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ABSTRACT
We consider the interaction between a magnetic star and its circumstellar disk under the assumption

that the stellar magnetic Ðeld permeates the disk and that the systemÏs magnetosphere is force-free. Using
simpliÐed axisymmetric models (both semianalytic and numerical), we study the time evolution of the
magnetic Ðeld conÐguration induced by the relative rotation between the disk and the star. We show
that if both the star and the magnetosphere are perfectly conducting, then there is a maximum disk
surface conductivity for which a steady state Ðeld conÐguration can be established. For larger&maxvalues of conductivity, no steady state is possible, and the Ðeld lines inÑate and e†ectively open up when
a critical twist angle (which for an initially dipolar Ðeld is on the order of a few radian) is attained. We
argue that for thin astrophysical disks, surface conductivities are likely to exceed the local except in&maxthe immediate vicinity of the corotation radius in a Keplerian disk. If the disk conductivity is high
enough, then the radial magnetic Ðeld at the disk surface will become large and induce radial migration
of the Ðeld lines across the disk. We Ðnd, however, that the radial di†usion in the disk is generally much
slower than the Ðeld-line expansion in the magnetosphere, which suggests that the opening of the magne-
tosphere is achieved before the di†usive outward expulsion of the Ðeld lines from the disk can occur. The
e†ects of magnetospheric inertial e†ects and of Ðeld-line reconnection are considered in the companion
paper.
Subject headings : accretion, accretion disks È MHD È stars : formation È stars : magnetic Ðelds È

stars : preÈmain-sequence È stars : winds, outÑows

1. INTRODUCTION

Disk accretion onto a magnetic star is thought to have
important observational consequences for neutron stars,
white dwarfs, and young stellar objects (YSOs). In particu-
lar, if the stellar magnetic Ðeld penetrates the disk, it may
transmit torques between the disk and the star, providing a
possible explanation for the spin-up/spin-down episodes in
X-ray pulsars (e.g., Ghosh & Lamb 1978, 1979a, 1979b,
hereafter GL; Wang 1987 ; Lovelace, Romanova, &
Bisnovatyi-Kogan 1995, hereafter LRBK95; Yi, Wheeler, &
Vishniac 1997) and also for the rotation-period distribution
in YSOs (e.g., 1991 ; Edwards et al. 1993 ; Bouvier etKo� nigl
al. 1993 ; Collier Cameron & Campbell 1993 ; Yi 1994, 1995 ;
Ghosh 1995 ; Collier Cameron, Campbell, & Quaintrell
1995 ; Herbst et al. 2000). Furthermore, a strong enough
Ðeld may truncate the disk before it reaches the stellar
surface and channel the accretion Ñow to high stellar lati-
tudes, where it is stopped and thermalized in accretion
shocks. This is the accepted explanation for X-ray pulsars
(accreting magnetic neutron stars ; e.g., Lamb 1989), for DQ
Herculis stars (accreting magnetic white dwarfs ; e.g., Pat-
terson 1994), and probably also for the optical/UV ““ hot
spots ÏÏ in classical T Tauri stars (interpreted as accreting
magnetic YSOs ; e.g., Bertout, Basri, & Bouvier 1988 ;

1991 ; Edwards et al. 1994 ; Hartmann, Hewett, &Ko� nigl
Calvet 1994 ; Lamzin 1995 ; Bertout et al. 1996 ; Johns-Krull
& Basri 1997 ; Johns-Krull & Hatzes 1997 ; Martin 1997 ;
Muzerolle, Hartmann, & Calvet 1998).

1 Also at the Enrico Fermi Institute, University of Chicago.
2 Dr. Litwin passed away unexpectedly on October 4, 2001. His

coauthors wish to dedicate this paper and its companion to his memory.

However, the theory of the interaction between a mag-
netic star and its accretion disk remains incomplete. One
key question is whether a steady state description, adopted
in many models, is appropriate. In a Keplerian disk around
a star of mass M rotating with angular velocity the gas)

*
,

interior to the corotation radius rotatesrco \ (GM/)
*
2)1@3

faster than the star, whereas the matter at rotatesr [ rcoslower. If the star, the disk, and the magnetosphere above it
are perfect conductors, then stellar magnetic Ðeld lines
threading the disk will undergo secular twisting. A steady
state can exist only if the twisting of the Ðeld lines is
countered by the magnetic di†usivity in the disk (e.g., GL).
However, in many real cases the disk di†usivity seems to be
too small to justify a steady state description (see ° 4).

The behavior of twisted magnetic Ðeld lines anchored in a
well-conducting medium has been Ðrst considered in the
context of the solar corona both semianalytically (e.g., Aly
1984, 1985, 1995 ; Low 1986 ; Low & Lou 1990 ; Wolfson
1995) and numerically (e.g., Barnes & Sturrock 1972 ; Klim-
chuk & Sturrock 1989 ; Wolfson & Low 1992 ; Roumeliotis
et al. 1994 ; & Linker 1994 ; Amari et al. 1996a,Mikic�
1996b). Recently, however, there appeared some explicit
studies of magnetically linked star-disk systems, again using
both semianalytic techniques for force-free conÐgurations
(e.g., van Ballegooijen 1994, hereafter VB94 ; Lynden-Bell &
Boily 1994 ; LRBK95; Bardou & Heyvaerts 1996, hereafter
BH96) and full MHD numerical simulations (e.g., Hayashi,
Shibata, & Matsumoto 1996 ; Goodson, Winglee, & Bo� hm
1997 ; Miller & Stone 1997 ; Goodson, & WingleeBo� hm,
1999 ; Goodson & Winglee 1999). These studies have indi-
cated that the applied twist causes a strong expansion of the
Ðeld lines away from the star. Initially, the evolution is
quasi-static, with the azimuthal Ðeld building up while the
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poloidal Ðeld structure changes relatively little, but past a
certain point the expansion accelerates rapidly and in a
Ðnite time (corresponding to a total twist Dn) the system
approaches a singular state with at least some of the Ðeld
lines opened.

As the twisted Ðeld lines expand, they become sharply
bent at the disk surface and tend to undergo a substantial
radial resistive di†usion. Previous studies have either
ignored this issue (e.g., LRBK95), or concluded that the
magnetic Ñux would be strongly rearranged and partly
expelled from the disk (BH96 ; Agapitou & Papaloizou
2000), or that the radial Ðeld excursions would average to
zero (VB94). The resolution of this question depends criti-
cally on whether reconnection in the magnetosphere can
terminate the Ðeld-line expansion before the radial Ðeld at
the disk surface becomes very large and is thus tied to the
Ðeld-opening question.

Even if the system is not steady, one could average the
relevant quantities over the cycle period (of order the rota-
tion period, see VB94) and use them in modeling e†ectively
steady state star-disk systems (e.g., GL; Zylstra 1988 ; Dau-
merie 1996). The time-dependent nature of the magnetic
interaction could still be important, however (e.g., Hart-
mann 1997 ; Goodson & Winglee 1999), and may, in fact,
resolve some of the difficulties with steady state magnetic
accretion models (e.g., SaÐer 1998).

