have
central density cusps P r~c with c \ 0.5È2 (Lauer et al.
1995). Galaxies with density cusps support di†erent stellar
orbits than e.g., c \ 0 core models (Gerheard & Binney
1985 ; Gerhard 1986 ; Pfenniger & de Zeeuw 1989 ; Sch-
warzschild 1993 ; de Zeeuw 1996 ; Merritt 1999 ; Holley-
Bockelmann et al. 2001), altering the response of a galaxy to
the growth of a black hole. Likewise, spherical galaxies will
support di†erent orbital families than triaxial ones, whether
or not they have central density cusps. While simulations
employing spherical models have demonstrated the growth
of black holeÈinduced cusps and the polarization of the
velocity ellipsoid in such objects (Sigurdsson et al. 1995),
they of course have little to say about the evolution of
triaxial ellipticals.

To address these shortcomings, we present a study of
black hole growth in triaxial elliptical galaxies with central
density cusps, using the ““ adiabatic squeezing ÏÏ technique
described in Holley-Bockelmann et al. (2001 ; hereafter,
Paper I) to generate models with prescribed shapes and
cusps that are stable for many dynamical times. Using
N-body simulations, we then adiabatically grow a black
hole in these galaxies over several crossing times. We char-
acterize the orbital families that populate the models and
Ðnd that many of the highly bound boxes, boxlets, and
eccentric tubes are transformed into chaotic orbitsÈa clear
signature of the inÑuence of a spherical central potential in
a larger, nearly unchanged, triaxial Ðgure.

The paper is organized as follows. Section 2 summarizes
our technique for generating a stable triaxial model of a
galaxy, with subsequent growth of a central black hole.
Section 3 shows the outcome of black hole growth in a
model with central density cusp c \ 1.0 and initial half-
mass axis ratios b/a, c/a\ 0.85,0.7, and discusses the struc-
tural changes occurring in this model as a result of the
growth of a black hole of mass Section 4MBH \ 0.01Mgal.explores the evolution of the orbital population induced by
the black hole, and ° 5 provides conclusions.

2. MODELING TECHNIQUE

The ““ adiabatic squeezing ÏÏ technique for generating tri-
axial models is discussed in detail in Paper I. To summarize,
we begin with, e.g., a spherical Hernquist (1990) model,
having a density proÐle

o(r) \M
2n
a
r

1
(r] a)3 ,

whereM is the total mass and a is a scale length. We gener-
ate an N-body realization of this spherical model using the
multimass scheme of Sigurdsson et al. (1995), so that par-
ticles have a mass that is roughly inversely proportional to
their pericentric radius. This technique gives a Ðner sam-
pling of the phase space of tightly bound orbits than would
be feasible if equal mass particles were used throughout. We
then evolve this model while adiabatically applying a drag
force Ðrst along the z-axis (using the self-consistent Ðeld
method described below to maintain axisymmetry in the
x-y plane) and then along the y-axis to yield a triaxial Ðgure.
The system is rescaled after each step so that the scale
radius of the long axis, a, is unity. The lengths of the other
axes are correlated with the strength of the drag force
applied in each direction. To ensure an equilibrium Ðnal
state, the model is evolved for several half-mass dynamical
times without any drag forces present.

A black hole of Ðnal mass is then grown adia-MBHbatically in one of these equilibrium models over a time tBHaccording to

M(t) \
4
5
6

0
0
MBH

C
3
A t
tBH

B2
[ 2

A t
tBH

B3D
, for t¹ tBH ;

MBH , for t[ tBH .

This expression ensures smooth evolution of the black hole
mass, i.e., that at t\ 0 and at The poten-M0 (t) \ 0 t\ tBH.
tial of the black hole is that of a softened point mass :

'BH(r, t) \ M(t)

Jr2 ] vBH2
,

where the softening parameter is set to in thevBH \ 0.001
simulations described here. This softening sets the
resolution scale of our model and can be compared to
the radius of inÑuence of a 1% mass black hole, which is
rBH D 0.03.

To ensure that black hole growth is adiabatic, we chose
to be long compared to the orbital periods of stars in thetBHinner regions of the galaxy (Sigurdsson et al. 1995). We

varied the value chosen for and determined that for thetBHexamples presented here a black hole growth timescale
is adequate. This can be compared with thetBH \ 20

dynamical times for the Ðducial Hernquist sphere with
a\ 1, which are 3.14, 5.96, and 8.33 at the scale radius
(r\ 1.0), e†ective radius (r\ 1.815), and half-mass radius
(r\ 2.414), respectively. After the black hole has reached its
Ðnal mass, the model is evolved for another 20 time units to
allow the model to reach equilibrium.

