
THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 138 :121È148, 2002 January
( 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

NUMERICAL METHODS FOR THE SIMULATION OF DYNAMICAL MASS TRANSFER IN BINARIES

PATRICK M. MOTL,1 JOEL E. TOHLINE, AND JUHAN FRANK

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 ; tohline=rouge.phys.lsu.edu, frank=rouge.phys.lsu.edu
Received 2000 October 26 ; accepted 2001 September 4

ABSTRACT
We describe computational tools that have been developed to simulate dynamical mass transfer in

semidetached, polytropic binaries that are initially executing synchronous rotation upon circular orbits.
Initial equilibrium models are generated with a self-consistent Ðeld algorithm; models are then evolved
in time with a parallel, explicit, Eulerian hydrodynamics code with no assumptions made about the sym-
metry of the system. PoissonÏs equation is solved along with the equations of ideal Ñuid mechanics to
allow us to treat the nonlinear tidal distortion of the components in a fully self-consistent manner. We
present results from several standard numerical experiments that have been conducted to assess the
general viability and validity of our tools, and from benchmark simulations that follow the evolution of
two detached systems through Ðve full orbits (up to approximately 90 stellar dynamical times). These
benchmark runs allow us to gauge the level of quantitative accuracy with which simulations of semi-
detached systems can be performed using presently available computing resources. We Ðnd that we
should be able to resolve mass transfer at levels per orbit through approximately 20M0 /M [ few ] 10~5
orbits with each orbit taking about 30 hours of computing time on parallel computing platforms.
Subject headings : accretions, accretions disks È binaries : close È hydrodynamics È methods : numerical

1. INTRODUCTION

Over half of all stars in the sky are actually multiple star
systems and, of the binaries, about half again are close
enough to one another for mass to be exchanged between
the components at some point in their evolution (Trimble
1983). There is a subset of these close binary systems in
which periodic or aperiodic variations in luminosity and
spectral features can be explained by on-going mass-
transfer events and instabilities in the accretion Ñow. For
example, long-term stable mass transfer in which the accre-
tor is either a white dwarf, a neutron star, or a black hole is
widely recognized as the mechanism powering cataclysmic
variables (Warner 1995) and X-ray sources (Lewin, van
Paradijs, & van den Heuvel 1995). In Algol-type systems an
evolved star transfers mass via Roche lobe overÑow to a
near main-sequence accretor (Batten 1989 ; Vesper, Honey-
cutt, & Hunt 2001). Each of these systems evolves on a
(secular) timescale that is long compared to the orbital
period of the system, with the mass-transfer rate determined
by angular momentum losses from the binary, and thermal
relaxation and nuclear evolution of the donor star. In these
systems, the fraction of the donorÏs mass that is transferred
during one orbit is typically D10~12 to 10~9, many orders
of magnitude less than what current numerical three-
dimensional hydrocodes can resolve. All of the above
systems must have descended from binaries in which the
accretor of today was initially the more massive component
who evolved Ðrst o† the main sequence. The mass transfer
in these progenitor systems was in many instances dynami-
cally unstable, yielding mass-transfer rates many orders of
magnitude above the currently observed rates and leading
in some cases to a common envelope phase (see, e.g.,
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Warner 1995 ; Verbunt & van den Heuvel 1995 ; Nelson &
Eggleton 2001).

In addition, there is a wide class of binary star systems
not presently undergoing mass transfer for which the astro-
physical scenarios that have been proposed to explain their
origin or ultimate fate involve dynamical or thermal mass
transfer in a close binary, sometimes leading to a common
envelope phase of evolution. Examples of such systems are
millisecond pulsars (Bhattacharya 1995), some central stars
of planetary nebulae (Iben & Livio 1993), double degenerate
white dwarf binaries, perhaps leading to supernovae of
Type Ia through a merger (Iben & Tutukov 1984), or sub-
dwarf sd0, sdB stars (Iben 1990), and double neutron star
binaries, perhaps yielding c-ray bursts in a Ðreball when the
neutron stars coalesce 1986 ; Ru†ert et al. 1997 ;(Paczyn� ski

2001). The evolutionary scenarios that are drawnMe� sza� ros
upon to explain the existence of some of these systems call
for events in which 10% or more of the donorÏs mass can be
transferred during a single orbit.

If we are to fully understand these rich classes of astro-
physically interesting systemsÈtheir origin, present evolu-
tionary state, and ultimate fateÈit seems clear that we will
have to develop numerical algorithms that can accurately
simulate mass-transfer events in binary systems under a
wide range of physical conditions (for example, systems
having a wide range of total masses, mass ratios, and ages)
over both short and long evolutionary timescales. The
astrophysics community as a whole is far from achieving
this ultimate goal, but progress is being made as various
groups are methodically tackling small pieces of this very
large and imposing problem. Examples of recent progress in
the numerical simulation of interacting binaries include
two-dimensional simulation of mass transfer in Algol
(Blondin, Richards, & Malinowski 1995), three-dimensional
evolutions of Roche Lobe overÑow in LMC X-4 (Boroson
et al. 2001) and the accretion stream in b Lyrae (Bisikalo et
al. 2000), simulations of the common envelope phase and
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merger of a point-mass white dwarf with a red giant star
(Sandquist et al. 1998), neutron star binary and black holeÈ
neutron star binary mergers in the context of c-ray bursts
(Janka et al. 1999) and the dispersal of the secondary starÏs
material in Type Ia supernovae (Marietta, Burrows, &
Fryxell 2000).

Building on our experience simulating the nonlinear
development of dynamical instabilities in self-gravitating
systemsÈsuch as protostellar gas clouds (Cazes & Tohline
2000), stellar cores (New, Centrella, & Tohline 2000), and
young neutron stars (Lindblom, Tohline, & Vallisneri
2001)Èand on our experience in studying mass transfer in
close binaries through analytical and semianalytical tech-
niques (King et al. 1997 ; Frank, King, & Raine 2002) we are
developing a hydrodynamical tool to study relatively rapid
phases of mass transfer in binary systems. Our immediate
aim is to be able to follow the dynamical redistribution of
material through D10È30 orbits after the onset of a mass-
transfer instability, in binary systems having a wide range of
initial mass ratios with either star initially selected to be in
contact with its Roche lobe and thereby become the
““ donor.ÏÏ Our simulation tool treats both stars as self-
gravitating Ñuids ; they are embedded in the computational
grid in such a way that their internal structures are both
fully resolved ; and the system as a whole is evolved forward
in time through an explicit integration of the standard Ñuid
equations, coupled with the Poisson equation so that the
Newtonian gravitational Ðeld changes along with the mass
distribution in a fully self-consistent way. Initially, we will
examine structures that can be well represented by rela-
tively simple barotropic (and adiabatic) equations of state,
but this constraint can easily be lifted in the future. We will
be restricted to studies of relatively rapid phases of mass
transfer because we are integrating the equations of motion
forward in time via an explicit integration scheme.

While this simulation tool will not permit us to model
stable Ñows with low mass-transfer ratesÈsuch as the
observed Ñows in CVs and X-ray binariesÈit should be
capable of a wide range of astrophysical applications
including : A determination of the conditions required to
become unstable toward dynamical mass transfer in all
kinds of close binaries with normal and degenerate com-
ponents ; the ability to follow dynamical phases of mass
transfer through to completion, which may mean a return
to stability at a new system mass ratio, the formation of a
massive disk or a common envelope with or without rapid
mass loss from the system, or a merger of the two objects
into one ; and an investigation of the steady state structure
of secularly stable binaries. Through such investigations we
will be able to place on much Ðrmer footing a variety of
theoretical scenarios (as alluded to above) that have been
proposed to explain the evolution and fate of close binary
systems.

With the commissioning of gravitational wave interfer-
ometers such as TAMA, LIGO, and VIRGO, there has
been a growing interest in understanding the detailed
behavior of, especially, neutron star inspirals and mergers.
As has been reviewed by Swesty, Wang, & Calder (2000,
hereafter SWC), a number of di†erent groups have devel-
oped hydrodynamical codes to simulate the late stages of
inspiral and merger of such compact objects. Indeed, as has
been described by New & Tohline (1997) and reviewed by
SWC, an earlier version of our own simulation tool has
been used to study the dynamical merger of equal-mass

systems in which the stellar components were modeled with
polytropic, white dwarf, and neutron star equations of state.
Generally speaking, however, the last phase of a neutron
star inspiral can be modeled with a hydrodynamical code
that is less sensitive to initial conditions and more tolerant
of errors in the algorithm that integrates the Ñuid equations
forward in time than a hydrodynamical code that is
designed to study more generic mass-transfer events in close
binary systems. This is because general relativistic e†ects
will necessarily drive a binary neutron star system to
smaller separation, guaranteeing that the system will merge ;
and, even in the absence of relativistic e†ects, it appears as
though a tidal instability that disrupts one or both stars will
be encountered before either Ðlls its Roche lobe and
encounters a classical mass-transfer instability (Lai, Rasio,
& Shapiro 1994).

Building on the work of New & Tohline (1997), we now
have a simulation tool that can hydrodynamically follow
the orbital evolution of binary stars with high precision. In
developing this tool we have made a number of improve-
ments to the hydrodynamics algorithm that was used in this
earlier work only to study the tidal merger problem. We
also have implemented a self-consistent Ðeld algorithm that
can construct very accurate initial equilibrium models of
unequal-mass binaries in circular orbits, have paid special
attention to the manner in which initial models are intro-
duced into the hydrodynamics code, and have taken full
advantage of continuing improvements in high-
performance computers. With this tool in hand, we should
be able to accurately model the evolution of a much
broader class of close binary systems, speciÐcally, systems in
which the components initially have unequal mass and/or
radii and in which a mass-transfer instability rather than a
tidal instability sets in. With the inclusion of appropriate
relativistic corrections, this simulation tool should in prin-
ciple also be able to simulate the merger of equal or unequal
mass neutron star binaries, but our intention is not to focus
so narrowly on this particular class of systems.

In ° 2 of this paper, we collect results from theoretical
investigations of the linear stability of mass transfer in close
binaries and discuss the approximations that have been
required to arrive at these results. In ° 3 we present the
self-consistent Ðeld method we use for the construction of
initial, equilibrium models. We then describe our implemen-
tation of a parallel hydrodynamics code for the solution of
the ideal Ñuid equations and PoissonÏs equation for an iso-
lated mass distribution in ° 4. In ° 5 we compare results
from the hydrodynamics code with known solutions for a
set of test problems, and in ° 6 we present the results from
the evolution of two benchmark detached binaries. These
simulations demonstrate our ability to faithfully represent
the forces acting on the Ñuid and allow us to estimate the
mass transfer rate we will be able to resolve and the compu-
tational expense required to evolve a given system through
an interesting number of orbits. We conclude in ° 7 by
summarizing the limits we have been able to attain at prac-
tical simulation resolutions and discuss the future applica-
tion of the tool set to systems of interest.

2. THEORETICAL DESCRIPTION OF DYNAMICAL

MASS TRANSFER

In this section we will argue that Roche lobe overÑow in a
binary system approximated by two polytropic components
can result in mass transfer on a dynamical timescale for a
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certain range of polytropic indices. A spherical polytrope
with uniform entropy in mechanical equilibrium obeys the
following mass radius relation (cf. Chandrasekhar 1939) :

RP M(1~n)@(3~n) , (1)

which implies
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Hence, the body will expand upon mass loss for polytropic
indices satisfying 1\ n \ 3.

Consider (1971) approximation for the e†ec-Paczyn� skiÏs
tive Roche lobe radius of a donor star, taken to be theR2RLsecondary, with mass in a point mass binary of totalM2mass M and separation a,
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From this, one obtains the following relation for the
logarithmic change in the donorÏs Roche lobe radius :
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Upon eliminating the separation in favor of the systemÏs
orbital angular momentum J, one arrives at
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where is the mass of the accreting star, taken to be theM1primary. If we further assume that the mass transfer is con-
servative with respect to the total mass and orbital angular
momentum, we deduce that
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Comparing equation (2) with equation (6), the condition for
stable mass transfer, can be expressed asR0 2¹ R0 2RL

mS [ mR[ 0 , (7)

which, for a given polytropic index, implies a stable mass
ratio
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\ qstable 4
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. (8)

For a polytropic binary with n \ 3/2 and mass ratio q [
mass transfer must occur on a dynamical time-qstable\ 2/3,

scale as the donor will readjust its structure within a few
sound crossing times to its new mass. Note that if the donor
is initially the less massive star (i.e., q \ 1), the binary
separation is expected to steadily increase during the mass
transfer event. But, if the donor is initially the more massive
component (i.e., q [ 1), conservation of orbital angular
momentum implies that the separation must decrease and
that the donorÏs Roche lobe radius will contract thus
increasing the degree of overÑow. The resulting mass trans-
fer rate is expected in this case to be quite substantial.