In this paper we address basic issues related to the Ðeld
opening as well as to the inÑuence of disk resistivity on the
evolution of the magnetic Ðeld above the disk. In °° 2 and 3
we study the sequence of force-free equilibria above an inÐ-
nitely conducting thin disk. In ° 2 we use a simple, largely
semianalytic, approach, based on a sequence of self-similar
force-free magnetospheric equilibria. In ° 3 we generalize
our analysis of the opening of magnetic Ðeld lines by using a
nonÈself-similar model for a di†erentially rotating disk. In
° 4 we clarify the condition for a steady state in a resistive
disk and also consider the radial migration of Ñux across the
disk. In ° 5 we summarize and discuss our results.

In this paper we deliberately do not discuss the possibility
of reconnection in the magnetosphere. This important ques-
tion is addressed in the companion paper (Uzdensky,

& Litwin 2002, hereafter Paper II).Ko� nigl,

2. PERFECTLY CONDUCTING, UNIFORMLY ROTATING

DISK MODEL

In this section we describe a semianalytic model of a
force-free magnetic Ðeld above a perfectly conducting thin
disk. This model, Ðrst developed in 1994 by VB94,3 is
relatively simple, and we use it to illustrate the relevant
ideas and as a framework for our quantitative analysis.

2.1. Self-similar ConÐgurations
Following VB94, we consider a uniformly rotating disk

magnetically linked to a central pointlike star. This may be
a valid representation of the outer parts of a Keplerian disk,
at radii where the beat frequency [the di†erence *)r ? rco,between the rotation rate of the disk and the rotation)

d
(r)

3 A mathematically identical model was constructed independently by
Lynden-Bell & Boily (1994) and also, in the solar corona context, by Low
& Lou (1990).

rate of the star] is almost independent of r (and is equal)
*to We use spherical coordinates (r, h, /) and assume[)
*
).

axisymmetry. Then the magnetic Ðeld can be written in
terms of the poloidal Ñux function ((r, h) and the poloidal
current F as

B \ $( Â $/] F$/ .

The distribution of the poloidal magnetic Ñux on the(
d
(r)

surface of an inÐnitely conducting disk stays Ðxed as the
disk rotates and thus serves as a boundary condition at
the disk surface. We are looking for a self-similar solution
characterized by the absence of a characteristic scale in r.
Then, must be a power-law function,(

d
(r)

(
d
(r) \ C

n
r~n , C, n [ 0 . (2.1)

Assuming that the plasma density in the magnetosphere
above the disk is low enough for the speed toAlfve� n vAgreatly exceed both the disk rotation and the sound speeds,
the magnetic Ðeld at any given time is given by a force-free
equilibrium

$ Â B \ aB , (2.2)

where a(r, t) is a scalar function, constant along each Ðeld
line.

Since the boundary conditions [i.e., are kept con-(
d
(r)]

stant, time enters the problem only through the function a.
Following VB94, the self-similar magnetic Ðeld can be

written as

B 4 [B
r
, Bh, BÕ]\ C

rn`2
C

f (h),
g(h)
sin h

, h(h)
D

, (2.3)

corresponding to ((r, h) \ Cg(h)/nrn, where the functions
f (h), g(h), and h(h) depend also on time. Thus, the assump-
tions of axisymmetry and self-similarity enable us to reduce
the problem to a one-dimensional problem of determining
these three functions.

The boundary condition (2.1) implies g(n/2) \ 1, whereas
the condition $ Æ B \ 0 gives

f (h) \ 1
n sin h

dg
dh

. (2.4)

By integrating the shape of the Ðeld line isdr/dh \ rB
r
/Bh,

r(h, () \ r0(()[g(h)]1@n , (2.5)

where is the position of the footpoint of the Ðeld liner0(()
( at the disk surface.

Because of self-similarity, a must scale as 1/r, i.e.,
a(r, t) \ a[h, *'(t)]/r, and then the condition a \ const
along B gives

a((, *') \ a0(*')[g(h)]1@n
r

\ a0(*')
r0(()

. (2.6)

Next, the h component of equation (2.2) relates h(h) to
g(h) :

h(h) \ a0
(n ] 1) sin h

[g(h)]1`1@n . (2.7)

Finally, the / component of equation (2.2) gives the
following second-order nonlinear di†erential equation
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for g(h) :

sin h
d
dh
A 1

sin h
dg
dh
B

] n(n ] 1)g(h)

] n
n ] 1

a02[g(h)]1`2@n \ 0 . (2.8)

The boundary conditions are g(0)\ 0 and g(n/2) \ 1.
An equation essentially identical to (2.8) was Ðrst derived

by Low & Lou (1990) who considered self-similar force-free
magnetic Ðelds in the solar corona. They, however, deliber-
ately restricted their analysis to the integer-n case. In addi-
tion, their model did not have a conducting disk at the
midplane, so the boundary conditions were set at h \ 0, n
instead of h \ 0, n/2 in the present case. Additional require-
ments of regularity and symmetry (( had to be either sym-
metric or antisymmetric with respect to h \ n/2) then lead
to a discrete spectrum of for each n instead of a contin-a0uous spectrum in the VB94 model (see ° 2.2).

We note that equation (2.8) can also be obtained directly
from the force-free Grad-Shafranov equation

L2(
Lr2 ] sin h

r2
L
Lh
A 1

sin h
L(
Lh
B

\ [F(()F@(() , (2.9)

as can be veriÐed by making the self-similar Ansatz (2.3) and
using equations (2.6)È(2.7). Here the function F(() on the
right-hand side represents the contribution of the toroidal
Ðeld and is related to a((, t) via

a \ F@(() . (2.10)

Equation (2.8) contains a single parameter so the(a0),time evolution of the system is described by a one-
parameter sequence of equilibria. The dependence of g(h) on
time is parametrized by which, in turn, is implicitlya0(t),determined by the dependence of the azimuthal twist angle

*'(t)\ ()
d
[ )

*
)t 4 *)t (2.11)

on The dependence can be obtained by inte-a0. *'(a0)grating the equation along the Ðeld,sin hd//dh \ BÕ/Bhyielding

*'\ /(n/2) \ a0
n ] 1

P
0

n@2
[g(h, a0)]1@n

dh
sin h

. (2.12)

2.2. Magnetic Field Evolution
For any given one can integrate equation (2.8) directlya0,and then use equation (2.12) to calculate the corresponding

value of *', as was done by VB94. We, however, have
reformulated the problem, making *', rather than thea0,control parameter. This makes the time dependence more
transparent : for a given t, *' is given by equation (2.11),
and then the problem is solved using *' as the input
parameter. This approach also has the merit of expediting
the solution process.

To do this, we have replaced g(h) by the function /(h), the
twist angle as a function of h :

/(h)\ a0
n ] 1

P
0

h
[g(h)]1@n dh

sin h
. (2.13)

The idea here is to express g(h) through /(h) using equa-
tion (2.13) and then substitute it into equation (2.8), thus
obtaining a di†erential equation for /(h). Then the param-
eter *' comes in via the boundary condition /(n/2) \ *',
and drops out. We havea0

/@(h) \ a0
n ] 1

[g(h)]1@n 1
sin h

. (2.14)

Upon di†erentiating equation (2.14) two more times, and
upon using equation (2.8) to express g@@ in terms of g@ and g,
one Ðnally gets a third-order di†erential equation for /(h) :

/@@@\ (1[ n)
/@@2
/@

] 2cos2 h [ n
sin2 h

/@

[ 2n [ 1
tan h

/@@[ (n ] 1)/@3sin2 h . (2.15)

The three boundary conditions are (1) /(0)\ 0 ; (2)
/@(0)\ 0 [this can be used only if n \ 2 : as h ] 0, g(h)D h2,
and so /@(h) D g1@n/sin h D h(2@n)~1] 0 if n \ 2] ; (3) /(n/2)
\ *'Èa prescribed value.

