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ABSTRACT

We present an analytical theory of thermonuclear X-ray burst atmosphere structure. Newtonian
gravity and diffusion approximation are assumed. Hydrodynamic and thermodynamic profiles are
obtained as a numerical solution of the Cauchy problem for the first-order ordinary differential equation.
We further elaborate a combined approach to the radiative transfer problem that yields the spectrum of
the expansion stage of X-ray bursts in an analytical form in which Comptonization and free-free
absorption-emission processes are accounted for and T ~ r~2 opacity dependence is assumed. A relax-
ation method on an energy opacity grid is used to simulate a radiative diffusion process in order to
match the analytical form of the spectrum, which contains the free parameter, to the energy axis.
Numerical and analytical results show high similarity. All spectra consist of a power-law soft component
and a diluted blackbody hard tail. We derive simple approximation formulae usable for mass-radius

determination by observational spectra fitting.

Subject headings: radiation mechanisms: nonthermal — stars: neutron — X-rays: binaries —

X-rays: bursts

1. INTRODUCTION

First discovered by Grindlay & Heise (1975), strong
X-ray bursts are believed to occur as the result of thermon-
uclear explosions in the bottom helium-reach layers of the
atmosphere accumulated by a neutron star during the acc-
retion process in a close binary system. Since then, dozens
of burster-type X-ray sources were found. One of the dis-
tinctive feature of type I X-ray bursts is the sudden and
abrupt (~1 s) luminosity increase (expansion stage) fol-
lowed by exponential decay (contraction stage). Energy rel-
eased in X-ray radiation during the first seconds greatly
exceeds the Eddington limit for layers above the helium-
burning zone that are no longer dynamically stable. Super-
critically irradiated shells of atmosphere start to move
outward, producing an expanding windlike envelope. The
average lifetime of an X-ray burst is sufficient for a steady
state regime of mass loss to be established when the local
luminosity throughout most of the atmosphere is equal to
or slightly greater than the Eddington limit.

During the last two decades the problem of determining
properties of radiatively driven winds during X-ray bursts
has been subjected to extensive theoretical and numerical
studies. Various theories have been put forward, with grad-
ually increasing levels of accuracy, of the problem descrip-
tion, but only a few approaches have addressed the case of a
considerably expanded photosphere under the influence of
near-Eddington luminosities (London, Taam, & Howard
1986; Ebisuzaki 1987; Lapidus 1991; Titarchuk 1994, here-
after T94). See Lewin, van Paradijs, & Taam (1993) for a
detailed review of X-ray burst studies during the 1980s and
the beginning of the 1990s.

Similarly to the problem of accretion flows, the notion of
the existence of sonic points in continuous flows became a
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natural starting point in the analysis of wind flows from
stellar objects. Ebisuzaki, Hanawa, & Sugimoto (1983, here-
after EHS) investigated the structure of the envelopes with
steady state mass outflow and pointed out the higher
Eddington luminosity in the inner shells due to the preva-
lent higher temperatures and correspondingly lower
Compton-scattering opacities. They showed that the
product of opacity and luminosity remains almost constant
throughout the atmosphere, which is the key assumption of
the model. The existence of windlike solutions for critically
irradiated atmospheres was proved. T94 analytically
studied spectral shapes of the expansion and contraction
stages of bursts. He showed how EHS’s approach to the
hydrodynamic problem can be greatly simplified with the
sonic point condition properly calculated and tied to condi-
tions at the bottom of the envelope. Haberl & Titarchuk
(1995) applied the T94 model to extract the neutron star
mass-radius relations from the observed burst spectra in 4U
1820—30 and 4U 1705 —44.

Nobili, Turolla, & Lapidus (1994, hereafter NTL)
adopted a high-accuracy numerical approach to the
problem of X-ray burster atmosphere structure based on
the moment formalism (Thorne 1981; Nobili, Turolla, &
Zamperi 1991). They integrated a self-consistent system of
frequency-independent, relativistic, hydrodynamical, and
radiative transfer equations over the whole atmosphere
including the inner dense helium-burning shells. Three
important characteristics of X-ray burst outflow were
obtained in this work: the helium-burning zone tem-
perature was maintained approximately at the level of
3 x 10° K, the temperature of the photosphere was shown
to depart appreciably from the electron temperature and to
stay constant at the outer shells, and the existence of the
maximum and the minimum values of the mass-loss rate
was found.

One of the goals of these studies was to provide the algo-
rithm of determination of the compact object characteristics
by analyzing observational data. With the advent of high
spectral- and time-resolution observational instruments
(such as Chandra, Rossi X-Ray Timing Explorer [RXTE],
Unconventional Stellar Aspect [USA], and X M M-Newton),
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the task of obtaining a suitable tool for fitting the energy
spectra became extremely important. Despite numerous
earlier studies of X-ray burst observations, recent develop-
ments have shown a growing interest of the astrophysical
community in this area (Strohmayer & Brown 2002;
Kuulkers et al. 2002a).

Obviously, the problem of radiative transfer in rela-
tivistically moving media is a very complicated one and,
under rigorous consideration, it must be solved numeri-
cally. In this paper we develop an alternative approach that
allows both numerical and analytical solutions and suc-
cessfully accounts for all crucial physical processes
involved. We show how this problem, under some appropri-
ate approximations, yields the spectrum of radiation from
spherically symmetric outflows in an analytical form. We
concentrate on the case of extended atmospheres with
inverse cubic power dependence of the number density on
the radius, which is more appropriate for the expansion
stage but can also be employed for description of the con-
traction as a sequence of models with decreasing mass-loss
rate.

We represent a numerical approach to the problem that
then provides the validation of our analytical description.
We adopt the general approach formulated in EHS and
developed in T94. The problem of determining profiles of
thermodynamic variables of steady state radiatively driven
outflow was solved in T94. The problem is reduced to the
form of a first-order differential equation, which allows easy
and precise numerical solutions. For completeness we
present this method in § 2. Using atmospheric profiles
obtained for different neutron star configurations, we solve
the problem of radiative transfer by a relaxation method on
an energy-opacity logarithmic grid. We perform tem-
perature profile correction by applying temperature equa-
tions to the obtained spectral profiles. The basic formulae
are given in § 3.1. Then, the analytical description of the
problem is represented in detail. The analytic solution of the
radiative transfer equation on the atmospheric profile
7 ~ r~ % is presented in T94. Here, we review the solution by
carrying out the integration without introducing any
approximations. In § 4 we compare and match our analyti-
cal and numerical results to describe the behavior of the free
parameter. We finalize our work by examining the proper-
ties of our analytic solution, combine it with the results of
§ 4, and construct the final formula for fitting the spectra in
§ 5. The discussion of our method along with some other
important issues concerning the problem being solved are
presented in § 6. Conclusions follow in § 7.

