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ABSTRACT
The distribution of the apparent total energy emitted by a gamma-ray burst reÑects not only the dis-

tribution of the energy actually released by the burst engine, but also the distribution of beaming angles.
Using the observed energy Ñuences, the detection thresholds, and burst redshifts for three burst samples,
I calculate the best-Ðt parameters for lognormal and power-law distributions of the apparent total
energy. Two of the samples include a small number of bursts with spectroscopic redshifts, while the third
sample has 220 bursts with redshifts determined by the proposed variability-luminosity correlation. I Ðnd
di†erent sets of parameter values for the three burst samples. The Bayesian odds ratio cannot distinguish
between the two model distribution functions for the two smaller burst samples with spectroscopic red-
shifts, but does favor the lognormal distribution for the larger sample with variability-derived redshifts.
The data do not rule out a distribution with a low-energy tail that is currently unobservable. I Ðnd that
neglecting the burst detection threshold biases the Ðtted distribution to be narrower with a higher
average value than the true distribution ; this demonstrates the importance of determining and reporting
the e†ective detection threshold for bursts in a sample.
Subject headings : gamma rays : bursts È methods : statistical

1. INTRODUCTION

The growing number of gamma-ray bursts with redshifts
has not only established that most, if not all, bursts are at
cosmological distances, and that up to 1054 ergs are radi-
ated by a burst, but permits us to determine relevant intrin-
sic physical distributions. Since we sample a burstÏs
radiation pattern at only one point, the observed energy
Ñuence can only be related to the energy Ñux emitted in our
direction ; this energy Ñux can be expressed as the total
energy the burst would have emitted if it radiated iso-
tropically. Here I consider the distribution of this apparent
total energy.

The distribution of the apparent total energy is a convol-
ution of the distribution of the actual energy emitted and
the distribution of the angle into which the emission is
beamed, both quantities of crucial importance in under-
standing the physics of the progenitor, the frequency of
burst occurrence, and the impact of a burst on its environ-
ment. Frail et al. (2001) have recently determined the
beaming angles for a burst sample by modeling the late-
time breaks in the temporal decay of the afterglows ;
accounting for the beaming angle provides the actual total
energy, which they found is clustered around ED 5 ] 1050
ergs. If the analysis of Frail et al. is indeed correct (there are
competing models for the evolution of the afterglow), then
methods similar to those I develop here will be necessary to
properly determine the beaming angle and total energy dis-
tributions. Here I do not attempt to disentangle these two
distributions.

This study extends the work of Jimenez, Band, & Piran
(2001), which considered lognormal distributions for the
apparent total gamma-ray energy, the peak gamma-ray
luminosity, and the total X-ray afterglow energy. Jimenez et
al. expanded the database of bursts with spectroscopic red-
shifts by adding bursts for which a redshift probability dis-

1 Current address : GLAST SSC, Code 661, NASA Goddard Space
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tribution could be inferred from the host galaxy brightness.
Currently, the bursts with only redshift probability distribu-
tions do not augment the relevant burst database sufficient-
ly to warrant their inclusion in my study, although in the
future it may be advantageous to include these bursts if the
determination of spectroscopic redshifts does not keep pace
with the detection of bursts and their host galaxies.

Recently correlations have been proposed between burst
properties and their peak luminosities. Norris, Marani, &
Bonnell (2000) proposed that more luminous bursts have
smaller time lags between energy channels, while Fenimore
& Ramirez-Ruiz (2001) and Reichart et al. (2001) reported
that the light curves of more luminous bursts were more
variable ; Schaefer, Deng, & Band (2001) found that apply-
ing both correlations to the same burst sample resulted in
consistent burst luminosities. The redshift is determined
from the derived luminosities and the observed peak Ñuxes.
Thus, these correlations can give us a large burst sample
with redshifts from which the energy distribution can be
determined.