Once /(h) is found, can be derived by using the condi-a0tion g(n/2) \ 1 :

a0(*') \ (n ] 1)/@(n/2) . (2.16)

In Figure 1 we plot for several values of the param-a0(*')
eter n. As has been noted by VB94, the dependence of ona0*' is nonmonotonic, and for any value of between 0 anda0a certain maximal value there exist two di†erenta0, max(n),
solutions.4

A purely poloidal Ðeld (*'\ 0) is potential As(a0\ 0).
the Ðeld-line twist *' increases, grows and reaches aa0maximum at As *' is increased evena0, max *'max(n).
further, decreases and eventually vanishes at a certaina0

4 Actually, there is an inÐnite series of bands of values of *' where
solutions exist, separated by forbidden bands. Each *' band contains
solutions of the same topological class [i.e., solutions with the same
number of nodes of g(h), with the Ðrst band, having zero0 \ *'\ *'

c
,

nodes].

FIG. 1.ÈDependence of on the twist angle *'a0
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TABLE 1

PARAMETERS OF THE SELF-SIMILAR MODEL

n *'0 *'max a0, max h
d, max *'

c

1.0 . . . . . . . 0.00 1.23 1.64 0.82 2.036
0.5 . . . . . . . 1.05 1.41 3.00 2.00 2.645
0.25 . . . . . . 1.30 1.48 5.15 4.12 2.944

critical twist angle We call the 0\*'
c
(n) [[*'max(n)].

part of the curve the ascending branch and the*'\*'max part the descending branch. Both*'max \*'\ *'
cand are, in general, on the order of 1 rad (see*'max *'

cTable 1 ; is the twist angle for which f (n/2) \ 0 ; see*'0
° 4.2). The nonexistence of solutions for agreesa0 [ a0, maxwith the result obtained by Aly (1984) for his boundary
value problem 1, in which one prescribes values of the
normal magnetic Ðeld and a on the boundary of anB

ninÐnite domain.
The behavior of the toroidal Ðeld at the surface of the

disk is given by (seeB
d,Õ h

d
(*')4 h(n/2, *')\ a0/(n ] 1)

eq. [2.7]). Therefore, it also Ðrst increases nearly linearly
with *' and reaches a maximum ath

d, max\ a0, max/(n ] 1)
After that, the built-up magnetic stress causes*'\*'max.the Ñux tubes to expand rapidly and to become elongated

along the direction of the apex angle (see Fig. 2).5 ThehapÐeld-line twist travels out to the apex of the Ñux tube, where
the Ðeld is weakest, which can be understood in terms of
torque balance along the tube (e.g., Parker 1979). At the
same time decreases and goes to zero atB

d,Õ *'\*'
c
.

The fact that remains bounded as the twist increases isB
d,Õcentral to our analysis of the evolution of resistive disks

(° 4.1).

2.3. Finite-T ime Singularity
As the critical twist angle is approached (and*'

cthe solution of equations (2.8) and (2.15) blows up,a0] 0),
with the Ðeld lines expanding to inÐnity and thus opening

5 The apex is deÐned as the most distant from the star point on ahapÐeld line. According to equation (2.5), this is also the point of maximum of
g(h).

up (see Fig. 2). The radial Ðeld component at the disk
surface diverges, whereas the surface azimuthal Ðeld goes to
zero. No solutions exist for This behavior is*'[*'

c
.

generic to twisted Ñux tubes and is characterized as a ““ Ðnite
time singularity ÏÏ (e.g., Aly 1995) : the magnetic Ðeld reaches
a singular state after being twisted for a Ðnite time (or,
equivalently, by a Ðnite angle).

To analyze the asymptotic properties of the func-(a0] 0)
tion g(h), we note that can be rescaled out of equationa0(2.8) by the substitution

G(h) \ g(h)a0n . (2.17)

The equation for G(h) is

sin h
d
dh
A 1

sin h
dG
dh
B

] n(n ] 1)G(h)

] n
n ] 1

[G(h)]1`2@n \ 0 . (2.18)

The boundary conditions are G(0)\ 0 and G(n/2) \ a0n .Thus, the parameter has moved from the equation to aa0boundary condition. The transition to the limit cana0] 0
now be easily made, since the solution of equation (2.18)
does not blow up as the boundary condition at h \ n/2
approaches zero. We designate the solution of equation
(2.18) with the boundary conditions G(0)\ G(n/2) \ 0 as

This function depends only on n and remains Ðnite inG0(h).
the entire interval (0, n/2) (see Fig. 3). The behavior of the
original function g(h) near is given by*'

c
g(h, a0, n) ] G0(h, n)a0~n as a0] 0 . (2.19)

This solution has a number of useful implications. First,
by combining equations (2.12) and (2.19), one can calculate
the critical twist angle *'

c
:

*'
c
\ 1

n ] 1
P
0

n@2
G01@n(h)

dh
sin h

. (2.20)

Second, as shown in Figure 3, the apex angle at whichhap,reaches its maximum, is very close to 60¡ for a wideG0(h)
range of values of n. In fact, as n ] 0, in agreementhap ] 60¡
with the Ðnding by Lynden-Bell & Boily (1994). The azi-

FIG. 2.ÈMeridional projection of the magnetic Ðeld lines for three values of the twist angle *' in the case n \ 0.5, plotted in the (arbitrarily chosen)
interval r ½ [1, 10].



0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

G0

n=0.5

n=0.25

n=1

θ

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

jφ

θ

n=0.25

n=0.5

n=1

No. 2, 2002 MAGNETICALLY LINKED STAR-DISK SYSTEMS. I. 1195

FIG. 3.ÈPlots of the function for three values of nG0(h)

muthal current density in the magnetosphere, which is
related to g(h) via equations (2.2), (2.3), (2.6), and (2.7), is also
concentrated around this angle, and in the limit n > 1 the
current distribution collapses into a narrow layer that
extends radially along (see Fig. 4). As we discuss inh B hapour Paper II, such a current layer is a natural potential site
for rapid Ðeld reconnection in the magnetosphere. Third,
similar to the azimuthal Ñux is also concentrated nearjÕ,the angle (see eq. [2.7]). This is a manifestation of thehapoutward propagation of the magnetic Ðeld twist discussed
in ° 2.2.

3. KEPLERIAN DISK

The analysis in the previous section employed the self-
similar solution. In this section we examine the more realis-
tic case of a Keplerian disk and compare it with the
self-similar model. Since the Keplerian disk has a character-
istic radial scale (the corotation radius the self-similarrco),semianalytic approach is clearly inapplicable. The problem
becomes fully two-dimensional and requires numerical
tools.

FIG. 4.ÈPlots of the azimuthal current density in the limitjÕ(h)
for three values of n.*'] *'

c

We developed a numerical code that enables us to Ðnd
sequences of equilibria once the rotation law, *)(r), and the
poloidal magnetic Ñux, are speciÐed on the disk(

d
(r),

surface. (In contrast to the self-similar case, these two func-
tions no longer have to be power laws.) We Ðrst describe the
numerical procedure and then present the results of our
computations.

The computational domain consists of the outside of a
sphere of radius (see Fig. 5). In the remainder of thisR

*section, we normalize the radius r by Using the sym-R
*
.

metry with respect the disk plane, we consider only the
upper halfspace.

