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ABSTRACT
We present an analytical theory of thermonuclear X-ray burst atmosphere structure. Newtonian

gravity and di†usion approximation are assumed. Hydrodynamic and thermodynamic proÐles are
obtained as a numerical solution of the Cauchy problem for the Ðrst-order ordinary di†erential equation.
We further elaborate a combined approach to the radiative transfer problem that yields the spectrum of
the expansion stage of X-ray bursts in an analytical form in which Comptonization and free-free
absorption-emission processes are accounted for and qD r~2 opacity dependence is assumed. A relax-
ation method on an energy opacity grid is used to simulate a radiative di†usion process in order to
match the analytical form of the spectrum, which contains the free parameter, to the energy axis.
Numerical and analytical results show high similarity. All spectra consist of a power-law soft component
and a diluted blackbody hard tail. We derive simple approximation formulae usable for mass-radius
determination by observational spectra Ðtting.
Subject headings : radiation mechanisms : nonthermal È stars : neutron È X-rays : binaries È

X-rays : bursts

1. INTRODUCTION

First discovered by Grindlay & Heise (1975), strong
X-ray bursts are believed to occur as the result of thermon-
uclear explosions in the bottom helium-reach layers of the
atmosphere accumulated by a neutron star during the acc-
retion process in a close binary system. Since then, dozens
of burster-type X-ray sources were found. One of the dis-
tinctive feature of type I X-ray bursts is the sudden and
abrupt (D1 s) luminosity increase (expansion stage) fol-
lowed by exponential decay (contraction stage). Energy rel-
eased in X-ray radiation during the Ðrst seconds greatly
exceeds the Eddington limit for layers above the helium-
burning zone that are no longer dynamically stable. Super-
critically irradiated shells of atmosphere start to move
outward, producing an expanding windlike envelope. The
average lifetime of an X-ray burst is sufficient for a steady
state regime of mass loss to be established when the local
luminosity throughout most of the atmosphere is equal to
or slightly greater than the Eddington limit.

During the last two decades the problem of determining
properties of radiatively driven winds during X-ray bursts
has been subjected to extensive theoretical and numerical
studies. Various theories have been put forward, with grad-
ually increasing levels of accuracy, of the problem descrip-
tion, but only a few approaches have addressed the case of a
considerably expanded photosphere under the inÑuence of
near-Eddington luminosities (London, Taam, & Howard
1986 ; Ebisuzaki 1987 ; Lapidus 1991 ; Titarchuk 1994, here-
after T94). See Lewin, van Paradijs, & Taam (1993) for a
detailed review of X-ray burst studies during the 1980s and
the beginning of the 1990s.

Similarly to the problem of accretion Ñows, the notion of
the existence of sonic points in continuous Ñows became a
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natural starting point in the analysis of wind Ñows from
stellar objects. Ebisuzaki, Hanawa, & Sugimoto (1983, here-
after EHS) investigated the structure of the envelopes with
steady state mass outÑow and pointed out the higher
Eddington luminosity in the inner shells due to the preva-
lent higher temperatures and correspondingly lower
Compton-scattering opacities. They showed that the
product of opacity and luminosity remains almost constant
throughout the atmosphere, which is the key assumption of
the model. The existence of windlike solutions for critically
irradiated atmospheres was proved. T94 analytically
studied spectral shapes of the expansion and contraction
stages of bursts. He showed how EHSÏs approach to the
hydrodynamic problem can be greatly simpliÐed with the
sonic point condition properly calculated and tied to condi-
tions at the bottom of the envelope. Haberl & Titarchuk
(1995) applied the T94 model to extract the neutron star
mass-radius relations from the observed burst spectra in 4U
1820[30 and 4U 1705[44.

Nobili, Turolla, & Lapidus (1994, hereafter NTL)
adopted a high-accuracy numerical approach to the
problem of X-ray burster atmosphere structure based on
the moment formalism (Thorne 1981 ; Nobili, Turolla, &
Zamperi 1991). They integrated a self-consistent system of
frequency-independent, relativistic, hydrodynamical, and
radiative transfer equations over the whole atmosphere
including the inner dense helium-burning shells. Three
important characteristics of X-ray burst outÑow were
obtained in this work : the helium-burning zone tem-
perature was maintained approximately at the level of
3 ] 109 K, the temperature of the photosphere was shown
to depart appreciably from the electron temperature and to
stay constant at the outer shells, and the existence of the
maximum and the minimum values of the mass-loss rate
was found.

One of the goals of these studies was to provide the algo-
rithm of determination of the compact object characteristics
by analyzing observational data. With the advent of high
spectral- and time-resolution observational instruments
(such as Chandra, Rossi X-Ray T iming Explorer [RXT E],
Unconventional Stellar Aspect [USA], and XMM-Newton),

1077



1078 SHAPOSHNIKOV & TITARCHUK Vol. 567

the task of obtaining a suitable tool for Ðtting the energy
spectra became extremely important. Despite numerous
earlier studies of X-ray burst observations, recent develop-
ments have shown a growing interest of the astrophysical
community in this area (Strohmayer & Brown 2002 ;
Kuulkers et al. 2002a).

Obviously, the problem of radiative transfer in rela-
tivistically moving media is a very complicated one and,
under rigorous consideration, it must be solved numeri-
cally. In this paper we develop an alternative approach that
allows both numerical and analytical solutions and suc-
cessfully accounts for all crucial physical processes
involved. We show how this problem, under some appropri-
ate approximations, yields the spectrum of radiation from
spherically symmetric outÑows in an analytical form. We
concentrate on the case of extended atmospheres with
inverse cubic power dependence of the number density on
the radius, which is more appropriate for the expansion
stage but can also be employed for description of the con-
traction as a sequence of models with decreasing mass-loss
rate.

We represent a numerical approach to the problem that
then provides the validation of our analytical description.
We adopt the general approach formulated in EHS and
developed in T94. The problem of determining proÐles of
thermodynamic variables of steady state radiatively driven
outÑow was solved in T94. The problem is reduced to the
form of a Ðrst-order di†erential equation, which allows easy
and precise numerical solutions. For completeness we
present this method in ° 2. Using atmospheric proÐles
obtained for di†erent neutron star conÐgurations, we solve
the problem of radiative transfer by a relaxation method on
an energy-opacity logarithmic grid. We perform tem-
perature proÐle correction by applying temperature equa-
tions to the obtained spectral proÐles. The basic formulae
are given in ° 3.1. Then, the analytical description of the
problem is represented in detail. The analytic solution of the
radiative transfer equation on the atmospheric proÐle
qD r~2 is presented in T94. Here, we review the solution by
carrying out the integration without introducing any
approximations. In ° 4 we compare and match our analyti-
cal and numerical results to describe the behavior of the free
parameter. We Ðnalize our work by examining the proper-
ties of our analytic solution, combine it with the results of
° 4, and construct the Ðnal formula for Ðtting the spectra in
° 5. The discussion of our method along with some other
important issues concerning the problem being solved are
presented in ° 6. Conclusions follow in ° 7.

2. HYDRODYNAMICS

As we already mentioned, the calculation of X-ray burst
spectra can be treated as a steady state problem. To justify
this assumption one has to compare the characteristic times
of phenomena considered. The timescale for the photo-
sphere to collapse can be estimated as follows :

tcoll\
P
rs

rph dr
vcoll

,

where

vcollB
S2GMns

r
(1[ l) .