2. HYDRODYNAMICS

As we already mentioned, the calculation of X-ray burst
spectra can be treated as a steady state problem. To justify
this assumption one has to compare the characteristic times
of phenomena considered. The timescale for the photo-
sphere to collapse can be estimated as follows:

e dr
tcoll = s
rs vcoll

2GM
=),

where

Ucont ~
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Here r, denotes the sonic point radius, which is adopted as
the outer boundary of the photosphere throughout this
paper. The dimensionless luminosity is | = L/Lgq4, Where
the Eddington luminosity is given by

4ncGM
-

Lgaq = (1)
The opacity x is expressed by the Compton scattering
opacity with a Klein-Nishina correction by (Paczynski
1983)

K—ixo
(1 +aT)’

Ko = 0.2(2 — Yy,) cm? g™ ', with Yy, being the helium abun-
dance, and a« =22 x 1072 K~ ! It is exactly this tem-
perature dependence of the opacity that is responsible for
the excessive radiation flux, which appears to be super-
Eddington to the outer, less hot layers of the atmosphere. In
the framework of strong X-ray bursts the following condi-
tion are usually satisfied: r, 2 10> km > r,, [~ 0.99.
Puttingm = M, /M ~ 1 results in a time of collapse of the
order of several seconds, the observed time that a type I
X-ray burst usually lasts. For evaluation of the time for
photons to diffuse through the photosphere, we note that
the number of scattering events is N ~ 12, (see, for example,
Rybicki & Lightman 1979), where 7, is the total opacity of
the photosphere, which is ~10. The time for a photon to
escape is

)

2
Tph Ton
tesc~$~%1ph~0.l S.
This indicates that the hydrodynamic structure develops at
least 10 times slower than the photon diffusing time through
the photosphere. Although these timescales can become
comparable in cases of greatly extended atmospheres, gen-

erally a steady state approximation is acceptable.

2.1. Basic Equations for Radiatively Driven Outflow

The problem of mass loss as a result of radiatively driven
wind was formulated by EHS. For the convenience of the
reader we summarize all equations important for the deri-
vations in the following sections and refer the reader to
EHS for details. The system of equations describing steady
state outflow in spherical symmetry consists of a well-
known Euler (radial momentum conservation) equation:

do, GM  1dP

YT pdr=0’ 3
the mass-conservation law
d 2
— (4nrpv) =0, )

dr

the averaged radiation transport equation in the diffusion
approximation

16macr*T? dT

L, = — 5
K r 3p dr b ( )
and the entropy equation
ds 1 dL
T — *=0 6
Tt dnr’p dr ’ ©)
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where P, p, T, s, and L, are, respectively, the pressure, the
density, the temperature, the specific entropy, and the diffu-
sive energy flux flowing through a shell at r.

The outflowing gas is taken to be ideal. The dimension-
less coordinate y, which is the ratio of the radiation pressure
P, to the gas pressure P, is introduced by

p
y=p =B, ™
s Kk op
where u=4/(8 — 5Y,,) and m, are the mean molecular
weight and the proton mass, respectively. Then, the other
thermodynamic quantities are expressed in terms of y and T
as

1\ aT*
P:P,+Pg=<1+—>a—, @
y) 3

_ apm, T°
= ©)
s= <L>|:4y + Iny — <§>ln T:| , (10
pum, 2
h=i<4y+§>T, (11)
um, 2

where h is the specific enthalpy.
The integrals of equations (4) and (3) give the mass flow
and energy flux, correspondingly:

4nripy = @, (12)

2

To make two more integrations, which cannot be per-
formed analytically, the constancy of kL,, which stands for
the integral of equation (5), over the relevant layers is
assumed. In EHS, this assumption is confirmed numeri-
cally. We can also justify it by the following consideration.
At the near-Eddington regime, the radiation pressure aT*/3
is much greater than the pressure of gas almost everywhere
except for the innermost layers adjacent to the helium-
burning zone. Neglecting the gas pressure in equation (3)
and multiplying it by —r?, we get

KL, , dv

Amc GM +r*v o (14)
Here, we moved the first two terms of equation (3) to the
right-hand side and used equation (5) to express the third
term by xL,. For the inner and intermediate layers of the
atmosphere, the last term in equation (14) is negligible, and
the equation reduces to kL, = k, L,. This term can become
considerably large for the outermost layers where L, must
exceed Lgyq. This is also in agreement with observations of
X-ray bursts from which super-Eddington luminosities are
inferred. For the sake of analytical consideration, we con-
sider kL, to be constant throughout the whole atmosphere,
and the third integral is

kL, =k, L, = const . (15)

2
<U——GTM+h>(D+L,=‘P. (13)

Replacing L, of equation (6) with equation (15), the fourth
integral is obtained as

®s + aLyIn T = E = const . (16)

EXPANSION STAGE OF X-RAY BURSTS 1079

Boundary conditions need to be imposed at the bottom
and outer boundaries to determine the four integration con-
stants @, ¥, L,, and E and to obtain a specific solution.

At the bottom of the atmosphere close to the helium-
burning zone there should be a point where the gas and
radiation pressures are equal. As another important
numerical result, EHS showed that near the neutron star
surface the temperature and radius profiles level off with
respect to y, so there is always a point where

r=r, T=Tl;> y=1a (17)

and r, is well approximated by the radius of the neutron
star R, ;. However, T, cannot be considered as a real tem-
perature of the helium-burning shell at the bottom of the
star surface because thermonuclear processes are not
included in the model. The rigorous account of helium
burning in NTL shows that the temperatures of burning
shells vary in a small range of values.

To obtain the outer boundary condition, the concept of
the sonic point is used. For the solution to be steady state
and to have finite terminal velocity, it should pass the sonic
point, where

= (B (K dyr ag
2rs aps = .ump

A+ A0+ y) + 4y 19
ST A43(144y)

where 4 is a quantity related to the ratio of the energy flux
to the mass flux (see eq. [22] below). In EHS this formula
contains a typographical error. We give a proper derivation
of this form for Y, in Appendix C.

2.2. Ordinary Differential Equation Solution of the
Hydrodynamic Problem

T94 has shown how the treatment of the hydrodynamic
problem can be reduced to a Cauchy problem with the
boundary condition determined at the sonic point. This
treatment provides a high-accuracy method of obtaining
the hydrodynamic solution. The crucial point is to relate the
position of the sonic point with the values of the velocity
and the thermodynamic quantities before solving the set of
appropriate hydrodynamic equations. The profile of the
expanded envelope is then obtained as a result of the inte-
gration of a single first-order ordinary differential equation
(ODE) from the sonic point inward up to the neutron star
surface. For completeness we present the details of this
approach.