To Ðnd the force-free equilibria, we solve the Grad-
Shafranov equation

L2(
Lr2 ] sin h

r2
L
Lh
A 1

sin h
L(
Lh
B

\ [F(()F@(() . (3.1)

The main difficulty here is that the nonlinear term on the
right-hand side [F(()F@(()] is not given explicitly. Rather,
it is determined implicitly by the rotation law via the
condition

*'(() \ *)(()t \ F(()I(() , (3.2)

where I(() is an integral along the magnetic Ðeld line (

I(() 4
P
(

1
rBh

dh
sin2 h

. (3.3)

The time t in equation (3.2) is the parameter controlling
the sequence of equilibria, and the rotation law *)[(

d
(r)]

is a prescribed function. For example, *)\[)
*

]
for a Keplerian disk. In the remainder of this[1[ (rco/r)3@2]section, we normalize t by o)

*
o~1.

Our goal is to Ðnd the time sequence of equilibria for a
given rotation law. We start at t \ 0 with the potential Ðeld
corresponding to F4 0 and then step through the sequence
by calculating equilibria separated by small time
increments. For each moment t we solve the system (3.1)È
(3.3) iteratively : at the kth iteration we plug the result
F(k)(() of the previous iteration into the right-hand side of

FIG. 5.ÈGeometry of the problem
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equation (3.1) [taking F(0)(() to be the solution for the
previous moment of time, or zero for t \ 0], solve equation
(3.1), then use the solution ((k)(r, h) to calculate the integral
I(k)(() along Ðeld lines, and then we update the function
F(() according to

F(k`1)(()\ *)(()t/I(k)(() . (3.4)

We repeat this procedure until the process converges.6
When solving the elliptic equation (3.1) for given t and k,

we use the relaxation method. We introduce a Ðctitious time
variable q and then evolve ((q, r, h) according to

L(
Lq

\ L2(
Lr2 ] sin h

r2
L
Lh
A 1

sin h
L(
Lh
B

] F(()F@(() . (3.5)

If one uses a uniform grid in spherical coordinates (r, h),
one has to introduce an outer boundary at some large
radius At this boundary one runs into seriousr \ rmax.problems related to boundary conditions and the treatment
of the integral (3.3) for Ðeld lines crossing this boundary. To
bypass these issues, we e†ectively place the outer boundary
at inÐnity by using the transformation

x \ 1

Jr
, (3.6)

which maps r \ O to x \ 0 while keeping the inner bound-
ary (the surface of the star at x \ 1. Correspond-R

*
\ 1)

ingly, we replace the uniform (r, h) grid with a uniform (x, h)
one. Then, equation (3.5) becomes

L(
Lq

\ 1
4

x6 L2(
Lx2 ] 3

4
x5 L(

Lx

]x4 sin h
L
Lh
A 1

sin h
L(
Lh
B

] F(()F@(() . (3.7)

This equation is integrated on a rectangular domain
x ½ [0,1], h ½ [0, n/2]. There are four boundaries : the
surface of the star x \ 1, the axis h \ 0, the outer boundary
x \ 0, and the surface of the disk h \ n/2. On three of these
the boundary conditions are particularly simple :

((x, h \ 0)\ ((x \ 0, h)\ 0 , (3.8)

((x \ 1, h)\ (
*
(h) , (3.9)

where is the magnetic Ñux distribution on the surface(
*
(h)

of the (inÐnitely conducting) star, which we take to be

(
*
(h)\ sin2 h , (3.10)

which corresponds to the dipole Ðeld.
The boundary conditions on the equatorial plane h \ n/2

are more complicated because of the inner gap between the
disk and the star (see Fig. 5). Typically we place the inner
edge of the disk at (so that Therin\ 1.5 xin\ 23, (in\ 23).space inside the gap, is Ðlled with very tenuous1 \ r \ rin,plasma, just like the magnetosphere above the disk. Hence,

6 Our approach is di†erent from that of Agapitou & Papaloizou (2000)
in the important respect that they did not have to calculate F(() from the
conditions (3.2)È(3.3). Instead, they calculated F(() directly from F\ B

d,Õ r
using the steady state expression (4.3) for Thus, their solutions areB

d,Õ.valid only for the steady state of a resistive disk discussed in ° 4, whereas
ours describe the entire time evolution in the case of a conducting disk.

the Ðeld lines going through the gap must be potential, and,
because of the symmetry with respect to the midplane, per-
pendicular to this plane

L(
Lh
A
x [ xin, h \ n

2
B

\ 0 . (3.11)

In the region the magnetic Ðeld lines are frozenr [ rininto the disk surface ; hence, the Ñux distribution there is a
prescribed function, which we take to be a dipole,

(
A
x \ xin, h \ n

2
B

\ (
d
(x) \ x2\ 1

r
. (3.12)

We start with the potential dipole Ðeld at t \ 0 and then
proceed through the sequence by gradually increasing t
(and so the twist angle) and by using the solution for the
previous value of t as the initial guess for the next value of t.
For numerical convenience, we want *)(r) to go smoothly
to zero at (which also makes physical sense, since nearrinthe inner gap the gas undergoes a gradual transition from a
Keplerian rotation to corotation with the star). Along the
rest of the disk surface, however, *)(r) can be arbitrary. We
investigated two cases : uniform rotation (Fig. 6a), wherein
*)(r) ] const for and Keplerian rotation (Fig. 6b),r ? rin,where, for the rotation law approaches Keplerianr [ rin,with rco \ 6.

We now turn to a description of our results. Figures 7
and 8 show a series of magnetic contour plots for several
values of t for the uniformly rotating and Keplerian disk

FIG. 6.ÈAngular velocity proÐle *)(r) for (a) uniformly rotating disk
and (b) Keplerian disk.
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FIG. 7.ÈSequence of magnetic Ðeld contours for the uniformly rotating disk model

models, respectively. In both cases, the basic behavior (i.e.,
the rapid expansion of the Ðeld lines near h ^ 60¡È70¡) is
very similar. Figures 9 and 10 describe the evolution of
F((, t) for the two cases. Generally, the evolution can be
divided into two stages, distinguished by the time behavior
of F((, t) on the Ðeld line with the largest twist. For the
Keplerian disk, this Ðeld line is given by on(1\ 0.44,
which o*' o is twice the asymptotic value at inÐnity (see
Fig. 6b). Note that the function shown inF(( \(1, t),
Figure 11, serves as an indirect analog of in thea0(*')
self-similar model.

