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ABSTRACT
We consider ever-expanding big bang models with a cosmological constant, ", and investigate in

detail the evolution of the observable part of the universe. We also discuss quintessence models from the
same point of view. A new concept, the "-sphere (or Q-sphere, in the case of quintessence) is introduced.
This is the surface in our visible universe that bounds the region where dark energy dominates the
expansion, and within which the universe is accelerating. We follow the evolution of this surface as the
universe expands, and we also investigate the evolution of the particle and event horizons as well as the
Hubble surface. We calculate the extent of the observable universe and the portion of it that can be seen
at di†erent epochs. Furthermore, we trace the changes in redshift, apparent magnitude and apparent size
of distant sources through cosmic history. Our approach is di†erent from, but complementary to, most
other contemporary investigations, which concentrate on the past light cone at the present epoch. When
presenting numerical results we use the FRW world model with and as our stan-)

m0\ 0.30 )"0\ 0.70
dard cosmological model. In this model the "-sphere is at a redshift of 0.67, and within a few Hubble
times the event horizon will be stationary at a Ðxed proper distance of 5.1 Gpc (assuming Allh0\ 0.7).
cosmological sources with present redshift larger than 1.7 have by now crossed the event horizon and
are therefore completely out of causal contact.
Subject headings : cosmology : observations È cosmology : theory È relativity

1. INTRODUCTION

At present there is growing evidence that the expansion
of our visible universe is accelerating. Two independent
research groups using Type Ia supernovae as standard
candles have discovered signs of a small positive cosmo-
logical constant in the Hubble diagram (Perlmutter et al.
1999 ; Garnavich et al. 1998 ; Riess et al. 1999, 2001). Further
evidence comes from investigations of anisotropies in the
cosmic microwave background as well as large-scale struc-
ture and the age of the universe (for recent reviews and
references see Carroll 2001, Sahni & Starobinsky 2000, and
Bahcall et al. 1999).

Assuming standard cosmological theory (Peacock 1999 ;
Peebles 1993) these observations indicate that matter,
including dark matter, contributes about 30% of the critical
density and an e†ective cosmological constant or dark
energy about 70%. These results indicate that our universe
is close to being Ñat and has a big bang origin. Further-
more, we are living at a time in cosmic history when the
cosmological constant, or something that mimics its e†ects,
is already dominating the expansion.

In this paper we shall investigate the evolution of ever-
expanding big bang world models with a cosmological con-
stant, or a quintessence Ðeld, with particular emphasis on
the evolution of the observable universe, i.e., our past light
cone and relevant observables such as redshift of cosmic
sources, their apparent magnitude, and their apparent size.
The properties of the particle horizon, the Hubble surface
and the event horizon will also be discussed.

We introduce a new concept, the "-sphere (or Q-sphere,
in the case of quintessence), which is the surface in our
visible universe that bounds the region where dark energy
dominates the expansion, and within which the universe is
accelerating. We track the evolution of this surface through
cosmic history.

Our methods are in many ways similar to the ones used
in our work on the evolution of closed-world models

without a cosmological constant & Gud-(Bjo� rnsson
mundsson 1995), in which an extensive list of references to
earlier work on cosmic evolution can be found (see also
Adams & Laughlin 1997 for a di†erent perspective and
further references). We emphasize that our approach is dif-
ferent from, but complementary to, most other recent inves-
tigations, which concentrate on applying new and old
cosmological tests, such as the m-z relation, to the present
light cone.

The paper is organized as follows. We begin in ° 2 by
reviewing the basic deÐnitions and results of standard cos-
mology that are relevant to our discussion. In ° 3 we discuss
the light cone, the particle and event horizons as well as the
Hubble surface for a fundamental observer. In °° 4, 5, and 6
we present our results for the evolution of observable quan-
tities such as redshift, apparent magnitude, and apparent
angular size and discuss the properties of the "-sphere as
well as the question of causal connections. Similar methods
are then used in ° 7 to investigate the e†ects of quintessence,
and in ° 8 we conclude the paper.

2. THE WORLD MODELS

The spacetime metric of the standard spatially homoge-
neous and isotropic Friedmann-Robertson-Walker (FRW)
world models can be written in the form (see, e.g., Weinberg
1972 ; Peebles 1993 ; Peacock 1999)

ds2 \ [c2dt2] R2(t)
A dr2
1 [ kr2] r2d)2

B
, (1)

where d)2\ dh2] sin2 h d/2, (r, h, /) are comoving
spherical coordinates, t is the cosmic proper time, and c is
the velocity of light. R\ R(t) is the universal scale factor
and k the curvature scalar, which takes one of three possible
values according to whether the universe is open (k \ [1),
Ñat (k \ 0), or closed (k \ ]1).

The time evolution of the models is determined by the
Einstein Ðeld equations for a universe composed of a perfect
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Ñuid and by the equation of energy-momentum conserva-
tion. These equations can be reduced to a system of two
di†erential equations in the form

R0 2 \ 8nG
3

oR2[ kc2 (2)

and

do
dR

\ [ 3
R
A
o ] P

c2
B

. (3)

Here the dot means di†erentiation with respect to t, G is
NewtonÏs constant of gravitation and the total mass-energy
density, o, and the total pressure, P, are given by

o \ o
m

] o
r
] o" ] o

Q
(4)

and

P\ P
m

] P
r
] P" ] P

Q
, (5)

respectively. Above, is the mass-energy density of non-o
mrelativistic matter, including nonrelativistic dark matter,

and that of radiation, including all relativistic particles.o
rSimilarly, and are the pressure of matter and radi-P

m
P

ration, respectively. The term is the mass-energy densityo"associated with EinsteinÏs cosmological constant ",

o" \ c2"
8nG

, (6)

and the corresponding e†ective pressure is given by

P" \ [o" c2 . (7)

The mass-energy density and pressure of quintessence are
denoted by and respectively.o

Q
P
Q
,

Note that in order to solve equations (2) and (3) one also
needs equations of state for matter, radiation, and quin-
tessence. In general one can write for each component

P
i
\ w

i
o
i
c2 , (8)

where i stands for each of m, r, ", or Q with w
m

\ 0, w
r
\ 13,and (for a further discussion on thew" \ [1, [1 \ w

Q
\ 0

cosmic equation of state see, e.g., Gudmundsson &
1990 and references therein. That paper usesRo� gnvaldsson

instead of as a pressure parameter, witha
i

w
i

a
i
\ 3w

i
).

In this paper we shall primarily be concerned with the
e†ects of a cosmological constant on the evolution of the
observable universe with emphasis on cosmic epochs in
which matter dominates over radiation. The e†ects of quin-
tessence, which could mimic the e†ects of a true cosmo-
logical constant at the present epoch, will be considered in
° 7. In later sections we shall assume that ando

r
\ 0 P

r
\ 0.