At the bottom of the atmosphere the potential energy per
unit mass of the gas, GM/r, is significantly greater than the
kinetic energy, v?/2, and enthalpy. Therefore, by ignoring
these terms in equation (13), we obtain the value of the mass
flux:

R
Ty Lpyq - (20

ns

b =

The inner boundary condition (17), the integral (16), and
equation (10) for entropy can be used to find the tem-
perature distribution with respect to y:

T =Ty " exp [— WJ : 1)
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opum, 3
= L,—=. 22
4= o3 22)
The condition at the sonic point (18) allows us to find the
constant '¥':

‘~P=hsCI>+L,(rs)—§G—M(I>. (23)
4 r
Combining the mass- and energy-conservation laws (12)
and (13), the specific enthalpy and density equations (9) and
(11), and eliminating the radial coordinate r between equa-
tions (12) and (13) yields the following dependence of the
velocity derivative v’ with respect to y:

14+4y\1
vy, v) = v[(l +3 %)

rT(8 — 5Yu )1 + 4y)(1 + aT) 4
ity 6 T o(W/® — 022 — h+ GM 1) | 24)

The derivation of equation (24) is given in Appendix D.

By imposing boundary conditions at the bottom of the
extended envelope (at the neutron star surface) and at the
sonic point, we can determine the four integration constants
necessary to obtain a specific solution. One can note the
obvious fact that the bottom of the envelope cannot serve as
a starting point of integration of equation (24) as long as
v, = 0, which introduces uncertainty. Fortunately, we can
calculate parameters at the sonic point in the framework of
our problem description by solving a nonlinear algebraic
equation that involves only y,, the ratio of the radiation
pressure P, to the gas pressure P, at that point. Substitution
of the radial coordinate r; and velocity v, from the defini-
tion of the sonic point position (18), and the sonic point
density p, from equation (9), we find

s

y

— 752

GM k 1/2
rS= ns#mp b US= YSY-.; b
2kY T pm,
_aum, T}
P~ "3k Ty,

and the expression for the temperature given in equation
(21) into the mass-conservation law (12), after some algebra,
give an equation for the value of y,:

y) 2_Y. 272/3
y,=ZIn {[w]
4 Ty, 6 I o
T,
*0.1498 — 5Y,)°PY, y;/m/s} +1. (29

Here r, ¢ and T, , are the neutron star surface radius and
temperature in units of 10° cm and 10° K, respectively.
Since Y, is expressed in terms of y, (eq. [19]), equation (25)
can be solved to determine the value of y,. Knowledge of y,
can then, by substitution in equation (21), yield the value of
the temperature at the sonic point T, and then v, from
equation (18). It is now possible to relate v, to T,, T, r,, and
1y, thus obtaining the analytical expression for the various
dynamical quantities at the sonic point in terms of the
values of the parameters associated with the boundary con-
ditions. To obtain the solution of the hydrodynamical
problem for a particular set of input parameters, we use the
standard Matlab/Octave package function minimizators
and ODE solvers.
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3. RADIATIVE TRANSFER PROBLEM

The radiation field of X-ray burst atmosphere may be
described by the diffusion equation, written in spherical
geometry, with the Kompaneets’s energy operator (see
T94):

2
1(@ Jv_ic‘?Jv):E(Jv_Bv)

3\ 012 rap Ot Olp
KT, o [ o T,
e e v 3g, 422 2
me c’_), xO axo <x0 6x0 JV + T JV> > ( 6)

where x, = hv/kT, is a dimensionless frequency, T;, being
the effective temperature; and oy and ar = orn, are the
coefficients of free-free absorption and Thompson scat-
tering, respectively, whose ratio is given by (Rybicki &
Lightman 1979)

Qg 7/8 Yie 8 Ty 1z
— =123pg78[1 —=°) W — 2
o Pg14< ) ) (xo) T (27)

with

‘P(xo) — W (1 _ e—xoTO/T) X

Here g(x) is the Gaunt factor (Greene 1959)

i) = § ex”Ko(f> :

2

K(x) is the Macdonald function, and g,, denotes the free-
fall acceleration onto the neutron star surface in units of
10*%cms™ 1,

We combine equation (26) with the outer boundary con-
dition of zero energy inflow

aJ, 3
<6‘L’ 2 JV)

and the condition of equilibrium blackbody spectrum at the
bottom of the photosphere, which is represented in a dimen-
sionless form as

=0 (28)

=0

B, = X (29)
Voexp (%o Ty/T) — 1
We will make use of the temperature equation, which is
obtained by integration of equation (26) over frequency.
The opacity operator vanishes as a result of the total flux
conservation with respect to optical depth, leaving us with

kT, ® T, [©
mc; <4J; J,dx, —70 J:) xOJvdx(,)

Ye 7/8 T. 1/2
= 1.23pgz£§<1 —7H> (7")

X [wav Y(xo)dx, — 2—\/5 %] . (30)
0 n 0

In the condition of the extended photosphere of X-ray
bursts, the density is usually very low and the left-hand side
of the last equation can be neglected, reducing the last equa-
tion to the formula for temperature:

T 1 o0 o0
— == XxoJ,dx J,dx, | . 31)
I, 4 <L ° O/J; 0) (
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We will use the last relation to produce a corrected tem-
perature profile for the photosphere where it departs signifi-
cantly from that given by the hydrodynamic solution.

3.1. Analytic Description of Radiative Diffusion

Hydrodynamic profiles calculated in § 2 show that during
the expansion stage in the vicinity of the sonic point v ~
vy(r/r,). Considering this relation to be true throughout the
entire envelope, according to the mass-conservation law, we

can write
p 1 YHe (D
n, =— —_ | =
° m 2 4nm,, vr?

14

GM® Y,
- 1 - He -3 32
87wl m, ( 2 )r (32)

where ® is the mass-loss rate and v, is the velocity of gas at
the sonic point. In this case opacity can be expressed as

© o Co
I=C[ r—;drzﬁ. (33)
Noting that in this case
Foiy
=— 34
=" (34)
we can rewrite the radiation transfer equation in the form
01dJ, 3 3kT,
S2r=""1(U,—B)

T L,J,) . (3%5)

The boundary conditions are given by

Jv |r=m. = Bv(Tth) (36)
at the inner boundary of the photosphere and
4n [© oJ L
H=— — Vg =—5 37
3 ), ot V=0 4nR?2 (37

at the sonic surface. The ratio ag/oa; can be written in the
form

E:1.23 - Y\ 58 % 32 ( 8mp3 \1/2
oy 2 Ot GMO

~ 1—e ™ /(T.\?
X gid'® g1 —e™ <_0> %2 = D¥(x)>*, (38)

3 T

X
where x = hv/kT, and P(x) = §(x)(1 — e~ ¥)/x>.

Stated in this way, the problem of radiative transfer
allows an analytical approach. The solution of the radiative
transfer equation (35) is

87 [TG3/7) 8 _
Bv 24/7r(11/7) I: 24/7 + 5 tth4/7 K4/7(tth) 5 (39)

where K, is the modified Bessel function of the first kind,

and
t=4%/3D¥(x)r"* . (40)

Details of the derivation of this formula are given in Appen-
dix A.

J(t,x) =

3.2. Evaluation of Ty, and T,

The next step is to find the color temperature and to
determine the thermalization depth t,;, where the boundary
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condition (36) is valid. For saturated Comptonization, the
occupation number behaves in accordance with the Bose-
Einstein photon distribution n = (¢*** — 1)1, which might
be described as a diluted blackbody spectrum or a diluted
Wien distribution.