In the uniform-rotation disk model the analogy can be
made more direct by looking at the evolution of d2F(()/d(2
at ( \ 0. Indeed, at large distances, the twist angler ? rin,*' approaches a constant (see Fig. 6a), so one can expect a
self-similar power-law asymptotic behavior for F(() in the
limit ( ] 0. Using a(()\ F@(() and F(0)\ 0, one can

express F((, t) using the notation of ° 2.1 as

F((, t) \
P
0

(
ad( \

P
0

( a0(t)d(
r0(()

\ a0(t)(2
2

, ( ] 0 ,

(3.13)

where we used equation (3.12). This quadratic behavior is
indeed exhibited by our calculated solution. Thus, we select
the time evolution of

a0(t) 4
d2F
d(2

K
(/0

(3.14)

for a direct comparison with the self-similar model. Figure
12 demonstrates that on the ascending branch of the solu-
tion the agreement is very good, while on the descending
branch there is some deviation, particularly in the value of



0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

t = 1.5

t = 0.5t = 0.0

t = 1.0

1198 UZDENSKY, KO� NIGL, & LITWIN Vol. 565

FIG. 8.ÈSequence of magnetic Ðeld contours for the Keplerian disk model

This is because the innermost Ðeld lines have smaller*(
c
.

twist and therefore are not inÑated as much as in the self-
similar case. Hence, the magnetic stresses driving the expan-
sion are weaker, and the opening of the Ðeld is delayed. Still,
we see that the basic behavior is the same. As t is increased,

(and in the Keplerian case) rises, reaches aa0(t) oF((1, t) o
maximum at some and then decreases, just as in thetmax,self-similar model. Since the evolutionF(()\ B

d,Õ(()r0((),
of the toroidal Ðeld at the disk surface traces that of F((, t)
for a given (. During the Ðrst stage the shape of(t \ tmax),the Ðeld lines does not change much, but during the second
stage there is a rapid expansion of the Ðeld lines,(t [ tmax),which approach an open state (see Figs. 7 and 8). This
qualitative behavior is consistent with the conclusions of
Roumeliotis et al. (1994). Also, we Ðnd that this behavior is
very robust and independent of the details, such as the par-
ticular shape of *)(r). However, some quantitative features,

such as the values of and [or dotmax a0, max F((1, tmax)]depend on the particular parameters etc.).(rin, rco, (1,These two stages also have very di†erent numerical con-
vergence properties. During the Ðrst stage the convergence
is rapid and robust, but during the second stage it slows
down, one has to update F(() more often, and Ðnally one
has to stop the computation at some point. Fortunately, by
this time the Ðeld lines have expanded so drastically (see
Figs. 13 and 14) that an extrapolation of the anda0(t)becomes possible. We deduce that these functionsF((1, t)
reach zero at a Ðnite twist angle, implying a Ðeld-line
opening in a Ðnite time, similar to the self-similar model. We
estimate the critical twist angle to be about 2.7 rad for the
uniform-rotation case and 4.0 rad (corresponding to
t \ 2.0 ; see Fig. 6b for the Keplerian case).

Thus, a good case can be made for the Ðnite-time singu-
larity for a broad class of models. To strengthen this point,
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FIG. 9.ÈF((, t) for the uniformly rotating disk model

we propose the following simple physical argument
(di†erent from Aly 1995).

Consider the small-F limit of equation (3.1), in which the
nonlinear term FF@(() is smaller than, say, the Ðrst linear
term on the left-hand side at typical distances r D r0(().

FIG. 10.ÈF((, t) for the Keplerian disk model

FIG. 11.ÈEvolution of the function for the Keplerian diskF((1, t)
model ; is the Ðeld line with the largest twist.(1\ 0.44

FIG. 12.ÈFunction (eq. [3.14]) for the uniformly rotating disk.a0(t)The solid line shows the result of our numerical calculations, whereas the
dashed line shows the behavior of in the self-similar model of ° 2.a0(t)

Dimensional analysis then gives

F(() >
(

r0(()
. (3.15)

FIG. 13.ÈExpansion factor as a function of magnetic Ñux in the uni-
formly rotating disk model.

FIG. 14.ÈExpansion factor as a function of magnetic Ñux in the
Keplerian disk model.
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Small values of F may correspond to two qualitatively
di†erent solutions. The Ðrst one is close to the potential
Ðeld, with the nonlinear term being unimportant every-
where on the Ðeld line. The other solution describes greatly
expanded Ðeld lines that stretch out far enough for the
linear terms (of order (/r2) to become small, so that the
nonlinear term gives an important contribution on the
distant portion of these Ðeld lines. For a given value of F, we
can then deÐne a characteristic radial scale r

F
,

r
F
((, t)4

(
F((, t)

? r0(() . (3.16)

This expression gives an estimate of the position ofrap((, t)
the apex of the Ðeld line (. It also enables us to evaluate the
twist angle of the Ðeld line ( at time t. Using equations (3.2)
and (3.3) and assuming that in the h direction there are no
thin scales (i.e., current sheets), we obtain

*'((, t)\ F((, t)
P
(

dh
Bh r((, h) sin2 h

D F((, t)
1

(Bh r)min
.

(3.17)

Now can be estimated(Bh r)min\[[(L(/Lr)/sin h]minsimply as Thus,((/r)min\ (/rap((, t)D (/r
F
.

*'((, t)D F((, t)
r
F

(
D O(1) . (3.18)

Therefore, as F] 0 and the Ðeld lines open, *' approaches
a Ðnite value independent of F, and one encounters a Ðnite-
time singularity.

4. STEADY STATE CONFIGURATIONS

In this section we consider the conditions under which a
magnetically linked star-disk conÐguration can reach a
steady state. We continue to assume, as in ° 2, that both the
star and the magnetosphere are perfect conductors, but we
allow the disk to have a Ðnite resistivity. For ease of presen-
tation, we use the self-similar model outlined in ° 2, which
corresponds to a uniformly rotating disk. Self-similarity
imposes a condition on the radial dependence of the verti-
cally integrated electrical conductivity &. However, since
our analysis is essentially local, we expect the basic conclu-
sions to remain valid also in the general case of a di†erentia-
lly rotating disk and a nonÈself-similar di†usivity. To
further simplify the presentation, we Ðrst consider the case
where the radial positions of the Ðeld lines in the disk
remain Ðxed during the twisting process, so the di†usivity
acts only in the azimuthal direction. We then also examine
the consequences of the radial Ðeld di†usion.

4.1. T ime Evolution of the Twist Angle
We Ðrst derive the time evolution of the twist angle for a

thin resistive disk. The normal Ðeld component at the disk
surface is given approximately by B

d,z 4B
z
(z\ H) B

where 2H > r is the diskÏs thick-B
z
(z\ 0)\ [Bh(r, n/2),

ness. Then, since owing to the reÑection sym-BÕ(z\ 0)\ 0
metry, the radial surface current density K

r
B 2Hj

r
(z\ 0)

can be written as But, by OhmÏs law, it isK
r
\[cB

d,Õ/2n.
related to the radial electric Ðeld at the disk surface by

where and & is relatedE
d,r\ K

r
/&[ v

d,Õ B
d,z/c, v

d,Õ 4 r)
dto the magnetic di†usivity g through &B Hc2/2ng. On the

other hand, the azimuthal speed of the Ðeld lines at the
midplane is Relative to the disk matter,v

B,Õ \ [cE
d,r/Bd,z.

this speed is v
B,Õ [ v

d,Õ\ [cK
r
/&B

d,z B gB
d,Õ/HB

d,z.Thus, the time evolution of the twist angle is given by

d*'
dt

\ *)] c2
2nr&

B
d,Õ

B
d,z

. (4.1)

The Ðrst term on the right-hand side of equation (4.1)
represents the secular growth of *' owing to the di†erential
rotation between the disk and the star, whereas the second
term (in which c2/2n&B g/H) describes the azimuthal
resistive slippage of the Ðeld lines relative to the disk
material. This result is quite general and depends only on
the disk being thin and on the magnetosphere being per-
fectly conducting ; no other assumptions (such as equi-
librium in the magnetosphere) need to be made.