Here denotes the sonic point radius, which is adopted asr
sthe outer boundary of the photosphere throughout this

paper. The dimensionless luminosity is wherel \ L /L Edd,the Eddington luminosity is given by

L Edd\ 4ncGMns
i

. (1)

The opacity i is expressed by the Compton scattering
opacity with a Klein-Nishina correction by (Paczyn� ski
1983)

i \ i0
(1] aT )

, (2)

cm2 g~1, with being the helium abun-i0\ 0.2(2[ YHe) YHedance, and a \ 2.2] 10~9 K~1. It is exactly this tem-
perature dependence of the opacity that is responsible for
the excessive radiation Ñux, which appears to be super-
Eddington to the outer, less hot layers of the atmosphere. In
the framework of strong X-ray bursts the following condi-
tion are usually satisÐed : km lD 0.99.r

s
Z 103 ? rph,Putting results in a time of collapse of them\Mns/M_

D 1
order of several seconds, the observed time that a type I
X-ray burst usually lasts. For evaluation of the time for
photons to di†use through the photosphere, we note that
the number of scattering events is (see, for example,N Bqph2Rybicki & Lightman 1979), where is the total opacity ofqphthe photosphere, which is D10. The time for a photon to
escape is

tesc D
qph2

pT n
e
c
D

rph
c

qph D 0.1 s .

This indicates that the hydrodynamic structure develops at
least 10 times slower than the photon di†using time through
the photosphere. Although these timescales can become
comparable in cases of greatly extended atmospheres, gen-
erally a steady state approximation is acceptable.

2.1. Basic Equations for Radiatively Driven OutÑow
The problem of mass loss as a result of radiatively driven

wind was formulated by EHS. For the convenience of the
reader we summarize all equations important for the deri-
vations in the following sections and refer the reader to
EHS for details. The system of equations describing steady
state outÑow in spherical symmetry consists of a well-
known Euler (radial momentum conservation) equation :

v
dv
dr

] GM
r2 ] 1

o
dP
dr

\ 0 , (3)

the mass-conservation law

d
dr

(4nr2ov) \ 0 , (4)

the averaged radiation transport equation in the di†usion
approximation

iL
r
\ [ 16nacr2T 3

3o
dT
dr

, (5)

and the entropy equation

vT
ds
dr

] 1
4nr2o

dL
r

dr
\ 0 , (6)
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where P, o, T , s, and are, respectively, the pressure, theL
rdensity, the temperature, the speciÐc entropy, and the di†u-

sive energy Ñux Ñowing through a shell at r.
The outÑowing gas is taken to be ideal. The dimension-

less coordinate y, which is the ratio of the radiation pressure
to the gas pressure is introduced byP

r
P
g
,

y \ P
r

P
g
\ km

p
k

aT 3/3
o

, (7)

where and are the mean moleculark \ 4/(8 [ 5YHe) m
pweight and the proton mass, respectively. Then, the other

thermodynamic quantities are expressed in terms of y and T
as

P\ P
r
] P

g
\
A
1 ] 1

y
B aT 4

3
, (8)

o \ akm
p

3k
T 3
y

, (9)

s \
A k
km

p

BC
4y ] ln y [

A3
2
B

ln T
D

, (10)

h \ k
km

p

A
4y ] 5

2
B
T , (11)

where h is the speciÐc enthalpy.
The integrals of equations (4) and (3) give the mass Ñow

and energy Ñux, correspondingly :

4nr2ov\ ' , (12)

Av2
2

[ GM
r

] h
B
'] L

r
\ ( . (13)

To make two more integrations, which cannot be per-
formed analytically, the constancy of which stands foriL

r
,

the integral of equation (5), over the relevant layers is
assumed. In EHS, this assumption is conÐrmed numeri-
cally. We can also justify it by the following consideration.
At the near-Eddington regime, the radiation pressure aT 4/3
is much greater than the pressure of gas almost everywhere
except for the innermost layers adjacent to the helium-
burning zone. Neglecting the gas pressure in equation (3)
and multiplying it by [r2, we get

iL
r

4nc
\ GM] r2v dv

dr
. (14)

Here, we moved the Ðrst two terms of equation (3) to the
right-hand side and used equation (5) to express the third
term by For the inner and intermediate layers of theiL

r
.

atmosphere, the last term in equation (14) is negligible, and
the equation reduces to This term can becomeiL

r
\i0 L 0.considerably large for the outermost layers where mustL

rexceed This is also in agreement with observations ofL Edd.X-ray bursts from which super-Eddington luminosities are
inferred. For the sake of analytical consideration, we con-
sider to be constant throughout the whole atmosphere,iL

rand the third integral is

iL
r
\ i0 L 0\ const . (15)

Replacing of equation (6) with equation (15), the fourthL
rintegral is obtained as

's ] aL 0 ln T \ $\ const . (16)

Boundary conditions need to be imposed at the bottom
and outer boundaries to determine the four integration con-
stants ', (, and $ and to obtain a speciÐc solution.L 0,At the bottom of the atmosphere close to the helium-
burning zone there should be a point where the gas and
radiation pressures are equal. As another important
numerical result, EHS showed that near the neutron star
surface the temperature and radius proÐles level o† with
respect to y, so there is always a point where

r \ r
b

, T \ T
b

, y \ 1 , (17)

and is well approximated by the radius of the neutronr
bstar However, cannot be considered as a real tem-Rns. T

bperature of the helium-burning shell at the bottom of the
star surface because thermonuclear processes are not
included in the model. The rigorous account of helium
burning in NTL shows that the temperatures of burning
shells vary in a small range of values.

To obtain the outer boundary condition, the concept of
the sonic point is used. For the solution to be steady state
and to have Ðnite terminal velocity, it should pass the sonic
point, where

v
s
2\GMns

2r
s

\
ALP

s
Lo

s

B
$
\
A k
km

p

B
Y
s
T
s
, (18)

Y
s
\ j ] 4(1] y

s
)(1] 4y

s
)

j ] 3(1] 4y
s
)

, (19)

where j is a quantity related to the ratio of the energy Ñux
to the mass Ñux (see eq. [22] below). In EHS this formula
contains a typographical error. We give a proper derivation
of this form for in Appendix C.Y

s

2.2. Ordinary Di†erential Equation Solution of the
Hydrodynamic Problem

T94 has shown how the treatment of the hydrodynamic
problem can be reduced to a Cauchy problem with the
boundary condition determined at the sonic point. This
treatment provides a high-accuracy method of obtaining
the hydrodynamic solution. The crucial point is to relate the
position of the sonic point with the values of the velocity
and the thermodynamic quantities before solving the set of
appropriate hydrodynamic equations. The proÐle of the
expanded envelope is then obtained as a result of the inte-
gration of a single Ðrst-order ordinary di†erential equation
(ODE) from the sonic point inward up to the neutron star
surface. For completeness we present the details of this
approach.

At the bottom of the atmosphere the potential energy per
unit mass of the gas, GM/r, is signiÐcantly greater than the
kinetic energy, v2/2, and enthalpy. Therefore, by ignoring
these terms in equation (13), we obtain the value of the mass
Ñux :

'\ Rns
GMns

aT
b
L Edd0 . (20)

The inner boundary condition (17), the integral (16), and
equation (10) for entropy can be used to Ðnd the tem-
perature distribution with respect to y :

T \ T
b
y~1@j exp

C
[ 4(y [ 1)

j
D

, (21)
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j \ akm
p

k'
L 0[ 3

2
. (22)

The condition at the sonic point (18) allows us to Ðnd the
constant ( :

( \ h
s
'] L

r
(r
s
)[ 3

4
GM
r
s

' . (23)

Combining the mass- and energy-conservation laws (12)
and (13), the speciÐc enthalpy and density equations (9) and
(11), and eliminating the radial coordinate r between equa-
tions (12) and (13) yields the following dependence of the
velocity derivative v@ with respect to y :

v
y
@ (y, v)\ v

CA
1 ] 3

1 ] 4y
j
B 1

y

[ 75.2
rT (8[ 5YHe)(1] 4y)(1] aT )

jr
b,6 T

b,9((/'[ v2/2 [ h ] GMns/r)
D

. (24)