The total mass-energy density parameter is deÐned by

)\ ; )
i
, (9)

where is the contribution of each component, m,)
i
\o

i
/o

cr, ", and Q, and g cm~3 iso
c
\ 3H2/8nG\ 1.9 ] 10~29h2

the critical density. Here h \ H/(100 km s~1 Mpc~1), where
is the Hubble constant. Note that since H is aH \R0 /R

function of time, so is and hence ) (for k \ ^1). Theo
crelation between ) and other cosmological parameters can

be found by rewriting equation (2) in the form

)\ 1 ] kc2
R2H2 \ 1 ] kc2

R0 2 . (10)

Using equation (10) and the fact that after decoupling
each of the cosmic components m, r, " and Q separately
satisfy equation (3), the dynamical equation (2) can be
written in a convenient form as

da
dq

\
C
)

m0
A1
a

[ 1
B

] )
r0
A 1
a2[ 1

B
] )"0(a2[ 1)

] )
Q0
A 1
a1`3wQ

[ 1
B

] 1
D1@2

(11)

for ever-expanding models. Here is assumed to be con-w
Qstant, is a new dimensionless cosmic time variableq\ t/t

H0deÐned in terms of the Hubble time at the present epoch,
Gyr, and is the scale factort

H0
\ 1/H0\ 9.8h0~1 a \R/R0normalized to its present value. In equation (11) and in

what follows we denote the values of quantities at the
present time by the subscript 0. Note that a(q0)\and For future(da/dq)q/q0 \ 1 H \ R0 /R\ H0(1/a)(da/dq).
reference we also remind the reader of the deÐnition of the
Hubble radius, Its present day value isR

H
\ c/H. R

H0\
Gpc.c/H0\ 3.0h0~1

In order to determine a as a function of q one simply
integrates equation (11) for given values of )

m0, )
r0, )"0and as well as Note that the age of the universe at)

Q0, w
Q
.

the present epoch is given by

q0 \
P
0

1 Ada
dq
B~1

da . (12)

In the following sections we shall be concerned with the
evolution of the subclass of FRW models that have a big
bang origin and continue to expand forever, since recent
observations indicate that we live in such a universe. For
the relevant region in the plane we refer the reader()

m
, )")

to equations (11) and (12) and Figure 1 in Carroll, Press, &
Turner (1992) and Figure 7 in Perlmutter et al. (1999).

3. THE OBSERVABLE UNIVERSE

In this section we shall discuss various concepts which
are necessary for an understanding of our observable uni-
verse. For this purpose it is convenient to start by remi-
nding the reader of the deÐnition of the conformal time g :

dg \ cdt
R(t)

. (13)

In a big bang universe the relation between g and the time
variable q is therefore given by

g \ R
H0

R0

P
0

q dq
a(q)

. (14)

The comoving conformal radial distance, s, is deÐned by

ds2 \ dr2
1 [ kr2 . (15)

Assuming that we are in the position of a fundamental
observer at the origin, s \ 0 (corresponding to r \ 0), we
therefore have

s \
4
5
6

0
0
sinh~1 (r) k \ [1 ,
r k \ 0 ,
sin~1 (r) k \ ]1 .

(16)

For our distance calculations we only need the radial
coordinate. Setting dh \ d/\ 0 in equation (1) and using
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conformal representation, the spacetime metric becomes
very simple :

ds2\ R2(g)[ds2[ dg2] . (17)

Figure 1 shows the scale factor, a, both as a function of g
in units of and q for selected values of andR

H0/R0, )
m0 )"0with Note in particular that while q covers)

r0 \)
Q0\ 0.

the whole range from 0 to O, g has a maximum value,
which we denote by A detailed discussion of willgmax. gmaxbe given in ° 3.4. In what follows, in the main text as well as
in Ðgure captions, both g and s will be presented in units of
R

H0/R0.We now discuss in turn the light cone of a fundamental
observer, his Hubble sphere and his event horizon.

3.1. T he L ight Cone
The light cone of a fundamental observer is determined

by ds \ 0, i.e., by

dg \ ^ds , (18)

where we have used equation (17). Here the plus sign corre-
sponds to the future light cone and the minus sign to the
past light cone.

Assuming that at time we receive a signal emitted atg0time g from a source at s, integration of equation (18) gives
the equation of our past light cone at asg0

g \ g0[ s . (19)

Similarly our future light cone at is given byg0
g \ g0] s , (20)

where g is now the time in the future at which an observer at
s receives a signal emitted by us at The future light coneg0.at the big bang is sometimes called ““ the creation light
cone ÏÏ (Rindler 1956).

Figure 2 shows our past and future light cones in a model
with and In what)

m0\ 0.30, )"0\ 0.70, )
Q0\ )

r0 \ 0.
follows, this will be our standard cosmological model when
presenting numerical results, and we shall refer to it as our
standard "-model. In this model, which corre-q0\ 0.96,
sponds to whereas the end of time q\ O corre-g0\ 3.3,
sponds to (our numerical results willg \ gmax\ 4.5
generally be given with two signiÐcant Ðgures). The distance

is the normalized proper distance with thed
p

d
p
\ d/R

H0,proper distance given by d \ d(q) \ R(q)s. Figure 2 also
shows the creation light cone as well as the Hubble surface,

FIG. 1.ÈTop left : Scale factor a as a function of g for and (solid curve), 0.30 (dotted curve) and 0.50 (dashed curve). Here and in all)"0\ 0.70 )
m0\ 0.10

Ðgures that follow, g is in units of Top right : Scale factor a as a function of q for the same values of and as in the top left-hand panel. BottomR
H0/R0. )"0 )

m0left : The scale factor as a function of g for and (solid curve), 0.70 (dotted curve), and 0.90 (dashed curve). Bottom right : a as a function of)
m0\ 0.30 )"0\ 0.50

q for the same values of and as in the bottom left-hand panel.)"0 )
m0
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FIG. 2.ÈL eft : Our past light cone (dotted line) and the future light cone (dot-dashed line) at the present epoch in a g - s diagram for our standard "-model
with and Also shown are the Hubble surface (dashed curve), the particle or visual horizon (triple-dotÈdashed line), the)"0\ 0.70, )

m0\ 0.30, )
Q0\)

r0\ 0.
event horizon (solid line), and the "-sphere (long-dashed line). Here and Note that the creation light cone lies right on top of the particleg0\ 3.3 gmax \ 4.5.
horizon (visual horizon). Right : Same curves in a diagram, where and d is the proper distance. Note that and thereforeq-d

p
d
p
\ d/R

H0 q0\ 0.96, t0\ 13.5
Gyr if h0\ 0.70.

the particle horizon, the event horizon and the "-sphere
which will all be discussed in detail in sections 3.2È3.4 and
4.1 below.

In terms of the time variable q and the proper distance,
d \ Rs, the past light cone (lc) at is given byq0

d
lc
(q)\ R

H0 a(q)
CP

0

q0 dq
a(q)

[
P
0

q dq
a(q)
D

, (21)

with 0¹ q¹ q0.

3.2. T he Particle Horizon
At time g our particle horizon (ph) is situated at s \ g

(Rindler 1956). The proper distance to this horizon is there-
fore

d
ph

(g)\ Rg , (22)

and as a function of q it is given by

dph(q)\ Rg \ R
H0 a(q)

P
0

q dq
a(q)

. (23)

The horizon is moving away from us at speed

vph\ d
dt

(dph)\ c] H dph(g)\ c
A
1 ] g

R
H
/R
B

. (24)

Note that comoving sources momentarily at the particle
horizon are moving away from us at speed In a uni-Hdph.verse with a big bang beginning we ““ see ÏÏ these sources as
they were at q\ 0 and with inÐnite redshift.

In our numerical calculations we assume a universe with
ordinary matter and a cosmological constant (or
quintessence), i.e., a universe with This basically)

r0 \ 0.
means that we ignore the expansion dynamics of the early
universe. For our purposes this is a good approximation.
However it should be kept in mind that the early universe
probably went through an inÑationary period. With inÑa-
tion the real particle horizon is much further away than the
particle horizon obtained by assuming a dust universe with
a cosmological constant (see, e.g., Harrison 1991) and refer-
ences therein). The particle horizon presented in our calcu-

lations is therefore approximately equal to the particle
horizon looking back to the cosmic microwave back-
ground. This horizon is sometimes called the ““ visual
horizon ÏÏ (Ellis & Rothman 1993). For our standard
"-model we Ðnd that anddph(q0) \ 3.3R

H0 vph(q0)\ 4.3c.