In general, the ratio is a function of *' deter-B
d,Õ/Bd,zmined uniquely by the solution in the magnetosphere. Then,

for a given distribution of &(r), one obtains a closed equa-
tion for *'(r, t). For example, consider the self-similar
model discussed in ° 2. Self-similarity will not be violated by
resistive e†ects if we demand that &(r) P 1/r. In that case

(see eq.B
d,Õ/Bd,z(*') \[h(n/2, *') \ [a0(*')/(n ] 1)

[2.7]), so equation (4.1) becomes

d*'
dt

\ *)[ c2
2nr&

a0(*')
n ] 1

. (4.2)

Equation (4.1) gives a unique value of the azimuthal Ðeld
at the disk surface required for maintaining a steady state,

BÕ,ss\ [ 2nr&*)
c2 B

d,z . (4.3)

This result for or a variation thereof was previouslyBÕ,ssobtained and discussed by a number of authors (e.g., GL;
Campbell 1992 ; LRBK95; BH96 ; Agapitou & Papaloizou
2000 ; Wang 1987).

Let us now ask : when will a particular system with a
given disk surface conductivity &(r) and di†erential rotation
rate *)(r) be able to attain a steady state? As an illustra-
tion, consider a self-similar force-free magnetosphere. As we
know from ° 2.2, at Ðrst grows with increasingoB

d,Õ(*') o
*', reaches a maximum at and then declinesoB

d,Õmax o *'max,to zero at We thus see that whether or not a steady*'
c
.

state can be reached depends on the relative magnitude of
andB

d,Õmax BÕ,ss.We deÐne a maximum surface conductivity by&max

&max\
K c2
2nr*)

B
d,Õmax

B
d,z

K
\
K c2
2nr*)

K
h
d, max , (4.4)

where the second equality gives the result for our self-
similar model. If then and there& [ &max, oB

d,Õmax o\ oBÕ,ss ois no steady state : the azimuthal resistive slippage is not
strong enough to counter the twisting, and a singularity is
reached in a Ðnite time (corresponding to Resistive*'

c
).

di†usion merely delays the onset of the singularity but does
not remove it. The resistive time delay *t increases with
decreasing &, as shown in Figure 15. The slowdown rate is
largest near where and hence the azimuthal*'max oB

d,Õ o ,
resistive slippage, are maximized. As the critical twist is*'

capproached, the time derivative of *' reverts to its initial
value *) because vanishes at the singular point.oB

d,Õ o
Conversely, if then and a steady& \ &max, B

d,Õmax[ BÕ,ss,state can be reached, as shown in Figure 16. If one starts
with a purely poloidal Ðeld (*'\ 0, then *'B

d,Õ\ 0),
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FIG. 15.ÈTime evolution of the twist angle for several values of the disk
surface conductivity & above (eq. [4.4]) in the n \ 1 self-similar solu-&maxtion. The time t is given in units of 1/*) and the surface conductivity in
units of c2/2n*)r in these units is equal to The slanted(&max h

d, max \ 0.82).
dotted line marks the initial phase of the evolution.

initially grows linearly with time but then asymptotically
approaches the steady state value deÐned by*'ss

B
d,Õ(*'ss)\ BÕ,ss . (4.5)

Note that, although two solutions exist for any given
value of the steady state corresponding tooB

d,Õ o\ oB
d,Õmax o ,

the left (ascending) branch is stable, whereas(*'ss \*'max)the one corresponding to the right (descending) branch
is unstable. Indeed, suppose we are at some(*'ss [*'max)steady state and decrease *' slightly. Then, if *'\*'max,decreases, and the azimuthal slippage becomesoB

d,Õ o
smaller than *)r, causing *' to rise back to its original
value. If, however, then, as *' is decreased,*'[*'max,will increase, and the enhanced azimuthal resistiveoB

d,Õ o
slippage will cause *' to drop even further, moving away
from the original state.

Let us now ask : can real magnetically linked star-disk
systems be expected to reach a steady state? Magnetic di†u-
sivity in astrophysical plasmas is often ascribed to an anom-
alous resistivity produced by Ñuid turbulence (e.g., Parker
1979). Here we shall follow the standard a-prescription that

FIG. 16.ÈTime evolution of the twist angle in the n \ 1 self-similar
solution for the case in which the disk surface conductivity is less than

The normalizations of t and of & are the same as in Fig. 15.&max.

Shakura & Sunyaev (1973) have introduced to describe the
e†ective anomalous viscosity in turbulent accretion disks.
They have estimated the turbulent viscosity as lturb\ ac

s
H,

where Following this methodology, wea \ const [O(1).
introduce a constant and write the turbulent mag-b [ O(1)
netic Ðeld di†usivity as Then the e†ectivegturb\ bc

s
H.

surface conductivity is

&B
c2

2nbcs
, (4.6)

so

&
&max

B
A 1
bh

d, max

B r*)
cs

, (4.7)

which is ?1 in a thin disk (H > r), unless r is close to orrcon > 1.
In the case of molecular disks around YSOs, it is possible

to estimate g directly from an explicit determination of the
electron-molecule collision frequency for given temperature
and density. Adopting the expressions given in Meyer &
Meyer-Hofmeister (1999), we have g \ 103.99T 31@2(nn/ne

),
where is the temperature in units of 103 K, and where theT3electronÈtoÈneutral number density ratio is calculated by
assuming ionization equilibrium of alkali metals (primarily
potassium) and is given by log (n

e
/n

n
) \ 6.48[ 10.94/T3As an illustration, we consider] 0.75 log T3[ 0.5 log n

n
.

T Tauri stars, which are relatively slow rotators (mean rota-
tion rate s~1), and for which we infer (assuming)

*
D 10~5

a 0.5 star) cm. DÏAlessio et al. (1998)M
_

rcoD 1012
modeled accretion disks around such stars, and for a typical
accretion rate of 10~8 yr~1 and a disk ““ a parameter ÏÏM

_of 0.01, we infer from their results values of D 2 ] 103 K
and D 7 ] 1015 cm~3 for the midplane temperature and
particle density, respectively, at For these values, we getrco.g D 7 ] 1010 cm s~2, which is 5 orders of magnitude
smaller than the nominal maximum turbulent di†usivity

Although the estimated di†usivity increases at largercsH.
radii, we consider the region interior to to be particularlyrcorelevant since the disk must extend to if matter is tor ¹ rcobe accreted onto the star. Note also that, as r increases
above and itself decreases withrco, o*) o] )

*
&maxr (P1/r). We conclude that result (4.7) is likely to repre-

sent a lower bound on the ratio in many practical&/&maxapplications.
The preceding discussion indicates that it is unlikely that

a disk with a dipole-like Ðeld conÐguration will achieve a
steady state. It can, however, be seen from Table 1 that

for n ¹ 1. (Note that BH96 demonstrate thath
d, maxD 1/n

as n ] 0.) Therefore, for sufficiently small n,h
d
] 1/n &maxcould be large enough for a steady state to be attainable

even for realistic values of &. In ° 4.2 we argue that if
resistive di†usion in the radial (and not only azimuthal)
direction is taken into account, then small e†ective values of
n are also required for a steady state (in both the exact and
time-averaged senses).