The dependence of the mass transfer rate on the degree of
over-contact can be estimated from the product of the
volume swept out by the Ñow near the inner Lagrange
point, in unit time and the local value of the density. TheL 1,cross section of the Ñow near will scale as the square ofL 1

the local sound speed, and the Ñow velocity is approx-
imately equal to the sound speed. The volume of material
transferred in unit time then scales as the cube of the sound
speed. The density near the edge of a spherical polytrope of
index n, radius mass and polytropic constant i canR2, M2,be found by integrating the equation of hydrostatic equi-
librium to obtain

o(r) B
C GM2
i(n ] 1)

(R2[ r)
R22

Dn
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If we change variables to the width of a*R24 R2[ r,
spherical shell near the edge of the star, we obtain

o(*R2) P (*R2)n . (10)

The sound speed, c in turn obeys

cP o1@2n , (11)

so that

dM2
dt
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Taking the radius, r, to be the e†ective Roche lobe radius of
the donor, is the degree of over-contact. The mass*R2transfer rate is then expected to scale with the degree of
over-contact as

dM2
dt

P
M2
P
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R2

Bn`(3@2)
, (13)

where P is the orbital period. This agrees with the calcu-
lation of Jedrzjec as presented in & SienkiewiczPaczyn� ski
(1972). For a polytropic index of n \ 3/2, equation (13) indi-
cates that the mass transfer rate will scale as the cube of the
degree of over-contact. While the actual mass transfer rate
observed in a fully self-consistent, three-dimensional evolu-
tion may di†er substantially from the estimate given in
equation (13), it nevertheless indicates that for unstable
binaries mass-transfer events will evolve on a dynamical
timescale once the donor reaches contact with its Roche
lobe.

All the results presented in this section have relied on a
great many simplifying assumptions including the disregard
of internal angular momentum (spin) in each star, the use of
the Roche model, neglecting the intrinsically nonspherical
geometry of the components, and assuming that the mass
transfer event is, in fact, conservative. To proceed beyond
this point one must deal with extended distributions for the
density and velocity in some approximation. We would
argue further that it is advantageous to use a potential
derived from the matter distribution in a self-consistent
manner. With these additional complications, the task is
well beyond the regime of analytical mechanics but is trac-
table if we employ three-dimensional computational Ñuid
dynamical techniques. To investigate short timescale mass
transfer events numerically, we have developed a set of tools
for both constructing equilibrium polytropic binaries and a
hydrodynamics code to evolve systems of interest in time.
These tools are described below.

3. CONSTRUCTION OF EQUILIBRIUM MODELS

The iterative method that we have used to generate equi-
librium, polytropic binaries is very closely related to the
self-consistent Ðeld (SCF) technique developed by Hachisu
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(1986 ; see also Hachisu, Eriguchi, & Nomoto 1986). This
technique previously has been used to construct initial
models of equal-mass binary systems for dynamical studies
of the binary merger problem (see New & Tohline 1997 and
SWC). Here we employ a more generalized version of the
technique to construct unequal-mass binaries. In the follow-
ing discussion we use r to refer to an arbitrary point in
space. The vector R is the cylindrical radius vector which
can be expressed as R \ x The axis of rotation isxü ] y yü .
always taken to be parallel to, but not necessarily coin-
cident with, the z-axis.

The numerical results presented here are in a system of
units where the gravitational constant, the radial extent of
our numerical grid and the maximum density of one binary
component are all taken to be unity. As we are treating
polytropic models exclusively in the present work, these
models can be scaled to represent di†erent physical systems
by choosing a total system mass or orbital separation for
example. We would like to emphasize that the polytropic
models could represent binaries consisting of neutron stars,
white dwarfs or normal stellar components.

Assuming synchronous rotation so that the bodies are
stationary in a corotating reference frame, the equations of
hydrostatic equilibrium reduce to the following single
vector equation :

+(H ] '[ 12)2 o R [ Rcom o 2)\ 0 . (14)

Here ' is the gravitational potential, ) is the angular veloc-
ity of the reference frame in which the Ñuid is stationary, H
is the enthalpy, and is the cylindrical radius vector ofRcomthe systemÏs center of mass so that is each Ñuido R [ Rcom o
elementÏs distance from the axis of rotation. For a polytrope
of index n, H is given to within an arbitrary constant by
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P dp

o
\ (n ] 1)

p
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where p and o are the pressure and density of the Ñuid,
respectively. Equation (14) in turn implies that

H ] '[ 12)2 o R [ Rcom o2\ C , (16)

for some constant C, which in general will be di†erent for
each binary component. Hereafter we denote these two inte-
gration constants as andC1 C2.Using equation (16) one can construct an iterative scheme
as follows. An initial guess at the density Ðeld is constructed.
PoissonÏs equation is solved to obtain the gravitational
potential arising from the chosen mass distribution. This is,
by far, the most computationally intensive part of the algo-
rithm. For our work, we have chosen a cylindrical coordi-
nate grid and utilized subroutines from the FISHPACK
FORTRAN subroutine set for the solution of elliptic partial
di†erential equations (Schwarztrauber & Sweet 19752 ; Sch-
warztrauber et al. 2001) with the boundary potential being
calculated via a spherical harmonic expansion of the density
Ðeld utilizing harmonic moments through l\ 10.

With the gravitational potential in hand we can use alge-
braic relations at three boundary points where the density
Ðeld is forced to vanish in order to set the integration con-
stants and and the value of the angular velocity ).C1 C2,The boundary points all lie along the line of centers. They

2 See also Schwarztrauber, P., Sweet, R., & Adams, J. : http ://
www.scd.ucar.edu/css/software/Ðshpack.

correspond to the inner and outer boundary points for one
star, and the inner boundary point for the companion as
illustrated in Figure 1. The values of the gravitational
potential at the three boundary points, and arerA, rB, rCused to solve for the set of constants ), and asC1, C2follows :

)2\ '(rA) [ '(rB)
(1/2)( o RA [ Rcom o2[ o RB[ Rcom o2) , (17)

C1\ '(rB) [ 12)2 o RB[ Rcom o2 , (18)

C2\ '(rC) [ 12)2 o RC[ Rcom o2 . (19)

Equation (16) can then be used to construct the enthalpy
throughout the computational domain and, from it, an
improved density distribution can be constructed using the
relation
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4
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0
omax,i

A H
Hmax,i

Bn
H [ 0 ,

0 otherwise ,
(20)

where i \ 1, 2 labels the two stellar components. As
Hachisu (1986) has explained, it is best to hold the values of

and Ðxed throughout the iteration cycles.omax,1 omax,2The iteration cycle is then repeated using the improved
density distribution until the relative change from iteration
to iteration in ), and are all smaller thanC1, C2, Hmax,isome prescribed convergence criterion, d. For a grid
resolution of 128 radial points by 128 vertical points by 256
points in azimuth, we typically use a tolerance
d \ 1 ] 10~4.

Unfortunately, the self-consistent Ðeld method does not
allow one to specify physically meaningful parameters such
as the binary mass ratio or separation a priori. Instead, as
already described, it is best to specify the three boundary
points and the maximum density for each body. Neverthe-
less, the method described above remains, to our know-
ledge, the most e†ective means of generating fully
self-consistent models of synchronously rotating, equi-
librium binary systems with unequal masses and/or radii.

We gauge the quality of a converged solution by the
degree to which it satisÐes the scalar virial equation. SpeciÐ-
cally, we deÐne the following dimensionless virial error

VE4
(2K ] W ] 3%)

oW o
, (21)

where the terms appearing in equation (21) are deÐned by
the following integral quantities :

K 4 12
P

o¿ Æ ¿dV , (22)

W 4
P

o'dV , (23)

% 4
P

pdV , (24)

where is the velocity Ðeld as measured in the inertial frame¿
of reference. As applied in the SCF technique, the velocity is
entirely due to the rotation of the frame, that is,

¿\ )] (R [ Rcom) . (25)

In Figure 2 we plot density contours in the meridional
plane for one contact binary system, three semidetached
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FIG. 1.ÈPosition of the three boundary points in the equatorial plane for a SCF binary model. At the three boundary points (denoted by asterisks and
labeled A, B, and C) the density is forced to vanish. The contours represent density levels for the converged model.

systems, and two detached systems that we have con-
structed using the SCF technique. The more massive com-
ponent always appears on the left of the plots. Figure 3
shows contours in the equatorial plane for the same six
systems. The solid lines are at mass density levels of 10~5,
10~4, 10~3, 10~2, and 10~1, where the density has been
normalized to the maximum density for each model, and
the dashed line follows the self-consistently determined
critical Roche surface for the system. The binaries all have a
polytropic index n \ 3/2 ; other key parameters for these
models are listed in Table 1. Throughout this work we take
the secondary component (denoted by a ““ 2 ÏÏ) to be the
component closest to contact (closest to being the donor).
The values of shown in Table 1 (as well as inq \M2/M1Figs. 2 and 3) give the ratio of the mass of the secondary to

the primary ; the stellar radii and and Roche lobe(R1 R2)radii and have all been normalized to the orbital(R1RL R2RL)separation. The stellar radii and Roche lobe radii are the
radii of spheres that have a volume equal to the star or
critical Roche surface, respectively. For Model 4, the Roche
lobe of the primary extends beyond the computational grid
so the e†ective radius of its Roche lobe is only a lower limit.
All six of these models were constructed on a cylindrical
grid of 128 radial and vertical zones by 256 azimuthal
zones.

Table 2 lists the resulting virial error for the contact
system (Model 1 from Table 1) constructed on grids of dif-
fering resolutions. As the convergence criterion, d, is
decreased, the number of required iterations increases. For
Ðxed resolution, the overall quality of the solution does not

TABLE 1

INITIAL EQUILIBRIUM BINARY MODELS

Model q o1max R1 R1RL o2max R2 R2RL VE

1 . . . . . . . . . . . . 1.0000 1.00 0.3720 0.3723 1.00 0.3720 0.3723 1.5] 10~4
2 . . . . . . . . . . . . 1.2111 1.00 0.3056 0.3580 0.60 0.3893 0.3915 1.4] 10~4
3 . . . . . . . . . . . . 0.4801 1.20 0.3727 0.4401 1.00 0.3126 0.3129 3.4] 10~4
4 . . . . . . . . . . . . 0.1999 1.00 0.3817 [ 0.5194 0.77 0.2476 0.2478 2.8] 10~4
5 (EB) . . . . . . 1.0000 1.00 0.2984 0.3778 1.00 0.2984 0.3778 2.0] 10~4
6 (UB) . . . . . . 0.8436 1.20 0.3180 0.3919 1.00 0.3200 0.3620 2.2] 10~4
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FIG. 2.ÈSlice through the meridional plane for six example SCF binaries. Detailed parameters for these models are provided in Table 1. The solid
contours are in the logarithm of the normalized density at levels of 10~5, 10~4, 10~3, 10~2, and 10~1. The dashed curve traces the critical surface for the
self-consistent Roche potential. The density of the stellar components falls rapidly near the surface and on the scale used for these Ðgures, the lowest two
contours of the density coincide with one another.

signiÐcantly improve beyond some limiting value of d,
regardless of the number of iterations taken. As the
resolution is increased, the virial error decreases roughly in
proportion to the square root of the number of grid points.