The simulations were performed with a self-consistent
Ðeld (SCF) code (e.g., Hernquist & Ostriker 1992 ; Hern-
quist, Sigurdsson, & Bryan 1995). In this approach, the
density and potential of the galaxy are expanded in a set of
basis functions, with the lowest order term chosen to rep-
resent the underlying density proÐle. The expansion coeffi-
cients are determined from the particle distribution, using n
radial terms and (l, m) angular terms. The examples here
adopted and The N-body par-nmax \ 10 mmax \ lmax \ 6.
ticles move in the combined potential Ðeld of the SCF
expansion and the central black hole (Sigurdsson et al.
1997), and orbital accuracy is ensured by using a high-order
Hermite integrator with variable time-stepping. The simula-
tions were run on the T3E and the Blue Horizon at the San
Diego Supercomputer Center.
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3. RESULTS OF DYNAMICAL MODELING

We demonstrate our technique with an N\ 512,000 par-
ticle Hernquist model with total massM\ 1 and initial axis
ratios b/a\ 0.85 and c/a\ 0.7, measured at the half-mass
radius. To this model, we add an adiabatically growing
black hole of Ðnal mass If we insist that thisMBH \ 0.01.
model lies on both the global and core fundamental planes
(Faber et al. 1997), then the central density slope of c \ 1
(neglecting the inÑuence of the black hole) Ðxes the absolute
magnitude e†ective radius kpc),(MV B [21.6), (reff B 6
and projected central velocity dispersion km s~1)(p

p
B 310

of the corresponding galaxy. Scaling our model to such a
galaxy results in a unit length, unit velocity, and unit time
corresponding to 3 kpc, 1200 km s~1, and 3 ] 106 yr,
respectively. Thus, in our model, the scaled half-mass
dynamical timescale is 2.5 ] 107 yr.

As the black hole grows, both the cusp slope, c, and
projected central velocity dispersion, increase. Figure 1p

p
,

shows the cusp slope (measured at ellipsoidal radius
log q\ [1.3) and the projected central velocity dispersion
of the model (measured at projected ellipsoidal radius
log Q\ [2.3) as a function of time during and after black
hole growth. After an initial rapid increase in c during the
black hole growth phase (between 0\ T \ 20), the evolu-
tion in both c and all but ceases, settling at the equi-p

plibrium values c ^ 2.05, These results arep
p
^ 0.7.

characteristic of adiabatic black hole growth in cuspy gal-
axies and can be compared both to analytic estimates for
adiabatic black hole growth in a spherical c \ 1.0 model,
which predict c \ 7/3, (Quinlan, Hernquist, &p

p
\ 0.75

Sigurdsson 1995) and to the results from N-body simula-
tions of adiabatic black hole growth in a Hernquist sphere,
where c B 2.2 and p B 0.65 (Sigurdsson et al. 1995).5 Note
that these high central velocity dispersions are measured on
length scales smaller than the typical minimum spatial
resolution at the distance of nearby ellipticals ; observable

5 The fact that our measured cusp slope is less than the analytic value of
c \ 7/3 is to be expected since our cusp slope is measured over a Ðnite
radial range near the center, and is not the asymptotic r\ 0 value.

central velocity dispersions are averaged over larger aper-
tures and tend to obscure velocity cusps.

The evolution in galaxy shape is shown in Figure 2 for
the innermost 2%, 10%, and 50% of the galaxy (by mass).
Prior to black hole growth, the model has a more or less
uniform shape throughout, with a slight tendency toward
greater triaxiality in the center (see Fig. 2 at T \ 0 and
Paper I). As the black hole grows, the inner regions quickly
become rounder (Fig. 2a) ; in fact, by the time the black hole
has reached full mass, the central 10% of the mass, corre-
sponding to an ellipsoidal radius q\ (x2 ] (y/b)2 ] (z/
c)2)1@2 \ 0.1 is practically spherical with axis ratios
a :b :c\ 1.0 :0.95 :0.92. The shape evolution in the outer
regions is much less dramatic, however (Fig. 2c). Following
the growth of the black hole, the model exhibits a marked
shape gradient, becoming more strongly triaxial with
increasing radius. This shape proÐle, essentially axisym-
metric in the center and a relatively unaltered triaxial Ðgure
farther out, remains stable as the system settles into equi-
librium from 20\ T \ 40, even though the dynamical
timescale here is much shorter than the integration time of
the simulation. Despite the near sphericity at the center, this
region is, perhaps surprisingly, still triaxial enough to inÑu-
ence the stellar orbital dynamics (Statler 1987 ; Hunter & de
Zeeuw 1992), at least in principle. We will return to this
issue of orbits in the next section.

The Ðnal state of this model features several hallmarks of
a black hole-embedded triaxial Ðgure. Figure 3 shows the
properties of this object as a function of ellipsoidal radius q
at T \ 40 at q\ 1), well after the black hole has(12.8tdynstopped growing. Figure 3a shows the c D 2 density cusp
induced by the black hole inside log q\ [1. At a larger
radii log q[ [1, though, this plot demonstrates that the
system retains the original Hernquist density proÐle. Figure
3b shows explicitly the strong shape gradient in the model.
Inside both the projected and intrinsic velocity disper-rBH,
sions exhibit a strong central cusp (Figs. 3c and 3d). In the
outskirts, where the model maintains its triaxiality, the pro-
jected velocity distributions follow in accordp

x
[ p

y
[ p

zwith a triaxial model where a[ b[ c. However, inside the

FIG. 1.ÈCentral properties of the model galaxy during and after black hole growth. L eft : Central density slope c of the model, measured at ellipsoidal
radius log q\ [1.3, as a function of time. Right : Central projected velocity dispersion, measured at projected ellipsoidal radius log Q\ [2.3 as a function
of time.