The methodology presented here demonstrates that accu-
rate estimation of physical parameters, such as those for the
burst energy distribution, requires well-deÐned samples.
Such samples are not yet available. While this study does
characterize the apparent energy distribution, it is more
signiÐcantly an argument for characterizing and reporting
the threshold for including a burst in a sample. Such a
threshold may result from the detection of the burst, the
localization of the burst or its afterglow, or the determi-
nation of the redshift. Consequently, clear criteria must be
established and reported for follow-up observations after a
burst.

In ° 2 I discuss the methodology for Ðnding the best
parameter values for a given functional form of the distribu-
tion, and for comparing di†erent functional forms. I also
evaluate the sensitivity to small burst samples, and demon-
strate the importance of considering the detection threshold
in determining the distributions. The energy distributions
resulting from two small burst samples with spectroscopic
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redshifts and from a large sample with redshifts from the
variability-luminosity correlation are described in ° 3.
Finally, ° 4 summarizes my conclusions.

2. METHODOLOGY

2.1. T he L ikelihood Function
I begin with an assumed distribution p(E o a

j
, M

j
, I),

where E is the apparent total burst energy, is the set ofa
jparameters that characterize the jth model distribution

function represented by and I speciÐes general assump-M
j
,

tions about the distribution function. I use p(a o b) to mean
the probability of a given b. Below I present the distribution
functions used in this study. A distribution is assumed to be
universal and not a function of redshift (i.e., no evolution),
or of properties of the host galaxy, burst, etc. Of course,
once a sufficiently large sample is available, the energy dis-
tributions for burst subsets can be investigated ; alternative-
ly, the possible dependencies of these distributions on other
physical parameters can be modeled using the entire data
set. I use normalized distributions, since the burst rate is not
of interest here. The observed energy Ñuence F and the
burst energy E are related by F\ E(1] z)/4nD

L
(z)2\

EC(z), where is the luminosity distance. It is in calcu-D
L
(z)

lating the luminosity distance that the burst redshift and a
cosmological model are required. Here I assume H0\ 65
km s~1 Mpc~1, and)

m
\ 0.3, )" \ 0.7.

This energy distribution is converted into
the probability of obtaining the energyp(F o a

j
, z, M

j
, I),

Ñuence F given the parameters for model the bursta
j

M
j
,

redshift z, and other assumptions I (e.g., the choice of
cosmological model). However, the observed Ñuences are
not drawn from this probability distribution but from

the normalized distribution that isp(F oF
T
, a

j
, z, M

j
, I),

truncated below the minimum Ñuence at which thatF
T
,

particular burst would have been included in the burst
sample.

I now form the likelihood
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where the ith burst has energy Ñuence Ñuence thresholdF
i
,

and redshiftF
T,i, z

i
.

2.2. Parameter Estimation
In the ““ frequentist ÏÏ framework, best-Ðt parameters are

typically found by maximizing L
j
.

The Bayesian analysis is based on the posterior probabil-
ity for the parameters, here D is the set ofp(a
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where is the prior for the parameters Ifp(a
j
oM
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, I) a
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. "
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is sharply peaked, then the expec-p(D o a
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, I)p(a
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tation value of the parameters occurs at the peak of "
j
.

Note that is the likelihood in equation (1) times the"
j

priors for the parameters, and is proportional to the poste-
rior probability The posterior probability isp(a

j
oD, M

j
, I).

also used to determine the acceptable parameter range,
which is often more meaningful than the ““ best ÏÏ parameters
values.

The choice of priors can be regarded as a judgement as to
the ““ natural variables ÏÏ for the particular functional form;
the priors are constant for these variables. Here the burst
energies vary over a number of decades, and thus I assume
that the priors for average or cuto† energies are logarith-
mic. Consequently, maximizing is equivalent to maxi-"

jmizing the likelihood in terms of the logarithm of the energy
parameters. This is the methodology I use here ; I do not
attempt to integrate the integrals in equation (2).