3.3. T he Hubble Surface
The ““Hubble surface ÏÏ (hs ; Harrison 1991) is the instan-

taneous set of points which at time g are moving away from
us at the speed of light. Their proper distance is given by the
velocity-distance law as

dhs(g) \ c
H

\ R
H

, (25)

and hence the conformal distance is

shs(g) \ dhs(g)
R

. (26)

In terms of q, the proper distance to the Hubble surface is
given by

dhs(q) \ Rshs \ R
H0 a(q)

Ada
dq
B~1

(27)

and it is moving away from us at speed

vhs\
d
dt

(dhs) \ c(1] q) , (28)

where is the deceler-q \ [RR� /R0 2 \ [a(d2a/dq2)/(da/dq)2
ation parameter. Note that if the cosmological constant
dominates the expansion then q \ [1 and For ourvhs \ 0.
standard "-model we Ðnd that and hence theq0\ [0.85
present speed of the Hubble surface is vhs(q0) \ 0.15c.

In Figure 2 we show the evolution of the Hubble surface
by the dashed curve. Note that at a given time sources
beyond the Hubble surface are moving away from us with
speed greater than c, whereas sources inside the surface are
receding with speed less than c. From the Ðgure one can
also see that on a cosmic timescale the Hubble surface
rapidly approaches the event horizon and within only a few
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Hubble times after the big bang the two have practically
merged, never to part again.

3.4. T he Event Horizon
If the world line of a source at conformal distance s

intersects our past light cone at time then we see it as itg0,was at g \ g(q), where

s \ g0[ g \
P
g

g0
dg \R

H0
R0

P
q

q0 dq
a(q)

. (29)

Now suppose that for an ever-expanding world model the
integral is Ðnite. Then the conformal time/q= a~1dq

gmax \R
H0

R0

P
0

= dq
a(q)

(30)

corresponding to is Ðnite and the conformal dis-q0\ O
tance given byseh

seh\ gmax[ g \
P
g

gmax
dg \ R

H0
R0

P
q

= dq
a(q)

\ R
H0

R0

CP
0

= dq
a(q)

[
P
0

q dq
a(q)
D

, (31)

is the Ðnite distance to our event horizon (eh) at time g (or
q). This is because the event horizon is our Ðnal or ultimate
light cone (Rindler 1956). It is deÐned by equation (31) and
shown for our standard model by the solid curve in Figure
2. All events on the event horizon will Ðrst be ““ seen ÏÏ by us
at the end of time corresponding to q\ O) and(g \ gmaxwith inÐnite redshift (see ° 4). Events beyond this horizon
will never be seen by us.

The proper distance to the event horizon at time q is
given by

deh(q)\ Rseh \ R
H0 a(q)

CP
0

= dq
a(q)

[
P
0

q dq
a(q)
D

, (32)

and it is moving away from us with speed

veh\ d
dt

(deh)\ c
A gmax
R

H0/R0

BAda
dq
B
q
[ vph , (33)

where is given by equation (24). For our standardvph"-model we have that veh(q0)\ 0.14c.
From Figure 2 we see that for the ever-expanding big

bang models with a cosmological constant, the event
horizon is stationary at a particular proper distance after a
certain time. Furthermore the Hubble surface approaches
the event horizon quite rapidly. For the standard "-model
in Figure 2, we have that the proper distance to the Hubble
surface and the event horizon is Ðxed at at lateB1.2RH0cosmic epochs. For comparison with this ultimate value, we
remind the reader that the present day value of isdhsand from equation (32) we see that1.0R

H0, deh(q0) \1.1R
H0.The reason for this limiting behavior can be understood

in the following way. For an ever-expanding model the
scale factor increases without limit. After a certain time, say

we see from equation (11) that the " term dominatesqI,
completely and hence it is a good approximation to write

a(q)\ a(qI)e)"01@2(q~qI ), q [ qI . (34)

From this it follows that

deh(q) \ dhs(q) \ R
H0 a(q)

Ada
dq
B~1\ R

H0
)"01@2 , q [ qI . (35)

Note that although the proper distance to the event horizon
is Ðnite, its luminosity distance, is inÐnite. However, asd

L
,

will be discussed in more detail in °4, the angular diameter
distance, is Ðnite.d

A
,

For later purposes we also express equation (34) in terms
of conformal time. For g in the range wheregI \g ¹ gmax,corresponds to we Ðnd from equations (14) and (34)gI qI,
that

g B gmax[
R

H0/R0
)"01@2 a(g)

, gI \ g¹ gmax , (36)

and hence

a(g) B
R

H0/R0
)"01@2(gmax[ g)

, gI \ g¹ gmax . (37)

Finally, we remind the reader that only universes with
Ðnite have event horizons. For example if the scalegmaxfactor grows as a power of time, i.e., a P qn, then isgmaxÐnite only if n [ 1. Models with scale factors growing more
slowly than this have no event horizons, e.g., the open or
Ñat FRW-universes with "\ 0, and quintessence models
with (see also ° 7).[13 \ w

Q
\ 0

4. EVOLUTION OF OBSERVABLE QUANTITIES

In this section we shall discuss the time evolution of
various observational quantities in ever-expanding big
bang models with a cosmological constant.

Consider Ðrst our past light cone. In Figure 3 we show
how it evolves with cosmic time in our standard "- model.
As time advances for the observer, his light cone gets closer
and closer to the event horizon, demonstrating that the
event horizon corresponds to his Ðnal light cone. One can
clearly see how his observable part of the universe is
enclosed for all time within a Ðnite proper volume with
proper radius As expected, the right-R

H0/)"01@2B 1.2R
H0.hand panel of Figure 3 also shows that the Hubble surface

(short-dashed curve) crosses the observerÏs light cones at
their maximum proper distance from the time axis.

The world lines of sources at several di†erent conformal
distances, s \ 0.10, 0.60, 1.0, and 2.0, are also shown in the
right-hand panel of Figure 3 (dotted curves). All sources
taking part in the cosmic expansion leave our observable
part of the universe in a Ðnite proper time. However, just as
an observer at rest far away from a black hole never sees
infalling objects pass the event horizon of the black hole, we
shall never see the sources pass through our cosmic event
horizon, although they will rapidly fade away once the
cosmological constant dominates the expansion.

4.1. T he Redshift and the "-Sphere
Assume that a given cosmic source is located at comoving

conformal distance s. Its redshift, z, as observed at time
is given bygobs\ g(qobs)

1 ] z\ R(gobs)
R(gem)

\ a(qobs)
a(qem)

, (38)

where is the time at emission, i.e., the time atgem\ g(qem)
which the world line of the source crosses the observerÏs
past light cone as it is at the time of observation.
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FIG. 3.ÈL eft : The past light cone at various cosmic epochs in a g-s diagram. The world model is the same as in Fig. 2. Also shown are the event horizon
(solid line) and the Hubble surface (short-dashed curve). Right : Same as a, but in a diagram. In addition, world lines of several sources are also shown asq-d

pdotted curves, marked by the positions of the sources at s \ 0.10, 0.60, 1.0, and 2.0.