FIG. 2.ÈIntermediate and minor axis lengths as a function of time for particle sets binned by mass in the model galaxy. Axis lengths are calculated
iteratively from the ellipsoidal density distribution using the moment of inertia tensor. (See Paper I for details.)

FIG. 3.ÈStructural and kinematic properties of the model at T \ 40. Upper left : Density proÐle. Upper right : Intermediate and minor axis lengths as a
function of ellipsoidal radius. L ower left : Projected velocity dispersion along the fundamental axes, as a function of projected ellipsoidal radius. L ower right :
True radial and tangential velocity dispersion, and velocity anisotropy parameter, as a function of ellipsoidal radius.
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cusp the projected velocity dispersions are commensurate.
Interestingly, the anisotropy parameter, b \ 1 [ Sv

t
2T/Sv

r
2T,

becomes negative near the black hole, as many radial orbits
are given a large tangential component. This is consistent
with models of stellar orbits around a black hole that is
adiabatically grown, where b \ [0.3 (Goodman & Binney
1983 ; Quinlan et al. 1995). Exterior to the black holeÏs
radius of inÑuence, the system is radially anisotropic
(b [ 0), as expected for a triaxial galaxy.

Structurally, the most dramatic change induced in the
model by the black hole is the strong shape gradient as one
moves inward (from b, c\ 0.9,0.8 at log q\ 0 to
b, c\ 0.95,0.92 at log q\ [2). This signiÐcant central
rounding may arise if box, boxlet, and eccentric tube orbits
are lost to stochasticity near the black hole (e.g., Norman et
al. 1985 ; Gerhard & Binney 1985), yet survive at larger
radii. However, even the nearly spherical central regions
may host signiÐcantly triaxial dynamics, as pointed out by
Statler (1987) and Hunter & de Zeeuw (1992). Clearly, a
more rigorous orbital analysis is warranted ; we present this
analysis in the next section.

4. ORBITAL PROPERTIES

In equilibrium, the structure of a galaxy and its orbital
phase space are closely related via the collisionless Bolt-
zmann equation. Since the intrinsic shape of an elliptical is
dictated by the time-averaged conÐguration space density
of the orbits of its stars, the shape of the galaxy may change
with time, or with radius, in response to a changing poten-
tial. Hence information can be gleaned about galactic struc-
ture through the analysis of orbit families and their
subsequent stability in our model. Both two- and three-
dimensional analyses are useful : planar orbits are subject to
less numerical scattering and provide surfaces of section
that are easy to analyze and can be compared to previous
studies, while three-dimensional orbits directly trace the
particle distribution and populate resonances that do not
project cleanly onto a plane.

Using the automated orbit classiÐer described in Paper I,
we analyzed both the two-dimensional phase space along
the x-y and x-z planes (where, as always, we take x, y, and z
to be aligned with the major, intermediate, and minor axes,
respectively) and the three-dimensional phase space popu-
lated by the particles at T \ 40. We remind the reader that
the initial state of this model (the preÈblack hole stage) is
the same model analyzed in Paper I, so a direct determi-
nation of the e†ect of the black hole can be made by con-
trasting the Ðgures in Paper I to those here. As before, we
exploited the eightfold symmetry of the potential to mini-
mize noise in the particle distribution. Orbits were typed by
the resonances in the dominant Fourier frequencies of the
particleÏs motion in each plane (see Paper I for more infor-
mation on these techniques). Following previous work, we
identiÐed stochasticity by searching for a signiÐcant change
in the fundamental frequency over two time intervals (Paper
I ; Valluri & Merritt 1998). Each time interval was com-
prised of 50 orbital periods of a long axis tube at the energy
of the orbit in question.6 Each orbit was integrated for a
total of B200 orbital times, or until a hard limit of

6 Hence, each integration interval corresponds to 200 dynamical times.
We note that Paper I erroneously stated that each time interval corre-
sponds to 12.5 dynamical times ; however, this misstatement did not a†ect
any of the conclusions in that paper.

T \ 8000. This hard limit was chosen to correspond to
greater than a Hubble time of evolution in the model when
it is scaled to real galactic units for a galaxy atM

V
\ [21.6.

At in such a galaxy, the total integration is Btwo3R
eHubble times, where each integration interval is over 11

Gyr at this hard limit.
We have simpliÐed our identiÐcation of strongly chaotic

orbits somewhat from the method used in Paper I. Before,
we followed the convention of Valluri & Merritt (1998) to
deÐne chaotic orbits. SpeciÐcally, an orbit was considered
strongly chaotic if where and*f\ Â f1 [ f2 Â /f0 T [ fcrit, f1are the dominant frequencies at the Ðrst and second timef2intervals, is the frequency of a tube about the long axis, Tf0is the time between the sampled intervals, and is thefcritcritical threshold for the onset of a strongly chaotic orbit.
For the black holeÈless model, we set the following chaotic
threshold : The time dependencefcrit \ 0.05(T /t200)1@2. JT
was designed to describe the di†usion of chaotic orbits as a
random-walk through phase space (Valluri & Merritt 1998).
This threshold isolated orbits that were so chaotic that the
orbital shape was strongly altered over two successive time
intervals.