2.3. T he Cumulative Probability
For each burst the cumulative probability is
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If the assumed energy distribution function is an acceptable
characterization of the observations (which would be the
case if the model is correct) and all the assumptions areM

jvalid (e.g., the cosmological model is correct), then the
cumulative probabilities should be uniformly distrib-P(F

i
)

uted between 0 and 1, and have an average value of
for N bursts in the sample.SP(F

i
)T \ 12 ^ (12N)~1@2

2.4. Model Comparison
The Bayesian framework provides a clear prescription for

comparing models through the odds ratio. Let p(M
j
oD, I)

be the posterior probability for the jth model given theM
jdata D. Then the odds ratio comparing the jth and kth

models is However, by BayesÏO
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malizing factor is independent of and thus cancels inM
j
,

forming the odds ratio. I assume that no model is favored a
priori ; therefore, the ““ priors ÏÏ are the same for allp(M

j
o I)

and cancel in forming the odds ratio. Here D consists ofM
j
,

the observed energy Ñuences (and the detection thresholds).
Thus, However, wep(M
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It will be noted that the odds ratio is the ratio of the likeli-
hoods for each model (eq. [1]), marginalized over the model
parameters. Derived from a di†erent philosophy of infer-
ence, the frequentist likelihood ratio test is the same as the
Bayesian odds ratio with the prior for the parameters set
equal to a delta function at the parameter values that maxi-
mize the likelihood. In the Bayesian approach such a prior
is the result of circular reasoning ; the prior should be based
on information available before the new data were
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obtained. Below I present priors deÐned in terms of the
expected parameter ranges, in which case the integrals in
equation (4) must be integrated. I present values of both the
frequentist likelihood ratio test and the Bayesian odds ratio.
Di†erent conclusions may result from these tests, as is
indeed the case here.

As mentioned above, the average of the cumulative
probability should be (within a quantiÐableSP(F

i
)T 12uncertainty) if the distribution function describes the obser-

vations satisfactorily ; this statistic for model is aM
jmeasure of the acceptability of that model. Furthermore, a

comparison of the values for di†erent models compares the
relative merits of these models ; of course, this comparison
should account for the expected uncertainty in the value of
this statistic. A model that is consistent with the data by this
statistic would be favored over one that is not. However, the
statisticÏs ability to discriminate between models is not
addressed by its derivation.

2.5. Distribution Functions
2.5.1. L ognormal Distribution

I assume that E has a lognormal distribution

p(E oE0, p)d(lnE)\ 1

J2np

] exp
C
[ (lnE0[ ln E)2

2p2
D
d(lnE) . (5)

Thus, the Ñuence F also has a lognormal distribution. Note
that p is a width in logarithmic space, and the linear change
of variables from E to F does not a†ect this width. As
discussed above, we need to consider the range over which
the Ñuence could actually have been observed, i.e., for Ñu-
ences above the threshold The resulting normalizedF

T
.

Ñuence probability distribution is

pobs(F oF
T
, E0, p, z)d(lnF)\

1/(J2np) exp ([Mln[E0C(z)][lnFN2/2p2)h(F[F
T
)d(lnF)

(1/2)[1] erf (Mln[E0C(z)][ ln (F
T
)N/J2p)]

,

(6)

where h(x) is the Heaviside function (1 above x \ 0, and 0
below), and converts energies in theC(z)\ (1 ] z)/4nD

L
(z)2

burstÏs frame to Ñuences in our frame ; the denominator
results from integrating over the numerator from toF

TinÐnity.
For the Bayesian formulation we also need the priors for

the model parameters. There is no reason to favor one
energy over another over many energy decades, and thus I
assume that the prior is constant in logarithmic space :

\ \p(E0)dE0 (E0 ln [E
u
/E

l
])~1dE0 ( ln [E

u
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])~1d ln E0\

where and are the upper(log10 [E
u
/E

l
])~1d log10 E0, E

u
E
land lower limits, respectively, of the permitted range (because

of the logarithmic dependence, the result is not very sensitive
to the precise values). I use ergs and ergs.E

l
\ 1051 E

u
\ 1054

Similarly, I have no a priori information about p, and
therefore assign it a uniform prior between 0 and 5. Note
that the distribution function is explicitly a function of ln

and p, and I have chosen priors for which these are theE0natural parameters for this functional form.