The derivation of equation (24) is given in Appendix D.
By imposing boundary conditions at the bottom of the

extended envelope (at the neutron star surface) and at the
sonic point, we can determine the four integration constants
necessary to obtain a speciÐc solution. One can note the
obvious fact that the bottom of the envelope cannot serve as
a starting point of integration of equation (24) as long as

which introduces uncertainty. Fortunately, we canv
b
\ 0,

calculate parameters at the sonic point in the framework of
our problem description by solving a nonlinear algebraic
equation that involves only the ratio of the radiationy

s
,

pressure to the gas pressure at that point. SubstitutionP
r

P
gof the radial coordinate and velocity from the deÐni-r

s
v
stion of the sonic point position (18), and the sonic point

density from equation (9), we Ðndo
s

r
s
\ GMnskm

p
2kY

s
T
s

, v
s
\
A k
km

p
Y
s
T
s

B1@2
,

o
s
\ akm

p
3k

T
s
3

y
s

,

and the expression for the temperature given in equation
(21) into the mass-conservation law (12), after some algebra,
give an equation for the value of y

s
:

y
s
\ j

4
ln
GC(2[ YHe)m2

r
b, 6 T

b, 9

D2@3

]
T
b

0.149(8[ 5YHe)5@3Ys
y
s
1@j`2@3

H
] 1 . (25)

Here and are the neutron star surface radius andr
b, 6 T

b, 9temperature in units of 106 cm and 109 K, respectively.
Since is expressed in terms of (eq. [19]), equation (25)Y

s
y
scan be solved to determine the value of Knowledge ofy

s
. y

scan then, by substitution in equation (21), yield the value of
the temperature at the sonic point and then fromT

s
v
sequation (18). It is now possible to relate to andv

s
T
s
, T

b
, r

s
,

thus obtaining the analytical expression for the variousr
b
,

dynamical quantities at the sonic point in terms of the
values of the parameters associated with the boundary con-
ditions. To obtain the solution of the hydrodynamical
problem for a particular set of input parameters, we use the
standard Matlab/Octave package function minimizators
and ODE solvers.

3. RADIATIVE TRANSFER PROBLEM

The radiation Ðeld of X-ray burst atmosphere may be
described by the di†usion equation, written in spherical
geometry, with the KompaneetsÏs energy operator (see
T94) :

1
3
AL2Jl

Lq2 [ 2
raT

LJl
Lq
B

\ aff
aT

(Jl[ Bl)

[ kT
e

m
e
c2 x0

L
Lx0

A
x0

LJl
Lx0

[ 3Jl]
T0
T

Jl
B

, (26)

where is a dimensionless frequency, beingx0\ hl/kT0 T0the e†ective temperature ; and and are theaff aT\pT n
ecoefficients of free-free absorption and Thompson scat-

tering, respectively, whose ratio is given by (Rybicki &
Lightman 1979)

aff
aT

\ 1.23og147@8
A
1 [ YHe

2
B7@8

((x0)
AT0

T
B1@2

(27)

with

((x0) \
g8 (x0 T0/T )

x03
(1[ e~x0T0@T) .

Here is the Gaunt factor (Greene 1959)g8 (x)

g8 (x) \J3
n

ex@2K0
Ax
2
B

,

is the Macdonald function, and denotes the free-K0(x) g14fall acceleration onto the neutron star surface in units of
1014 cm s~1.

We combine equation (26) with the outer boundary con-
dition of zero energy inÑow

ALJl
Lq

[ 3
2

Jl
B K

q/0
\ 0 (28)

and the condition of equilibrium blackbody spectrum at the
bottom of the photosphere, which is represented in a dimen-
sionless form as

Bl \ x03
exp (x0 T0/T ) [ 1

. (29)

We will make use of the temperature equation, which is
obtained by integration of equation (26) over frequency.
The opacity operator vanishes as a result of the total Ñux
conservation with respect to optical depth, leaving us with

kT
e

mc2
A
4
P
0

=
Jl dx0[T0

T
P
0

=
x0 Jl dx0

B

\ 1.23og147@8
A
1 [ YHe

2
B7@8AT0

T
B1@2

]
CP

0

=
Jl((x0)dx0[ 2J3

n
T
T0

D
. (30)

In the condition of the extended photosphere of X-ray
bursts, the density is usually very low and the left-hand side
of the last equation can be neglected, reducing the last equa-
tion to the formula for temperature :

T
T0

\ 1
4
AP

0

=
x0 Jl dx0

NP
0

=
Jl dx0

B
. (31)
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We will use the last relation to produce a corrected tem-
perature proÐle for the photosphere where it departs signiÐ-
cantly from that given by the hydrodynamic solution.

3.1. Analytic Description of Radiative Di†usion
Hydrodynamic proÐles calculated in ° 2 show that during

the expansion stage in the vicinity of the sonic point vD
Considering this relation to be true throughout thev

s
(r/r

s
).

entire envelope, according to the mass-conservation law, we
can write

n
e
\ o

m
p

A
1 [ YHe

2
B

\ '
4nm

p
vr2

\ GM'
8nv

s
3m

p

A
1 [ YHe

2
B
r~3 , (32)

where ' is the mass-loss rate and is the velocity of gas atv
sthe sonic point. In this case opacity can be expressed as

q\ C
P
r

= pT
r3 dr \CpT

2r2 . (33)

Noting that in this case

q\ raT
2

, (34)

we can rewrite the radiation transfer equation in the form

L
Lq

1
q

LJl
Lq

\ 3
q

aff
aT

(Jl [ Bl)[
3kT

e
m

e
c2q L l(Jl) . (35)

The boundary conditions are given by

Jl oq/qth \ Bl(qth) (36)

at the inner boundary of the photosphere and

H \ 4n
3
P
0

= LJl
Lq

dl oq/0\ L
4nR

s
2 (37)

at the sonic surface. The ratio can be written in theaff/aTform

aff
aT

\ 1.23
A
1 [ YHe

2
B~5@8A2m

p
pT

B3@2A 8nv
s
3

GM'
B1@2

] g14~7@8 g8 (x)(1[ e~x)
x3

AT0
T
B7@2

q3@2 \D((x)q3@2 , (38)

where andx \ hl/kT
e

((x)\ g8 (x)(1 [ e~x)/x3.
Stated in this way, the problem of radiative transfer

allows an analytical approach. The solution of the radiative
transfer equation (35) is

J(t, x)\ Bl
t8@7

24@7!(11/7)
C!(3/7)

24@7 ] 8
7

tth~4@7 K4@7(tth)
D

, (39)

where is the modiÐed Bessel function of the Ðrst kind,K
pand

t \ 47J3D((x)q7@4 . (40)

Details of the derivation of this formula are given in Appen-
dix A.

3.2. Evaluation of andqth T
c

The next step is to Ðnd the color temperature and to
determine the thermalization depth where the boundaryqth

condition (36) is valid. For saturated Comptonization, the
occupation number behaves in accordance with the Bose-
Einstein photon distribution n \ (ek`x [ 1)~1, which might
be described as a diluted blackbody spectrum or a diluted
Wien distribution.