In the set of calculations for Paper I, the precise choice of
was not important, since nearly every orbit was stablefcritand therefore had a negligible *f. However, adding a black

hole ampliÐes the level of chaos in a model, yields a wide
spectrum of values of *f, and requires a more careful study
of chaotic thresholds. In particular, histograms of chaotic
subsamples preliminarily selected with the previous cri-
terion did not show a strong (i.e., di†usion signal.JT )
Concerned that the rising threshold would underestimate
the level of chaos in our models, we devised a new, simpler
technique to identify chaotic orbits. In this paper, we iden-
tify chaos as where is a constant*f\ Â f1 [ f2 Â /f1 [ fcrit, fcritempirical threshold that corresponds to the 95th percentile
of the *f distribution for the most bound sample (at
E\ [1.0) before the black hole is grown. For that sample,

Choosing the threshold in this manner provides*fcrit \ 0.1.
us with a comparative measure of the black holeÏs e†ect on
the phase space distribution. Additionally, the threshold
was high enough to ensure that the orbits we have identiÐed
as chaotic did not arise from the much slower di†usion of
orbits due to potential noise or integration error. We tested
the sensitivity of our results by sliding the threshold from

to and found that the percentage of chaotic0.5fcrit 2.0fcritorbits was una†ected in this range. In other words, chaotic
orbits in this sample typically had *f far larger than the
threshold set by any of these techniques.

4.1. Planar Orbit Structure
Figure 4 shows surfaces of section as a function of

binding energy for orbits conÐned to the x-y and x-z planes.
As in Paper I, orbits were sampled to populate the surface
of section evenly. In the inner regions ([1.0 \E\ [0.65),
the box and boxlet phase space is entirely replaced by
chaotic orbits. In addition, there is an easily discernible
population of eccentric tubes that are also driven chaoticÈ
on the surface of section, these orbits occupy the high-
velocity boundary at a given initial position. While the
tubes with larger pericenters were una†ected by chaos,
eccentric tubes all sample more of the center of the potential
and are more likely to be driven chaotic. We note that the
stable loops seen in these tightly bound slices are not a
result of motion inside the black holeÏs Keplerian potential ;
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FIG. 4.ÈSurfaces of section for the triaxial model at T \ 40, plotted for orbital populations at di†erent binding energies. Top: Surfaces of section for
orbits in the x-z plane. Bottom: Surfaces of section for orbits in the x-y plane. Orbits are coded by color : chaotic orbits are red ; loops are green ; bananas are
yellow; Ðsh are blue ; pretzels are aqua ; and higher resonance boxlets and pure boxes are black. This plot was created by taking an average of all orbit types at
a particular position on the surface of section.

even at E\ [1.0, the mean ellipsoidal radius SqT \ 0.2 is
far larger than the range of inÑuence of the black hole.

The outer regions of the model responded to the growth
of the black hole in a strikingly di†erent manner. The
number of orbits identiÐed as strongly chaotic fell dramat-
ically compared to the inner regions, and these chaotic
orbits were randomly situated in box and boxlet phase
space. The (2, 1) resonant boxlet (““ banana ÏÏ) is prominent
and stable in the x-z plane of this model, although it does
not occur in the original model without a black hole (see
Miralda-Escude & Schwarzschild 1989 or Lees & Sch-
warzschild 1992 for more information on boxlet
nomenclature). In the x-y plane, the resonant orbit islands
are very weak, particularly in the E\ [0.40 slice where
chaotic and regular resonant orbits seem to be mixed ran-
domly throughout box phase space. The relative number of
these scattered boxlet orbits is consistent with the orbit
identiÐcation error of 1%.

A common interpretation for the lack of strong chaos in
the weakly bound orbits is that they have been integrated
for far fewer dynamical times than the highly bound orbits.
For example, orbits in the innermost slice (where SqT \ 0.2)
were integrated for while orbits in the outermostB200torb,slice (with SqT \ 3.9) had typically reached only B50torbbefore the hard limit set by the analysis routine. Thus, under
this interpretation, there has simply been less time to
observe substantial stochastic di†usion in these outermost
orbits, and a longer integration might produce the same
fraction of chaotic orbits as is seen in the more tightly
bound set. To test this hypothesis, we integrated a subset
of the lesser bound box and boxlet orbits (E\
[0.40 ;SqT \ 1.3) in the x-z plane for B625 orbital times
(see Fig. 5). After 200 orbital times, the orbits were as
dynamically evolved as the most tightly bound orbits, but
the fraction of box and boxlet phase space that had gone
chaotic only reached 7% (vs. B100% of the box and boxlet
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FIG. 5.ÈPercentage of chaotic orbits as a function of dynamical time
for a subset of centrophilic planar x-z orbits at E\ [0.6.

phase space at E\ [1.0). As the integration time increased
to well over two Hubble times, the fraction of chaotic orbits
also went up. However, although the percentage of chaotic
orbits in this subset increased from 2% to 16% over the
course of the experiment, even after a scaled time of 29 Gyr,
many stable centrophilic orbits persist, including a popu-
lation of nonresonant boxes. To test the extent of numerical
error over long integrations, we also integrated the same
subset of orbits (i.e., x-z plane, E\ [0.40) from our initial
triaxial model without the black hole and in this experi-
ment, only 4% of the orbits were considered strongly
chaotic well after two Hubble times. So, the chaos present in
these weakly bound orbits is a real e†ect, not simply an
artifact of the longer integration time. Furthermore, the
long integration time ensured that the remaining stable box
orbits were stable despite repeated passes through the black
holeÏs sphere of inÑuence.