2.5.2. Single-Component Power-L aw Distribution

I assume that the underlying energy probability distribu-
tion is

p(E oE1, E2, a)dE\ (1[ a)E2a~1
1 [ (E1/E2)1~a

E~adE ;

E1¹ E¹ E2, a D 1

p(E oE1, E2, a)dE\ E~1
ln (E2/E1)

dE ;

E1¹ E¹ E2, a \ 1 . (7)

If is extended to 0 or to inÐnity, then we must restrictE1 E2a to be less than or greater than 1, respectively. The
expected Ñuence probability distribution, accounting for the
Ñuence threshold isF

T
,
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where again converts burst energiesC(z) \ (1 ] z)/4nD
L
(z)2

to Ñuences.
As with for the lognormal distribution, I have noE0reason to prefer any value of the energy limits andE1 E2over many energy decades, and therefore again I use

logarithmic priors for these two energies. For deÐniteness, I
assume that can have a value between 1049 and 1052E1ergs, and between 1052 and 1055 ergs. The spectral indexE2is assumed to have a uniform prior between [2.5 and 2.5.

2.6. Data
The methodology discussed above requires the energy

Ñuence F, the Ñuence threshold and the redshift z forF
T
,

each burst. I consider three samples. The B9 sample consists
of nine bursts with BATSE data and spectroscopic redshifts.
The Ñuences were calculated by Ðtting the BATSE spectrum
accumulated over the entire burst with the ““ GRB ÏÏ function
(Band et al. 1993), and then integrating the resulting Ðt over
the 20È2000 keV energy range in the burstÏs rest frame and
over the time during which the spectrum was accumulated.
The resulting Ðts are presented in Jimenez et al. (2001).
There are some bursts for which the high-energy power law
in the GRB function has an index b \[2 (where N P Eb),
and thus the Ñuence depends crucially on the high-energy
cuto† (or roll-o†) that must exist for a Ðnite Ñuence but that
could not be determined from the BATSE data. The spec-
troscopic redshifts are taken from Frail et al. (2001).

The limiting Ñuence is more difficult to determine.F
TThe bursts in our sample must have been intense enough to

be Ðrst detected and then localized properly. In addition, a
decision was made to attempt to observe the afterglow and
thus determine the redshift. These threshold quantities have
generally not been reported. Note also that detectors almost
never trigger on the Ñuence, but usually trigger on the peak
count rate sampled over a time bin of a speciÐed duration.
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TABLE 1

THE BATSE GAMMA-RAY BURSTS SAMPLE

Fobsa Fburstb Eobsc Eburstd
Burst (erg cm~2) (erg cm~2) zobs Cmax/Cmin (1051 ergs) (1051 ergs)

970508 . . . . . . 3.18] 10~6 2.59] 10~6 0.835 3.3e 6.734 5.482
970828 . . . . . . 9.57] 10~5 7.88] 10~5 0.958 20e 267.1 219.3
971214 . . . . . . 9.44] 10~6 7.59] 10~6 3.412 7.32f 261.3 210.7
980703 . . . . . . 2.26] 10~5 2.13] 10~5 0.966 3.08f 63.94 60.18
990123 . . . . . . 2.68] 10~4 1.93] 10~4 1.600 80.1f 1996 1438
990506 . . . . . . 1.94] 10~4 1.69] 10~4 1.2 50e 838.8 854.0
990510 . . . . . . 2.26] 10~5 2.32] 10~5 1.619 19.3f 172.0 176.8
991216 . . . . . . 1.93] 10~4 1.70] 10~4 1.02 144.f 611.1 534.1
000131 . . . . . . 4.18] 10~5 2.71] 10~5 4.5 3e 1791 1159

a Fluence over 20È2000 keV in the observerÏs frame.
b Fluence over 20È2000 keV in the burstÏs frame.
c Gamma-ray energy over 20È2000 keV in the observerÏs frame, assuming isotropic emission, H0\
km s~1 Mpc~1, and65 )

M
\ 0.3, )" \ 0.7.

d Gamma-ray energy over 20È2000 keV in the burstÏs frame.
e Estimated from light curve.
f From the on-line BATSE catalog.