TABLE 2

CONVERGENCE FOR SCF METHOD

R z / d VE

64 . . . . . . . 64 128 1.0] 10~3 1.0] 10~3
1.0] 10~4 6.0] 10~4
1.0] 10~5 5.5] 10~4
1.0] 10~6 5.5] 10~4

128 . . . . . . 128 256 1.0] 10~3 6.9] 10~4
1.0] 10~4 2.0] 10~4
1.0] 10~5 1.5] 10~4
1.0] 10~6 1.4] 10~4

256 . . . . . . 256 512 1.0] 10~3 6.3] 10~4
1.0] 10~4 1.0] 10~4
1.0] 10~5 5.2] 10~5
1.0] 10~6 4.7] 10~5
1.0] 10~7 4.7] 10~5

Due to the symmetry of these initial models about the
equatorial plane, we only calculate the models in the half-
space of zº 0. Assuming the line of centers coincides with
the x axis, the tidal distortion of each star also is symmetric
about the y \ 0 plane. Hence, further computational effi-
ciency could be obtained with this technique by limiting the
computational grid to only extend from 0 to n in azimuth.
To date, we have not enforced this additional symmetry
constraint, although in practice the converged models
display this symmetry.

The SCF method is insensitive to the functional form for
the initial guess of the density distribution. For uniform
spheres and spherically symmetric Gaussian density dis-
tributions one can obtain the same converged model to
machine accuracy. We also note that we have found that
more rapid convergence for models with soft equations of
state (e.g., n º 3/2) can be achieved by using an even
mixture of the current and previous potentials during the
iteration. For more rigid equations of state, where there is
more mass at the boundary points and hence a greater
coupling between the solution near the boundary points
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FIG. 3.ÈSlice through the equatorial plane for the same six binaries shown in Fig. 2. The solid contours are in the logarithm of the normalized density at
levels of 10~5, 10~4, 10~3, 10~2, and 10~1. The dashed curve traces the critical surface for the self-consistent Roche potential.

and the global solution, such mixing is not necessary and
the solution converges rapidly.

4. HYDRODYNAMICS IMPLEMENTATION

4.1. Continuum Mechanics Formalism
We have developed an explicit, conservative, Ðnite-

volume, Eulerian hydrodynamics code that is second-order
accurate in both time and space to evolve the equilibrium
binaries. The program is similar to the ZEUS code devel-
oped by Stone & Norman (1992). The integration scheme is
designed to evolve Ðve primary variables that are densities
of conserved quantities : the mass density, o, the angular
momentum density, A, the radial momentum density, S, the
vertical momentum density, T , and an entropy tracer, q.
The entropy tracer,

q4 (vo)1@c , (26)

where v is the internal energy per unit mass and c is the
selected ratio of speciÐc heats of the gas. It is related to the

entropy of the Ñuid through the relation

s \ c
p
ln

q
o

, (27)

where is the speciÐc heat at constant pressure. Using thec
pentropy tracer in lieu of the internal energy per unit mass or

the total energy density allows us to avoid the Ðnite di†er-
ence representation of the divergence of the velocity Ðeld
that must otherwise be used to express the work done by
pressure on the Ñuid.

For the evolutions presented in this paper we have set
c\ 1 ] 1/n. We note, however, that by allowing the com-
pressible Ñuid system to evolve with an adiabatic exponent
that di†ers from this value, the stars will not be homentro-
pic. For example, by selecting an appropriate value of
c[ 1 ] 1/n we can e†ectively model stars that are convecti-
vely stable and that obey a mass-radius relation quite di†er-
ent from the normal polytropic one speciÐed by equation
(2), that is, di†erent from By doing this,mS \ (1 [ n)/(3 [ n).
we expect to be able to closely approximate the mass-radius
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relationship of main sequence stars. A more detailed dis-
cussion of this idea is beyond the scope of this paper.

The set of di†erential equations that we solve is based on
the conservation laws for these Ðve conserved densities.
Mass conservation is governed by the continuity equation,

Lo
Lt

] $ Æ (o¿)\ 0 , (28)

where is the velocity Ðeld. The velocity vector is expressed¿
in terms of its components in a cylindrical coordinate
system as The three components of¿\ ueü

R
] veü Õ] weü

z
.

EulerÏs equation govern changes in the momentum den-
sities. We express these equations in a frame of reference
rotating with a constant angular velocity, ), as follows :

LS
Lt

] $ Æ (S¿)\ [o
L'eff
LR

] A2
oR3] 2)

A
R

, (29)

LT
Lt

] $ Æ (T ¿)\ [o
L'eff
Lz

, (30)

LA
Lt

] $ Æ (A¿)\ [o
L'eff
L/

[ 2)SR , (31)

where

'eff 4 H ] '[ 12)2R2 . (32)

The second and third terms appearing on the right-hand
side of equation (29) represent the curvature of cylindrical
coordinates and the radial component of the Coriolis force,
respectively. Likewise, the last term appearing on the right-
hand side of equation (31) represents the azimuthal com-
ponent of the Coriolis force.

From the Ðrst law of thermodynamics we know that in
the most general case, the entropy tracer obeys the expres-
sion

Lq
Lt

] $ Æ (q¿)\ q
c
p

ds
dt

. (33)

Here we will be considering only adiabatic Ñows, in which
case ds/dt \ 0, so the entropy tracer obeys an advection
equation of precisely the same form as the continuity equa-
tion, namely,

Lq
Lt

] $ Æ (q¿)\ 0 . (34)

Even though we are performing adiabatic evolutions we
cannot simply use an adiabatic equation of state (p \ ioc)
and disregard the Ðrst law of thermodynamics because the
polytropic constant is, in general, di†erent for each binary
component.

Finally, we solve PoissonÏs equation once every integra-
tion time step in order to calculate the force of gravity
arising from the instantaneous mass distribution,

+2'\ 4nGo , (35)

and we use the ideal gas law as the equation of state to close
the system of equations, namely,

p \ (c[ 1)qc \ (c[ 1)ov . (36)

It may be argued that our treatment of the thermodyna-
mics of the system as the purely adiabatic Ñow of an ideal
Ñuid is overly simpliÐed. However, we believe that the self-
consistent treatment of both binary components in the pres-
ence of the full nonlinear tidal forces is sufficiently complex
and novel to warrant the use of a simple equation of state at
the present time. This will allow us to establish the qualita-
tive behavior of systems in this limiting case before addi-
tional complications leading to nonadiabatic heat transport
are introduced into the simulations.

4.2. Finite Volume Representation
Before proceeding with the discussion of the hydrody-

namics algorithm that we have implemented to solve the
equations presented in ° 4.1 we Ðrst describe the dis-
cretization that has been used to represent the exact partial
di†erential equations when they are expressed as approx-
imate algebraic relations between discrete points in the
computational grid. As in the ZEUS code, all scalar vari-
ables and the diagonal components of tensors are deÐned at
cell centers. The components of vectors are deÐned at the
corresponding faces of the cell. A volume element and the
relative positions of the variables within each cell is illus-
trated in Figure 4. The cell extends from to inR

i
R

i`1radius, from to in the vertical coordinate, and fromz
j

z
j`1to in the azimuthal coordinate. We represent the/

k
/

k`1staggered variables in the computational mesh with a half-
index notation ; the coordinates of the center of a grid cell
are given by for example. A completeR

i`1@2, zj`1@2, /k`1@2,listing of the variables and their centering is given in
Table 3.

4.3. Treatment of Advection Terms
Through the method of operator splitting, one can con-

struct a numerical scheme that groups terms of the same
physical character together. Again, following along the lines
of the ZEUS code we implement a splitting scheme that
separates updates of the Ñuid state due to Eulerian trans-
port (advection) from updates due to the source terms. In
this section we describe our treatment of the advection
terms.

TABLE 3

HYDRODYNAMIC VARIABLES AND THEIR CENTERING

Centering Variable Description

A . . . . . . . . . R
i`1@2 Cylindrical radius coordinate

z
j`1@2 Vertical coordinate

/
k`1@2 Azimuthal coordinate

o
i`1@2,j`1@2,k`1@2 Mass density

q
i`1@2,j`1@2,k`1@2 Entropy tracer

p
i`1@2,j`1@2,k`1@2 Pressure

H
i`1@2,j`1@2,k`1@2 Enthalpy

'
i`1@2,j`1@2,k`1@2 Gravitational potential

Q
i`1@2,j`1@2,k`1@2ll Diagonal components of artiÐcial

viscosity
B . . . . . . . . . S

i,j`1@2,k`1@2 Radial momentum density
u
i,j`1@2,k`1@2 Radial velocity

C . . . . . . . . . T
i`1@2,j,k`1@2 Vertical momentum density

w
i`1@2,j,k`1@2 Vertical velocity

D . . . . . . . . . A
i`1@2,j`1@2,k Angular momentum density

v
i`1@2,j`1@2,k Azimuthal velocity
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FIG. 4.ÈVolume element for a cell-centered quantity (deÐned at the open circle labeled A) in our cylindrical coordinate mesh. Radial, vertical and
azimuthal face-centered quantities are deÐned at points B, C, and D, respectively. Table 3 lists all of the variables used in the hydrodynamics code along with
their centering according to this diagram.

Given the density j of any conserved quantity " that
satisÐes a generic conservation law of the form,

Lj
Lt

] $ Æ (j¿)\ 0 , (37)

we can replace the di†erential equation (37) with an equiva-
lent integral equation,

L
Lt
P
V
jdV \ [

P
V
$ Æ (j¿)dV \ [

P
S(V)

j¿ Æ dS . (38)

Equation (38) must hold for any volume. In particular, it
must hold for every volume element within the computa-
tional grid. The exact integral relation is then expressible in
the following Ðnite volume form for each grid cell :

j(n`advection)[ j(n)
*t

\ [ 1
*V

;
i/1

6
j
i
* ¿ Æ *S

i
, (39)

where the summation is over all six faces on the surface of
the three-dimensional cell. The surface elements, are*S

i
,

naturally face-centered with respect to the control volume
in question, so averages must be taken to obtain the advec-
tion velocity components necessary to perform the dot
product for the momentum densities as shown in equation
(39). We use second-order accurate, linear averages to con-
struct the advection velocities in this case. The amount of "
advected through each face is given by an upwind biased,
linear interpolation of the distribution of j to give j* as
described by van Leer (1979). By construction, the amount
of " that is transported out of one cell immediately Ñows
into the neighboring cell, thus ensuring the conservative
nature of the advection scheme.

Unlike the ZEUS code, we do not use operator splitting

along the three separate dimensions during the advection
step. Instead, we perform the updates due to advection in all
three dimensions simultaneously. We thus avoid concerns
about bias that may be introduced by using an
unsymmetrized ordering of the advection sweeps. A dis-
cussion of how we obtain second-order accuracy in time for
the advection step through time centering of the terms
appearing in equation (39) is presented in ° 4.6.

Our advection scheme automatically reverts to a Ðrst-
order accurate (upwind) scheme at local extrema in the
primary Ñuid variables. In addition, it is necessary to intro-
duce an artiÐcial viscosity to stabilize the scheme in the
presence of shocks. The artiÐcial viscosity prescription we
have implemented is detailed in ° 4.5.

4.4. Treatment of Source Terms
The Lagrangian source terms for the momenta that are

shown on the right-hand sides of equations (29)È(31) arise
from the forces of pressure and gravity, as well as from the
di†erentiation of the curvilinear basis vectors and the rota-
tion of the reference frame. We have found it advantageous
to combine the pressure gradient with the gradient of the
gravitational potential, which results in a gradient of the
sum of H and '. Since the centrifugal force can also be
expressed as the gradient of a potential, it is included as well
to form an e†ective potential as deÐned in equation (32). As
explained in ° 3, our initial models have the property that
'eff \ constant everywhere, hence to reasonably high preci-
sion +'eff \ 0 throughout both stars initially.