At Ðrst we evaluate the color temperature assuming a
blackbody spectral shape. We look for the solution of the
form

n(q, x) \ R(q)
ex [ 1

. (41)

The solution, which is described in detail in Appendix B,
gives for R(q)

R(q) \ 1 [ 23@7
!(4/7)

q
qth

K4@7
CA q

qth

B7@4D
. (42)

As long as R(q) \ 1 for there is radiation equi-q [ qth,librium for optical depths deeper than the photospheric
envelope. The temperature equation in the zone 0\q\ qthreads

AT
T0

B4\ 2H0
R2

A 3
2q

R

P
0

q
qdq] 2

BNn4
15

R(q)

where and (\1) is the opticalH0\ (4nRns2 n5/15)/16n2 q
Rdepth coordinate at the outer boundary of the expanded

atmosphere, r \ R (see eq. [35]). This equation can be
rewritten as follows :

AT
T0

B4\ 3q2/4 ] 2q
R

2qns R(q)
. (43)

Neglecting with respect to q and making use of Taylorq
Rexpansion (B6) of R(q) we get a constant value of the

temperature

AT
T0

B4\ 3
8

28@7!(11/7)
!(3/7)

qth2
qns

\ 0.356
qth2
qns

. (44)

Using the notation (see T94 for deÐnition of x
*
)

p \ 2g8 (x
*
) B ln

A2.35
x
*

B
, (45)

formula (38) becomes

D\ D0
AT0

T
B7@2

, (46)

where

D0\ 1.23
A
1 [ YHe

2
B~5@8A2m

p
pT

B3@2A 8nv
s
3

GM'
B1@2

g14~7@8 ,

while we can write for qth

qth\
A4
7

JD3
B~4@7 \

A 6
49

p2D
B~2@7

\ T
T0

A 6
49

p2
B~2@7

D0~2@7 . (47)

Substituting it into equation (44), we get for T /T0
T
T0

\ 0.596
A 6
49

p2
B~2@7 D0~2@7

qns1@2
. (48)
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Assuming the same electron number density as in equation
(32), we then express opacity at the neutron star surface qnsin the form

qns\
A
1 [ YHe

2
BA pT

2m
p

BA GM'
8nv

s
3Rns2

B
. (49)

If we use the dependence of input parameters and ' ong14and the next useful equations for the colorm, r
b, 6, T

b, 9 YHe,ratio color temperature kT , and thermalization depthT /T0,are found :qth
T
T0

\ 0.191(2[ YHe)1@28 r
b, 61@7 v

s, 815@14
m3@28T

b, 95@14 p4@7 , (50)

kT \ 0.4m1@7r
b, 6~5@14 T

b, 9~5@14 v
s, 815@14

] (2[ YHe)~3@14p~4@7keV , (51)

qth\ 90.5m2@7 r
b, 6~3@14 T

b, 9~3@14 v
s, 89@14

] (2[ YHe)1@14p~8@7 . (52)

Here is the sonic point velocity in units of 108 cm s~1.v
s, 8These relations present the Ðnal results of our analytical

approach. There is still a lack of completeness due to the
presence of p and in the left-hand sides of this system ofv

sequations. The parameter p and the sonic point velocity are
not independent parameters of the problem, but at this
point they cannot be inferred from further analytical con-
sideration. Fortunately, these quantities can be quite well
approximated by a power dependence from m, r

b, 6, T
b, 9,and which is done in the next section.(2 [ YHe),

4. NUMERICAL RESULTS AND COMPARISON WITH AN

ANALYTICAL DESCRIPTION OF THE RADIATIVE

TRANSFER PROBLEM

To conÐrm the validity of our analytical approach and to
examine the behavior of p and in dependence of di†erentv

sinput parameters of the problem, we perform numerical
modeling of the steady state radiative transfer process. The
whole procedure consists of three steps.

First, for a particular model of neutron star, i.e., for a
given mass and radius, we obtain a set of model atmo-
spheres for a chosen set of bottom temperatures. These
solutions provide us with runs of thermodynamical and
hydrodynamical proÐles, sonic point characteristics, masses
of the extended envelopes, and their loss rates. Second, we
solve the radiative transfer equation (26) on each model
atmosphere obtained with the relaxation method (e.g., Press
et al. 1992) on an energy-opacity grid using logarithmic
scale on both dimensions. The energy range includes 500
grid points. The number of grid points in opacity varies
between 100 and 300. The opacity domain includes the
range where is the opacity at the sonicq

s
\ q \ qmax, q

spoint and was taken large enough to meet the inequal-qmaxity safely. We use the mixed outer boundary con-qmax [qthdition (28). The spectrum at the inner bottom of the
photosphere is taken as a pure blackbody NumericalBl.calculations of the frequency-dependent radiation Ðeld
consist of two runs of our relaxation code. The Ðrst run is
performed on a temperature continuum obtained from the
hydrodynamical solution (see ° 2.2). We then calculate a
spectral temperature proÐle using formula (31), which
exhibits a quite expected behavior. At some region this cor-
rected proÐle departs from the initial temperature proÐle
and levels o† at some constant value in absolute agreement

with the analytic result of ° 3.2. It is also in qualitative
agreement with the NTL self-consistent calculation of the
radiation-driven wind structure of an X-ray burster. A
second run is performed on the corrected proÐle to get a
more reliable spectrum shape. At the Ðnal step we compare
analytical and numerical solutions. The sonic point pro-
vides a natural position to match numerical and analytical
solutions. Combining the sonic point parameters, calcu-
lated through the solution of equation (25) and using rela-
tion (34), we get for the opacity at the sonic point

q
s
\ pT

2m
p

r
s
o
s

A
1 [ YHe

2
B

. (53)

We calculate and plot Ñuxes given by both methods at
the sonic point. A particular value of parameter p for the
analytic model is obtained by matching the value of kT and
the corrected level of a numerically achieved value of photo-
spheric temperature.

We obtained results for approximately 150 di†erent sets
of values and Examples of numerical cal-T

b
, Rns, Mns, YHe.culations of spectra for di†erent neutron star models and

Ðtting them with analytical shapes are presented in Figures
1 and 2. Analytical and numerical shapes match quite well
in the wide range of neutron star surface temperatures, and
both show two distinctive features of outgoing spectrum of
expansion stage : a diluted blackbody-like high-frequency
component and power-law soft excess at the lower part.
Dependence of the sonic point opacity presented by equa-
tion (53) describes correctly the dilution process, indicating
that the assumption of atmosphere structure adopted in the
analytical model is correct.

Tables 1 and 2, which summarize results for two di†erent
neutron star models, are given in order to compare our
results with more rigorous calculations (NTL). Taking
mass-loss rate as an input parameter, NTL obtained pro-
Ðles of di†erent quantities throughout the whole atmo-
sphere. They argued that the temperature of the burning
shell is maintained around 3] 109 K for all models. The
temperature of photons departs appreciably from the tem-
perature of ambient matter above photospheric radius and
stays practically constant, indicating that radiation
becomes essentially decoupled from expanded media. We
change the bottom temperature in a wide range of values
and infer the mass-loss rate, the mass of envelope, etc.

Our results are in qualitative agreement with NTL. The
crucial physical parameters that deÐne the main spectral
signatures are the photospheric radius and its tem-rphperature kT . Runs of the atmospheric proÐles obtained by
both approaches are quite similar, although in theTphresults of NTL is usually 15%È25% greater than in our
models. This di†erence is explainable. We match isothermal
levels given by numerical and analytical calculations and
deÐne the obtained value as a photospheric temperature.
This is the lowest estimation, because the temperature
proÐle starts to grow before the bottom of the photosphere
is reached. NTL deÐne as a matter temperature at ATph rph.temperature level calculated at the thermalization depth qthshould compensate the considered di†erence. The di†erence
in density proÐles, which can achieve a factor of 2, will a†ect
the spectrum only in the soft part (¹0.2 keV) where the
normalization of the power-law component can be changed.
This fact does not diminish the validity of our results. The
soft component of the spectrum can be represented as an
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FIG. 1.ÈExamples of spectra (left) and temperature proÐles (right) obtained for model with m\ 1.5, km, On the left, the solid lineRns \ 13.5 YHe\ 1.
represents the analytical solution, the dashed line indicates the diluted blackbody level, and the plus signs are the results of a relaxation method simulation.
On the right, the solid line is the temperature proÐle obtained from the initial hydrodynamical solution, the dashed line is the corrected proÐle (see text), and
the dotted line is the analytically calculated color temperature level.

independent Ðtting shape with a normalization included as
an additional Ðtting parameter. This matter is not crucial at
the moment because of the restricted spectral capabilities of
current X-ray observing facilities. One can also notice a
quick decrease of the envelope mass and point out a wide
variation of This discrepancy can be explained by di†er-T

b
.

ences in model formulations. SpeciÐcally, NTL included
helium-burning shells in the model and put the inner
boundary condition on the ““ real ÏÏ neutron star surface,
while our model stops where radiation and gas pressures
are equal (y \ 1), which is close to but still outside of the
helium-burning shell. In our approach, part of the bottom
of the atmosphere is left out. In fact, the lower the mass-loss
rate, the greater the portion of mass missing beyond the
point where y \ 1. This is clearly seen from the tables. The
temperature at the bottom can be considered as an
““ e†ective ÏÏ instead of the real temperature of the helium-
burning zone.