In Figure 4 we plot z as a function of the time of obser-
vation for sources at various distances, s. For simpliÐcation
we have dropped the subscript ““ obs ÏÏ on both g and q. We
Ðrst ““ see ÏÏ each source when it comes within our particle
horizon, i.e., as it was at the big bang It therefore(gem \ 0).
enters our observable universe with inÐnite redshift at
cosmic time g \ s. Before the cosmological constant
becomes dynamically important the redshift decreases more
or less as in a universe without " because the expansion is
slowing down. As the e†ects of the cosmological constant
begin to manifest themselves, the sourceÏs redshift reaches a
minimum, and once " completely dominates the expansion
(i.e., for or equivalently for see thegI \ g¹ gmax qI > q ;
discussion after eq. [32]) the behavior of the sourceÏs red-
shift with time is given by

1 ] zB 1 ] s
gmax[ g

B (1] zI)e)"01@2(q~qI ) , (39)

where and For we havezI \ z(qI) qem ¹ qI. qI \ qem \q
that Hence all sources will redshift1 ] z\ e)"01@2(q~qem).
away on a timescale the redshift going to*t B )"0~1@2 t

H0,

inÐnity at corresponding to q\ O when the scaleg \ gmaxfactor becomes inÐnite.
In order to investigate this in more detail we introduce a

redshift evolutionary timescale, T
z
(q) \ M[d(1 ] z)/dq]/

(1] z)N~1, which can be compared to the expansion time-
scale (normalized Hubble time), T

a
(q) \ (H0/H)\

Note that can take both positive and nega-[(da/dq)/a]~1. T
ztive values, depending on whether the redshift is increasing

or decreasing. By use of equation (38) we Ðnd for the FRW
models in general that

1
T
z
\ 1

(1] z)
d(1] z)

dq
\ 1

a
CAda

dq
B
q
[
Ada
dq
B
qem

D
, (40)

where the time derivative of a is given by equation (11). Also
note that in deriving this result we have used cosmic time
dilation : In terms of the timescales, equa-dq\ (1] z)dqem.
tion (40) can be rewritten as

1
T
z
(q)

\ 1
T
a
(q)

[ 1
(1] z)T

a
(qem)

. (41)

FIG. 4.ÈEvolution of the redshift of three sources in the "-model. The sources are at s \ 0.60 (solid curve), 1.0 (dotted curve), and 2.0 (dashed curve) and
their worldlines are shown in the right-hand panel of Fig. 3. L eft : Redshift as a function of g ; right : redshift as a function of q. In the right-hand panel the
redshifts (triple-dotÈdashed curve) and (dot-dashed curve) are also shown as functions of q. See text for further explanations.z" zeq
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Next consider the right hand side of equation (41) as a
function of z. It has a maximum at the redshift correspond-
ing to a minimum value of For big bang models withT

z
.

we have that da/dq is a decreasing function)"0\ )
Q0\ 0

of q, i.e., d2a/dq2\ 0, and thus d(1] z)/dq is negative during
expansion. In such models the redshift of a given source
always decreases with time (in recollapsing models the red-
shift eventually changes into blueshift, see, e.g., &Bjo� rnsson
Gudmundsson 1995). However, for big bang models with a
positive cosmological constant the situation is di†erent.
Owing to the dynamical e†ects of ", accelerated expansion
starts at cosmic time given byq"

Ad2a
dq2
B
q"

\ 0 (42)

and continues forever. It is clear from the discussion above
that at a given cosmic time, the redshift correspond-q [ q",
ing to the epoch is also the redshift that minimizes andq" T

zmaximizes the change in redshift. This particular redshift,
which we shall denote by thus locates the surface on thez",
past light cone which bounds the region where " dominates
the expansion and within which the universe is accelerating.
We shall refer to this surface as the "-sphere. Beyond the
"-sphere the universe is still decelerating.

We next determine the redshift By use of equation (11)z".
it is easy to show that equation (42) is equivalent to the
following algebraic equation for a :

2)"0
)

m0
a3[ (1] 3w

Q
))

Q0
)

m0
a~3wQ \ 1 , (43)

where we have assumed that In the case)
r0 \ 0. )

Q0\ 0
the solution is wherea \ a" \ a(q"),

a" \
A )

m0
2)"0

B1@3
. (44)

At any time the observed redshift, of a sourceq[q" z",
which emitted its light at is therefore given byq"

1 ] z" \ a(q)
a"

\
A2)"0

)
m0

B1@3
a(q) . (45)

In the right-hand panel of Figure 4 the relation isz" \ z"(q)
shown by the triple-dotÈdashed curve. Note that equation
(45) has a physical solution only if For our standarda [ a".
"-model, we Ðnd that corresponding to timea" \ 0.60,

and Hence, in this model, cosmicq" \ 0.52, z" \ 0.67.
acceleration started Gyr ago.*t \ (q0[ q")t

H0\ 4.3h0~1
For this is 6.1 Gyr, and hence the accelerationh0B 0.70
started well before the formation of the solar system.

As time advances the "-sphere moves away from the
observer and its conformal distance at time g is given by

s \ g [ g" , (46)

where Hence the proper distance to the "-sphereg" \ g(q").
is

d"(g)\ Rs \ R
H0 a(g)

(g [ g")
R

H0/R0
, (47)

and it is moving away from the observer with speed

v" \ d
dt

(d")\ c
C
1 ] (g [ g")

R
H0/R0

Ada
dq
BD

. (48)

For our standard "-model we have that and there-g" \ 2.7
fore Furthermore which isv"(q0)\ 1.6c. d"(q0)\ 0.56R

H0,

about 47% of the proper distance to the ultimate event
horizon. The evolution of the "-sphere is shown by the
long-dashed curve in Figure 2. Note that this curve is the
same as the observerÏs future light cone at time g".

From equations (40) and (41) we see that in a " domi-
nated universe d(1] z)/dq\ dz/dq is zero, and T

a
(q)\

when This corresponds(1] z)T
a
(qem), (da/dq)q \ (da/dq)qem.

to redshift given byzeq

1 ] zeq \
A )"0
2)

m0

B
a3(q)

C
1 ]

S
1 ] 4)

m0
)"0 a3(q)

D

\ 1
4
Ca(q)

a"

D3C
1 ]

S
1 ] 8

C a"
a(q)
D3D

, (49)

where we have used equations (40) and (11). Note that
d(1] z)/dq (and hence is positive for and nega-T

z
) z\ zeqtive for The relation is shown by thez[ zeq. zeq\ zeq(q)dot-dashed curve in the right-hand panel of Figure 4 for our

standard "-model. Note that equation (49) has a physical
solution only if a [ a".

From the discussion above we see that although the "-
sphere bounds the region in our visible universe where the
cosmological constant dominates the expansion, the inÑu-
ence of " extends beyond and is in principle observablez"approximately out to redshift We shall return to thiszeq.point in ° 5.

4.2. Brightness and Angular Size
At time q the luminosity distance, of a source at con-d

L
,

formal distance s is given by

d
L
(q) \

A L
4nF
B1@2 \ R0 r(s)(1] z)a(q) , (50)

where L is the luminosity of the source, F its apparent Ñux
and z its redshift. The relation r \ r(s) is given by equation
(16).