The expressions we have used for the source term updates
of the momentum densities are given here by equations
(40)È(42). As with the advection step, we do not use an
operator splitting technique to evaluate the source terms
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along the three separate coordinate dimensions ; instead, at
each cell location, all updates due to Lagrangian source
terms are performed simultaneously :

S
i,j`1@2,k`1@2(n`source) [ S

i,j`1@2,k`1@2(n)
*t

\ [ oü
i,j`1@2,k`1@2

*R

] ['
i`1@2,j`1@2,k`1@2eff ['

i~1@2,j`1@2,k`1@2eff ]

] (AŒ
i,j`1@2,k`1@2)2

oü
i,j`1@2,k`1@2 R

i
3] 2)AŒ

i,j`1@2,k`1@2
R

i
; (40)

T
i`1@2,j,k`1@2(n`source) [ T

i`1@2,j,k`1@2(n)
*t

\ [oü
i`1@2,j,k`1@2

*z

]['
i`1@2,j`1@2,k`1@2eff [ '

i`1@2,j~1@2,k`1@2eff ] ; (41)

A
i`1@2,j`1@2,k(n`source) [ A

i`1@2,j`1@2,k(n)
*t

\ [ oü
i`1@2,j`1@2,k

*/

] ['
i`1@2,j`1@2,k`1@2eff [ '

i`1@2,j`1@2,k~1@2eff ]

[2)SŒ
i`1@2,j`1@2,k R

i`1@2 . (42)

Note that a caret identiÐes a variable whose value has been
interpolated to a spatial location that is di†erent from the
variableÏs primary deÐnition point as shown in Figure 4.
These variables are given by volume-weighted averages as
follows :

AŒ
i,j`1@2,k`1@2 \ 1

4R
i

C
(A

i`1@2,j`1@2,k ] A
i`1@2,j`1@2,k`1)

]
A
R

i
] 1

4
*R
B

] (A
i~1@2,j`1@2,k ] A

i~1@2,j`1@2,k`1)

]
A
R

i
[ 1

4
*R
BD

, (43)

SŒ
i`1@2,j`1@2,k\

1
4R

i`1@2

C
(S

i`1,j`1@2,k`1@2

]S
i`1,j`1@2,k~1@2)]

A
R

i`1@2] 1
4

*R
B

] (S
i,j`1@2,k`1@2 ] S

i,j`1@2,k~1@2)

]
A
R

i`1@2[ 1
4

*R
BD

, (44)

oü
i,j`1@2,k`1@2 \ 1

2R
i

C
o
i`1@2,j`1@2,k`1@2

A
R

i
] 1

4
*R
B

] o
i~1@2,j`1@2,k`1@2

A
R

i
[ 1

4
*R
BD

, (45)

oü
i`1@2,j,k`1@2 \ 12(oi`1@2,j`1@2,k`1@2 ] o

i`1@2,j~1@2,k`1@2) ,

(46)

oü
i`1@2,j`1@2,k \ 12(oi`1@2,j`1@2,k`1@2 ] o

i`1@2,j`1@2,k~1@2) .

(47)

4.5. ArtiÐcial V iscosity
To stabilize the scheme in the presence of shocks, we

employ a planar, von Neumann artiÐcial viscosity that is
active only for zones that are undergoing compression. (See
Stone & Norman 1992 or Bowers & Wilson 1991, p. 311, for
more detailed discussions of artiÐcial viscosity in Eulerian
hydrodynamics.) The momentum densities are updated
from the following Ðnite-di†erence equations :

S
i,j`1@2,k`1@2(n`viscosity) [ S

i,j`1@2,k`1@2(n)
*t

\ 1
*R

(Q
i`1@2,j`1@2,k`1@2RR [ Q

i~1@2,j`1@2,k`1@2RR ) , (48)

T
i`1@2,j,k`1@2(n`viscosity) [ T

i`1@2,j,k`1@2(n)
*t

\ 1
*z

(Q
i`1@2,j`1@2,k`1@2zz [ Q

i`1@2,j~1@2,k`1@2zz ) , (49)

A
i`1@2,j`1@2,k(n`viscosity) [ A

i`1@2,j`1@2.k(n)
*t

\ 1
*/

(Q
i`1@2,j`1@2,k`1@2ÕÕ [ Q

i`1@2,j`1@2,k~1@2ÕÕ ) , (50)

where the diagonal components of the artiÐcial viscosity are
given by

Q
i`1@2,j`1@2,k`1@2RR \ lo

i`1@2,j`1@2,k`1@2
](u

i`1,j`1@2,k`1@2 [ u
i,j`1@2,k`1@2)2 , (51)

Q
i`1@2,j`1@2,k`1@2zz \ lo

i`1@2,j`1@2,k`1@2
](w

i`1@2,j`1,k`1@2[ w
i`1@2,j,k`1@2)2 , (52)

Q
i`1@2,j`1@2,k`1@2ÕÕ \ lo

i`1@2,j`1@2,k`1@2
](v

i`1@2,j`1@2,k`1 [ v
i`1@2,j`1@2,k)2 , (53)

if the velocity di†erence is negative ; otherwise the com-
ponents of Q are zero. Note that we neglect the shear com-
ponents of viscosity. The factor l is a parameter that
roughly dictates the number of zones across which shock
structures will be spread. A value of l\ 2 is typically suffi-
cient. In keeping with our overall adiabatic treatment of the
Ñow (see ° 4.1), we neglect the generation of entropy by
shock compression.

In a binary system that is undergoing mass transfer, the
accretion stream will necessarily undergo a shock transition
as it is decelerated upon impact with the accreting star, or
when it intersects itself if the stream has sufficient angular
momentum to orbit the accretor. In addition, even for a
detached binary simulation there will be weak standing
shock fronts (as viewed in the corotating frame of reference)
at or near the surface of the stars arising from the rapid
deceleration of material falling onto the stars. We have
found that even these weak shocks can have a noticeable
impact on the quality of the solution in long time evolutions
of detached systems unless artiÐcial viscosity is used to
damp the resulting oscillations.

4.6. T ime Centering
The time step cycle is split between the application of

source, advection and viscosity operators. First, the source
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terms are applied for one half of a time step. Next, all
updates due to advection are performed for a full time step
and the viscosity updates are applied to the momentum
densities. Finally, the second half of the source operators
are applied. The source and advection steps are thereby
staggered in time when viewed over several iteration cycles
for a constant value of the time step.

The advection is time-centered by Ðrst performing half a
time step of Ðctitious advection in order to obtain ““ time-
centered ÏÏ velocities for constructing the face-centered
advection velocity components that appear in equation (39).
The full time step of advection is then performed. The com-
ponents of the viscosity tensor are constructed from the
velocity and density estimates at the midpoint of the time
step as well.

Since the momentum densities themselves also appear in
the source terms of equations (29) and (31), similar care
must be taken with their centering in time. The source oper-
ators are applied in a Ðctitious source step to obtain the
angular and radial momentum densities at a point half a
time step in the future. These values are then used to update
the momentum densities through a full time step. As the
time step value changes from iteration to iteration, this
algorithm for time centering the source terms is not for-
mally accurate to second order. However, in real computa-
tions the character of the Ñow and, hence, the maximal
signal velocity do not change rapidly over the course of a
time step cycle so that one may expect the resulting inaccu-
racies in the time centering of the source terms to be small.
The other terms that appear in the source operators, includ-
ing the gravitational potential, are all calculated at the
approximate midpoint in time between the source steps.

4.7. T ime Step Formulation and Boundary Conditions
Since we explicitly integrate the Ñuid equations in time,

the time step is limited in size by the familiar Courant-
Friedrichs-Lewy (CFL) stability criterion which ensures the
time increment is small enough so that no characteristic can
cross a cell in a single time step. SpeciÐcally,

*t \ min
C *R
c] o u o

,
*Z

c] ow o
,

R*/
c] o v o

D
, (54)

where c is the speed of sound. In practice we limit the time
step to a half the CFL time. Since we have introduced the
di†usion terms associated with artiÐcial viscosity, the time
step must also satisfy the condition (see Bowers & Wilson
1991, p. 270)

*t ¹
1
4

min
Co*R

QRR
,
o*Z
QZZ

,
oR*/
QÕÕ

D1@2
. (55)

The boundary conditions for the Ñuid variables at the
external boundaries are to allow the Ñuid to Ñow freely o†
the grid but to not allow material to Ñow back from the
outermost layer of boundary cells. The central annulus of
cells that has an inner radius at the coordinate axis is
treated as a single azimuthally averaged cell for each layer
in the vertical direction.

4.8. Parallelization of Hydrodynamics Algorithm
As it is our intention to perform high-resolution simula-

tions, it is imperative that the work load within the simula-
tion be distributed amongst many processors so that the

simulations may be conducted in a reasonable amount of
time and not exceed the available memory of a single node.
The Ñuid dynamics equations, being hyperbolic partial dif-
ferential equations, are ideally suited to a simple domain
decomposition or single program multiple data (SPMD)
parallelization model. Each computational task performs
the same operations on their own block of the global data
arrays with communication only being necessary between
nearest neighbor tasks that share a boundary of ghost zones
that is one-cell thick (this ghost zone thickness is dictated by
the order of our advection and Ðnite-di†erence operators).
We have written the program in FORTRAN90 with explicit
message passing being performed with MPI (Message
Passing Interface) subroutine calls. The resulting parallel
code performance scales linearly with the number of pro-
cessors for 4 to 128 processors on the Cray T3E. Similar
behavior is also seen on the IBM SP platform.

4.9. Solution of PoissonÏs Equation
We are seeking to solve PoissonÏs equation for an iso-

lated distribution of mass. The correct boundary condition
in this instance is that the potential goes to zero at inÐnity.
As we only construct the solution on a Ðnite domain we
must specify the gravitational potential (or its gradient) on
some boundary that encloses all the mass in the simulation.
We construct the boundary potential using a novel tech-
nique based on a compact representation of the cylindrical
Greens function in terms of half-integer degree Legendre
functions of the second kind as described by Cohl &
Tohline (1999). The boundary potential is then simply given
by the convolution of the appropriate Greens function with
the density distribution. This method is capable of gener-
ating the exact solution for a discretized mass distribution
and has the attractive feature that it can be applied to very
Ñattened bodies without su†ering penalties in either per-
formance or accuracy.

In order to obtain the interior solution for the gravita-
tional potential, PoissonÏs equation is Ðrst Fourier trans-
formed in the azimuthal direction, then the resulting set of
two-dimensional partial di†erential equations (Helmholtz
equations) for the decoupled Fourier amplitudes are solved
using an alternating direction implicit (ADI) scheme (cf.
Peaceman & Rachford 1955 ; Black & Bodenheimer 1975).
The solution is then transformed back to real space.

The solution of PoissonÏs equation requires special care
in the context of parallel computing because the solution
necessarily involves global communication as the character
of the underlying physical law is action at a distance. The
algorithms we have implemented for computing the gravita-
tional potential are well suited to a cylindrical geometry
and very efficient in a distributed computing environment.
Parallel communications are used to transpose the data so
that all the data in a given dimension are in local memory at
one time. When operations are to be performed along a
di†erent dimension, the data are transposed again. This
allows us to send a relatively few number of large messages.
Further details regarding our solution of PoissonÏs equa-
tion in a parallel computing environment can be found in
Cohl, Sun, & Tohline (1997).

5. TEST CASES

Here we present results from three di†erent types of tests
that we have used to evaluate and quantify the accuracy of
our computational tools. In all tests we compare a known,
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although not necessarily analytical, solution with the calcu-
lated numerical solution.

5.1. Riemann Shock Tube Test
As a check of the stability of our code in the presence of,

ideally, discontinuous jumps in the Ñuid variables we have
solved SodÏs shock tube problem (Sod 1978) with the initial
discontinuity lying along a plane of constant SodÏsz\ z0.shock tube problem presents a useful hydrodynamic test
because the solution is known analytically and contains the
three simple waves that can occur in ideal Ñuid Ñow. Of
these simple waves, it is the shock wave that concerns us
most. Our goal is not to resolve the details of the shock
structure but rather to ensure that our algorithm is well
behaved (numerically stable and yields an acceptable
solution) in the presence of shocks.

The initial conditions for SodÏs shock tube problem are
that the velocity, is zero everywhere ; for the pres-¿, z¹ z0,sure, density, and internal energy per unit mass take on the
values forP

l
\ 1.0, o

l
\ 1.0, v

l
\ 2.5 ; z[ z0, Pu

\ 0.1, o
u
\

The Ñuid Ñow is characterized by an adia-0.125, v
u
\ 2.0.

batic exponent, c\ 1.4.
The computed solution for the vertical velocity, w, pres-

sure, p, mass density o, and the quantity, q/o (which is pro-
portional to the polytropic constant and, hence, the
entropy ; see eq. [27]) is plotted along with the analytical
solution at time t \ 0.247 in Figure 5. The computed points
are not average values but are instead the values for a
random column of cells at constant radius and azimuth
within the three-dimensional grid. The calculation was per-
formed with a coefficient for the artiÐcial viscosity of l\ 2.0
and with 130 vertical zones. The initial discontinuity was

placed at and the grid extended from [1/2 toz0\[0.1
1/2 in the vertical direction.