As we have already pointed out, one needs to know the
dependencies of and p on input parameters to completev

sthe analytical description and thus to employ these results
to the Ðtting of observational X-ray spectra. Analysis of v

sand p runs show that and log p are linear functions oflog v
sand We combine alllog T

b
, log Rns, log Mns, log (2 [ YHe).experiments and Ðt and p with a model constv

s, 8by the least-squares method to get] T
b, 9a r

b, 6b mc(2 [ YHe)g

p \ 7.69T
b, 9~0.84r

b, 6~0.89m0.69(2[ YHe)~0.22 , (54)

v
s, 8\ 5.46T

b, 9~0.71r
b, 6~0.87m0.63(2[ YHe)~0.22 , (55)

with maximum errors of parameters less than 1%. The
ranges of parameters included in Ðtting are 0.3È7.0 for T

b, 9,0.6È2.0 for 0.8È2.7 for m, and 0.3È1.0 for Theser
b, 6, YHe.results can be used to substitute p and in equations (50),v

s, 8(51), and (52). Now we have a consistent system of equations
that should yield the X-ray spectrum of the burster in the

FIG. 2.ÈSame as Fig. 1, but for the model with m\ 2.6, km,Rns \ 14 YHe\ 1



1084 SHAPOSHNIKOV & TITARCHUK Vol. 567

TABLE 1

PARAMETERS FOR MODEL m\ 1.5, km,Rns \ 13.5 YHe \ 1

T
b

kT Menv T
s

v
s

r
s

rph
(109 K) (keV) T /T0 qth p 'a (1022 g) (0.1 keV) (103 km s~1) (103 km) (103 km)

7.0 . . . . . . . 0.197 0.099 45.1 1.56 93.9 173.3 0.21 1.31 57.9 4.16
6.5 . . . . . . . 0.208 0.105 44.7 1.64 87.2 128.9 0.22 1.39 51.6 3.71
6.0 . . . . . . . 0.221 0.111 44.1 1.75 80.5 93.6 0.24 1.48 45.6 3.28
5.5 . . . . . . . 0.236 0.118 43.3 1.87 73.8 66.1 0.25 1.58 39.9 2.88
5.0 . . . . . . . 0.252 0.127 42.4 2.02 67.1 45.1 0.27 1.70 34.5 2.50
4.5 . . . . . . . 0.272 0.137 41.5 2.20 60.4 29.6 0.29 1.84 29.4 2.14
4.0 . . . . . . . 0.295 0.148 40.3 2.42 53.7 18.5 0.32 2.01 24.6 1.80
3.5 . . . . . . . 0.324 0.163 39.0 2.71 46.9 10.9 0.35 2.22 20.1 1.48
3.0 . . . . . . . 0.359 0.180 37.4 3.09 40.2 5.86 0.39 2.50 16.0 1.19
2.5 . . . . . . . 0.406 0.204 35.6 3.60 33.5 2.83 0.44 2.85 12.2 0.92
2.0 . . . . . . . 0.470 0.236 33.4 4.34 26.8 1.16 0.51 3.36 8.83 0.67
1.75 . . . . . . 0.510 0.257 32.2 4.85 23.5 0.68 0.55 3.69 7.29 0.56
1.5 . . . . . . . 0.565 0.284 30.8 5.53 20.1 0.37 0.61 4.12 5.86 0.45
1.25 . . . . . . 0.634 0.318 29.2 6.44 16.8 0.179 0.68 4.69 4.53 0.36
1.1 . . . . . . . 0.686 0.344 28.0 7.18 14.8 0.108 0.74 5.12 3.80 0.30
1.0 . . . . . . . 0.727 0.365 27.2 7.78 13.4 0.074 0.78 5.47 3.33 0.27
0.9 . . . . . . . 0.775 0.389 26.3 8.51 12.1 0.049 0.84 5.87 2.89 0.23
0.8 . . . . . . . 0.831 0.417 25.3 9.40 10.7 0.031 0.90 6.36 2.46 0.20
0.7 . . . . . . . 0.898 0.451 24.3 10.5 9.4 0.018 0.97 6.95 2.06 0.17
0.6 . . . . . . . 0.981 0.492 23.0 12.0 8.0 0.010 1.06 7.69 1.68 0.14
0.5 . . . . . . . 1.086 0.545 21.6 14.0 6.7 0.005 1.17 8.65 1.33 0.11
0.4 . . . . . . . 1.224 0.614 19.9 17.0 5.4 0.002 1.32 9.95 1.01 0.09
0.3 . . . . . . . 1.417 0.711 17.8 21.9 4.0 0.001 1.53 11.8 0.71 0.07

a ' is in units of the critical mass-loss rate, i.e., divided by L Edd/c2.

form of a function of only input physical parameters, i.e.,
neutron star mass, radius, surface temperature, and elemen-
tal abundance.

5. FINAL FORM OF THE PROFILE FOR SPECTRAL FITTING

The fact that spectra obtained are blackbody-like almost
everywhere except for small values of energies allows us to

proceed with simpliÐcation of the formula (39). First we
note that as a result of equation (47) and the smallness of x,

tth\ 4
7

J3((x)Dqth7@4 \ 2
J2((x)

p
^ 2

J ln (2.35/x)
px

(56)

for the soft part of the spectrum. Here x \ hl/kT , ((x), and
D are deÐned in formulae (27) and (46), correspondingly.

TABLE 2

PARAMETERS FOR MODEL m\ 2.6, km,Rns \ 14.0 YHe \ 1

T
b

kT Menv T
s

v
s

r
s

rph
(109 K) (keV) T /T0 qth p ' (1022 g) (0.1 keV) (103 km s~1) (103 km) 103 km)