Here I assume that the ratio of the observed to Ñuence
threshold, is the same as the ratio of the observed toF/F

T
,

threshold peak count rate, for the BATSE data.Cmax/Cmin,These thresholds are most likely underestimates of the true
thresholds. The ratio is a standard part of theCmax/CminBATSE catalog ;2 however, in some cases the BATSE team
did not calculate this quantity because of data gaps, in
which case I estimated this ratio from the light curves. This
sample is described by Table 1.

The C17 sample consists of the 17 bursts with spectro-
scopic redshifts and Ñuences in Frail et al. (2001). This
sample is basically a superset of the B9 sample with an
additional BATSE burst for which there are no spectra, and
bursts observed by BeppoSAX and Ulysses. For those
bursts without reported detection thresholds I use a Ñuence
threshold of 10~6 erg cm~2.

Finally, the F220 sample uses the 220 bursts in Fenimore
& Ramirez-Ruiz (2001), with redshifts determined by the
variability-luminosity correlation. This sample was selected
to have a peak count rate accumulated on the 256 ms time-
scale of greater than 1.5 counts s~1, which provides a well-
deÐned detection threshold. The Ñuences were taken from
the BATSE catalog without any k-corrections. Note that
Bloom, Frail, & Sari (2001) Ðnd that the k-correction for the
20È2000 keV energy range is of order unity.

It should be noted that for the Ðrst two samples the red-
shifts are reliable but the detection threshold is very uncer-
tain. Even when the detection threshold is known for the
gamma-ray portion of the burst, the e†ective threshold for
optical follow-up observations has not been reported. On
the other hand, the detection threshold for the third sample
is known, but the validity of the variability-luminosity
correlation is still not well established, and the uncertainty
in the resulting redshifts is not considered.

2.7. Simulations
To determine the sensitivity of the methodology to the

number of bursts and to demonstrate the importance of
considering the Ñuence threshold, I ran a series of simula-

2 BATSE current catalog (2001) is available at : http ://
www.batse.msfc.nasa.gov/batse/grb/catalog/current/.

tions. For each simulation I Ðrst created between 100 and
500 simulated databases, to which I then applied the meth-
odology described above to determine the parameters of
their energy distribution. For some simulations I found the
parameters with the Ñuence thresholds used in creating the
database or with much smaller thresholds, e†ectively com-
paring parameter estimation with and without considering
the detection thresholds.

For each simulated burst I needed a redshift, a burst
energy, and a Ñuence threshold. The redshifts were drawn
from a distribution that is qualitatively similar to the pro-
posed cosmic star formation rate (e.g., rising steeply with
redshift to zD 1.5 and Ñat for higher redshifts). The Ñuence
threshold was drawn from a uniform logarithmic distribu-
tion over one decade. The burst energy was drawn from a
lognormal distribution with speciÐed central energy andE0

FIG. 1.ÈBest-Ðt parameter values including (asterisks) or neglecting
(diamonds) the Ñuence threshold in calculating the likelihood for 100 simu-
lated databases with 80 bursts each. The model lognormal energy distribu-
tion had a central energy of ergs and a logarithmic width ofE0\ 1053
p \ 1.5. The median values for the Ðts including (large solid cross) or
neglecting (large dashed cross) the Ñuence threshold are indicated. The
bursts were drawn from a redshift distribution similar to that of star forma-
tion, and the Ñuence threshold was between 10~6 and 10~5 erg cm~2.
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FIG. 2.ÈComparison of the likelihood contours for a sample analyzed with the correct Ñuence thresholds (left) and thresholds a factor of 10 smaller
(right). The sample of nine bursts was drawn from a lognormal distribution with ergs and p \ 1.5, a redshift distribution similar to star formation,E0\ 1053
and a uniform Ñuence threshold between 10~5 and 10~4 erg cm~2. The contours are spaced by starting from the maximum value.*log10 L \ 0.1

logarithmic width p, as long as the resulting Ñuence was
greater than the Ñuence threshold.