The results from this simulation compare favorably to the
results produced by other second-order accurate, Eulerian
hydrodynamics programs with artiÐcial viscosity (cf.
Hawley, Wlison, & Smarr 1984 ; Stone & Norman 1992 ;
Lufkin & Hawley 1993). The shock front is spread out over
approximately three zones, and there is no indication of
numerical instability in the solution for the shocked gas.
The contact discontinuity is likewise spread out over about
three zones due to the numerical di†usion inherent in a
second-order accurate Eulerian scheme. There is some dis-
agreement between the computed and analytical solution at
the tail of the rarefaction wave. This phenomenon has been
investigated by Norman & Winkler (1983) and results from
an inconsistent representation of the analytic viscous equa-
tions in Ðnite di†erence form. Finally, immediately behind
the shock, the analytical solution for q/o disagrees slightly
with the computed solution for the shocked gas. This is
because the analytical solution includes a small increase in
the entropy of the Ñuid that passes through the shock
whereas, as discussed in ° 4.5, we have elected to treat all of
the Ñow as through it is adiabatic, that is, by setting
ds/dt \ 0 in equation (33). (Agreement with the analytical
result could readily have been achieved by constructing an
appropriate expression for ds/dt in terms of the artiÐcial
viscosity in order to account for dissipation in the shock, as
shown for example in eqs. [11] and [37] of Stone &
Norman 1992.) In e†ect, we have assumed that each Ñuid
element that passes through the shock is immediately able
to cool back down to a temperature that places it back on
its original preshock adiabat.

FIG. 5.ÈClockwise from the upper left panel, the vertical velocity, pressure, the ratio of the entropy tracer to the mass density, and the mass density are
shown as a function of position z at time t \ 0.247 for SodÏs shock tube problem. The initial discontinuity was placed at z\ [0.1. The computed solution for
a randomly chosen column of cells at constant radius and azimuth is plotted as crosses ; the solid curves are the analytic solution.
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We note that we have used the gradient of the pressure as
opposed to the density times the gradient of the enthalpy
for the solution of SodÏs problem. Due to the pathological
nature of the discontinuous initial conditions, a correct
solution cannot be obtained if the enthalpy term is used
with our chosen centering of the Ñuid variables.

5.2. Test of Poisson Solver
Cohl & Tohline (1999) have published exhaustive tests

showing the accuracy with which we are able to evaluate
the gravitational potential on the boundary of our cylin-
drical coordinate grid. In order to ascertain the accuracy
with which we are able to determine the force of gravity
arising from the Ñuid everywhere inside the grid, we have
calculated the potential and its derivatives for a uniform-
density sphere of radius and density centered at anR

*
o
*
,

arbitrary position on the grid, The analytical potential isr0.
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where The corresponding derivatives appear-d \ o r [ r0 o .
ing in the gravitational force are
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for d [R
*
.

In Table 4 we present the average relative error in the
potential and the average absolute error in the three deriv-
atives for a uniform density sphere of radius(o

*
\ 1) R

*
\

placed at the origin and at for a representative1/3 x0\ 1/2
set of grid resolutions. The grid extends from 0 to 1 in radius
and from [1/2 to 1/2 in the vertical direction. Similarly,
in Table 5 we present the maximum errors for the same
quantities.

The region near the surface of the sphere contains the
largest errors in the potential solution (cf., Stone & Norman
1992). At the surface, the density falls discontinuously to
zero and the slope of the solution changes abruptly. When
placed at the origin, this high error region is resolved by a
larger number of smaller volume cells than when the sphere
is placed o†-axis in the grid. This results in a worse average
error for the potential and its radial and vertical derivatives
for the axisymmetric solution despite the fact that the
maximal errors are generally smaller in this instance.

For the case where the sphere is centered on the origin of
the computational grid, the resulting potential is axisym-
metric to machine accuracy. The average relative error in
the potential and the average absolute error in the radial
and vertical derivatives all decrease by a factor of about 3 as
the radial and vertical resolutions are doubled. As expected
for an axisymmetric mass distribution the quality of the
solution is independent of the number of azimuthal zones.
The maximum values of the relative error in the potential
decrease by a factor of about 3 as well and the maximum
value in the absolute error of the radial and vertical deriv-
atives has been cut in half as the number of radial and
vertical zones doubles.

When the sphere is placed o† axis, the convergence
pattern is much more difficult to recognize. For the o†-axis
test at the highest resolution (the same radial and azimuthal
resolution that we currently use for binary evolutions), we
are able to obtain a solution that is accurate to one part in
104, on average, for the potential. Similarly, the Ðnite-
di†erence and analytical components of the derivatives of
the potential agree to better than 4 decimal places on
average.

5.3. Test of Hydrostatic Equilibrium
A stringent test of our coupled solution of PoissonÏs

equation and the Ñuid dynamical equationsÈand one that
may seem trivial at Ðrst mentionÈis how well we are able to
maintain hydrostatic equilibrium for a simple system such
as a spherical polytrope that is placed o† axis in the grid.
While our hydrodynamics implementation is conservative
with respect to the advection of the Ñuid, there is no guar-
antee that the total momentum is conserved once the action
of the Lagrangian source terms are included. Throughout a

TABLE 4

AVERAGE ERROR FOR GRAVITATIONAL POTENTIAL AND FORCE

Origin R z / ' L
R

' L
z
' LÕ'

0 . . . . . . . . . 66 66 64 1.0 ] 10~2 3.4] 10~3 2.7] 10~3 4.0] 10~18
66 66 128 1.0] 10~2 3.4] 10~3 2.7] 10~3 4.0] 10~18
130 130 128 3.1] 10~3 1.1] 10~3 9.7] 10~4 4.2] 10~18
130 130 256 3.1] 10~3 1.1] 10~3 9.7] 10~4 4.2] 10~18

0.5xü . . . . . . 66 66 64 3.3] 10~3 9.5] 10~4 7.3] 10~4 3.3] 10~4
66 66 128 2.6] 10~4 3.6] 10~4 3.6] 10~4 1.4] 10~4
130 130 128 2.3] 10~4 2.3] 10~4 1.8] 10~4 7.0] 10~5
130 130 256 9.9] 10~5 8.6] 10~5 7.1] 10~5 3.6] 10~5
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TABLE 5

MAXIMUM ERROR FOR GRAVITATIONAL POTENTIAL AND FORCE

Origin R z / ' L
R

' L
z
' LÕ'

0 . . . . . . . . . 66 66 64 1.3 ] 10~2 4.7] 10~2 4.8] 10~2 8.3] 10~17
66 66 128 1.3] 10~2 4.7] 10~2 4.8] 10~2 7.7] 10~17
130 130 128 4.6] 10~3 2.3] 10~2 2.1] 10~2 6.4] 10~17
130 130 256 4.6] 10~3 2.3] 10~2 2.1] 10~2 7.3] 10~17

0.5xü . . . . . . 66 66 64 8.8] 10~3 1.2] 10~1 1.1] 10~1 2.4] 10~2
66 66 128 3.7] 10~3 5.0] 10~2 5.2] 10~2 2.2] 10~2
130 130 128 3.4] 10~3 6.0] 10~2 4.7] 10~2 1.3] 10~2
130 130 256 1.0] 10~3 3.3] 10~2 3.2] 10~2 1.8] 10~2

mass-transfer simulation, the bulk of the Ñuid should
remain near hydrostatic equilibrium and the correct
response of both components to their changing mass can be
limited by the accuracy to which force balance is main-
tained.

To perform this test, we have placed a spherical, n \ 3/2
polytrope of radius R\ 0.38 in a cylindrical grid of total
radius 1.0, but with a variety of di†erent resolutions. The
polytrope is centered at x B 0.58. In each case, the initial
density distribution was generated with our SCF code (with
only one star present and no frame rotation), and the initial
velocities were zero everywhere. Using our full gravitational
hydrodynamics code, we then permitted the Ñuid system to
evolve in time.

Over the course of the evolutions, each isolated star drifts
outward as if acted on by a constant force. This drift is
shown in Figure 6, where we have plotted the location of
the center of mass of the star as a function of time for grids
of varying resolution. We have normalized the evolution

time to the dynamical time as given by, for example, Chan-
drasekhar (1939). SpeciÐcally, tdynamical\ [(3n)/(16Go6 )]1@2,
and for an n \ 3/2 polytrope with central density of unity
the average density is The size and rate of theo6 \ 0.1669.
drift decreases as the azimuthal resolution increases.

As another measure of the quality of the steady state
equilibrium from these spherical polytropes we show a
modiÐed virial error,

VE\ (W ] 3%)
oW o

, (59)

in Figure 7. This di†ers from the deÐnition given in equa-
tion (21) in that we have neglected the kinetic energy term,
K. As can be seen in Figure 8, where we show the log of
oW o , %, and K normalized to the initial value of oW o for
the highest resolution simulation (computed with 130 radial
and vertical zones by 256 azimuthal zones), some peaks in
kinetic energy, which are noise, are of approximately the

FIG. 6.ÈDistance from origin to the center of mass as a function of time (measured in dynamical times) for the o†-axis spherical polytrope described in
° 5.3. The di†erent curves correspond to calculations performed at the indicated resolution, in terms of the number of radial by vertical by azimuthal zones.
The curves representing the simulations at resolutions of 66 ] 66 ] 128 and 130] 130 ] 128 lie on top of one another.
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FIG. 7.ÈThe virial error, as given by eq. (59) (the virial error with the kinetic energy term omitted) is plotted as a function of the number of dynamical
times for the o†-axis spherical polytrope described in ° 5.3. The meaning of the di†erent curves is the same as in Fig. 6.

same size as the sum of W and 3% in spite of the fact that
the kinetic energy is insigniÐcant compared to either the
thermal or gravitational energies. Overall, the virial error
decreases by a factor of approximately 6 from the lowest to

highest resolution simulation. At the highest resolution pre-
sented the virial error is 0.05% and the polytrope oscillates
with amplitude of approximately 0.02% for 30 dynamical
times. This shows that the isolated star remains in hydro-

FIG. 8.ÈThe logarithm of the three components to the virial error as given in eqs. (22)È(24) normalized to the initial value of the gravitational potential
energy is plotted as a function of time for the o†-axis spherical polytrope evolved in a grid of resolution 130] 130 ] 256.
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static equilibrium to a very high degree of accuracy, even
when placed o†-axis in our computational grid.

There is no signiÐcant improvement in the drift of the
system center of mass when only the radial and vertical
resolutions are increased. (In Fig. 6, compare the curves for
the simulations at resolutions of 66 radial, 66 vertical by 128
azimuthal zones and 130 radial, 130 vertical by 128 azi-
muthal zones.) But there is an improvement in the virial
error between these two simulations. This suggests that
there are two limiting numerical e†ects in play. One dictates
the resolution of the equilibrium state itself ; the other
causes a displacement of that equilibrium state. The former
e†ect converges with the Ðnite-di†erence size isotropically,
while the latter depends only on the azimuthal resolution.
When trying to resolve a highly nonaxisymmetric object,
such as an o†-axis sphere, within a uniform cylindrical
coordinate grid, di†erent parts of the star are resolved to
varying degrees and it is not surprising that the convergence
of the numerical solution is not describable in simple terms.

6. BENCHMARK SIMULATIONS

In this section we present results from two simulations of
detached binaries that we have performed to ascertain the
precision with which we can expect to carry out future
simulations of semidetached binary systems (systems under-
going mass transfer). One binary is an equal mass system
with identical components (see Model 5 in Table 1 and Figs.
2È3 ; hereafter referred to as the EB system) and the other
system has a mass ratio q \ 0.8436 (see Model 6 in Table 1
and Figs. 2È3 ; hereafter referred to as unequal binary or UB
system). The EB system was constructed to resemble the
single star used for the test of hydrostatic equilibrium in
° 5.3. This enables us to compare the systematic errors in the
case of a binary system given the errors observed when only
gravity, pressure and the curvature force came into play.
Each component of the EB system di†ers from the isolated,
spherical star in that each is Ñattened by the synchronous
rotation of the system and tidally distorted by its compan-
ion, but the components have a comparable size, in terms of
grid cells, and the same central density and polytropic index
as the isolated sphere.

Previous simulations of equal-mass barotropic stars have
shown that it is important to conduct the evolutions in a
frame of reference that renders the binary as close to static
as possible in order to minimize the e†ects of numerical
di†usion arising from the Ðnite accuracy of Eulerian advec-
tion schemes (New & Tohline 1997 ; SWC). With this in
mind, our EB and UB simulations have been conducted in a
frame of reference rotating with the orbital angular velocity
) of the system, as obtained by our SCF technique.