7.0 . . . . . . . 0.248 0.110 45.1 2.12 56.2 115.8 0.242 1.80 53.4 3.53
6.5 . . . . . . . 0.261 0.116 44.5 2.24 52.2 86.1 0.256 1.90 47.7 3.15
6.0 . . . . . . . 0.277 0.123 43.6 2.40 48.2 62.6 0.271 2.02 42.2 2.80
5.5 . . . . . . . 0.294 0.131 42.6 2.58 44.1 44.2 0.288 2.16 36.9 2.46
5.0 . . . . . . . 0.313 0.139 41.5 2.80 40.1 30.2 0.308 2.32 31.9 2.15
4.5 . . . . . . . 0.337 0.150 40.3 3.07 36.1 19.8 0.331 2.52 27.2 1.84
4.0 . . . . . . . 0.364 0.162 39.0 3.40 32.1 12.4 0.359 2.75 22.8 1.56
3.5 . . . . . . . 0.398 0.177 37.4 3.82 28.1 7.27 0.394 3.04 18.7 1.29
3.0 . . . . . . . 0.440 0.196 35.7 4.36 24.1 3.93 0.437 3.41 14.9 1.04
2.5 . . . . . . . 0.495 0.220 33.8 5.12 20.1 1.90 0.494 3.89 11.4 0.81
2.0 . . . . . . . 0.570 0.254 31.5 6.21 16.1 0.78 0.572 4.58 8.24 0.59
1.75 . . . . . . 0.620 0.276 30.2 6.97 14.0 0.46 0.623 5.03 6.80 0.50
1.5 . . . . . . . 0.682 0.304 28.7 7.97 12.0 0.25 0.687 5.61 5.47 0.40
1.25 . . . . . . 0.763 0.339 27.0 9.33 10.0 0.121 0.770 6.38 4.24 0.32
1.1 . . . . . . . 0.824 0.366 25.9 10.4 8.83 0.073 0.833 6.96 3.56 0.27
1.0 . . . . . . . 0.872 0.388 25.1 11.3 8.03 0.050 0.883 7.43 3.12 0.24
0.9 . . . . . . . 0.928 0.413 24.2 12.4 7.22 0.033 0.940 7.98 2.71 0.21
0.8 . . . . . . . 0.993 0.442 23.3 13.7 6.42 0.021 1.008 8.63 2.31 0.18
0.7 . . . . . . . 1.072 0.477 22.2 15.4 5.62 0.012 1.089 9.43 1.94 0.15
0.6 . . . . . . . 1.169 0.520 21.0 17.6 4.82 0.007 1.188 10.4 1.59 0.13
0.5 . . . . . . . 1.292 0.575 19.7 20.6 4.01 0.003 1.313 11.7 1.26 0.10
0.4 . . . . . . . 1.455 0.647 18.1 24.9 3.21 0.001 1.479 13.5 0.95 0.08
0.3 . . . . . . . 1.682 0.749 16.2 32.0 2.41 0.0005 1.710 16.0 0.67 0.06
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Because is large for small values of x, we can use antthapproximation of the modiÐed Bessel function of the second
kind for large arguments :

K
p
(x)B

S n
2x

e~x ,

and rewrite equation (39) as follows :

J(q, x)\ Bl
A q
qth

B2

]
C !(3/7)
!(11/7)

z8@7 ] 4
7!(11/7)

z1@14e~2z
D

\ Bl
A q
qth

B2
(2.32z8@7] 0.64z1@14e~2z) , (57)

where

z\J ln (2.35/x)
px

.

Here we rewrite the dilution factor in terms of opacity using
relation (40). Clearly, the second term in the parentheses of
formula (57) is signiÐcant only where z becomes small (x
becomes large) and the spectrum shape ““ adjusts ÏÏ to the
blackbody component. In turn, the Ðrst term of equation
(57) represents the power-law component of the lower part
of the spectrum with the slope which can be shown by67,simple similarity (see also T94) :

Bl z8@7D
x2
x8@7\ x6@7 .

Another important advantage of this term is that it vanishes
for large values of x. This fact gives us the opportunity to
construct a convenient and accurate formula for obser-
vational spectra Ðtting. We drop the second term in equa-
tion (57) and adjust to the diluted blackbody shape by
means of a quadratic power combination as follows :

J(q, x)\ Bl
A q
qth

B2
(1] 5.34z16@7)1@2 . (58)

Comparison of the shapes given by formula (58) with the
exact solution of equation (39) shows that they deviate from
each other by less than 2%, which is more than acceptable
in contemporary astrophysical observational data analysis.
Using the explicit form of z and the form of the outgoing
Ñux, equation (58) can be rewritten in the form

Fl \ 4n
3

dJl
dq

\ 8n
3

Bl
q
s

qth2
G
1 ] 5.34

C ln (2.35/x)
p2x2

D8@7H1@2
. (59)

Equation (53) yields a useful relationship for the dilution
coefficient in the manner similar to equations (50), (51), and
(52) :

8n
3

q
s

qth2
\ 5.07] 10~5r

b, 610@7T
b, 910@17 p16@7

m11@7 v
s, 82@7(2[ YHe)1@7

. (60)

Substituting the results of parameters Ðtting equations (54)
and (55), we get

8n
3

q
s

qth2
\ 3.31] 10~3r

b, 6~0.36 T
b, 9~0.29m~0.17(2[ YHe)~0.58 .

(61)

Here, again, and m are the neutron star radius,r
b, 6, T

b, 9,surface temperature, and mass in units of 106 cm, 109 K,
and respectively. Now we have provided our spectrumM

_
,

proÐle (59) with expressions for parameter p (54) and the
dilution factor (61). These three formulae constitute the Ðnal
analytical results of this paper.

6. DISCUSSION

The model and derivations presented above assume that
plasma consists of fully ionized hydrogen and helium. In
reality, this assumption can be too simplistic. For instance,
in the case of the recently discovered superbursts (Serpens
X-1, Cornelisse et al 2002b ; KS 1731[260, Kuulkers et al.
2002b ; 4U 1735È44, Cornelisse et al. 2002a ; 4U 1820È30,
Strohmayer & Brown 2002), a sufficient fraction of material
should be represented by heavier elements. These long and
powerful bursts are also considered to be caused by the
nuclear runaway burning in the carbon ““ ocean ÏÏ under the
neutron star surface. In this section we discuss how our
model can be adjusted for the study of this phenomenon.
The approach as a whole does not change, but some formu-
lae have to be modiÐed in order to account for the di†erent
plasma composition.

First, we note that for plasma that consists of a single
ionized element, we have for the mean molecular weight

k \ A
1 ] Z

,

and for the electron number density

n
e
\ o

Am
p

Z ,

where A and Z are the atomic weight and the atomic
number of the corresponding element, respectively. In the
general case of heterogeneous elements, each represented by
weight abundance we writeY

i
,

k \ 1
; Y

i
(1] Z

i
)/A

i
, (62)

n
e
\ o

m
p

;
Z

i
A

i
Y
i
. (63)

In the hydrodynamic part of this study, these modiÐcations
will a†ect only the form of the terms and factors containing

In the radiation-transfer section, the form of willYHe. aff/aTrequire more careful treatment. According to Rybicki &
Lightman (1979), the free-free absorption coefficient is

aff \ 3.7] 108T ~1@2Z2n
i
n
e
l~3(1[ e~hl@kT)g8 ff , (64)

where

Z2n
i
\ ; Z

i
2 n

i
\ o

m
p

;
Z

i
2

A
Y
i
. (65)
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In the case of a hydrogen-helium plasma this factor is con-
veniently represented by just gas density, i.e.,

Z2n
i
\ nH ] 4nHe \ o

m
p

(YH ] YHe)\
o
m

p
,

which yields equation (27). In general, one should use
expressions (64) and (65) to Ðnd the correct form of aff/aTrelevant to the speciÐc chemical composition.

To be more instructive we conduct such a modiÐcation
for the case when the plasma has a substantial carbon frac-
tion. Using equations (62), (63), and (65), we write for
hydrogen-helium-carbon gas :

k \ 12
24YH ] 9YHe] 7YC

\ 4
8 [ 5YHe [ 17YC/3

, (66)

n
e
\ o

m
p

A
1 [ YHe] YC

2
B

, (67)

and

Z2n
i
\ o

m
p

(YH ] YHe ] 3YC)\
o
m

p
(1] 2YC) . (68)

Correspondingly, in all formulae the factor will be(2 [ YHe)replaced by and by(2 [ YHe[ YC), (8 [ 5YHe) (8 [ 5YHeAdditionally, the right-hand side of equation[ 17YC/3).
(27) has to be multiplied by the factor of Clearly,(1 ] 2YC).this modiÐcation will add the Ðfth free parameter to theYCmodel. Using the general methodology outlined in this
paper one should be able to produce solutions for the
parameter p and the dilution factor. The problem that can
arise from the inclusion of heavy elements is the possibility
for heavy ions to be only partly ionized. The ionization
degree can also vary throughout the atmosphere. Because
full ionization and constancy of the gasÏs chemical composi-
tion are the basic assumptions of the adopted approach, we
cannot explicitly include the e†ect of ionization in our
model. Instead, it can be accounted for in a manner similar
to our temperature proÐle correction. First, the approx-
imate atmospheric proÐles can be obtained by assuming full
ionization. Then, the ionization degree can be calculated by
solving the Saha equation and using this solution as a zero-
order approximation of the atmospheric temperature and
the electron number density proÐles. Finally, one should
proceed by solving the hydrodynamic problem, in which the
partial ionization of heavy elements is taken into account.