4.2. T hree-dimensional Orbit Structure
To study the orbital evolution induced by a central black

hole, it is not sufficient to consider only two-dimensional
surfaces of section. Orbits in triaxial galaxies are not simply
conÐned to the major and minor planes ; there are several
important three-dimensional resonances that serve to
support a triaxial Ðgure and that do not project down onto
an identiÐable resonance in a principal plane. Furthermore,
the fact that two-dimensional orbits are conÐned to a plane
dampens the onset of chaos. For example, in a singular
logarithmic triaxial potential, much of the chaos present is
in the three-dimensional orbits ; this chaos is not reÑected in
the orbit families moving in the principle planes (e.g.,
Papaphilippou & Laskar 1996).

With this in mind, we also investigated the three-
dimensional orbital content as traced by the particle dis-
tribution. As in Paper I, we sorted the Ðnal particle
distribution according to binding energy and binned the
distribution into nine slices of equal particle number. Figure
6 shows the percentage, by mass, of tube families versus

FIG. 6.ÈPercentage of tubes vs. chaotic orbits in the three-dimensional
sample as a function of binding energy. Open symbols represent tubes in
general ; open squares represent short axis tubes, open triangles show long
axis tubes, and open circles show the (1, 1, 1) resonance, or planar loop
family. The crosses represent strongly chaotic orbits.

chaotic orbits as a function of binding energy and radius.
Notice that the predominant orbit families in this model are
tubes, and the precipitous drop-o† in the number of chaotic
orbits with decreasing binding energy, as seen in the planar
sample, is also reÑected here.

Figure 7 presents the particle distribution on a frequency
map of versus after 50 orbital times. Since thef

y
/f

z
f
x
/f

zinitial conditions were set by the actual N-body model, this
frequency map is not evenly sampled. Furthermore, since
only the initial frequencies are shown, this plot does not
show orbital chaos. What is shown, however, are the reso-
nant regions that are populated by the particles in this
model. In the most bound slice (E\ [1.0), it is clear that
nearly the entire population is composed of tube orbits,
since practically all of the 40000 orbits in this slice lie along
the (0,1, [ 1) or (1, [ 1,0) resonance lines, marking the inner
long-axis tubes and short-axis tubes, respectively. In fact,
the only signiÐcant area that does not lie along these lines
also contains tube orbits ; the clump near ( f

x
/f

z
, f

y
/f

z
) \

(0.8, 0.98) contains orbits that project to long axis tubes in
the x-y plane and low-order boxlets in another. The major-
ity of these tube orbits are well outside the Keplerian poten-
tial of the black hole ; these tubes are instead dictated by the
nearly spherical stellar potential which extends out past
log q\ [1. To underscore this point, we note that most of
these tubes in this energy slice clump near the (1,1,1) reso-
nance, suggesting that the potential is not just axisymmetric
here, but nearly spherical (However we note that, by itself, a
predominance of (1, 1, 1) resonant orbits does not necessar-
ily mandate a spherical density distribution [Statler 1987 ;
Hunter & de Zeeuw 1992].)

As we move out in the model to the least tightly bound
particles, although the strong presence of tube orbits
remains, low-order boxlets are discernible, as in the (1, [ 2,
1) resonance at E\ [0.65, and the (2, 0, [ 3) resonance



824 HOLLEY-BOCKELMANN ET AL. Vol. 567

FIG. 7.ÈFrequency map for the triaxial model at T \ 40, plotted for orbital populations of di†erent binding energies. The gray scale represents the
number of orbits at a given frequency ratio. The lightest grey is 1 orbit, while black is greater than 50 orbits. The diagonal line corresponds to short axis tubes,
and the horizontal line at corresponds to long axis tubes.f

y
/f

z
\ 1.0

at E\ [0.2 and [0.4. These Ðnal two panels strongly
resemble the frequency maps for the same energy slices in
the model without a central black hole (see Paper I). This,
along with the lack of shape evolution beyond log q\ 0,
indicates that the e†ect of the black hole does not strongly
alter the outer regions of the model over galactic evolution-
ary timescales.