In dealing with unequal-mass systems we have dis-
covered another subtle, but important issue that should be
addressed with care when ““ transporting ÏÏ an initial hydro-
static model from the grid of the SCF code into the grid of
the hydrodynamics code. During each SCF iteration, the
systemÏs center of mass is not Ðxed to any location beyond
the fact that, by symmetry, it must lie along the line of
centers. In general, then, we must translate the density Ðeld
as we introduce it into the hydrocode so that the system
center of mass coincides with the z-axis, which is taken to be
the rotation axis for the hydrodynamic evolution. If we
could perform this translation perfectly, all initial Ñuid
velocities would be identically zero relative to the hydrody-
namic reference frame. Because of the inherent symmetry of

an equal-mass binary system, this was in fact the case for
our EB system by construction. For the UB system,
however, the center of mass of our converged SCF model
was displaced by a small distance from the rotation axis.
SpeciÐcally, which corresponded toRcom \ 2.842 ] 10~6xü ,
only 4 ] 10~4*R, where *R is the radial extent of each grid
cell. As we introduced the SCF model into the hydrody-
namical grid, we therefore also ascribed nonzero velocities
as initial conditions according to the relation

¿ \ [)] Rcom . (60)

Because the displacement was quite small for our UBRcomsystem, the initial velocities prescribed through equation
(60) were also very small. Nevertheless, it was necessary to
include them in order to achieve the best possible steady
state conÐgurations corresponding to the stars following
circular orbits. This implies a uniform initial velocity for the
system (see further discussion below).

After the binary models were introduced into the hydro-
dynamics code, both were evolved through more than Ðve
orbits. (See the Ðrst row of Table 6, where the total evolu-
tion time for both simulations is tabulated in units of each
systemÏs orbital period P.) As is recorded in the last three
rows of Table 6, the EB system was run on 64 nodes of a
Cray T3E 600 for a total of 173 wall-clock hours (that is, the
simulation required on average 2409 processor-hours per
orbit) and the UB system was run on eight dual processor
nodes of an IBM SP 3 for a total of 265 wall-clock hours
(that is, the simulation required on average 819 processor-
hours per orbit). Many di†erent diagnostic parameters were
followed throughout both evolutions in order to assess the
quality of the initial SCF models and to determine with
what accuracy the hydrodynamical equations were being
integrated forward in time. In the following paragraphs, we
present the time-evolutionary behavior of a number of these
key physical parameters.

6.1. Stars in Hydrostatic Balance
Throughout both evolutions, the individual stellar com-

ponents were largely static and remained well within their

TABLE 6

QUANTITIES OF INTEREST FOR BENCHMARK SIMULATIONS

Equal Mass Binary Unequal Mass Binary
Quantity (EB) (UB)

t
P

. . . . . . . . . . . . . . 5.314 5.178

*M1
M

. . . . . . . . . . [9.0] 10~6 [3.0] 10~5

*M2
M

. . . . . . . . . . [1.0] 10~5 [1.1] 10~6

*M
M

. . . . . . . . . . . [1.9] 10~5 [1.4] 10~5

A*a
a
B
secular

. . . . [2.9] 10~4 [1.9] 10~4

A*a
a
B
epicyclic

. . . 5.0 ] 10~4 2.2] 10~4

*J
z

J
z

. . . . . . . . . . . . ]1.1] 10~4 ]1.5] 10~4

Machine . . . . . . Cray T3E 600 IBM SP3
Processors . . . . 64 16
TWallClock . . . . . . 173 hr 265 hr
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respective Roche lobes. In an e†ort to illustrate this, Figure
9 shows as a function of time the computed Roche lobe
volume (dashed curve) and the volumes (solid curves)
occupied by material more dense than 10~1, 10~2, 10~3,
10~4, and 10~5 for one component of the EB system. (For
reference, the initial SCF density Ðelds have values of a few
times 10~5 at the edge of the stars ; see the isodensity con-
tours drawn in Figs. 2 and 3.) The same information is
plotted in Figures 10 and 11 for the secondary and primary
components, respectively, of the UB system. These Ðgures
illustrate that the rotationally Ñattened and tidally distorted
models generated by our SCF code exhibit excellent
detailed force balance throughout their three-dimensional
structures, and that there is an excellent match between the
algorithmic expressions that determine an equilibrium state
in the SCF code and force balance in the hydrodynamics
code.

6.2. Mass Conservation
In an e†ort to determine how well mass is conserved

throughout an evolution for each star, individually, as well
as for the system as a whole, we tracked three separate
volume integrals over the mass density : deÐned as theM1,mass bound to the primary ; deÐned as the mass boundM2,
to the secondary ; and deÐned as the mass that liesMenvelope,outside of both stars but inside the boundaries of the com-
putational grid. As is illustrated by frames 5 and 6 of
Figures 2 and 3, in the initial state it is easy to evaluate these
three integrals because the edges of the two stars are well-
deÐned. SpeciÐcally, when normalized to each systemÏs total
mass, andM1\ (1 ] q)~1, M2\ q(1 ] q)~1, Menvelope\ 0,
where q is the system mass ratio given in Table 1. But
because the stars are being modeled on a discrete computa-
tional mesh that does not conform precisely to their shape,

and because the acceleration of each Ñuid element in the
computational mesh is being determined by Ðnite-di†erence
(rather than continuous di†erential) representations of gra-
dients in the pressure and gravitational Ðelds, as each
system evolves hydrodynamically the surfaces of the stars
become less sharply deÐned and some spreading of material
inevitably occurs. (In these benchmark evolutions, this is
evidenced, for example, by the very small but Ðnite oscil-
lations in the ““ volumes ÏÏ occupied by the stars that are
displayed in Figs. 9È11.) In practice, then, during each evol-
ution we determine whether material in each grid cell
belongs to either star or the ““ envelope ÏÏ by comparing the
binding energy of the Ñuid in each cell to the average
binding energy of the layer of cells at the surface of each
star. In this context, we deÐne the surface of each star to be
the layer of cells where the mass density falls below 10~5 in
our normalized units, which corresponds to the lowest
density level attained in the initial SCF models. The mass of
the envelope is dominated by material from the surface of
the stars even though there is a minimum ““ vacuum ÏÏ
density level of 1.0] 10~10 enforced by the code to main-
tain numerical stability. The total mass of the vacuum
material is over a million times smaller than the mass of
either stellar component and does not impact the physics of
these simulations.

Four curves are drawn (each at two quite di†erent scales)
in Figures 12 and 13 to document how well mass is con-
served in the EB and UB simulations, respectively. The
masses have all been normalized to the total system mass,
so in Figure 12 the mass of both the primary and the(M1)
secondary stars is initially exactly 0.5 ; the total binary(M2)mass is initially exactly 1 ; and the ““ envelope ÏÏ mass is ini-
tially exactly 0. In Figure 13, the total mass and the
““ envelope ÏÏ mass also are initially 1 and 0, respectively, but

FIG. 9.ÈThe Roche volume (dashed curve) and volume occupied by material more dense than 10~1, 10~2, 10~3, 10~4, and 10~5 (solid curves from bottom
to top) are plotted as a function of the orbital time for one component of the EB system.
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FIG. 10.ÈThe Roche volume (dashed curve) and volume occupied by material more dense than 10~1, 10~2, 10~3, 10~4, and 10~5 (solid curves from bottom
to top) as a function of the orbital time for the secondary component of the UB system.

the mass of the primary initially is (1 ] q)~1\ 0.5424 and
the mass of the secondary initially is q(1] q)~1\ 0.4576.
Plotted on a normal, linear scale, all four of these curves are
perfectly Ñat in both Ðgures. This demonstrates that the

mass of both stars, as well as the aggregate system mass, is
conserved to very high precision throughout the EB and
UB simulations. Again, this is evidence that the initial
models were in excellent detailed force balance and the

FIG. 11.ÈThe Roche volume (dashed curve) and volume occupied by material more dense than 10~5, 10~4, 10~3, 10~2, and 10~1 (solid curves from bottom
to top) as a function of the orbital time for the primary component of the UB system.
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FIG. 12.ÈMasses, normalized to the total system mass, plotted as a function of time, in units of the orbital period, for the EB simulation. Top curve : Total
binary mass (M). Middle two curves : Mass of the primary and secondary stars. Bottom curve (essentially at zero) : Mass of the ““ envelope,ÏÏ as(M1) (M2)deÐned in ° 6.2. Inset plots show the di†erence between the indicated mass component and its initial value in units of the initial total mass.

hydrodynamics code is evolving the systems forward in time
in a physically realistic manner.

Although mass is conserved to very high precision, it is
not absolutely constant throughout the evolutions. In the
four insets of Figures 12 and 13, we have magniÐed the
vertical mass scale by roughly 4 orders of magnitude in
order to show that there is a very tiny, but measurable,
secular decrease in the total system mass and in the mass of
both stellar components over the course of the simulations.
In each inset, we plot the relevant mass minus its value in
the initial state (time t \ 0), normalized to the total system
mass. These inset plots show that the system mass decreases
by approximately one part in 104 over Ðve orbitsÈthat is,

about 0.002% per orbitÈwith the mass loss from each star
accounting for roughly half this total. In rows 2È4 of Table
6 we have recorded for both evolutions more precise values
of the fractional mass that is lost, on average, each orbit
from the primary the secondary and the system(M1), (M2),as a whole (M). We have determined that this mass is very
slowly lost as a result of the development of a small but
nonzero Ñow of low-density material o† of the stars,
through the envelope and, ultimately, o† of the grid. (After
an initial drop, the envelope mass remains approximately
constant, suggesting that this outward Ñow has settled into
a nearly steady state.) As is discussed more fully in ° 7,
below, this small but detectable rate of mass loss from
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FIG. 13.ÈMasses, normalized to the total system mass, plotted as a function of time, in units of the orbital period, for the UB simulation. Top curve : Total
binary mass (M). Middle two curves : Mass of the primary and secondary stars. Bottom curve (essentially at zero) : Mass of the ““ envelope,ÏÏ as(M1) (M2)deÐned in ° 6.2. Inset plots show the di†erence between the indicated mass component and its initial value in units of the initial total mass.

detached equilibrium binaries imposes a straightforward
limit on the mass-transfer rates that we will be able to reli-
ably model in future simulations that involve dynamical
mass transfer.

6.3. Minimal Center-of-Mass Motion
During both simulations we also tracked as a function of

time the position of the center of mass of each binary com-
ponent and the position of the center of mass of the system
as a whole. The equatorial-plane trajectories of these three
centers of mass for the EB and UB evolutions are shown,
respectively, in Figures 14 and 15, as viewed from our com-
putational reference frameÈthat is, from a frame rotating

with the orbital angular velocity of the system, as deter-
mined for the initial state by the SCF code. In the upper-
most plot of each Ðgure, which has been drawn at a scale
([1 \ x \ ]1 ; [1 \ y \ ]1) to include the entire mass
of the system, the three separate center of mass trajectories
appear to be small dots with little or no discernible struc-
ture. (When plotted in the inertial reference frame on this
scale the trajectories of the two stars are indistinguishable
from circles.) This illustrates that, even after Ðve orbits, the
centers of mass of the two stars and of the system as a whole
essentially have not moved from their initial positions. This
provides additional strong conÐrmation that our SCF code
produces excellent initial states and that the hydrodynami-
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FIG. 14.ÈFrom the EB simulation, equatorial-plane trajectories are plotted for the center of mass of the system and the centers of mass of both stellar
components through just over Ðve orbits in the corotating frame of reference. Insets ( from left to right) show magniÐed views of the trajectories for the
secondary star, the system as a whole, and the primary star. We have subtracted o† the initial coordinates for the inset plots and have, for reference, indicated
the size of one grid cell.

cal equations are being integrated forward in time in a
physically realistic manner.