For the reasons mentioned above, it is also a problem to
include the proper physics for the transport of heavy nuclei
to the outer layers. Two major processes can contribute to
this element Ñow. Bulk motion mixing should dominate in
the convection zone close to the bottom of the atmosphere.
In the outer layers, a strong radiative push should govern
the process because of the large resonance cross sections of
the heavy elements. The general problem of heavy ions
mixing is quite difficult and requires a rigorous approach,
which is outside the scope of this paper.

As far as the boundary conditions are concerned, model-
ing of carbon nuclear Ñashes will require higher bottom
temperatures. The temperature of the carbon-burning zone
is argued to be about 1010 K (see Strohmayer & Brown
2002), which is close to the upper boundary for the bottom
temperature used in our calculations. No peculiarities ofT

bthe approach were detected in the case of very high bottom
temperatures. Extremely high temperatures will require the

correct form of the opacity coefficient i 1983)(Paczyn� ski
instead of equation (2), which represents a simpliÐed
formula for i in the case of modest temperatures.

Another important issue is the correct accounting for the
line emission of heavy elements, which is detected in the
spectral analysis of superbursts. Strohmayer & Brown
(2002) argued that this phenomena is caused by reÑection
from the accretion disk during the burst. One can estimate
the disk heating time by using the standard Shakura-
Sunyaev accretion-disk model (Shakura & Sunyaev 1973)
and the fact that approximately 10% of the burst luminosity
is absorbed by the inner part of the disk (Lapidus &
Sunyaev 1985). Simple estimates give a timescale of less than
a second, assuming a mass-accretion rate of the order of
Eddington or less for the disk-accretion regime, and a burst
luminosity greater than 5% of Eddington, which is detected
during several thousand seconds of observation of the
superburst in 4U 1820[30. Consequently, the observed
spectral feature of the Ka line should be generated in the
burst atmosphere rather than in the disk. The disk gains the
temperature of the X-ray radiation very quickly.

Unfortunately, the origin and behavior of the spectral-
line features still remain unexplained. The authors plan to
include the spectral-line e†ect in the relaxation method in
order to calculate the line emission during the X-ray burst
and to compare this with the observed spectra.

Relativistic e†ects are usually negligible during the strong
X-ray burst due to the signiÐcant radial expansion and the
fact that the outgoing spectrum formation occurs at the
outer layers of the atmosphere. General relativistic e†ects
become important at the contraction stage when the
extended envelope recedes close to the neutron star surface
(see Lewin et al. 1993). Haberl & Titarchuk (1995) applied
the full general relativity approach for a derivation of the
neutron star mass-radius relation in 4U 1820[30 using
EXOSAT observations and the T94 model.

7. CONCLUSIONS

This paper follows a common idea of the last decade to Ðt
observational and numerical spectra with some model,
mostly blackbody shapes, to obtain spectral softening/
hardening factors (London et al. 1986). We improve this
technique in several ways. We use more realistic non-
blackbody spectral proÐles for Ðtting, which accounts for
the observed power-law soft excess of X-ray burster spectra.
The temperature proÐle is corrected by solving the tem-
perature equation. The existence of the isothermal photo-
sphere during X-ray bursts is conÐrmed numerically and
analytically. Finally, we analytically obtain the multiplica-
tive (dilution) factor, which is not a parameter of Ðtting
anymore, but self-consistently incorporated in the model.

We show how the theoretical study of the radiatively
driven wind phenomenon can produce useful techniques for
analyzing observational data. It can fulÐll the needs of
emerging branches of observational X-ray astronomy, such
as a very promising discovery of superbursts (Strohmayer &
Brown 2002) that exhibit photospheric expansion and spec-
tral modiÐcations relevant to extended atmospheres. We
present the analytical theory of strong X-ray bursts, which
includes the e†ects of Comptonization and free-free absorp-
tion. Partly presented in some earlier publications, this area
of the study of the X-ray burst spectral formation was
lacking a detailed and self-consistent account. We use
numerical simulation to validate our analytical theory and
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to link our solution to energy axes. We show how this
information can be extracted from spectral data. We
provide the analytical expression for the X-ray burst spec-
tral shape, which depends only on input physical parame-
ters of the problem: neutron star mass, radius, surface
temperature, and elemental abundance. Expressions for
color ratios and dilution coefficient are also given.

The authors thank Peter Becker for valuable comments
and suggestions that improved the paper. We are grateful to
Menas Kafatos for encouragement and to the Center for
Earth Science and Space Research (GMU) for the support
of this research. We appreciate the thorough analysis of the
presented work by the referee.

APPENDIX A

ANALYTIC SOLUTION FOR THE RADIATIVE TRANSFER PROBLEM

We look for the solution of equation (35) in the form

J(q, x) \
A q
qth

B2
Bl(qth) ] J3 (q, x) . (A1)

The basic idea is to separate the high-frequency (diluted blackbody) and the low-frequency parts of spectrum, whereJ3 (q, x)
di†erent physical processes dominate. The Kompaneets operator acting upon the blackbody shape vanishes and weL lneglect which allows us to get the solution of the radiative transfer problem analytically. At this point is a parameterL l(J3 ), qthof the problem. The algorithm of determination of will be described separately. Substituting equation (A1) into equationqth(35), we Ðnd for J3 (q, x)

L
Lq
A1
q

LJ3
Lq
B

[ 3
q

aff
aT

J3 \ [ 3
q

aff
aT

Bl
C
1 [

A q
qth

B2D
, (A2)

with a boundary condition

J3 l oq/qth \ 0 . (A3)

The solution satisfying this condition is presented by

J3 (q, x) \ 1
pW

y1(q)
P
0

qth
y2(q) f (q)dq , (A4)

where and W (q) is the Wronskian :p(q)\ 1q

W \
K y1
y1@

y2
y2@
K
\ [ 7

4
q . (A5)

Thus, the product

pW \ [74 .

Functions and arey1(x) y2(x)

y1(q) \ qI4@7{47J3D((x)q7@4| , (A6)

y2(q) \ qK4@7{47J3D((x)q7@4| , (A7)

where and are modiÐed Bessel functions of the Ðrst and the second types, respectively.Il(x) Kl(x)
The function f (q) in equation (A4) is the right-hand side of equation (A2), namely,

f (q)\ [ 3
q

aff
aT

\ [3q1@2D((x)Bl
C
1 [

A q
qth

B2D
. (A8)

We introduce a new variable t :

t \ 47J3D((x)q7@4 , (A9)

and rewrite equation (A4) as

J3 (t, x)\ Bl t4@7I4@7(t)
P
0

tth
t3@7K4@7(t)

C
1 [

A t
tth

B8@7D
dt . (A10)

Using the properties of modiÐed Bessel functions

P
xpK

p~1 dx \ [xpK
p
] C , K

p
\ K~p

,
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we evaluate the integrals in equation (A10) :

P
0

tth
t3@7K4@7(t)dt \ [t3@7K3@7(t) o0tth \!(3/7)

24@7 [ tth3@7 K3@7(tth) ,

P
0

tth
t11@7K4@7(t)dt \ [t11@7K11@7(t) o0tth \ !