The general result that more loosely bound box orbits
persist even well after a Hubble time is not new. Both analy-
tic estimates and early numerical simulations indicated that
while an unsoftened black hole induces stochasticity in
nearly all of the box and boxlet orbits, the loss of triaxiality
is conÐned to the center. For example, Gerhard & Binney
(1985) modeled the disruption of planar box orbits as a
series of discrete scattering events by a MBH \ 0.02Mcoreblack hole and found that, in a Hubble time, box orbits
extending far outside the core are unlikely to have experi-

enced enough pericentric passes to have been substantially
scattered. In a fully self-consistent N-body simulation of
black hole growth in a postcollapse triaxial potential,
Norman et al. (1985) showed that a black hole causes box
phase space to be replaced with fully stochastic orbits on a
timescale proportional to an orbitÏs dynamical time. This
was taken to be consistent with the black hole scattering
picture, with the caveat that the small number of particles in
the simulation could result in an additional numerical
source of scattering by two-body relaxation.

However, recent work has suggested that the trend
toward stochasticity is a more rapid and a more global
phenomenon. Merritt & Quinlan (1998) conducted self-
consistent N-body experiments of black hole growth in tri-
axial models and determined that black hole masses greater
than 0.003 drive the galaxy toward axisymmetry andMgalthat global stochasticityÈwhere the axisymmetry extends
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well outside the half-mass radius and evolves on the order
of an orbital periodÈoccurred at OurMBH B 0.3Mgal.more subtle and local evolution is not necessarily at odds
with these results. The study conducted by Merritt &
Quinlan involved galaxies that were more triaxial than
ours, constructed from subvirial collapse conditions and
possessing Ñat (c \ 0) density proÐles. While Merritt &
Quinlan also develop a central (c D 2) cusp in response to a
growing black hole, their di†erential initial conditions and
density structure leads to an initial orbital population with
a higher fraction of box orbits than found in our cuspy
triaxial models (Statler 1987 ; Hunter & de Zeeuw 1992 ;
Arnold et al. 1994). Furthermore, the growth of a central
black hole in a c \ 0 model represents a more signiÐcant
perturbation to the central potential than in our c \ 1
models. Even with identical initial density proÐles, though,
a direct comparison is complex. For example, using Sch-
warzschildÏs (1979) method of reconstructing a c \ 0.5
potential via a judicious selection of orbit libraries, Valluri
& Merritt (1998) found that slightly di†erent initial minor
axis Ñattenings give di†erent results for the relative fraction
of tightly bound and less bound chaotic orbits. Moreover,
the degeneracy between a given physical shape and its pos-
sible orbital content makes any particular solution for the
orbital behavior nonunique. It is apparent from our study,
though, that there exists at least one set of orbit families
that generate a triaxial Ðgure and respond to an adia-
batically growing central potential in such a way as to pre-
serve its global shape over long timescales.

4.3. Discussion
It is clear that the onset of chaos in the most tightly

bound orbit families leads to a rapid change in the inner
structure of the model galaxies. What is less clear is the
speciÐc agent driving the chaos in the systemÈis it scat-
tering by the central black hole itself, the e†ects of the
steepened stellar density cusp, or something else entirely?
One way to check if the stellar cusp is responsible for the
chaos is to remove the black hole and categorize the orbits
that result from the c D 2 frozen stellar potential. Although
this is not a self-consistent galaxy model, it is a useful tool to
gauge the relative importance of the black hole to the steep
stellar cusp (and its spherical stellar potential). We inte-
grated a subset of particles in the E\ [0.65 energy slice in
the purely stellar potential for a total of and classi-200torbÐed the orbits in the manner described previously. In both
the two- and three-dimensional orbital analysis, we Ðnd
that rapid chaos is strongly suppressed when the black hole
is removed. Therefore, it seems clear from this experiment
that the steep stellar cusp is not the source of strong chaos
in these models. This result is interesting in light of the work
of Merritt & Fridman (1996), which links the rapid onset of
global chaos to the presence of steep (c D 2) density cusps in
galaxies. Earlier work by Schwarzschild (1993), however,
demonstrated the secular stability of c D 2 density cusps in
scale-free triaxial logarithmic potentials, more in line with
our results. These di†erent conclusions indicate that the
connection between cusp slope, Ðgure shape, and orbit sto-
chasticity may well be extremely sensitive to the various
orbit families initially present in the model.

While the presence of a black hole is necessary for driving
chaos in our models, the mechanics of this process are less
clear. Under a simple black hole scattering model, chaotic
orbits should have moreÈor closerÈpericentric passes

within than stable ones, but this is not the case in ourrBHsample. In fact, the degree of stochasticity depended on
neither the number of pericentric passes within nor onrBHthe minimum So, while the black hole does inducerperi.strong chaos, it seems not to do so through a simple scat-
tering process. Another possibility is that chaos is driven by
the transition between the inner spherical Keplerian poten-
tial of the black hole and the outer triaxial potential of the
galaxy. In this picture, weakly bound box orbits in the outs-
kirts of the model may spend too little of their orbital
period in the inÑection region to be signiÐcantly perturbed,
and are thus not driven stochastic at all. In our simulations,
however, there was no strong correlation between *f and
the time spent within the inÑection region, leaving open the
question of what drives chaos. In truth, however, the graini-
ness of the potential makes it difficult to disentangle the
subtleties of chaos from numerical noise in the potential, so
that analytic studies are better suited for this question.