The distance modulus of the source is

m[M \ 25 ] 5 log
A d

L
Mpc

B

\ (5 log e) ln [r(s)(1] z)a(q)]] constant , (51)

where log stands for the logarithm with base 10, is mea-d
Lsured in Mpc, and m and M are the apparent and the abso-

lute magnitude of the source, respectively.
The angular diameter distance of the source is given by

d
A
(q) \ d

L
(q)

(1] z)2 \R0 r(s)a(q)
(1] z)

\ R0 r(s)a(qem) , (52)

and if the source has proper diameter D, its apparent
angular size / is

/(q) \ D
d
A

\
A D
R0

B 1
r(s)a(qem)

. (53)

In order to understand the evolution of m and / it is
convenient to have an expression for their derivatives. By
use of equations (51), (53), (40), and (41) we Ðnd that

dm
dq

\ (5 log e)
C 1
(1] z)

d(1] z)
dq

] 1
a

da
dq
D

\ (5 log e)
C 1
T
z
(q)

] 1
T
a
(q)
D

(54)
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and

1
/

d/
dq

\
C 1
(1] z)

dz
dq

[ 1
a

da
dq
D

\
C 1
T
z
(q)

[ 1
T
a
(q)
D

\ [ 1
(1] z)T

a
(qem)

. (55)

In Figure 5 we show the luminosity distance, the distance
modulus and the apparent angular size of sources at various
distances s as functions of cosmic time in our standard
"-model. The sources are assumed to have the same intrin-
sic luminosity and the same proper diameters at all times
(i.e., to be standard candles and standard rods). A given
source comes within our observable universe after a time
determined by its comoving conformal distance, as long as
it is less than since sources further away are alwaysgmax,beyond our event horizon and we never see them. Both d

Land m[ M for the source are inÐnite when the source
appears with inÐnite redshift at g \ s. These quantities
decrease to a minimum and then increase to inÐnity at g \

Each source appears with inÐnite angular size atgmax.g \ s, then decreases monotonically with time to a

minimum at the minimum size being given byg \ gmax,

/(gmax) \
A D
R0

B 1
r(s)a(gmax[ s)

\
A D
R

H0

B
)"01@2 s

r(s)
, (56)

corresponding to the Ðnal and Ðnite angular diameter dis-
tance

d
A
(gmax) \

R
H0

)"01@2
r(s)
s

. (57)

In deriving these expressions we have used equation (37).
Once the cosmological constant completely dominates

the expansion (i.e., for corresponding toq? qI gmax[ g [
the sourceÏs redshift increases according to equation (39)gI)

and its luminosity distance is given by

d
L
(q) D e2)"01@2 q . (58)

Hence its apparent magnitude grows linearly with time :

m(q) B constant ] 10(log e))"01@2 q . (59)

It is therefore clear that once a source has entered our
observable universe we never see it leave, although once

FIG. 5.ÈTop left : The luminosity distances (in units of of the same sources as in Fig. 4 as functions of g. Top right : The distance moduli of the sourcesR
H0)

as functions of g. Bottom: The apparent angular sizes (in units of as functions of g.D/R
H0)
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cosmic acceleration has started, its brightness gets below
any Ðnite detection limit in a few Hubble times.

5. CHANGES IN OBSERVABLE PROPERTIES AT THE

PRESENT EPOCH

The main astronomical evidence for cosmic acceleration
comes from investigations based on classical cosmological
tests, in particular the m-z relation with Type Ia supernovae
as standard candles. This has been treated in great detail by
the research groups who discovered the acceleration
(Perlmutter et al. 1999 ; Garnavich et al. 1998 ; Riess et al.
1999, 2001), and we shall therefore not discuss these tests
here.

A related but more difficult approach, at least obser-
vationally, is to consider changes in cosmological observ-
ables over extended periods of observing time and see how
they are a†ected by a cosmological constant or a quin-
tessence Ðeld. We have laid the foundation for such a dis-
cussion in the previous section.

Let us consider a source with redshift z on our present
past light cone and determine its change in redshift, *z,
during a time interval Using equation (40) we Ðnd*q0 > q0.

1
(1] z)

*z
*q0

\ 1
(1] z)

*(1] z)
*q0

B
C
1 [

Ada
dq
B
qem

D
, (60)

and by equation (11) this can be written in terms of observ-
ables as

1
(1] z)

*(1] z)
*q0

B
G
1 [

C
)

m0(1] z)

] )
r0(1] z)2] )"0

(1] z)2

] )
Q0

(1] z)~(1`3wQ)] (1[ )0)
D1@2H

,

(61)

where )0\ )
m0] )

r0 ] )"0] )
Q0.In Figure 6 we plot as a function[*(1] z)/*q0]/(1 ] z)

of z for selected values of and with)
m0 )"0 )

Q0\ )
r0 \ 0.

For this choice of parameters the zeros are at z\ 0 and
where by equation (49)z\ zeq,

1 ] zeq\
A )"0
2)

m0

BA
1 ]

S
1 ] 4)

m0
)"0

B
. (62)

The presence of the cosmological constant makes [*(1
positive for and its maximum] z)/*q0]/(1 ] z) 0\ z\ zeqvalue at the "-sphere (with is given1 ] z" \ (2)"0/)m0)1@3)by

C 1
(1] z)

*(1] z)
*q0

D
z/z"

\ 1 [
G
3
CA)

m0
2
B2

)"0
D1@3

] (1[ )
m0[ )"0

)
H1@2

. (63)

For our standard "-model we Ðnd that and thatzeq \ 2.1
the maximum change given by equation (63) is 0.13
(corresponding to at Hence theT

z
\ 7.7) z" \ 0.67.

maximum e†ects of the cosmological constant on the
change in redshift is given by *z\ 1.67] 0.13*q0\

For years, say, *z at maximum is0.22*t0/tH0
. *t0\ 100

therefore only of the order of 10~9. This is a very small
number and such minute changes in z will probably not be
observable in the near future (see, however, Loeb 1998 for a
detailed discussion of the observational situation).

In a similar way one can investigate changes in the appar-
ent magnitude and the apparent angular size of a given
source with present redshift z. Using equations (54) and (55)
we Ðnd to Ðrst order in *q0 :

1
(5 log e)

*m
*q0

B
C
1 ] 1

(1] z)
*(1] z)

*q0

D
(64)

and

1
/

*/
*q0

B
C 1
(1] z)

*(1] z)
*q0

[ 1
D

, (65)

with given by equation (61). It is(1 ] z)~1[*(1] z)/*q0]clear that Figure 6 can be used to investigate the behavior
of both and as functions of z for the*m/*q0 *///*q0selected values of and From the results already)

m0 )"0.

FIG. 6.ÈL eft : as a function of z for and (dash-dotted curve) (dotted curve), 0.70 (solid curve), and 0.90(*(1 ] z)/*q0)/(1 ] z) )
m0\ 0.30 )"0\ 0 )"0\ 0.50

(dashed curve). Right : The same quantity as a function of z for and (dotted curve), 0.30 (solid curve), and 0.50 (dashed curve). All models)"0\ 0.70 )
m0\ 0.10

in this Ðgure have )
Q0\)

r0\ 0.
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obtained we Ðnd for our standard "-model that at thez"change in magnitude is over a period*m\ 2.5*q0B 10~8
of 100 years. In a similar way the maximum relative changes
in / due to the accelerated expansion is *///\

over the same period of time. Such[0.87*q0B [10~8
small changes will presumably not be observable in the near
future.

We conclude this section by emphasizing that although
the prospects for actually measuring the changes in redshift,
apparent brightness and apparent size of cosmological
sources do not seem promising, it is of interest to investigate
Figure 6 with respect to the general e†ects of a cosmological
constant at the present epoch. We see e.g., that for distant
sources with high z (i.e., corresponding toz[ zeq[ z"),
emission at cosmic times before " becomes dynamically
dominant, their redshift is decreasing and their apparent
brightness is also decreasing, but relatively slowly.
However, for cosmological sources with the redshiftz\ zeqis increasing due to the repulsive e†ects of ", and the appar-
ent brightness is decreasing relatively fast. Thus the inÑu-
ence of " is considerable outside the "-sphere, out to zB

This is in agreement with the time evolution of thezeq.observables discussed in ° 4.1 and 4.2 and demonstrated in
Figures 4 and 5.