4.2. Radial Flux Di†usion
Since we include resistive di†usion in the azimuthal direc-

tion, for consistency we also need to consider radial di†usion
and its e†ect onB

d,z(r).The radial speed of the magnetic Ðeld footpoints in their
resistive di†usion across the disk can be written as vB,r \where is the azimuthal electriccE

d,Õ/Bd,z \ cKÕ/&B
d,z, E

d,ÕÐeld and is the vertically integrated azi-KÕB 2HjÕ(z\ 0)
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muthal current density. Setting whereKÕ\ cB
d,r/2n,

one getsB
d,r\ B

r
(r, n/2),

vB,r(r, t)\ c2
2n&

B
d,r

B
d,z

\ c2
2n&

f [n/2, a0(t)] . (4.8)

(Note that if the e†ective conductivity is described by eq.
[4.6], then i.e., the footpointsvB,r(r, t)\ bc

s
f [n/2, a0(t)] ;

move radially across the disk with roughly the sound speed,
much faster than the radial gas velocity in a standard accre-
tion disk !)

As we noted in ° 2.3, diverges asB
d,r/Bd,z *'] *'

c
.

Indeed, in this limit, and equations (2.4) and (2.19)a0] 0,
then give But isf (n/2) \ g@(n/2)/n ] a0~n G0@ (n/2)/n. G0@ (n/2)
Ðnite and independent of soa0,

vB,r P f (n/2, a0)P a0~n ] O , *'] *'
c
. (4.9)

Now, the conclusion about the Ðnite-time singularity is
based on the assumption that the Ðeld-line footpoints are
Ðxed in the disk at all times. In reality, the footpoints would
undergo some radial excursion *r during the twisting time

from *'\ 0 to If *r > r, our results wouldt
c

*'\ *'
c
.

not change much, but if then the approach to a*r/r Z 1,
singularity would need to be reexamined. In the high-
conductivity limit (&? c2/*)r or g > *)Hr) we can
neglect the azimuthal resistive slippage and use equation
(2.11) (especially near the critical point, where B

d,Õ] 0).
Assuming that &\ const, the total radial footpoint dis-
placement is

*r \ c2
2n&

P
0

tc
f [n/2, a0(t)]dt

\ c2
2n&*)

P
*'/0

*'c Ad*'
da0

B
f (n/2, a0)da0 . (4.10)

Note that if &P 1/r, resistive slippage does not break the
self-similarity assumption : *r P r, and the self-similar
scaling of the Ñux distribution (i.e., the power-law(

d
(r)

index n) remains una†ected by the footpoint migration.
Equation (4.9) describes the asymptotic behavior of f (n/2)

in the limit The calculation of in this*'] *'
c
. (d*'/da0)limit is more cumbersome and is given in the Appendix.

Equation (A8) from the Appendix gives *'^ *'
c
] ma0n ,so that

d*'
da0

P a0n~1 , a0] 0 . (4.11)

Plugging equations (4.9) and (4.11) into equation (4.10), we
obtain

*r(*'] *'
c
)D

c2
2n&*)

P a0?0
a0~n a0n~1 da0P log a0 ] O , a0] 0 .

(4.12)

For example, in the case of turbulent di†usivity described
by equation (4.6), we have

*r D
bc

s
*)

o log (*'
c
[ *') o] O , *'] *'

c
. (4.13)

This shows that, in principle, even if the conductivity is
large, the radial Ðeld di†usivity in the disk cannot be
neglected. As the radial displacement *r of the*'] *'

c
,

magnetic footpoints eventually becomes of order r, and the

approximation becomes inadequate. ThisB
d,z(r) B const

outward migration would decrease and prevent it fromB
d,rblowing up. It can be argued, however, that the Ðnite-time

singularity would still occur. Indeed, as *r onlyt ] t
c
,

scales logarithmically with but the radius r((, of thea0, hap)apex point of the Ðeld line ( increases as Thus, thea0~1.
twisted Ðeld lines expand much faster in the magnetosphere
than their footpoints migrate inside the disk and so would
still open in a Ðnite time. Although inertial e†ects reduce the
expansion speed in the magnetosphere (see Paper II), this
speed would still be much higher than the Ðeld di†usion
speed in the disk. In addition, because *r diverges merely
logarithmically as the value of the twist angle at*'] *'

c
,

which *r becomes of order r is exponentially close to *'
c
.

Taking, for example, the result (4.13) for the case of turbu-
lent magnetic di†usivity, we get

*'
c
[ *' o*rFr

D exp
C
[ Cr*)

bc
s

D
> 1 , (4.14)

where CD O(1). Thus, for any real system, the force-free
equilibrium model ceases to be valid well before this point is
reached.

The e†ect of the divergent radial Ðeld di†usion near *'
cwould be even less of an issue if reconnection in the magne-

tosphere terminated the expansion (e.g., Aly & Kuijpers
1990 ; VB94 ; Goodson et al. 1997, 1999). In this case, one
may get periodic cycles of twisting, expansion, and recon-
nection Will the system maintain a time-averaged steady
state in this case? VB94, who Ðrst addressed this question,
noticed that, if n \ 1, (and hence changes sign inB

d,r vB,r)the course of the evolution (see Fig. 2). Thus, depending on
the twist angle at which reconnection occurs, there will be a
value of n ½ (0,1) for which averages to zero betweenB

d,rthe start of the twisting cycle (*'\ 0) and the point of
reconnection.

An alternative scenario, also for n \ 1, was proposed for
an exact steady state by BH96 and later extended by Agapi-
tou & Papaloizou (2000), who succeeded in calculating
numerically true steady state equilibria (i.e., equilibria with

and with determined from the steady stateB
d,r \ 0 B

d,Õcondition [4.3]) for a Keplerian disk. We can gain further
physical insight by reinterpreting both of these groupsÏ con-
clusions in the language of the self-similar model as follows.
The basic idea is that a system with 0 \ n \ 1 attains

at some twist angle (see Table 1).B
d,r \ 0 *'0\*'maxThen, if happens to be equal to a genuine steady*'0 *'ss,state with (and with see ° 4.1) is estab-B

d,r \ 0 B
d,Õ \BÕ,ss ;lished. However, since is directly related to &, this is*'sspossible only for some special which, in general,&\ &ss(n),

is unrealistically large (of order c2/r*) ; see ° 4.1).
Both the VB94 and the BH96 proposals could probably

be realized only when n > 1. In the VB94 scenario, this
follows because one expects reconnection to occur only very
close to whereas in the BH96 scenario this is because,*'

c
,

for realistic values of &, a steady state requires h
d, max ? 1,

and hence n > 1. In fact, one can interpret the conclusions
of BH96 and Agapitou & Papaloizou (2000) in the language
of the present paper as the argument that, for a given &, the
radial Ðeld di†usion leads to a rearrangement of ( on the
disk surface. This rearrangement has the e†ect of decreasing
n to some small value such thatn \ nss(&), *'max(&, nss)\Whether this can happen in a real system depends,*'0(nss).in particular, on the radial proÐle of &.
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5. SUMMARY

In this paper we considered the time evolution of the
magnetic Ðeld that threads an accretion disk around a mag-
netized star, resulting from the relative rotation between the
disk and the star. We studied this evolution using simpliÐed
models of axisymmetric, force-free Ðelds. In particular, we
Ðrst employed the semianalytic self-similar solution Ðrst
derived for a uniformly rotating disk by VB94 (see also
Lynden-Bell & Boily 1994) to construct a sequence of mag-
netospheric equilibria parametrized by the relative twist
angle *'. Subsequently, we tested the generality of our
basic conclusions by constructing numerical solutions of
the Grad-Shafranov equation for systems with rotation
laws that approximate a Keplerian disk. Our main results
and their astrophysical implications can be summarized as
follows.