In the outer regions, orbits stay regular even after repeat-
ed passages near the potential center. It is possible that
many of these orbits are actually chaotic orbits that are
““ sticky ÏÏ (Siopis & Kandrup 2000), with a di†usion time-
scale that is much longer than a few dynamical times. The
course-grainedness of our potential seems to argue against
this explanation ; a course-grained potential e†ectively
creates holes in the Arnold web (Arnold 1964) through
which an otherwise conÐned orbit may escape. In addition,
we observed the same e†ect in the planar orbit sample, and
Arnold di†usion does not occur in two-dimensional poten-
tials (Merritt & Fridman 1996). It seems likely, then, that
the regularity of these orbits is real.

Issues of orbital chaos and regularity aside, our galaxy
model maintains its original degree of triaxiality on a global
scale despite the presence of a massive central black hole.
The orbit analysis described in ° 4 indicates that the model
will remain relatively stable for as long as a Hubble time. It
is therefore interesting to compare this stable galaxy model
with observations of real elliptical galaxies.

Initially, our scaling parameters were chosen to place the
model on both the global and the core fundamental planes.
After the evolution in structural and kinematic properties
driven by the black hole, does the model still obey these
relations? In the case of the global fundamental plane, the
answer is certainly yes : the changes in the velocity disper-
sion and radial density proÐles occur only in the central
regions (log r\ [1.5, or pc), leaving the globalr[ 100
properties of the model unchanged. For the core fundamen-
tal plane, the increase in central cusp slope (from c \ 1 to
c D 2) represents a signiÐcant change, leaving the model
with a cusp slope that is perhaps a bit too steep for its scaled
luminosity of (see e.g., Gebhardt et al. 1996).M

B
\ [21.6

However, the relationship is quite steep and showsc [M
BsigniÐcant scatter at intermediate luminosity (Gebhardt et

al. 1996), so that this discrepancy may not be signiÐcantÈ
ellipticals with show cusp slopes of c \ 1È2.M

B
D [21

Scaling our model to more luminous ellipticals begins to
present problems, however, since adiabatic black hole
growth models generically predict cusp slopes steeper than
that observed in luminous ellipticals (e.g., Bahcall & Wolf
1976 ; Young 1980 ; Goodman & Binney 1984 ; Sigurdsson
et al. 1995 ; Quinlan et al. 1995).

Turning to the issue of triaxiality in ellipticals, the tri-
axiality parameter of the model at the half-mass radius is
T \ (1 [ b2)/(1 [ c2) \ 0.5, with a Ñattening c/a\ 0.8.
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Unfortunately, a problem arises in deÐning the best sample
of ellipticals with which to compare our model. To select for
black holeÈembedded ellipticals, samples of radio-loud
ellipticals might seem the best choice, but luminous ellip-
ticals typically have a Ñatter cusp slope than that used our
models. On the other hand, although a more general sample
of ellipticals may possess a wider range of cusp slopes,
including steeper cusps like that of our model, they may
also harbor black holes at a reduced rate when compared to
AGN-selected samples. Bearing these caveats in mind, we
compare the structural properties of our model to the tri-
axiality inferred for di†erent samples of elliptical galaxies.
Using a combination of photometric and kinematic data,
Bak & Statler (2000) show that the Davies & Birkinshaw
(1988) sample of radio galaxies is characterized by a range
of shapes biased toward prolate Ðgures but thatÈas long as
ellipticals are not disklike rotatorsÈtriaxialities like that of
our model are common. In addition, the typical Ñattening of
the galaxies in that sample is c/aD 0.7, similar to, although
somewhat Ñatter than, our models. Studies of larger
samples of ellipticals (not radio selected) also show charac-
teristic Ñattening similar to that of our model (e.g., Ryden
1992 ; Tremblay & Merritt 1995). While a more detailed
analysis of triaxiality in black hole embedded ellipticals
must await more complete data, at face value our model
does represent well the observed structural properties of
elliptical galaxies.

The connection between supermassive black holes and
triaxiality has important consequences for both secular and
hierarchical galaxy evolution models. For example, it has
been suggested that if a central black hole drives its host
galaxy toward axisymmetry globally and rapidly, one pos-
sible di†erence between an intrinsically bright elliptical
(thought to be more triaxial) and a faint elliptical is that the
stars in the faint elliptical, with their shorter crossing times,
have had more interactions with the black hole and the
galaxy is thus more dynamically evolved (Valluri & Merritt
1998). The black hole/bulge mass relation can be explained
in terms of galaxy evolution (Valluri & Merritt 1998) as
well. In this scenario, spiral galaxies begin as gas-rich disks
with a small triaxial bulge. The triaxial potential supports
fueling of the central black hole through material falling
into it on box orbits (e.g., Norman & Silk 1983) or by gas
traveling on intersecting orbits which drive dissipation and
inÑow. The black hole grows until a critical mass of ^few
percent which breaks triaxiality and strongly curtailsMgal,the gas inÑow. Subsequent disk-disk merging can create a
elliptical galaxy, and black hole feeding ensues in this larger
triaxial bulge until the critical black hole mass is achieved.
In both types of galaxies, the process is the same : once the
black hole mass fraction is large enough to disrupt box
orbits, gas inÑow is sharply diminished.