A11
7
B
24@7 [ tth11@7 K11@7(tth) .

Finally takes the formJ3 (t, x)

J3 (t, x)\ Bl t4@7I4@7(t)
G!(3/7)

24@7 [ !(11/7)24@7
tth8@7

] tth3@7[K11@7(tth) [ K3@7(tth)]
H

\ J3 (t, x)\ Bl t4@7I4@7(t)
C!(3/7)

24@7 [ !(11/7)24@7
tth8@7

] 8
7

tth~4@7 K4@7(tth)
D

. (A11)

The last formula is a solution of equation (35). We can simplify this form by noting that we are interested in the solution in the
outer layers of atmosphere (emergent spectrum) where q] 0 and t ] 0, and we can use the asymptotic form for small
arguments :

I
p
(x) B

1
!(p ] 1)

Ax
2
Bp

.

Making this substitution and putting the result into expression for J(q, x) we Ðnd that second term in cancels with theJ3 (q, x)
diluted blackbody term in J(q, x), which takes the form

J(t, x)\ Bl
t8@7

24@7!(11/7)
C!(3/7)

24@7 ] 8
7

tth~4@7 K4@7(tth)
D

. (A12)

APPENDIX B

SOLUTION OF THE TEMPERATURE EQUATION

Substituting relation (41) into the equation of radiative di†usion, multiplying it by x2, and integrating over the energy range
from to O (see T94 for deÐnition of we getx

*
x
*
),

1
3
Ad2R

dq2 [ 1
q

dR
dq
B P

x*

= x2
ex [ 1

dx \ [R(q) [ 1]
P
x*

= x2
ex[ 1

aff
aT

dx , (B1)

where integrals can be approximated as

P
x*

= x2
ex[ 1

B
P
0

=
x2e~xdx \ 2

and, noting that we obtainaff/aT\D((x)q3@2 BDq3@2g8 (x)/x2,
P
x*

= x2
ex[ 1

aff
aT

dx B Dq3@2
P
x*

= g8 (x)
x

dx B
1
4

ln 2 2.25
x
*

Dq3@2 .

Here we used the fact that The equation for R(q) gets the formg8 (x)B 12 ln (2.35/x).

d2R
dq2 [ 1

q
dR
dq

\ 3
8

ln 2 2.25
x
*

Dq3@2[R(q) [ 1]\ D3 q3@2[R(q) [ 1] . (B2)

Boundary conditions for this equation are

q] 0 , R(q) ] 0 ,
q] O , R(q) ] 1 .

(B3)

A general solution of equation (29) is

R(q)\ 1 ] qZ4@7(47iJD3 q7@4) , (B4)

where In derivation of this formula we take into account a well-known theorem from ODEZ4@7(z)\ c1K4@7(z)] c2 I4@7(z).theory that the general solution of an inhomogeneous ODE is the sum of a general solution of the corresponding homoge-
neous ODE and some particular solution of the inhomogeneous ODE, which is chosen equal to unity in our case. The second
boundary condition and the fact that

K4@7(z) ] 0 , z] O ,
I4@7(z) ] O , z] O
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leave only nonzero, and the Ðrst boundary condition gives us the value for namely,c1 c1,

c1\ [ 1

limq?0 qK4@7(4/7JD3 q7@4)0
\ [ 23@7

!(4/7)qth
,

where we put Then R(q) reduces toqth\ (47JD3 )~4@7.

R(q)\ 1 [ 23@7
!(4/7)

q
qth

K4@7
CA q

qth

B7@4D
. (B5)

A Taylor series expansion of over yields for R(q) the useful relationK4@7 q/qth
R(q) \ !(3/7)

28@7!(11/7)
A q
qth

B2
. (B6)

APPENDIX C

CONDITION AT THE SONIC POINT (DERIVATION OF Y
s
)

We can rewrite the partial derivative in equation (18) using the obvious relation

ALP
Lo
B
$
\ LP

LT
ALT

Lo
B
$
] LP

Ly
ALy
Lo
B
$

.

Di†erentiating the equation of state (8) we obtain derivatives of pressure :

LP
LT

\
A
1 ] 1

y
B 4aT 3

3
,

LP
Ly

\ [ 1
y2

aT 4
3

,

and di†erentiating equation (21) with respect to o we get

ALT
Lo
B
$
\ [ T

j
A1
y

] 4
BALy

Lo
B
$

.

On the other hand, di†erentiation of equation (9) gives us

akm
p

3k
A3T 2

y
LT
Lo

[ T 3
y2

Ly
Lo
B

\ 1 .

Combination with the previous equation yields

ALy
Lo
B
$
\ [ 3k

akm
p

y2
T 3
C j
j ] 3(1] 4y)

D
,

ALT
Lo
B
$
\ 3k

akm
p
T 2
C y(1] 4y)
j ] 3(1] 4y)

D
.

Now, combining all found derivatives we have

ALP
Lo
B
$
\ k

km
p

G
4
A
1 ] 1

y
BC y(1] 4y)

j ] 3(1] 4y)
D

] j
j ] 3(1] 4y)

H
T

or, in a more compact form,

ALP
Lo
B
$
\ k

km
p

Cj ] 4(1] y)(1] 4y)
j ] 3(1] 4y)

D
T , (C1)

which is, in fact, a sonic point condition (18).

APPENDIX D

REDUCTION OF THE HYDRODYNAMICAL PROBLEM TO A FIRST-ORDER ODE

We derive an expression for the derivative of velocity through v and y.v
yWe substitute the temperature proÐle found in equation (21) into equation (5) to obtain o as a function of y :

o \ o(y)\ akm
p
T

b
3

3k
y~3@j~1 exp

C
[ 12(y [ 1)

j
D

.
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Using this expression for o(y) and equation (12), we get

r \ r(v, y)\
A'
4n
B1@2

o~1@2v~1@2 \
A 3'k
4nakm

p
T

b
3
B1@2

y3@2j`1@2 exp
C6(y [ 1)

j
D
v~1@2 .

Then we get derivatives

dr
dy

\ r
CA 3

2j
] 1

2
B 1

y
] 6

j
D

,
dr
dv

\ [ r
2v

.

Di†erentiation of equation (21) also gives us

dT
dy

\ T
b
y~1@j exp

C
[ 4(y [ 1)

j
DA

[ 1
jy

[ 4
j
B

\ [ T
j
A
4 ] 1

y
B

.

By a combination of all these derivatives we obtain

dT
dr

\ dT
dy

dy
dr

\ dT
dy
ALr
Ly

] Lr
Lv

dv
dy
B~1\ [ 2T (4y ] 1)

rjy
CA3

j
] 1
B 1

y
] 12

j
[ v@

v
D~1

.

Substitution of it into equation (5) yields

L
r
\ [ 16nckr2y

km
p
i

dT
dr

\ 32nck
km

p
ji0(2[ YHe)

(4y ] 1)(1] aT )Tr
[(3/j ] 1)1/y ] 12/j [ v@/v]

.

From equation (13), however, we also have

L
r
\ ( [ '

A
h ] v2

2
[ GMns

r
B

.

Equating the last two expressions for we Ðnally Ðnd asL
r

v
y

v
y
@ \ f (v, y)\ v

CA
1 ] 3

1 ] 4y
j
B 1

y
[ 75.2

rT (8[ 5YHe)(1] 4y)(1] aT )
jr

b, 6T
b, 9((/'[ v2/2 [ h ] GMns/r)

D
.

Here and represent the neutron star radius and the bottom temperature of atmosphere in terms of 106 cm and 109 K,r
b, 6 T

b, 9correspondingly.
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