6. CAUSAL CONNECTIONS AND THE EXTENT OF OUR

OBSERVABLE UNIVERSE

Consider Figure 7. The future light cone (dot-dashed
curve) at observing time g crosses the event horizon (solid
curve) at the event The world line of a source that(s

*
, g

*
).

passes through that event is also shown (long-dashed curve).
We will not be able to receive any signal from that source
sent later than Because of symmetry, the source can notg

*
.

receive any signal from us sent after Hence the sourceg
*
.

passes out of our sphere of inÑuence at time However,g
*
.

our evolving past light cone (shown as it is at the present
epoch by the dotted curve) crosses the sourceÏs world line
right till the end at at which time the source is seen asgmax,it was at but with inÐnite redshift. At time g we see theg

*source with redshift as it was at time It is easy to seez
*

gem*
.

that

g
*

\ gmax] g
2

(66)

and

s
*

\ gmax[ g
2

. (67)

Also

gem*
\ 3g [ gmax

2
, (68)

and for this last equation to be valid we must have g º
since at earlier times the source is outside the particlegmax/3,

horizon. ItÏs redshift is given by

1 ] z
*

\ a(g)
a(gem*

)
. (69)

Next consider the source at in Figure 7 (triple-dotÈs
cdashed curve) that is crossing the event horizon at time g.

Clearly

s
c
\ gmax[ g \ 2s

*
, (70)

and we see this source with redshift given byz
c

1 ] z
c
\ a(g)

a(gemc
)
. (71)

the light we see being emitted at time

gemc
\ 2g [ gmax . (72)

Note that we must have for equation (72) to beg [ gmax/2valid. At earlier times the source is outside the particle
horizon.

For our standard world model shown in Figure 7 we
have that the present time of observation, g, is equal to

Also andg0\ 3.3. gmax\ 4.5, g
*

\ 3.9, s
*

\ 0.57 gemp
\ 2.7

(we remind the reader that numerical values of all gÏs and sÏs
are in units of We also Ðnd that ThisR

H0/R0). z
*

\ 0.68.
means, that the light being emitted now by sources having

FIG. 7.ÈL eft : Sources at (long-dashed line) and (dash-triple dotted line) crossing the event horizon at times and g, respectively. Also shown is thes
*

s
c

g
*world line of a source which is always outside the event horizon (short-dashed line). Right : The same situation in proper coordinates q vs. Thed

p
\ d/R

H0.
model is our standard "-model with the time of observation equal to See text for further explanations.g0\ 3.3.
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present redshift greater than 0.68, will not reach us until the
sources have crossed our event horizon, at which time they
are completely out of causal contact.

In this model we also have ands
c
\ 1.1, gemc

\ 2.2 z
c
\

1.7. Hence all sources with present redshift greater than 1.7
have already crossed our event horizon, and are thus com-
pletely out of causal contact with us (see also Starkman,
Trodden, & Vachaspati 1999 and Starobinsky 2000, who
reach similar conclusions). From this one can easily esti-
mate the number of sources that are still within the event
horizon as compared with the initial matter content. The
number of sources is proportional to the comoving proper
volume and hence the relative number of sources presently
within the horizon is equal to [s

c
(g0)/seh(0)]3\

This means that more than 98% of[s
c
(g0)/gmax]3\ 0.015.

all sources initially within our observable part of the uni-
verse have already crossed the event horizon.

We can also estimate the portion of observable sources
that we could have seen by now, at least in principle. It is
simply given by Hence,[sph(g0)/seh(0)]3\ (g0/gmax)3B 0.40.
we still have not seen 60% of the observable sources.

To summarize : In our standard "-model the event
horizon will ultimately be stationary at a proper distance of

Gpc (note that this is also the ultimate1.2R
H0\ 3.6h0~1

angular diameter distance to the event horizon). We have
already seen about 40% of the sources that are in principle
observable, but about 98% of all cosmic sources originally
within our observable part of the universe have already left.
This includes all sources that we presently see and have
redshift higher than 1.7. Because of the Ðnite speed of light
we will eventually be able to see all the sources originally
inside our event horizon, but only as they were in the past
before crossing the horizon. Once the cosmological con-
stant dominates the expansion their redshift will, however,
increase exponentially with time and they will fade away on
a timescale measured in a few Hubble times. Of course this
applies only to sources that are distant enough to partici-
pate in the cosmic expansion, i.e., sources outside our local
supercluster but originally within our event horizon.

7. QUINTESSENCE

Although by invoking EinsteinÏs cosmological constant it
is easy to explain why the expansion of the universe is pre-
sently accelerating, there has recently been considerable dis-
cussion of the possibility that something else is causing the
acceleration, mimicking the e†ects of a cosmological con-
stant at the present epoch. The main reason for this is
simply that theoretical particle physicists have so far been
unable to explain why the cosmological constant has such a
small nonzero value ("B 10~56 cm~2 corresponding to

their most natural estimates giving values of)"0B 0.7),
"D 1064 cm~2 corresponding to (see, e.g.,)"0D 10120
Weinberg 1989, 2000 ; Witten 2000 and references therein).

Several other possible causes for the cosmic acceleration
have been discussed in the literature, including quin-
tessence, frustrated network of topological defects, time-
varying particle masses and e†ects from extra dimensions
(see, e.g., Huterer & Turner 2000, 2000, and Wein-Bine� truy
berg 2001 for further discussion and references).

In this paper we shall only investigate the e†ects of one of
these alternatives. We choose the case of a slowly evolving
scalar Ðeld (or quintessence ; Peebles & Ratra 1988 ; Ratra &
Peebles 1988 ; Wetterich 1988 ; Caldwell, Dave, & Stein-
hardt 1998 ; Zlatev, Wang, & Steinhardt 1999) leading to an

equation of state of the form where mayP
Q

\ w
Q

o
Q

c2, w
Qor may not be a function of cosmic time. We assume as

before that we are investigating epochs where radiation can
be neglected and that the quintessence Ðeld is()

r0 \ 0)
decoupled from matter.

In order to investigate the e†ects of quintessence on the
evolution of the observable universe we shall furthermore
assume that and that is a constant (assuming a)"0\ 0 w

Qconstant is not a serious restriction since our results canw
Qeasily be extended to the time dependent case). It then

follows from equation (3) that the mass-energy density of
the quintessence component is given by

o
Q

\ o
Q0 a~3(1`wQ) . (73)

Realistic expanding models, with decreasing with time,o
Qthus require The case corresponding tow

Q
[ [1. w

Q
\[1

is of course equivalent to the cosmological constant case.
Equation (11) now reduces to

da
dq

\
C
)

m0
A1
a

[ 1
B

] )
Q0
A 1
a1`3wQ

[ 1
B

] 1
D1@2

, (74)

from which we see that for ever-expanding big bang models,
the quintessence Ðeld will ultimately dominate the expan-
sion if and at late times the scale factor will groww

Q
\ 0,

with q according to

a D (n)
Q01@2 q)n , (75)

where

n \ 2
3(1] w

Q
)
. (76)

This should be compared with the corresponding behavior
of a at late times in a "-dominated universe (eq. [34]).
Examples demonstrating the di†erence are shown in Figure
8.