At first we evaluate the color temperature assuming a
blackbody spectral shape. We look for the solution of the
form

R(7)
ec—1"

n(t, x) = 41)
The solution, which is described in detail in Appendix B,
gives for R(t)

23/7 T T 7/4
R“)=1‘m?.h’<m[<a> ] “2)

As long as R(zr) =1 for 7 > 14, there is radiation equi-
librium for optical depths deeper than the photospheric
envelope. The temperature equation in the zone 0 < 7 < 1,

reads
T\* 2H,( 3 [° n*
(70) “® (E L“” * 2)/ 15 X0

where H, = (4nR2,7°/15)/16n> and 1 (<1) is the optical
depth coordinate at the outer boundary of the expanded
atmosphere, r = R (see eq. [35]). This equation can be
rewritten as follows:

<T>4 3%/ + 21,

T,) = 20.R0) “)

Neglecting t; with respect to T and making use of Taylor
expansion (B6) of R(r) we get a constant value of the
temperature

T\* 32%'T(11/7) 3 T2
— ) =-—=———=0.356—. 44
<TO) 8 r(3/7) Tas Tas ( )
Using the notation (see T94 for definition of x,,)
. 2.35
p =24(x,)~In <—> , (45)
Xy
formula (38) becomes
TO 7/2
D =Dy2 4
0< T) s ( 6)

where

Y \=58/2m \3/2( 8703 \ 1/
D,=123[1—-Fe il . s -7/8
=121 () (Ga) o

while we can write for 7,

4\ 6 , -2/7
w=(3v8) = (o)

T 6 —-2/7 _
=T <4—9 P2> Dy . (47)
0

Substituting it into equation (44), we get for T/ T,

T 6 —-2/7 D—2/7
= 0.596(E p2> % ) (48)
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Assuming the same electron number density as in equation
(32), we then express opacity at the neutron star surface t,,
in the form

_ Yae \( o1 \( GMQ
¥ O 1

If we use the dependence of input parameters g,, and ® on
m, 1y 6, T o and Yy, the next useful equations for the color
ratio T/ T, color temperature kT, and thermalization depth
7., are found:

T _ 01912 — Yu)'ry/Gop Y

?0 m3/28 Tb5!194 7 > (50)
KT = 0.4m!/Try 14 Ty 514 1514

X (2 — Yyo) " ¥*p~*"keV (51)
T = 90.5m/ 7y, Y14 T, 314 p)/L4

X (2= Yyo)/tp78T (52)

Here v, g is the sonic point velocity in units of 10® cm s~ 1.

These relations present the final results of our analytical
approach. There is still a lack of completeness due to the
presence of p and v, in the left-hand sides of this system of
equations. The parameter p and the sonic point velocity are
not independent parameters of the problem, but at this
point they cannot be inferred from further analytical con-
sideration. Fortunately, these quantities can be quite well
approximated by a power dependence from m, r, 4, T o,
and (2 — Y,), which is done in the next section.

4. NUMERICAL RESULTS AND COMPARISON WITH AN
ANALYTICAL DESCRIPTION OF THE RADIATIVE
TRANSFER PROBLEM

To confirm the validity of our analytical approach and to
examine the behavior of p and v, in dependence of different
input parameters of the problem, we perform numerical
modeling of the steady state radiative transfer process. The
whole procedure consists of three steps.

First, for a particular model of neutron star, ie., for a
given mass and radius, we obtain a set of model atmo-
spheres for a chosen set of bottom temperatures. These
solutions provide us with runs of thermodynamical and
hydrodynamical profiles, sonic point characteristics, masses
of the extended envelopes, and their loss rates. Second, we
solve the radiative transfer equation (26) on each model
atmosphere obtained with the relaxation method (e.g., Press
et al. 1992) on an energy-opacity grid using logarithmic
scale on both dimensions. The energy range includes 500
grid points. The number of grid points in opacity varies
between 100 and 300. The opacity domain includes the
range 7, < T < Tp,,, Where 7, is the opacity at the sonic
point and 7,,,, was taken large enough to meet the inequal-
ity T, > Ty Safely. We use the mixed outer boundary con-
dition (28). The spectrum at the inner bottom of the
photosphere is taken as a pure blackbody B,. Numerical
calculations of the frequency-dependent radiation field
consist of two runs of our relaxation code. The first run is
performed on a temperature continuum obtained from the
hydrodynamical solution (see § 2.2). We then calculate a
spectral temperature profile using formula (31), which
exhibits a quite expected behavior. At some region this cor-
rected profile departs from the initial temperature profile
and levels off at some constant value in absolute agreement
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with the analytic result of § 3.2. It is also in qualitative
agreement with the NTL self-consistent calculation of the
radiation-driven wind structure of an X-ray burster. A
second run is performed on the corrected profile to get a
more reliable spectrum shape. At the final step we compare
analytical and numerical solutions. The sonic point pro-
vides a natural position to match numerical and analytical
solutions. Combining the sonic point parameters, calcu-
lated through the solution of equation (25) and using rela-
tion (34), we get for the opacity at the sonic point

Ot Yae
= pl 1— . 3
s 2m, Fa s< 2 > 53)

We calculate and plot fluxes given by both methods at
the sonic point. A particular value of parameter p for the
analytic model is obtained by matching the value of kT and
the corrected level of a numerically achieved value of photo-
spheric temperature.

We obtained results for approximately 150 different sets
of values T;, R, M, and Y¥;.. Examples of numerical cal-
culations of spectra for different neutron star models and
fitting them with analytical shapes are presented in Figures
1 and 2. Analytical and numerical shapes match quite well
in the wide range of neutron star surface temperatures, and
both show two distinctive features of outgoing spectrum of
expansion stage: a diluted blackbody-like high-frequency
component and power-law soft excess at the lower part.
Dependence of the sonic point opacity presented by equa-
tion (53) describes correctly the dilution process, indicating
that the assumption of atmosphere structure adopted in the
analytical model is correct.

Tables 1 and 2, which summarize results for two different
neutron star models, are given in order to compare our
results with more rigorous calculations (NTL). Taking
mass-loss rate as an input parameter, NTL obtained pro-
files of different quantities throughout the whole atmo-
sphere. They argued that the temperature of the burning
shell is maintained around 3 x 10° K for all models. The
temperature of photons departs appreciably from the tem-
perature of ambient matter above photospheric radius and
stays practically constant, indicating that radiation
becomes essentially decoupled from expanded media. We
change the bottom temperature in a wide range of values
and infer the mass-loss rate, the mass of envelope, etc.