The black hole in our model induced axisymmetry out to
several hundred parsecs and resulted in a clearly observable
change in the shape and structure of the galaxy on these
scales. Since the transformation did not take place globally,
it is tempting to say that the black hole mass/bulge mass
relation observed in the current galaxy population is not
simply an artifact of gas inÑow in a more triaxial-shaped
progenitor population. However, it is not immediately clear
how the more localized axisymmetry we observed would
a†ect gas inÑow and subsequent black hole feeding. While it
is true in our globally triaxial model that gas inÑow from
outside the half-mass radius would never be entirely cut o†,

the behavior of the gas once it hits the axisymmetric region
requires detailed gas dynamical simulations. Nonetheless, it
is clear that a central supermassive black hole causes dra-
matic and long-lasting changes in the host galaxy over
scales well outside the region in which it dominates the
potential.

Finally, 21 cm observations of elliptical galaxies have
revealed the presence of extended neutral hydrogen disks
and rings in many ellipticals (e.g., Franx et al. 1994 ; van
Gorkom & Schiminovich 1997 ; Hibbard et al. 2001).
Several authors have proposed that these structures are pre-
cursors to ““ disk rebuilding ÏÏ in ellipticals (Schweizer 1998 ;
van Gorkom 2001). If this scenario is correct, there must be
an inward migration of gas in these systems. Triaxiality
o†ers a mechanism to drive this inÑow, but if black holes
were to break triaxiality on large scales, it is difficult to see
how migration and disk building could occur. Our results
alleviate these concerns ; the fact that triaxiality is main-
tained in all but the inner few hundred parsecs of the galaxy
would allow gas to move inward on kiloparsec scales to
perhaps begin the process of disk formation. However, the
modest degree of triaxiality in the model suggests that the
rebuilding timescale may be long.7

5. SUMMARY

Using numerical simulations, we have studied the growth
of central supermassive black holes inside cuspy triaxial
galaxies. Unlike previous self-consistent modeling of black
hole growth in triaxial ellipticals, our calculations employ
progenitor galaxy models that are both triaxial and have
central density cusps typical of observed ellipticals (Holley-
Bockelmann et al. 2000). Inside these progenitors, we adia-
batically grow a central black hole of massMBH \ 0.01Mgal.As the black hole grows, it induces a central cusp (c D 2) in
the stellar density proÐle and a strong rounding of the
central shape of the elliptical. However, while the e†ects of
the black hole do extend beyond its nominal ““ sphere of
inÑuence,ÏÏ out at an e†ective radius the galaxy Ðgure
remains largely unchanged.

To explore the change in the orbital structure induced by
the black hole, we use a combination of Fourier spectral
classiÐcation and axis-crossing pattern recognition to clas-
sify the orbits present in the model. At the most tightly
bound energies, the models are composed entirely of loops,
short and long axis tubes, and chaotic orbits. These chaotic
orbits comprise all of the box and boxlet phase space
present in the original model, and even a population of
eccentric tubes. The outer regions predominantly contain
short axis tube orbits ; however, in these outer regions, there
still exists a modest phase space of boxes and boxlets that
support the large-scale triaxiality of the system. Of these
centrophilic orbit families, there are a substantial fraction
that do not go strongly chaotic, even over thousands of
dynamical times. While the presence of noise in the poten-
tial expansion limits our ability to detect mild chaos in the
orbit populations, we believe that the remaining boxes and
boxlets in the outer regions are stable enough to continue to
support the global shape of the galaxy for a Hubble time.

While massive black holes act as agents of chaos in the

7 This is particularly problematic for the very extended (i.e., many R
e
)

rings seen in some ellipticals. In these cases, not only is the dynamical
timescale long, but the dynamics are more likely driven by the structure of
the dark matter halo than by the luminous galaxy itself (e.g., Franx et al.
1994).
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inner regions of our models, they provoke a more modest
response in the outer regions than expected on the basis of
earlier studies (e.g., Norman et al. 1985 ; Merritt & Quinlan
1998). However, those previous studies employed galaxy
models that had Ñat central density ““ cores ÏÏ and were also
signiÐcantly more Ñattened than ours, a combination that
yields a signiÐcantly higher fraction of boxes in the original
orbital families than found in our model. These di†erences
are likely the root cause of the more dramatic evolution
seen in previous calculations. Our galaxy models indicate
that even moderately triaxial ellipticals can host central
massive black holes, in agreement with observational evi-
dence that suggests both that black holes are ubiquitous
(Magorrian et al. 1998) and that triaxiality may be common
(Bak & Statler 2000).

Our more realistic elliptical galaxy models make an

excellent tool for the simulation of several unsolved prob-
lems in elliptical galaxy formation and evolution. such as
the degree of disk rebuilding by large-scale gas inÑow, the
e†ect of satellite infall on the structure of the galaxy, the
interaction between galaxies and their triaxial dark matter
halos, the persistence of central cusps, and the formation of
nuclear disks.
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