In the bottom three plots of Figures 14 and 15, we have
magniÐed a small region around each of the center of mass
trajectoriesÈexpanding the linear scale of the uppermost
plot in each Ðgure by approximately a factor of 15 and 45,
respectively. These magniÐed views reveal that, although it
is very small, there is measurable motion of the centers of
mass in both evolutions. In the bottom, left-hand plot we
also have shown the size of our radial grid spacing,
*R\ 7.87] 10~3. This indicates the characteristic size of
our discretization and emphasizes how small the motion of
each center of mass is. In the UB evolution, for example, the
motion of all three centers has been conÐned within a single
grid cell through Ðve full orbits. Furthermore, the smooth
spiral trajectory of the UB system center of mass (Fig. 15,
bottom, middle plot) has an understandable, physical origin.
As viewed in the inertial frame, this particular trajectory
appears as a straight line whose direction and magnitude is
consistent with the overall system velocity prescribed as
initial conditions from equation (60). In the EB evolution,

due to the symmetry of the initial model, the drift of the
system center of mass is extremely small, remaining
unnoticeable even on the magniÐed plot. In the magniÐed
plots, the trajectory of the center of mass of each individual
star shows both a gradual drift in the y-direction, and a
small oscillatory motion in the x-direction. The vertical
drift is mostly an indication that the binaryÏs actual orbital
frequency is slightly di†erent from the value (given by the
SCF code) that we used for the rotation frequency of the
computational grid. The oscillations in x represent epicyclic
motion and indicate that the binary orbit is not precisely
circular. Since both the drift and the epicyclic motion can be
understood in physical terms, their small amplitudes tell us
more about the quality of the initial model than about the
limiting accuracy of our Ðnite-di†erence scheme.

Unlike in the single star case presented in ° 5.3, there is no
evidence of a systematic outward force on either star in the
UB or EB systems, despite the fact that the systems have
evolved for the equivalent of approximately 90 dynamical
times. It appears as though the introduction of a rotating
frame of reference and the associated centrifugal potential
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FIG. 15.ÈFrom the UB simulation, equatorial-plane trajectories are plotted for the center of mass of the system and the centers of mass of both stellar
components through just over Ðve orbits in the corotating frame of reference. Insets ( from left to right) show magniÐed views of the trajectories for the
secondary star, the system as a whole, and the primary star. We have subtracted o† the initial coordinates for the inset plots and have, for reference, indicated
the size of one grid cell.

and Coriolis force has provided a feedback mechanism that
acts to limit the systematic imbalance discussed previously.

6.4. Binary Separation
A plot of the binary separation a as a function of time, as

shown in Figures 16 and 17 for the EB and UB evolutions,
respectively, provides another way to assess the global
behavior of these systems. Here, the separation a is deÐned
as the distance between the centers of mass of the two stars.
Notice that, on a linear scale that extends from 0 to 1 (in
units normalized to the each systemÏs initial separation), the
plot of a(t) is indistinguishable from a perfectly horizontal
line. This illustrates that, to a very high degree of accuracy,
these benchmark simulations of detached binary systems
produce stable, circular orbits.

Again, though, if we examine these plots in Ðner detail, we
see that both evolutions exhibit a very small but quantiÐ-
able departure from perfect circular orbital motion. For
example, in the insets to Figures 16 and 17, we have replot-
ted a(t) with the vertical scale magniÐed by roughly a factor
of 400. These insets show that in both evolutions there is a

very slow, secular decrease in the orbital separation and, in
addition, a(t) displays low-amplitude oscillations having a
period approximately equal to one orbital period. The oscil-
lations in a arise from the same epicyclic motion that was
seen in the plots (Figs. 14 and 15) of the center of mass
motion of the individual stars, but the amplitude of this
motion is easier to measure here. In units of the initial
orbital separation, the EB system has an epicyclic ampli-
tude the UB system exhibits an(*a/a)epicyclicB 5 ] 10~4 ;
epicyclic amplitude about half this size. The slow, secular
decay of the orbits occurs at a rate (*a/a)secularB 2.9

per orbit in the EB system, and at a rate *a/] 10~4
a B 1.9] 10~4 per orbit in the UB system. These orbital
decay rates and epicyclic amplitudes have been recorded in
the Ðfth and sixth rows of Table 6.

6.5. Angular Momentum Conservation
Finally, in Figures 18 and 19 we show the behavior as a

function of time of the z-component of each systemÏs total
angular momentum. As was true with our plots of the
orbital separation, on a linear scale that extends from 0 to 1
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FIG. 16.ÈOrbital separation, normalized to its initial value, as a function of orbital time for the EB system

(in units normalized to the each systemÏs initial total
angular momentum), the plot of is indistinguishableJ

z
(t)

from a perfectly horizontal line. This illustrates that these
benchmark simulations globally conserve angular momen-
tum to a very high degree of accuracy. When we magnify
the vertical scale by approximately a factor of 1000, as has

been done to produce the insets to Figures 18 and 19, we see
that angular momentum is not, in fact, perfectly conserved.
Evidently, both systems gain angular momentum at a very
slow rate : in the EB simulation, per*J

z
/J

z
B 1.1 ] 10~4

orbit, and in the UB simulation per*J
z
/J

z
B 1.5] 10~4

orbit. These rates have been recorded in the seventh row of

FIG. 17.ÈOrbital separation, normalized to its initial value, as a function of orbital time for the UB system
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FIG. 18.ÈThe z component of total angular momentum, normalized to its initial value, as a function of time for the EB system

Table 6 and will be referred to again in ° 7, below, when we
summarize the limiting accuracy with which we expect to be
able to model physical mass-transfer events using our simu-
lation tools.

6.6. Overview
We should emphasize that the hydrodynamics code as

described in ° 4 and utilized in these benchmark simulations
has evolved through many stages from the version of the
code that was used several years ago by New & Tohline
(1997) to investigate the equal-mass, binary merger
problem. A number of improvements were made in the code
in order to bring it to its present level of performance.
Figure 20 is presented here in an e†ort to illustrate how
certain key modiÐcations in the code a†ected its per-

FIG. 19.ÈThe z component of total angular momentum, normalized to its initial value, as a function of time for the UB system
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FIG. 20.ÈEach of the four pairs of plots shown here has been derived from the UB simulation as modeled with one of four separate versions of our
hydrodynamic code. In each pair, the plot on the left is directly analogous to Fig. 10, showing as a function of time the Roche volume (dashed curve) and four
interior volumes (solid curves) for the secondary star ; the plot on the right is directly analogous to the unmagniÐed plot in Fig. 15, showing the trajectories of
the center of mass of the secondary (left), system as a whole (center), and primary (right). The pairs of plots are shown chronologically from the top to the
bottom, with signiÐcant improvements in the code being made between each recorded UB simulation. See ° 6.6 for a description of these various code
improvements.

formance. Each row of frames in this Ðgure shows results
from an evolution of the same unequal-mass (UB) binary
system that was used in our benchmark simulation, but as
produced by four separate versions of the code. The curves
drawn in the four frames on the left-hand side of Figure 20
show the same type of information as has been presented in

Figure 10 for the benchmark UB evolution : Four separate
volumes for the secondary star (solid curves) and its Roche
volume (dashed curve) are plotted as a function of time, in
units of the orbital period. The four frames on the right-
hand side of Figure 20 show the same type of information as
has been presented in the topmost frame of Figure 15 :
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Center-of-mass trajectories of the two stars and of the
system as a whole, as viewed from the rotating frame of
reference. (The bottom-most frames are taken from the
benchmark UB simulation and therefore are drawn directly
from Figs. 10 and 15.).

The results shown in the topmost frames of Figure 20
come from an early version of the code in which we replaced
the gradient of the pressure with the gradient of the enth-
alpy. This ensured that the initial structure of each star, as
determined by the SCF code, was in good force balance
after being introduced into the hydrocode. However, as the
two Ðgures from this evolution illustrate, we still observed a
slow expansion of the secondary star ; the orbit itself devel-
oped a signiÐcant epicyclic amplitude ; and after about three
orbits, the Roche lobe was encroaching on the surface of the
secondary. The second row of frames comes from a simula-
tion in which the number of azimuthal zones was doubledÈ
from 128 to 256 zones over the full 2n radians. This
modiÐcation improved somewhat the mean motion of the
centers of mass (although it did not signiÐcantly reduce the
amplitude of the epicyclic motion). Most signiÐcantly,
however, doubling the angular grid size improved the
resolution and, hence, the determination of force balance in
each star. As a result, expansion of the secondary star was
noticeably reduced. The third row of frames shows that
motion of the centers of mass was drastically reduced when
we modiÐed our algorithm to make the integration scheme
more properly time-centered. This change did not notice-
ably reduce the rate of expansion of the secondary, but it
did signiÐcantly reduce the amplitude of oscillations in the
Roche lobe volume. Finally, by introducing artiÐcial vis-
cosity into the equations of motion in order to mediate the
weak shocks at the surface of the stars (which also involved
a recentering of all momentum densities to the cell locations
speciÐed in Table 3), the entire structure of both stars
became much more robust. In particular, as the left-hand
frame of the last row shows (see also Fig. 10), this code
modiÐcation completely eliminated the short timescale
wiggles in the volumes of the secondary ; overall expansion
of the secondary also was reduced to an imperceptible level.
Simultaneously, for the Ðrst time, we ascribed a small
nonzero velocity to the initial state as given by equation
(60). This change further reduced the motion of the centers
of massÈto the level illustrated by Figure 15.

It is reasonable to ask whether the three principal spu-
rious e†ects that remain in our benchmark simulationsÈ
the slow decay of the orbits, the slow gain of angular
momentum, and the slow loss of mass from the starsÈare
at least mutually consistent on physical grounds. For cen-
trally condensed binaries, a point mass approximation (the
Roche approximation) is usually sufficient to discuss the
orbital evolution. This approximation predicts a simple
relationship between the changes of mass, angular momen-
tum, and binary separation, namely,

*Jcom
Jcom

\ 1
2

*a
a

]*M1
M1

]*M2
M2

[ 1
2

*M
M

, (61)

where is the total center-of-massJcom\ M1M2(Ga/M)1@2
angular momentum in the point mass approximation.
Numerical values for each of the terms in this expression
can be obtained from the data shown in Table 6. In particu-
lar, we see that in both benchmark simulations the three
mass terms approximately cancel each other out. But while

the magnitude of is roughly the same as the(*a/a)secularmagnitude of their signs are di†erent. That is, the*J
z
/J

z
,

angular momentum of the system is slowly increasing while
the binary separation is slowly decreasing. This is clearly
inconsistent with the expectations of the simple Roche
model. A more accurate expression for the total angular
momentum of the binary would be

Jbin\ Jcom] I1)1] I2 )2 , (62)

where and are the moments of inertia and inertialI
i

)
iframe angular velocities of the binary components,

assuming they all rotate around the same z-axis. Even if one
takes into account the contributions of spin angular
momenta, the changes observed remain inconsistent and
must therefore be attributed to spurious numerical e†ects at
a level of 10~4 per orbit arising from the inevitable error
terms present in our Ðnite-di†erence representation of the
Ñuid equations. What we have attempted to do here is
quantitatively document the magnitude of these numerical
e†ects in the highest practical resolution possible at the
present day for simulations of detached binaries where the
character of the ideal solution is well understood before-
hand. Furthermore, we cannot accurately predict the evolu-
tion of mass transferring binaries where the mass transfer
rate, *M/M per orbit is using simulations at[ few] 10~5
the resolution presented here. There are, however, a wide
variety of systems (the initial mass transfer event in an Algol
progenitor, or the onset of common envelope evolution in
the progenitors of many types of binaries, or the formation
of Type Ia supernovae for example) that are expected to
exceed our threshold resolution limit for mass transfer. At a
sufficiently high mass-transfer rate, the mass transfer itself
will drive the evolution of the orbital parameters and Roche
geometry at a rate higher than the numerical limits demon-
strated here.

7. CONCLUSIONS

In this paper we have presented a practical SCF algo-
rithm for constructing self-consistent polytropic binaries
with unequal masses that satisfy the condition of hydro-
static equilibrium to a high degree of accuracy. This three-
dimensional SCF algorithm is based largely on the
technique Ðrst described by Hachisu (1986), but to our
knowledge this is the Ðrst time the technique has been used
to generate unequal mass binary systems as input for a
hydrodynamical simulation. Our two benchmark simula-
tions (described in ° 6) clearly indicate that this SCF algo-
rithm can provide superb initial states for investigations
into the dynamical stability of close binary systems. We
emphasize that, in addition to generating models of close
binary systems that are detachedÈlike the EB and UB
systems constructed for our two benchmark simulationsÈ
as shown above in Figures 2 and 3 this technique also can
be used to generate close binary systems that are semi-
detached or, in the limit of identical components, in contact.