Our results are in qualitative agreement with NTL. The
crucial physical parameters that define the main spectral
signatures are the photospheric radius r,, and its tem-
perature kT. Runs of the atmospheric profiles obtained by
both approaches are quite similar, although T,, in the
results of NTL is usually 15%-25% greater than in our
models. This difference is explainable. We match isothermal
levels given by numerical and analytical calculations and
define the obtained value as a photospheric temperature.
This is the lowest estimation, because the temperature
profile starts to grow before the bottom of the photosphere
is reached. NTL define T, as a matter temperature atr,,. A
temperature level calculated at the thermalization depth 7,
should compensate the considered difference. The difference
in density profiles, which can achieve a factor of 2, will affect
the spectrum only in the soft part (<0.2 keV) where the
normalization of the power-law component can be changed.
This fact does not diminish the validity of our results. The
soft component of the spectrum can be represented as an
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Fic. 1.—Examples of spectra (left) and temperature profiles (right) obtained for model with m = 1.5, R, = 13.5 km, Y;;. = 1. On the left, the solid line
represents the analytical solution, the dashed line indicates the diluted blackbody level, and the plus signs are the results of a relaxation method simulation.
On the right, the solid line is the temperature profile obtained from the initial hydrodynamical solution, the dashed line is the corrected profile (see text), and

the dotted line is the analytically calculated color temperature level.

independent fitting shape with a normalization included as
an additional fitting parameter. This matter is not crucial at
the moment because of the restricted spectral capabilities of
current X-ray observing facilities. One can also notice a
quick decrease of the envelope mass and point out a wide
variation of T;. This discrepancy can be explained by differ-
ences in model formulations. Specifically, NTL included
helium-burning shells in the model and put the inner
boundary condition on the “real” neutron star surface,
while our model stops where radiation and gas pressures
are equal (y = 1), which is close to but still outside of the
helium-burning shell. In our approach, part of the bottom
of the atmosphere is left out. In fact, the lower the mass-loss
rate, the greater the portion of mass missing beyond the
point where y = 1. This is clearly seen from the tables. The
temperature at the bottom can be considered as an
“effective ” instead of the real temperature of the helium-
burning zone.
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As we have already pointed out, one needs to know the
dependencies of v, and p on input parameters to complete
the analytical description and thus to employ these results
to the fitting of observational X-ray spectra. Analysis of v,
and p runs show that log v, and log p are linear functions of
log T;, log R,, log M, and log (2 — Y;.). We combine all
experiments and fit v, s and p with a model const
x T§ oth ¢m'(2 — Yy,)" by the least-squares method to get

p= 7.69T,;(9"84r,;2'89m°'69(2 _ YHe)—O.ZZ , (54)
v, 5 = 546T; 3717, 87m0 032 — ¥ ) 022, (59)

with maximum errors of parameters less than 1%. The
ranges of parameters included in fitting are 0.3-7.0 for T, o,
0.6-2.0 for r, 4, 0.8-2.7 for m, and 0.3-1.0 for Yy,. These
results can be used to substitute p and v, g in equations (50),
(51), and (52). Now we have a consistent system of equations
that should yield the X-ray spectrum of the burster in the
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F1G. 2.—Same as Fig. 1, but for the model withm = 2.6,R,, = 14 km, ¥, = 1
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TABLE 1

PARAMETERS FOR MODEL m = 1.5, R = 13.5 km, ¥;, =1

’1;7 kT Menv 7; Uy Ts rph
10°K)  (keV) T/T, 14 p @  (10%g (OlkeV) (10°kms™!)  (10°km)  (10° km)
70....... 0.197 0.099 451 1.56 93.9 173.3 0.21 1.31 57.9 4.16
6.5....... 0.208 0.105 44.7 1.64 87.2 128.9 0.22 1.39 51.6 3.71
60....... 0.221 0.111 441 1.75 80.5 93.6 0.24 1.48 45.6 3.28
55....... 0.236 0.118 433 1.87 73.8 66.1 0.25 1.58 39.9 2.88
50....... 0.252 0.127 42.4 2.02 67.1 45.1 0.27 1.70 34.5 2.50
45....... 0272 0.137 41.5 2.20 60.4 29.6 0.29 1.84 29.4 2.14
40....... 0.295 0.148 40.3 242 53.7 18.5 0.32 2.01 24.6 1.80
35....... 0.324 0.163 39.0 271 46.9 109 0.35 222 20.1 1.48
30....... 0.359 0.180 374 3.09 40.2 5.86 0.39 2.50 16.0 1.19
25....... 0.406 0.204 35.6 3.60 335 2.83 0.44 2.85 122 092
20....... 0.470 0.236 334 4.34 26.8 1.16 0.51 3.36 8.83 0.67
1.75...... 0.510 0.257 322 4.85 23.5 0.68 0.55 3.69 7.29 0.56
15....... 0.565 0.284 30.8 5.53 20.1 0.37 0.61 4.12 5.86 0.45
125...... 0.634 0.318 29.2 6.44 16.8 0.179 0.68 4.69 4.53 0.36
11....... 0.686 0.344 28.0 7.18 14.8 0.108 0.74 5.12 3.80 0.30
10....... 0.727 0.365 272 7.78 13.4 0.074 0.78 5.47 3.33 0.27
09....... 0.775 0.389 26.3 8.51 121 0.049 0.84 5.87 2.89 0.23
08....... 0.831 0.417 25.3 9.40 10.7 0.031 0.90 6.36 2.46 0.20
0.7....... 0.898 0.451 24.3 10.5 9.4 0.018 0.97 6.95 2.06 0.17
06....... 0.981 0.492 23.0 12.0 8.0 0.010 1.06 7.69 1.68 0.14
05....... 1.086 0.545 21.6 14.0 6.7 0.005 117 8.65 1.33 0.11
04....... 1.224 0.614 19.9 17.0 54 0.002 1.32 9.95 1.01 0.09
03....... 1.417 0.711 17.8 21.9 4.0 0.001 1.53 11.8 0.71 0.07

@ is in units of the critical mass-loss rate, i.e., divided by Lg,4/c?.

form of a function of only input physical parameters, i.e.,
neutron star mass, radius, surface temperature, and elemen-

tal abundance.