Assuming that both the star and the magnetosphere are
perfectly conducting, the behavior of the twisted Ðeld lines
depends on the surface conductivity & of the disk. A steady
state conÐguration can be established only if, at a radius r in
the disk, &(r) is less than a certain limiting value, &(r) \

(see eq. [4.4]). In practice,&max(r)D c2/r o*)(r) o &maxappears to be unrealistically small, and weakly ionized pro-
tostellar disks and even disks that possess a turbulent mag-
netic di†usivity typically do not satisfy the above condition,
except very close to the corotation radius. Moreover, the
inequality is actually not sufficient for a steady& \ &maxstate. In fact, &(r) must be exactly equal to a certain speciÐc
value (which depends on the Ñux distribution proÐle at the
surface of the disk) in order for the system to avoid radial
Ñux di†usion (see ° 4.2). Thus, we conclude that an exact
steady state is very unlikely in magnetically linked star-disk
systems.

Most astrophysical disks have and are,&(r)?&max(r)therefore, not in a steady state. The Ðeld lines in these
systems undergo secular twisting and, as a result, inÑate and
e†ectively open up when a critical twist angle (on the*'

corder of a few rad) is reached. This Ðnite-time singularity is

an exact result of the self-similar model (VB94), but its pres-
ence in a general nonÈself-similar situation (e.g., a Keplerian
disk) is supported by our numerically constructed
sequences of two-dimensional force-free equilibria and by
the simple physical argument given in ° 3.

We also studied the e†ect of the radial Ðeld di†usion
present in the case of a nonzero disk resistivity. We found
that, as the Ðeld lines undergo a strong expansion, the
increased radial magnetic Ðeld at the disk surfaceB

d,rcauses the Ðeld lines to migrate outward. A similar conclu-
sion was also reached by Bardou & Heyvaerts (1996), who
suggested, in addition, that the Ðeld lines would be expelled
from the disk. We argued, however, that if one starts with a
disk Ñux distribution ( P r~n with n D O(1), then this
expulsion is unlikely to happen on the rotation timescale.
This is because the radial di†usion in the disk is much
slower than the Ðeld-line expansion in the magnetosphere
unless n > 1. Over many rotation periods, however, the
radial di†usion could, in principle, lead to the establishment
of a steady state via a drastic rearrangement of the Ñux, as
discussed by BH96 and Agapitou & Papaloizou (2000).

Alternatively, a time-averaged steady state could, in prin-
ciple, be attained in certain cases. In particular, this may
happen if the Ðeld lines expand and reconnect in a cyclic
manner and the cycle-averaged is zero (VB94), or if theB

d,rcycle involves inward radial mass motions that counter the
outward radial Ñux di†usion, as was evidently the case in
the time-dependent numerical simulations of Goodson et al.
(1999).
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APPENDIX

CALCULATION OF NEAR THE CRITICAL POINT(d*'/da0)

In this appendix we analyze the behavior of the magnetic Ðeld near the critical point in more detail. Our main goal is to Ðnd
the asymptotic behavior of near We use the results of this analysis in ° 4.2 to determine the e†ects of resistive(d*'/da0) *'

c
.

di†usion near the critical point.
Calculating is not a straightforward task, since one needs to know the deviation of g(h) from the asymptotic(d*'/da0)solution Indeed, if one simply uses the lowest order expression and plugs it into equation (2.12), oneG0(h)a0~n. g(h) ^ G0(h)a0~n

gets equation (2.20). Thus, in order to Ðnd the behavior of near one needs to know the next-order (in(d*'/da0) *'
c
, a0)correction to g(h) as Let us writea0] 0.

g(h)\ G(h)a0~n \ G0(h)a0~n ] dG(h)a0~n , (A1)

where G(h) is the solution of (2.18) satisfying G(0)\ 0, G(n/2) \ a0n > 1.
In order to Ðnd the correction dG(h), let us introduce a small parameter v chosen so that and atdG(n/2 [ v) > G0(n/2 [ v)

the same time v> 1. As can be seen from Figure 3, the derivative at h \ n/2 is Ðnite (i.e., does not scale with and sodG0/dh a0),Next, so we must choose v in the rangeG0(n/2[ v)^ vdG0/dh(n/2). dG(n/2 [ v)D dG(n/2) \ a0n ,
a0n > v> 1 . (A2)

Inside the v vicinity of h \ n/2 we can approximate sin h B 1, so we get

G@@(h)] n(n ] 1)G] n
n ] 1

G1`2@n\ 0 . (A3)
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Since G(h)> 1 in this region, the solution can be written as

Ginner(h) ^ a0n ] const ] (h [ n/2) . (A4)

In the region h \ n/2 [ v, and we can linearize equation (2.18), which givesdG>G0(h),

sin (h)
d
dh
A 1

sin h
ddG
dh
B

] n(n ] 1)dG(h) ] n ] 2
n ] 1

dG(h)[G0(h)]2@n\ 0 . (A5)

Actually, near h \ n/2 the last term of equation (A5) becomes negligible compared with the other terms (because G0(h)> 1
there). Since this is the only term that distinguishes this equation from the one describing the inner region h [ n/2 [ v, we can
ignore the di†erence and extend the range of applicability of equation (A5) all the way up to h \ n/2, where we set the
boundary condition The other boundary condition is dG(0)\ 0.dG(n/2) \ a0n .Once dG(h) is known, one can determine the asymptotic behavior of as We write where*'(a0) a0] 0. *'\*'

c
] d*',

d*'\ 1
n ] 1

P
0

n@2
d[G1@n(h)]

dh
sin h

. (A6)

In order to estimate this integral, let us choose some 0 \ x \ n. Then, within the of h \ n/2, wev1D a0n~x > 1, v1-vicinity
have and Hence in this region, whereG(h)^ a0n ] G0(h) G0(h)^ [dG0/dh] oh/n@2(h[ n/2) D C1 v1. o d[G1@n(h)] o\ C2 v11@nand we can estimate this regionÏs contribution to the integral (A6) asC1, C2\ O(1),

K 1
n ] 1

P
n@2~v1

n@2
d[G1@n(h)]

dh
sin h

K
\ C3 v11`1@n , C3\ O(1) . (A7a)

In the rest of the integration domain, and sod[G1@n(h)]^ (1/n)(dG)G01@n~1(h),

1
n ] 1

P
0

n@2~v1
d[G1@n(h)]

dh
sin h

^
1

n ] 1
P
0

n@2~v1 dG
n

G01@n~1(h)
dh

sin h
. (A7b)

Since the contribution from this region is of order Thus, if we choose so that and hencedGD a0n , a0n . v1 v11`1@n > a0n ,x \ n/(n ] 1), then this contribution will be much larger than the contribution from the of h \ n/2. Thus, thev1-vicinity
correction to *' is on the order of and we now calculate the coefficient. Notice that the integral (A7b) as a function ofa0n , v1converges in the limit Therefore, to lowest order in we can writev1 ] 0. a0,

d*'^
1

n(n ] 1)
P
0

n@2
dGG01@n~1(h)

dh
sin h

\ m(n)a0n . (A8)

Using the functions dG and obtained above, we get, for example, andG0(h) d*'(n \ 1)B [0.17a0 d*'(n \ 0.5)B [0.22a01@2as a0 ] 0.
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