Figure 1 shows the importance of considering the Ñuence
threshold in calculating the likelihood. As can be seen, the
best-Ðtted parameter values cluster around the input central
energy ergs and logarithmic width p \ 1.5 whenE0\ 1053
the Ñuence threshold is considered (Fig. 1, asterisks), but
cluster around a higher energy and narrower width when
the Ñuence threshold is neglected (diamonds). The Ñuence
threshold removes low-energy bursts, resulting in a nar-
rower apparent distribution, which is shifted to higher
energy. Each of the 100 simulated data sets had 80 bursts,

TABLE 2

WIDTH OF PARAMETER DISTRIBUTION

Number of Bursts Widtha of log E0 Widtha of p
in Sample Distribution Distribution

9 . . . . . . . . . . . . . . . . . . . 0.38 0.47
20 . . . . . . . . . . . . . . . . . . 0.40 0.52
40 . . . . . . . . . . . . . . . . . . 0.20 0.31
80 . . . . . . . . . . . . . . . . . . 0.13 0.19

NOTE.ÈIn these simulations, 100 samples were con-
structed with the indicated number of bursts per sample.
The burst energies were drawn from a lognormal distribu-
tion with central energy ergs and logarithmicE0\ 1053
width p \ 1.5. The redshift distribution qualitatively
mimics the cosmic star formation rate, and the Ñuence
threshold was between 10~6 and 10~5 erg cm~2. The best-
Ðt parameters were found by maximizing the likelihood.

a The width given is the range within which half the
simulated bursts fell.

and a Ñuence threshold between 10~6 and 10~5 erg cm~2.
Figure 2 shows that the likelihood contours for a sample
analyzed with the correct Ñuence thresholds (left panel) and
thresholds a factor of 10 smaller (right panel) di†er signiÐ-
cantly.

Table 2 gives the width of the distributions of the param-
eters of the lognormal distribution, and p, for data-log E0bases with 9, 20, 40, and 80 bursts. As expected, the
distributions become narrower as the number of bursts
increases. As can be seen, a database with 40 bursts should
give satisfactory best-Ðt parameter values.

3. RESULTS

As can be seen from Table 3, the parameter values at the
likelihood maximum for the two distribution functions
di†er for the three burst samples, and the 90% conÐdence
ranges from one burst sample do not always include the
parameters from the other samples. Note that the lower
energy cuto† for the simple power-law distribution isE1not Ðtted. The Ðts are insensitive to values smaller thanE1the lowest energy for which any burst in the sample would
have been detected, and cannot be greater than the smal-E1lest observed burst energy ; the di†erence between these two
limits is very small. Figures 3È8 show the likelihood con-
tours for the Ðtted parameters. A ridge of somewhat lower
likelihood values curves toward lower values of andE0higher values of p for the lognormal distributions. Thus, the
data do not strongly exclude a broader distribution that
includes lower energy bursts that are not detected because
their Ñuence is below the threshold. Consequently, the 90%
conÐdence bounds for the parameters are quite broad. For



FIG. 3.ÈContour plot of the likelihood for the lognormal energy distribution for the B9 sample (left panel). The parameters are the central energy andE0the logarithmic width p. The asterisk indicates the location of the maximum likelihood, while contours are spaced by starting from the*log10 L \ 0.1
maximum value. Cumulative distribution of the cumulative probability for each burst assuming their energies are drawn from the best-Ðt lognormal energy
distribution for the B9 sample (right panel). The dashed line shows the expected distribution.