We have also detailed our gravitational hydrodynamics
code and presented results from key tests of the stability and
accuracy of the hydrodynamics algorithm, the solution of
PoissonÏs equation, and the coupled solution required to
evolve an isolated, spherical polytrope that is placed o†-axis
in a cylindrical grid. From these test cases it is apparent that
a number of subtle numerical issues arise when a highly
nonaxisymmetric body is evolved via an explicit integration
of Ðnite-di†erence equations on a cylindrical computational
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grid. It also appears however, that these e†ects can be made
manageably small by increasing the resolution used to treat
the system of interest.

We have evolved two detached binary systems (one with
a mass ratio q \ 1, the other with a mass ratio q \ 0.8436)
through more than Ðve orbits in order to benchmark in
detail the capabilities of our simulation tools. Even though
the individual stellar components generated by our SCF
code are signiÐcantly rotationally Ñattened (due to the syn-
chronous rotation of the initial states) and tidally distorted
(by their close binary companion), these benchmark simula-
tions show that the stars are in almost perfect hydrostatic
equilibrium. Throughout each binary evolution, our hydro-
dynamics code conserves mass and angular momentum to a
very high degree of precision ; as viewed from a frame of
reference that is rotating with the initial orbital frequency of
the binary, the centers of mass of the two stellar com-
ponents and of the system as a whole remain virtually sta-
tionary ; and a plot of the binary separation as a function of
time shows that the stellar orbits are almost indistinguish-
able from circles. This gives us considerable conÐdence that
these numerical tools can be used to examine the stability of
close binary systems against both tidal and mass-transfer
instabilities and to begin to accurately model mass transfer
in semidetached systems.

As has been summarized in Table 6, from our benchmark
evolutions we have been able to determine in quantitative
terms the level of accuracy with which our hydrodynamical
code conserves mass, conserves angular momentum, and is
able to represent and maintain a circular binary orbit. Mass
is conserved to roughly 0.002% per orbit ; angular momen-
tum is conserved to a level of 0.01%È0.02% per orbit ; the
binary separation remains constant to a few parts in 104 per
orbit ; and each orbit exhibits an epicyclic amplitude (mea-
sured relative to the orbital separation) of 0.02%È0.05%.

We are unaware of any other group that is attempting to
study the onset of mass-transfer instabilities in unequal-
mass binaries with a gravitational hydrodynamics code, like
ours, that fully resolves both stellar components. Hence,
there are no published numbers against which to compare
ours for the UB evolution. However, we can fairly compare
the results of our EB evolution against the recent study
published by SWC of equal-mass close binary systems.
Their Figure 10 illustrates that, after following one stable
binary system through approximately six orbits (we assume,
based on the SWC discussion, that P\ 1.7È2 ms), they have
been able to conserve angular momentum to a level of
about 0.2% per orbit. And their Figure 14 shows four stable
orbits with epicyclic amplitudes (measured relative to the
binary separation) D0.3%È1%. We conclude that, at least
in these two respects, our simulations improve on the SWC
models by roughly 1 order of magnitude. SWC do not
comment on their level of mass conservation ; and, because
of the visible epicyclic motions in their Figure 14, it is diffi-
cult to ascertain to what degree the binary separation either
decreases or increases with time over the course of their
evolutions. In both of our evolutions, however, the center-
of-mass motion of our stars appears to be signiÐcantly less
than the center-of-mass motion depicted for SWCÏs pre-
ferred integration scheme in the top-left panel of their
Figure 7.

The small but measurable changes in mass, angular
momentum, and binary separation documented here in
Table 6 set limits on the types of mass-transfer events that

we will be able to model with conÐdence using our present
simulation tools. For example, if we were to try to model an
instability that leads to a Ñow through the binaryÏs L1 Lag-
range point with a mass-transfer rate lower than one part in
106 per orbit, the physical exchange of material between the
binary components would be swamped by the unphysical
process that is causing our stars to lose mass to the
““ envelope ÏÏ at a rate of one to two parts in 105 per orbit. If
the depth of contact between the Roche lobe and the surface
of the donor star is not sufficient, epicyclic motion in the
orbit will tend to shut o† the mass-transfer during part of
each orbit. Also, a drift in the center of mass of the system
can impose a limit on the length of time that the binary can
be evolved before the motion of the binary through the grid
becomes problematic. We will have to contend with all of
these issues as we move to the next level of our investigation
and introduce a semidetached system from our SCF code
into our hydrodynamical code. We expect nevertheless to
Ðnd a wide range of interesting binary systems whose
dynamical evolution can be simulated in a fully self-
consistent fashion through a reasonably large number of
orbits using the tools that have been described in this paper.

As we have documented in Table 6, the calculation of one
orbit takes about 33 wall-clock hours when utilizing 64
processors of the Cray T3E 600, and using 16 processors of
the newer IBM SP-3, the calculation of one orbit takes
about 51 hours. The computational workload of a mass-
transfer simulation is therefore within the reach of current,
state of the art, parallel computers given the linear scaling of
our gravitational hydrodynamics code with the number of
processors even at a resolution greater than presented here.
We note that the amount of work performed can be reduced
signiÐcantly if need be by, for example, freezing the gravita-
tional potential until the mass distribution has changed sig-
niÐcantly as done by Stone & Norman (1992). The solution
of PoissonÏs equation represents about a quarter of the total
execution time.

We have been able to estimate the mass transfer rate
required to bring the simulation above the level of the noise
observed in our benchmark simulations. We Ðnd that this
value is D few] 10~5 of the donorÏs initial mass over an
orbital period. As discussed in ° 2, the mass transfer rate
should scale as a high power of the degree of over-contact
(as the cube for an n \ 3/2 polytrope) ; furthermore, for a
case where q [ 1, that is, the donor is initially the more
massive star, the degree of over-contact will naturally
increase with time as the star expands and its Roche lobe
shrinks. Provided that such a binary system can begin mass
transfer, the amplitude of the mass transfer rate should inev-
itably reach values higher than indicated above. Since
motion of the center of mass of the binary system has been
conÐned to a region well within a single computational grid
cell even after Ðve orbits, we are conÐdent that future evolu-
tions can be followed with conÐdence through at least
20È30 orbits, given sufficient computing resources. As dis-
cussed in the introduction of this paper, we understand that
the mass transfer rates considered here are much larger than
those found in what are considered typical examples of
interacting binaries. The methods presented here are not
applicable to the stable mass transfer observed in cataclys-
mic variables or other long-lived systems but should serve
very well to investigate stages of evolution of their progeni-
tors and transient events such as the onset of dynamical
mass transfer and its stability.



148 MOTL, TOHLINE, & FRANK

This work has been performed with support from the
National Science Foundation through grants AST-9720771,
AST-9528424, AST-9987344, and DGE-9355007 and from
the National Aeronautics and Space Administration
through the Astrophysics Theory Program grant NAG5
8497. This research has been supported, in part, by grants of
high-performance computing time at the National Partner-

ship for Advanced Computing Infrastructure (NPACI)
facilities at the San Diego Supercomputer Center and
by Louisiana State UniversityÏs High Performance Com-
puting facilities. We would also like to acknowledge
the many useful comments made by the referee that led
to a signiÐcant improvement in the contents of this
paper.

REFERENCES
Batten, A. H., ed. 1989, Proc. IAU Colloq. 107, Algols (Dordrecht : Kluwer)
Bhattacharya, D. 1995, in X-Ray Binaries, ed. W. H. G. Lewin, J. van

Paradijs, & E. P. J. van den Heuvel (Cambridge : Cambridge Univ.
Press), 233

Bisikalo, D. V., Harmanec, P., Boyarchuk, A. A., Kuznetov, O. A., &
Hadrava, P. 2000, A&A, 353, 1009

Black, D. C., & Bodenheimer, P. 1975, ApJ, 199, 619
Blondin, J. M., Richards, M. T., & Malinowski, M. L. 1995, ApJ, 445, 939
Boroson, B., Kallman, T., Blondin, J. M., & Owen, M. P. 2001, ApJ, 550,

919
Bowers, R. L., & Wilson, J. R. 1991, Numerical Modeling in Applied

Physics and Astrophysics (Boston : Jones and Bartlett)
Cazes, J. E., & Tohline, J. E. 2000, ApJ, 532, 1051
Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure

(Chicago : Univ. Chicago Press)
Cohl, H. S., Sun, X.-H., & Tohline, J. E. 1997, in Proc. Eighth SIAM Conf.

on Parallel Processing for ScientiÐc Computing, ed. M. Heath et al.,
CD-ROM (Minneapolis : SIAM)

Cohl, H. S., & Tohline, J. E. 1999, ApJ, 527, 86
Frank, J., King, A. R., & Raine D. J. 2002, Accretion Power in Astrophysics

(3d ed ; Cambridge : Cambridge Univ. Press)
Hachisu, I. 1986, ApJS, 62, 461
Hachisu, I., Eriguchi, Y., & Nomoto, K. 1986, ApJ, 311, 214
Hawley, J. F., Wilson, J. R., & Smarr, L. L. 1984, ApJS, 55, 211
Iben, I., Jr. 1990, ApJ, 353, 215
Iben, I., Jr., & Livio, M. 1993, PASP, 105, 1373
Iben, I., Jr., & Tutukov, A. V. 1984, ApJS, 54, 335
Janka, H.-T., Eberl, T. Ru†ert, M., & Fryer, C. L. 1999, ApJ, 527, L39
King, A. R. Frank, J. Kolb, U., & Ritter, H. 1997, ApJ, 482, 919
Lai, D. Rasio, F. A., & Shapiro, S. L. 1994, ApJ, 423, 344
Lewin, W. H. G. van Paradijs, J., & van den Heuvel, E. P. J. 1995, X-Ray

Binaries (Cambridge : Cambridge Univ. Press)
Lindblom, L. Tohline, J. E., & Vallisneri, M. 2001, Phys. Rev. Lett., 86,

1152L

Lufkin, E. A., & Hawley, J. F. 1993, ApJS, 88, 569
Marietta, E. Burrows, A., & Fryxell, B. 2000, ApJS, 128, 615

P. 2001, Science, 291, 79Me� sza� ros,
Nelson, C. A., & Eggleton, P. P. 2001, ApJ, 552, 664
New, K. C. B., Centrella, J. M., & Tohline, J. E. 2000, Phys. Rev. D, 620, 13
New, K. C. B., & Tohline, J. E. 1997, ApJ, 490, 311
Norman, M. L., & Winkler, K.-H. 1983, in Astrophysical Radiation

Hydrodynamics, ed. K.-H. Winkler & M. L. Norman (Dordrecht :
Reidel), 449

B. 1971, ARA&A, 9, 183Paczyn� ski,
ÈÈÈ. 1986, ApJ, 308, L43

B., & Sienkiewicz, R. 1972, Acta Astron., 22, 74Paczyn� ski,
Peaceman, D., & Rachford, H. 1955, J. Soc. Indust. Appl. Math., 3, 28
Ru†ert, M., Janka, H.-T., Takahashi, K., & Schaefer, G. 1997, A&A, 319,

122
Sandquist, E. L., Taam, R. E., Xingming, C., Bodenheimer, P., & Burkert,

A. 1998, ApJ, 500, 909
Schwarztrauber, P., & Sweet, R. 1975, in Efficient FORTRAN Subroutines

for the Solution of Elliptic Partial Di†erential Equations, NCAR Tech.
Note-TN/IA-109

Sod, G. 1978, J. Comput. Phys., 27, 1
Stone, J. M., & Norman, M. L. 1992, ApJS, 80, 753
Swesty, F. D., Wang, E. Y. M., & Calder, A. C. 2000, ApJ, 541, 937 (SWC)
Trimble, V. 1983, Nature, 303, 137
van Leer, B. 1979, J. Comput. Phys., 32, 101
Verbunt, F., & van den Heuvel, E. P. J. 1995, in X-Ray Binaries, ed.

W. H. G. Lewin, J. van Paradijs, & E. P. J. van den Heuvel (Cambridge :
Cambridge Univ. Press), 457

Vesper, D., Honeycutt, K., & Hunt, T. 2001, AJ, 121, 2723
Warner, B. 1995, Cataclysmic Variable Stars (Cambridge : Cambridge

Univ. Press)