From the results above and the discussion at the end of
° 3.4 we see that only models with w

Q
\ [1/3

(corresponding to n [ 1) have event horizons. The theoreti-
cally interesting range for is thereforew

Q
[1 \w

Q
\[13(corresponding to O [ n [ 1). This should be compared to

observations, which seem to indicate that quintessence can
only be viable at present if with the upper[1 \w

Q
\wmaxlimit, not greater than [0.4 and probably lower (seewmax,e.g., Huterer & Turner 2000 and Wang et al. 2000 for a

discussion of the observational situation). Thus, if the
cosmic acceleration is due to quintessential dark energy, the
universe has event horizons just as in the case of a true
cosmological constant (see in this context Hellerman,
Kaloper, & Susskind 2001 and Fischler et al. 2001, who
discuss the problems this poses for string theory). It should
be pointed out, however, that if for some reason changesw

Qin the future, so that it ultimately becomes larger than [13(corresponding to n \ 1), then the event horizons disappear.
Also note that for a given the maximum conformal)

Q0time, tends to inÐnity as approaches fromgmax, w
Q

[13below.
In what follows we shall investigate in detail the evolu-

tion of the observable universe when quintessence is the
single cause of cosmic acceleration. We use the same
methods as above and compare the results to those of
models with a positive cosmological constant.

In Figure 8 we show the normalized scale factor a as a
function of time for and two values)

m0\ 0.30, )
Q0\ 0.70
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FIG. 8.ÈComparison of the time evolution of the scale factor, a, in di†erent cosmological models. L eft : Scale factor a as a function of g for the standard
"-model (solid curve, marked ") and two quintessence models with and One has (dotted curve, marked Q), the other)

m0\ 0.30 )
Q0\ 0.70. w

Q
\[0.50

(dash-dotted curve). Also shown is the M-model with and (dashed curve, marked M). Right : Scale factor a as a functionw
Q

\ [2/3 )
m0\ 0.30 )"0\)

Q0\ 0
of q for the same models. Compare with Fig. 1.

of [0.50 (dotted curve, marked Q) and (dash-dottedw
Q
: [23curve). In the following we shall refer to the model with

as the Q-model. For this model andw
Q

\ [0.50 gmax\ 7.7
Also shown for comparison are two other models :g0\ 3.1.

our standard "-model (solid curve, marked "), and a model,
which we shall call the M-model, with and both)

m0\ 0.30
and equal to zero (dashed curve, marked M). Note)

Q
)"0that since for the quintessence models, they bothw

Q
\ [13have event horizons.

From Figure 8 one sees how the expansion of quin-
tessence models, with and both Ðxed, depends on)

Q0 )
m0As takes decreasing values in the range from tow

Q
. w

Q
[13[1, the corresponding curves change continuously from

the M-curve to the "-curve.
Figure 9 shows the past and future light cones, the

Hubble surface, the particle horizon and the event horizon
for our Q-model, and should be compared to Figure 2 for
the standard "-model. Applying the methods introduced in

° 3 to quintessence models in general it is easy to see that
once quintessence completely dominates the expansion, the
proper distance to the Hubble surface is given by

dhs(q) B
R

H0
n

q\ 3(1] w
Q
)R

H0
2

q (77)

and that the proper distance to the event horizon is

d
eh
(q) B

2R
H0

n o 1 ] 3w
Q

o
q\ 3(1] w

Q
)R

H0
o 1 ] 3w

Q
o

q . (78)

We emphasize that if there is no event horizon,w
Q

º [13and hence the last expression (78) is only valid for models
with Both and increase linearly with time,w

Q
\ [13. dhs dehbut since for alldhs(q) \ o 1 ] 3w

Q
o deh(q)/2 \ deh(q)the Hubble surface is always considerably[1 \w

Q
\[13,closer than the event horizon. This is in contrast to models

FIG. 9.ÈQuintessence universe with model parameters and L eft : The past light cone (dotted line) and the future)
m0\ 0.30, )

Q0\ 0.70, w
Q

\[0.50.
light cone (dot-dashed line) at the present epoch in a g - s diagram. Also shown are the Hubble surface (dashed curve), the particle or visual horizon (dash-triple
dotted line), and the event horizon (solid line). Here and Right : Same as a in a diagram.g0\ 3.1 gmax \ 7.7. q-d

p
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with a cosmological constant where both distances quickly
approach the same Ðnite limit given by equation (35).

In order to investigate the evolution of the redshift, the
apparent magnitude and the angular size of distant sources
in a quintessential universe we pick a source at a typical
conformal distance s \ 0.60. The results are shown in
Figure 10 for the models of Figure 8. Note that at late times

zD (n)
Q01@2 q)n (79)

and

d
L
D (n)

Q01@2 q)2n . (80)

Hence m is a linear function of log (q). Furthermore the
minimum size of / is given by equation (56) as before. These
results should be compared to the late time behavior of z, d

Land m in models with a cosmological constant, shown by
equations (39), (58), and (59) and in Figures 4 and 5.

7.1. T he Q-Sphere
In ° 4.1 we deÐned the "-sphere as the surface bounding

the region in our visible universe where the expansion is

accelerating due to the presence of the cosmological con-
stant. For the quintessence models we similarly deÐne a
Q-sphere as the surface in the visible universe bounding the
accelerating region driven by the quintessence component.

We denote the time when quintessence acceleration
becomes dominant by and use equation (43) withq

Q
)"0\

0 to Ðnd the value It is given bya
Q

\ a(q
Q
).

a
Q

\
A o 1 ] 3w

Q
o)

Q0
)

m0

B1@3wQ
. (81)

As a result, at any time the observed redshift, of aq[q
Q

z
Q
,

source which emitted its light at is given byq
Q

1 ] z
Q

\ a(q)
a
Q

\
A o 1 ] 3w

Q
o)

Q0
)

m0

B~1@3wQ
a(q) . (82)

In the same way as in the previous section, we Ðnd from
equations (40) and (41) that in a universe dominated by
quintessence, d(1] z)/dq\ dz/dq is zero, and T

a
(q)\ (1

when This particular] z)T
a
(q

em
), (da/dq)q \ (da/dq)qem.

epoch corresponds to a redshift given by the solu-z\ zeq,Q

FIG. 10.ÈTop left : Evolution of the redshift of a source at s \ 0.60 for the model universes of Fig. 8 : The standard "-model (solid curve), the Q-model
(dotted curve), and the M-model (dashed curve). Also shown is the evolution of the quintessence model with (dash-dotted curve). Top right : Thew

Q
\[2/3

luminosity distances (in units of for the same source and models as in the top left-hand panel. Bottom left : The distance moduli for the ", Q, andR
H0)M-models. Bottom right : The apparent angular sizes (in units of for the ", Q, and M-models.D/R

H0)



14 GUDMUNDSSON & BJO� RNSSON Vol. 565

FIG. 11.ÈQ-sphere at the present epoch for models with and L eft : The redshift as a function of Also shown is the redshift)
m0\ 0.30 )

Q0\ 0.70. z
Q

w
Q
.

Right : The time as a function ofz
eq,Q. q

Q
w

Q
.

tion of the algebraic equation

)
m0

)
Q0

a3wQ[(1 ] z)[ 1]\ 1 [ (1] z)1`3wQ . (83)

where we have used equation (74). This equation can easily
be solved numerically, and Figure 11 shows at thezeq,Qpresent epoch, together with and as functions ofz

Q
q
Q
, w

Qfor models with and In general, as)
m0\ 0.30 )

Q0\ 0.70.
approaches [1, the redshift approaches the valuew

Q
zeq,Qfor the "-model (eq. [49] with instead of Inzeq )

Q0 )"0).the same way and approach and respectively.z
Q

q
Q

z" q",
For the special case equation (83) has a simplew

Q
\ [23solution : Note1 ] zeq,Q\ ()
Q0/)m0)a2(q)\ [a(q)/a

Q
]2.

that since 1 ] zº 1, equations (82) and (83) have physical
solutions only if a º a

Q
.