5. FINAL FORM OF THE PROFILE FOR SPECTRAL FITTING

The fact that spectra obtained are blackbody-like almost
everywhere except for small values of energies allows us to

TABLE 2

Vol. 567

proceed with simplification of the formula (39). First we
note that as a result of equation (47) and the smallness of x,

PARAMETERS FOR MODEL m = 2.6, R, = 14.0 km, ¥, =1

TI; kT Menv T.; US rs rph
(10° K) (keV) T/T, Tin p [} (10** g) (0.1 keV) (103 km s~ 1) (10® km) 10% km)
70....... 0.248 0.110 45.1 2.12 56.2 115.8 0.242 1.80 534 3.53
65....... 0.261 0.116 44.5 2.24 522 86.1 0.256 1.90 47.7 3.15
60....... 0.277 0.123 43.6 2.40 48.2 62.6 0.271 2.02 422 2.80
55, 0.294 0.131 42.6 2.58 44.1 44.2 0.288 2.16 36.9 2.46
50....... 0.313 0.139 41.5 2.80 40.1 30.2 0.308 2.32 319 2.15
45....... 0.337 0.150 40.3 3.07 36.1 19.8 0.331 2.52 272 1.84
40....... 0.364 0.162 39.0 3.40 321 12.4 0.359 2.75 22.8 1.56
35....... 0.398 0.177 374 3.82 28.1 727 0.394 3.04 18.7 1.29
30....... 0.440 0.196 357 4.36 24.1 3.93 0.437 341 14.9 1.04
25....... 0.495 0.220 33.8 5.12 20.1 1.90 0.494 3.89 11.4 0.81
20....... 0.570 0.254 315 6.21 16.1 0.78 0.572 4.58 8.24 0.59
175...... 0.620 0.276 30.2 6.97 14.0 0.46 0.623 5.03 6.80 0.50
15....... 0.682 0.304 28.7 7.97 12.0 0.25 0.687 5.61 5.47 0.40
1.25...... 0.763 0.339 27.0 9.33 10.0 0.121 0.770 6.38 4.24 0.32
11....... 0.824 0.366 259 10.4 8.83 0.073 0.833 6.96 3.56 0.27
1.0....... 0.872 0.388 25.1 11.3 8.03 0.050 0.883 7.43 312 0.24
09....... 0.928 0.413 242 12.4 7.22 0.033 0.940 7.98 2.71 0.21
08....... 0.993 0.442 233 13.7 6.42 0.021 1.008 8.63 231 0.18
0.7....... 1.072 0.477 222 15.4 5.62 0.012 1.089 9.43 1.94 0.15
06....... 1.169 0.520 21.0 17.6 4.82 0.007 1.188 10.4 1.59 0.13
05....... 1.292 0.575 19.7 20.6 4.01 0.003 1.313 11.7 1.26 0.10
04....... 1.455 0.647 18.1 249 321 0.001 1.479 13.5 0.95 0.08
03....... 1.682 0.749 16.2 320 241 0.0005 1.710 16.0 0.67 0.06

by = ; 3Dt =2 2:'()‘) ~2 @ (56)

for the soft part of the spectrum. Here x = hv/kT, ¥(x), and
D are defined in formulae (27) and (46), correspondingly.
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Because t,, is large for small values of x, we can use an
approximation of the modified Bessel function of the second
kind for large arguments:

[m _
K, (x) ~ Ee x,

and rewrite equation (39) as follows:

J(r,x) = Bv<i)2
Tth

TG ar 4 e
X [r(11/7) M T e 2]

2
- Bv<i> (232287 + 0.64z4/1%e~27) | (57)
Tth

where

1n(2.35/x)
px '

zZ =

Here we rewrite the dilution factor in terms of opacity using
relation (40). Clearly, the second term in the parentheses of
formula (57) is significant only where z becomes small (x
becomes large) and the spectrum shape “adjusts” to the
blackbody component. In turn, the first term of equation
(57) represents the power-law component of the lower part
of the spectrum with the slope ¢, which can be shown by
simple similarity (see also T94):

2

X
817 _ 6/7
B,z 7= x°",

Another important advantage of this term is that it vanishes
for large values of x. This fact gives us the opportunity to
construct a convenient and accurate formula for obser-
vational spectra fitting. We drop the second term in equa-
tion (57) and adjust to the diluted blackbody shape by
means of a quadratic power combination as follows:

2
J(z, X) = Bv<i> (1 + 5.34z'617)1/2 (58)
Tth

Comparison of the shapes given by formula (58) with the
exact solution of equation (39) shows that they deviate from
each other by less than 2%, which is more than acceptable
in contemporary astrophysical observational data analysis.
Using the explicit form of z and the form of the outgoing
flux, equation (58) can be rewritten in the form

_4ndl,
Y3 dt

8/7) 1/2
— 8_77: B, = I { 5. 34[%] } . (59)
3 2 p°x

F

Equation (53) yields a useful relationship for the dilution
coefficient in the manner similar to equations (50), (51), and
(52):

, 507 x 10757897 T1of17 ptor7
? 1:_2 = mii7 vi/g(z — YHe)1/7 . (60)
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Substituting the results of parameters fitting equations (54)
and (55), we get

8_7'57__331)( 10737, 936 T, 9:29m 0172 —

) 0.58 X
3 4

(61)

Here, again, r, 4, T, o, and m are the neutron star radius,
surface temperature, and mass in units of 10° cm, 10° K
and M, respectively. Now we have provided our spectrum
profile (59) with expressions for parameter p (54) and the
dilution factor (61). These three formulae constitute the final
analytical results of this paper.

6. DISCUSSION

The model and derivations presented above assume that
plasma consists of fully ionized hydrogen and helium. In
reality, this assumption can be too simplistic. For instance,
in the case of the recently discovered superbursts (Serpens
X-1, Cornelisse et al 2002b; KS 1731 —260, Kuulkers et al.
2002b; 4U 1735-44, Cornelisse et al. 2002a; 4U 1820-30,
Strohmayer & Brown 2002), a sufficient fraction of material
should be represented by heavier elements. These long and
powerful bursts are also considered to be caused by the
nuclear runaway burning in the carbon “ocean” under the
neutron star surface. In this section we discuss how our
model can be adjusted for the study of this phenomenon.
The approach as a whole does not change, but some formu-
lae have to be modified in order to account for the different
plasma composition.

First, we note that for plasma that consists of a single
ionized element, we have for the mean molecular weight

A

H=TrZ

and for the electron number density

p
n=——12,

¢ Am,

where A4 and Z are the atomic weight and the atomic
number of the corresponding element, respectively. In the
general case of heterogeneous elements, each represented by

weight abundance Y, we write

1
HESYa+ zy/4 (©2

_P v
ne="1-% 2 ¥ (63)

i i

In the hydrodynamic part of this study, these modifications
will affect only the form of the terms and factors containing
Y- In the radiation-transfer section, the form of o /o will
require more careful treatment. According to Rybicki &
Lightman (1979), the free-free absorption coefficient is

dge = 3.7 x 108T~12Z%n,n,v 731 — e ™G | (64)

where

Y. (65)

[N

Zm=Y 2= ¥
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In the case of a hydrogen-helium plasma this factor is con-
veniently represented by just gas density, i.e.,

Z%n; = ny + 4ny, = a (Y + Yuo) = £ s
mP mP
which yields equation (27). In general, one should use
expressions (64) and (65) to find the correct form of o/oy
relevant to the specific chemical composition.

To be more instructive we conduct such a modification
for the case when the plasma has a substantial carbon frac-
tion. Using equations (62), (63), and (65), we write for
hydrogen-helium-carbon gas:

12 4
C24Yy +9Yy + 7Y, 8 — 5%, —17Yy3°

] .
mF

Iz (66)

2

and

Z7m =L (Y + Y +3%) =L @427y . (69)
ml’ ml’

Correspondingly, in all formulae the factor (2 — Yy,) will be
replaced by (2 — Yy — Yo), and (8 — 5Yy,) by (8 — 5.
— 17Y/3). Additionally, the right-hand side of equation
(27) has to be multiplied by the factor of (1 + 2Y). Clearly,
this modification will add the fifth free parameter Y. to the
model. Using the general methodology outlined in this
paper one should be able to produce solutions for the
parameter p and the dilution factor. The problem that can
arise from the inclusion of heavy elements is the possibility
for heavy ions to be only partly ionized. The ionization
degree can also vary throughout the atmosphere. Because
full ionization and constancy of the gas’s chemical composi-
tion are the basic assumptions of the adopted approach, we
cannot explicitly include the effect of ionization in our
model. Instead, it can be accounted for in a manner similar
to our temperature profile correction. First, the approx-
imate atmospheric profiles can be obtained by assuming full
ionization. Then, the ionization degree can be calculated by
solving the Saha equation and using this solution as a zero-
order approximation of the atmospheric temperature and
the electron number density profiles. Finally, one should
proceed by solving the hydrodynamic problem, in which the
partial ionization of heavy elements is taken into account.

For the reasons mentioned above, it is also a problem to
include the proper physics for the transport of heavy nuclei
to the outer layers. Two major processes can contribute to
this element flow. Bulk motion mixing should dominate in
the convection zone close to the bottom of the atmosphere.
In the outer layers, a strong radiative push should govern
the process because of the large resonance cross sections of
the heavy elements. The general problem of heavy ions
mixing is quite difficult and requires a rigorous approach,
which is outside the scope of this paper.

As far as the boundary conditions are concerned, model-
ing of carbon nuclear flashes will require higher bottom
temperatures. The temperature of the carbon-burning zone
is argued to be about 10!° K (see Strohmayer & Brown
2002), which is close to the upper boundary for the bottom
temperature T, used in our calculations. No peculiarities of
the approach were detected in the case of very high bottom
temperatures. Extremely high temperatures will require the
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correct form of the opacity coefficient x (Paczynski 1983)
instead of equation (2), which represents a simplified
formula for x in the case of modest temperatures.

Another important issue is the correct accounting for the
line emission of heavy elements, which is detected in the
spectral analysis of superbursts. Strohmayer & Brown
(2002) argued that this phenomena is caused by reflection
from the accretion disk during the burst. One can estimate
the disk heating time by using the standard Shakura-
Sunyaev accretion-disk model (Shakura & Sunyaev 1973)
and the fact that approximately 10% of the burst luminosity
is absorbed by the inner part of the disk (Lapidus &
Sunyaev 1985). Simple estimates give a timescale of less than
a second, assuming a mass-accretion rate of the order of
Eddington or less for the disk-accretion regime, and a burst
luminosity greater than 5% of Eddington, which is detected
during several thousand seconds of observation of the
superburst in 4U 1820—30. Consequently, the observed
spectral feature of the Ka line should be generated in the
burst atmosphere rather than in the disk. The disk gains the
temperature of the X-ray radiation very quickly.

Unfortunately, the origin and behavior of the spectral-
line features still remain unexplained. The authors plan to
include the spectral-line effect in the relaxation method in
order to calculate the line emission during the X-ray burst
and to compare this with the observed spectra.

Relativistic effects are usually negligible during the strong
X-ray burst due to the significant radial expansion and the
fact that the outgoing spectrum formation occurs at the
outer layers of the atmosphere. General relativistic effects
become important at the contraction stage when the
extended envelope recedes close to the neutron star surface
(see Lewin et al. 1993). Haberl & Titarchuk (1995) applied
the full general relativity approach for a derivation of the
neutron star mass-radius relation in 4U 1820—30 using
EXOSAT observations and the T94 model.

7. CONCLUSIONS

This paper follows a common idea of the last decade to fit
observational and numerical spectra with some model,
mostly blackbody shapes, to obtain spectral softening/
hardening factors (London et al. 1986). We improve this
technique in several ways. We use more realistic non-
blackbody spectral profiles for fitting, which accounts for
the observed power-law soft excess of X-ray burster spectra.
The temperature profile is corrected by solving the tem-
perature equation. The existence of the isothermal photo-
sphere during X-ray bursts is confirmed numerically and
analytically. Finally, we analytically obtain the multiplica-
tive (dilution) factor, which is not a parameter of fitting
anymore, but self-consistently incorporated in the model.

We show how the theoretical study of the radiatively
driven wind phenomenon can produce useful techniques for
analyzing observational data. It can fulfill the needs of
emerging branches of observational X-ray astronomy, such
as a very promising discovery of superbursts (Strohmayer &
Brown 2002) that exhibit photospheric expansion and spec-
tral modifications relevant to extended atmospheres. We
present the analytical theory of strong X-ray bursts, which
includes the effects of Comptonization and free-free absorp-
tion. Partly presented in some earlier publications, this area
of the study of the X-ray burst spectral formation was
lacking a detailed and self-consistent account. We use
numerical simulation to validate our analytical theory and
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to link our solution to energy axes. We show how this The authors thank Peter Becker for valuable comments
information can be extracted from spectral data. We and suggestions that improved the paper. We are grateful to
provide the analytical expression for the X-ray burst spec- Menas Kafatos for encouragement and to the Center for
tral shape, which depends only on input physical parame- Earth Science and Space Research (GMU) for the support
ters of the problem: neutron star mass, radius, surface of this research. We appreciate the thorough analysis of the
temperature, and elemental abundance. Expressions for presented work by the referee.

color ratios and dilution coefficient are also given.

APPENDIX A

ANALYTIC SOLUTION FOR THE RADIATIVE TRANSFER PROBLEM

We look for the solution of equation (35) in the form

J(z,x) = <L>23v(rth) + J(z,%) . (A1)

Ttn,

The basic idea is to separate the high-frequency (diluted blackbody) and the low-frequency J(z, x) parts of spectrum, where
different physical processes dominate. The Kompaneets operator L, acting upon the blackbody shape vanishes and we
neglect L,(J), which allows us to get the solution of the radiative transfer problem analytically. At this point 7,, is a parameter
of the problem. The algorithm of determination of 7., will be described separately. Substituting equation (A1) into equation

(35), we find for J~(1, X)
2
O (L) Bemy_ Semply ()], (A2)
0t \t 01 T Oy T Oy Tih

with a boundary condition

Jile=eg=0. (A3)
The solution satisfying this condition is presented by
. 1 tth
J(1,x) = — dt , A4
(. x) oW yl(f)L y2(v) f(z)dx (Ad)
where p(t) = 1 and W(r) is the Wronskian:
7
w=|"12 2 Ze, (A5)
Y12 4
Thus, the product
pW=—3

Functions y,(x) and y,(x) are
y1(0) = el [$/3D¥(x)74] (A6)
Y1) = 171{4/7[%\/ 3D¥(x T7/4] > (A7)

where I,(x) and K (x) are modified Bessel functions of the first and the second types, respectively.
The function f(z) in equation (A4) is the right-hand side of equation (A2), namely,