Figure 11 also shows that if is less than thenw
Q

B[23, z
Qand vary slowly with changing indicating that at theq

Q
w
Q
,

present epoch numerical values of observables are not very
sensitive to in the range The samew

Q
[1 \ w

Q
\ [23.

thing can be inferred from Figures 8 and 10. This is similar
to the corresponding results of Gudmundsson &

(1990) for FRW-models without a cosmo-Ro� gnvaldsson
logical constant, which show that for models with the same
value of the classical cosmological tests are degenerate atq0low redshifts with respect to di†erent values of the pressure
parameter (see eq. [8]). It is therefore necessary to go tow

ihigh redshifts in order to distinguish between the various
models (see also Maor, Brustein, & Steinhardt 2001).

Continuing with the general approach already intro-
duced for models with a cosmological constant, we can
similarly determine changes in observable quantities over
extended periods of observing time. In Figure 12 we show
the relative change at the(*(1] z)/*q0)/(1 ] z)\ 1/T

zpresent epoch as a function of z for our Q-model. We Ðnd
that and In thisa

Q
\ 0.90, q

Q
\ 0.77, z

Q
\ 0.11 zeq,Q\ 0.23.

case so cosmic acceleration has started relativelyq0\ 0.87,
recently, i.e., about 1.4 Gyr ago if h0B 0.70.

Finally, let us investigate the extent of the observable
universe in the Q-model as well as the question of causal
connections. We use the same terminology and notation as
in ° 6 so the results can easily be compared to the corre-
sponding results for the "-model. In the Q-model with

and we Ðnd that)
m0\ 0.30, )

Q0\ 0.70, w
Q

\ [0.50,
and This means,g0\ 3.1, gmax \ 7.7, gemp

\ 0.72, z
*

\ 24.
that the light being emitted now by sources having redshift
greater than 24, will not reach us until the sources have
crossed our event horizon. This particular value is much
larger than the highest measured redshift at the present
time.

In this model we also have that which is furthers
c
\ 4.7,

away than the particle horizon at Hence, none ofsph\ 3.1.
the sources that we can observe at the present epoch have
yet crossed our event horizon. As a result we presently have
causal contact with all of them. The relative number of
sources presently within the event horizon is equal to

This means that in this model 77%[s
c
(g0)/seh(0)]3\ 0.23.

of all sources initially within our observable part of the
universe have already crossed the event horizon. So far we
have not seen any of these departed sources but they will
appear in our sky in the future and show themselves as they
were in a younger universe.

The portion of the observable sources that we could
already have seen in principle is given by

at the present epoch as a function of zFIG. 12.È(*(1] z)/*q0)/(1 ] z)
for di†erent model universes of Fig. 8 : The standard "-model (solid curve),
the Q-model (dotted curve), and the M-model (dashed curve).
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Hence, in this model, we have yet[sph(g0)/seh(0)]3\ 0.065.
to see about 93% of the observable sources.

It should be emphasized that we use this Q-model only as
a pedagogical example in order to show the e†ects of onw

Qthe various numerical results. The astronomical obser-
vations indicate that the high value of corresponding tow

Qthis model may not be realistic, and that a value closer to
the "-value of [1 is more likely to be correct. One should
also keep in mind that observational results are not very
sensitive to the value of ifw

Q
, [1 \ w

Q
\ [23.

8. DISCUSSION AND CONCLUSIONS

In this paper we have discussed the evolution of ever-
expanding big bang universes which undergo acceleration,
due either to a cosmological constant, ", or to a quin-
tessence Ðeld, Q. In particular we have investigated the evol-
ution of our observable part of the universe with emphasis
on the evolution of our past light cone, the Hubble sphere
and the particle and event horizons. The "-sphere (or Q-
sphere, in the case of quintessence), which is the surface
bounding the region in our visible universe where cosmic
acceleration dominates, has also been investigated in detail.
We have traced observables such as redshift, apparent mag-
nitude and apparent angular size of distant sources through
cosmic history, and shown in considerable detail how their
images change and fade once the cosmic expansion is accel-
erating.

Taking at face value recent observations which indicate
that and we Ðnd that the)"0\ 0.70, )

m0\ 0.30 h0\ 0.70
universe is presently about 13.5 Gyr old, and that cosmic
acceleration started 6.1 Gyr ago, well before the formation
of the solar system. The "-sphere is presently at a redshift of
0.67, and the redshifts of sources out to a redshift of 2.1 are
increasing with time owing to the inÑuence of ". Further
out on the light cone the redshift is decreasing as in a uni-
verse without a cosmological constant. Within a few
Hubble times the event horizon will be stationary at a Ðxed
proper distance of 5.1 Gpc. This distance limits the extent of
our observable universe for all time.

Cosmic sources with redshifts in the range 0.68È1.7 are
now emitting light that will not reach us until these sources
have crossed our event horizon. At that time they will be
completely out of causal contact with us. All sources with
redshift larger than 1.7 have already crossed the event
horizon and are thus out of causal contact.

About 98% of all sources originally within our observ-
able part of the universe have by now crossed the event
horizon. Because of the Ðnite speed of light we still ““ see ÏÏ a
large portion of these sources (about 40%, the ones inside
our particle horizon) and will eventually be able to see them
all. They will appear as they were in the distant past before
crossing the event horizon. Because of redshift e†ects, all
these sources will, however, fade away and disappear from
view on a timescale measured in a few Hubble times.

The quintessence models become equivalent to a model
with a cosmological constant in the limit when tends tow

Q[1, and all quintessence models with in the rangew
Qhave event horizons. For less than[1 \w

Q
\[13 w

Qabout the numerical values of various observables at[23the present epoch do not depend critically on and arew
Q
,

very similar to the values for Hence there is anw
Q

\ [1.
observational degeneracy with respect to in that range.w

QReturning to the standard "-model it is clear that the
future evolution of the observable universe is rather bleak
from the human point of view. The receding galaxies will
approach the cosmic event horizon on a timescale measured
in a few Hubble times. Observers will not see the event
horizon as such, but as galaxies approach it, their apparent
motion slows down because of time dilation, and Ðnally
they will appear to be hovering at the horizon. This is why
the apparent angular size of galaxies tends to a Ðnite value
at inÐnite time.

Because of the exponentially increasing redshift, the
apparent luminosity of the galaxies decreases on a timescale
of a few Hubble times, making them disappear from view. If
observers had instruments sensitive enough so that they
could follow the galaxies for all time, they would eventually
see all the matter originally within the observable universe
forming a membrane at the event horizon. This is analogous
to what an observer, stationed far away from a black hole,
would see if he was watching luminous matter falling into
the black hole.

From this discussion it is clear that in "-models (and also
in quintessence models, as long as any[1 \ w

Q
\ [13)

fundamental observer (more precisely his local supercluster)
will be left alone in his observable universe within a few
Hubble times after the big bang. This rather dismal pro-
spect raises interesting questions about the future evolution
of life in the universe and cosmic communication. We shall
not tackle such questions here but instead refer the reader
to the papers by Gott (1996) and Krauss & Starkman
(2000), which discuss the fate of life in an accelerating uni-
verse.

Finally we mention that if the expansion is dominated by
a cosmological constant one expects that eventually there
will be upward quantum Ñuctuations making bubbles of
high density vacuum which consequently undergo
inÑation (Garriga & Vilenkin 1998 ; Linde 1986). Also, if for
some reason the cosmological constant (or the quintessence
Ðeld) were to decay, the future evolution of the observable
universe would be di†erent from the scenario presented
here (see e.g., Starobinsky 2000 and Barrow, Bean, &
Magueijo 2000 for a discussion of various possibilities).

We are grateful to Thorlacius, ThorsteinnLa� rus
and an anonymous referee for useful com-S~mundsson,

ments. This work was partially supported by the Research
Fund of the University of Iceland.
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