3 o " 7 \2
f(o)= —=—= =3712D¥(x)B,| 1 — | — . (A8)
T Ut Tth
We introduce a new variable ¢:
t =2 /3D¥(x)t"*, (A9)
and rewrite equation (A4) as
- tth t 8/7
J(t,x) = B, t4/7I4/7(t)f t3/7K4/7(t)[1 — <t—> :|dt . (A10)
0 th,

Using the properties of modified Bessel functions

prKp_ldx= —xfK, + C, K,=K_,,
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we evaluate the integrals in equation (A10):

- I'3/7
f K 470t = — K 5(t) 6 = 24T tal” Kaoltw) »
0

o 11
J‘ t' VK @0)dt = —t" K () [§ = F<7>24/7 —ti T Kyt -
o

Finally J(t, x) takes the form

~ r3/7 T(11/7)247
J(t, x) = B, t4/714/7(t){ §4//7) _ o) + 3 [K 1 1/7(tw) — K3/7(tth)]}

8/7
th

- r3/7 TaAy7nY 8§ _
= J(t,x) = B, t4/714/7(t)[ 247 577 + 7 ta*7 Kyt |- (A11)
The last formula is a solution of equation (35). We can simplify this form by noting that we are interested in the solution in the
outer layers of atmosphere (emergent spectrum) where T — 0 and ¢t — 0, and we can use the asymptotic form for small
arguments:

I ~;<z>"
o \2)

Making this substitution and putting the result into expression for J(z, x) we find that second term in J(z, x) cancels with the
diluted blackbody term in J(z, x), which takes the form

#7137 8
J(t: X) = Bv 24/7F(11/7) |: 2417 + ? tth4/7 K4/7(tth) . (A12)

APPENDIX B
SOLUTION OF THE TEMPERATURE EQUATION

Substituting relation (41) into the equation of radiative diffusion, multiplying it by x2, and integrating over the energy range
from x,, to oo (see T94 for definition of x, ), we get

2 © 2 © 2
% <d R 1 dR> J\ X dx — [R(T) _ 1] j exx . % dx R (Bl)

2 g x
dr tdt) ), e€—1 o

where integrals can be approximated as
) 2 ©
x
J —— J xPe ¥dx =2
X 4 e"—1 0

and, noting that o/ar = D¥(x)t3/? ~ D13/%§(x)/x>, we obtain

jw Xt dx ~ Dr3/2fw g dx z% In? 22 Dt%? .

e —1op . X Xy

*

Here we used the fact that §(x) ~ 31n(2.35/x). The equation for R(t) gets the form

@R 1dR 3,225 -
- - _Z - /2 _ — 3/2 _
2. g =g - De3?[R(1) — 1] = D¥2[R(r) — 1] . (B2)

Boundary conditions for this equation are
t—->0, R(1)-0,
T—>00, Rr)-1. (B3)

A general solution of equation (29) is
R() = 1 + 1Z,5(3i/D77), (B4)

where Z,,5(z) = ¢; K4/7(2) + ¢, 14,(z). In derivation of this formula we take into account a well-known theorem from ODE
theory that the general solution of an inhomogeneous ODE is the sum of a general solution of the corresponding homoge-
neous ODE and some particular solution of the inhomogeneous ODE, which is chosen equal to unity in our case. The second
boundary condition and the fact that

K4/7(Z)_’0’ z—> 00,
Iy5(z) >0, z—©
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leave only c¢; nonzero, and the first boundary condition gives us the value for c;, namely,
1 23 /7
lim,_otK4,(4/7/Dc70  T@/T)te’
where we put 7, = (£,/D)~*/". Then R(z) reduces to

Cl=

23/7 T T 7/4
Rr)=1——=——=—K — . BS
0= Tam /[<r> | (5
A Taylor series expansion of K, ; over 1/, yields for R(r) the useful relation
I'(3/7) 7 \?
Rt)=——7=|—| - B6
® =) () (59
APPENDIX C

CONDITION AT THE SONIC POINT (DERIVATION OF Y,)

We can rewrite the partial derivative in equation (18) using the obvious relation

oP\ _op (0T\ _ 0P (dy
op)s 0T \dp)s 0y \op)z’

Differentiating the equation of state (8) we obtain derivatives of pressure:

P 1 1\ 4aT? oP 1 aT*
oT y] 3 ° ay  y* 3’
and differentiating equation (21) with respect to p we get

(-5 9,

On the other hand, differentiation of equation (9) gives us

a/‘mp<3_TZa_T T (9y>=1

3k \y dp ¥ op

Combination with the previous equation yields

ay\ 3k y* !
op)z  aum, T | A+31+4y) |’

or\ 3k y(1 + 4y)
op)s aum,T? [ A+31+4y) ]|

Now, combining all found derivatives we have
oP k 1\ »(1+4y) ] A }
=) == 41 += T
<ap>a um{< +y>[z+3(1+4y> I EEERY)

(a_P> k [/1 +4(1 + )1 + 4y)]T

or, in a more compact form,

(@)

= mm, | A+3(1+4y

which is, in fact, a sonic point condition (18).
APPENDIX D

REDUCTION OF THE HYDRODYNAMICAL PROBLEM TO A FIRST-ORDER ODE

We derive an expression for the derivative of velocity v, through v and y.
We substitute the temperature profile found in equation (21) into equation (5) to obtain p as a function of y:

3 _apm, Ty 5, 12y —1)
p=pQy= TR exp — |
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Using this expression for p(y) and equation (12), we get

o\ _, 30k \!2 6y — 1)
- (= —12,-12 _ [ O2%K 3/22+1/2 -1)2
r=r,y) <4n> p v <4naump TS) y cxp [ PR )

ar_[(3 1\1 6] dr__r
dy |\24 2)y A7 d 20’
Differentiation of equation (21) also gives us

dT B 4y —1) 1 4 T 1
ot _ - o | (SRS D /R
ay ~ eXp[ A ]( Ay i) /1< * y)

By a combination of all these derivatives we obtain
dT dT dy dT <g or dv)-l _ 2T@y+1) [(; N 1) 1 N 12 u']—l

Then we get derivatives

@ dydr dy \oy  away rdy 2 y A v
Substitution of it into equation (5) yields
L - l6nckr’y dT 32nck @y + 1)1 + «T)Tr

pmyx dr  pm, k(2 — Yy) [B/A + D)1/y + 12/4 —v'/v]

From equation (13), however, we also have
> GM ns)

L=%Y-® - —
. (s

Equating the last two expressions for L, we finally find v, as

1+4y\1 752 rT(8 — 5Yy)(1 + 4y)(1 + aT)

A y Ty 6 T o(¥/@ — 0?2 —h+ GM, 1) |’

Herer, ¢ and T, , represent the neutron star radius and the bottom temperature of atmosphere in terms of 10° cm and 10° K,
correspondingly.

v, =f(v,y) = v|:<1 +3
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