FIG. 4.ÈSame as Fig. 3, but for a simple power-law energy distribution for the B9 sample. The parameters are the upper cuto† energy and theE2power-law index a.



FIG. 5.ÈSame as Fig. 3, but for the lognormal distribution and the C17 sample. Note that the parameter ranges plotted di†er from Fig. 3 to focus on the
region of large likelihood values.

FIG. 6.ÈSame as Fig. 4, but for the power-law distribution and the C17 sample. Note that the parameter ranges plotted di†er from Fig. 4 to focus on the
region of large likelihood values.
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FIG. 7.ÈSame as Figs. 3 and 5, but for the lognormal distribution and the F220 sample. Note that the parameter ranges plotted di†er from Figs. 3 and 5
to focus on the region of large likelihood values.

FIG. 8.ÈSame as Figs. 4 and 6, but for the power-law distribution and the F220 sample. Note that the parameter ranges plotted di†er from Figs. 4 and 6
to focus on the region of large likelihood values.
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TABLE 3

COMPARISON OF MODEL DISTRIBUTIONS

Quantity B9a C17b F220c

E0d . . . . . . . . . . . . . . . . . . . . . . . . . . 125.9 52.48 11.79
1.6È315 1.6È100 2.È23.4

pe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.87 2.06 1.88
1.5È4.5 1.7È4.15 1.65È2.3

E1f . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 0.55 0.12
E2g . . . . . . . . . . . . . . . . . . . . . . . . . . 1440 1460 5000

1440È3550 1460È3350 5000È6100
ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.74 0.96 1.81

0.4È1.2 0.75È1.25 1.7È1.94
SpTln i . . . . . . . . . . . . . . . . . . . . . . . 0.4525 0.4638 0.4753
SpTpl j . . . . . . . . . . . . . . . . . . . . . . . 0.4608 0.4723 0.4892
p
WpX

k . . . . . . . . . . . . . . . . . . . . . . . . 0.0962 0.0700 0.0195
Likelihood ratio testl . . . . . . 4.29] 10~2 5.61] 10~2 4.38] 102
Odds ratiom . . . . . . . . . . . . . . . . 1.19 1.65 9.92] 103

a Sample of nine BATSE bursts with spectroscopic redshifts and Ðtted
spectra (Table 1).

b Sample of 17 bursts with spectroscopic redshifts (Frail et al. 2001).
c Sample of 220 bursts with redshifts derived from variability redshifts

(Fenimore & Ramirez-Ruiz 2001).
d The central energy of the lognormal distribution, in units of 1051 ergs.

The following line in the table provides the 90% conÐdence range.
e The logarithmic width (in units of the energyÏs natural logarithm) for

the lognormal distribution. The following line provides the 90% con-
Ðdence range.

f The low-energy cuto† of the power-law distribution, in units of 1051
ergs. This energy has been set to the lowest threshold energy for the
sample.

g The high-energy cuto† of the power-law distribution, in units of 1051
ergs. The following line provides the 90% conÐdence range.

h The power-law index of the power-law distribution, p(E)P E~a. The
following line provides the 90% conÐdence range.

i Average of the cumulative probabilities for the lognormal distribu-
tion ; is expected.12j Average of the cumulative probabilities for the power-law distribu-
tion ; is expected.12k The standard deviation [12N]~1@2 of the average of the cumulative
probabilities for a sample of N bursts.

l Likelihood ratio test comparing the lognormal and power-law dis-
tributions. A value greater than 1 favors the lognormal distribution.

m Odds ratio comparing the lognormal to power-law distributions. A
value greater than 1 favors the lognormal distribution.

the power-law distributions, the favored high-energy cuto†
is at the highest observed energy in the burst sample ; if the
bursts truly have a power-law distribution, this cuto† is
most likely somewhat greater.

Table 3 also provides the average of the cumulative prob-
abilities for each sample and distribution. As can be seen,
these averages are within D1 p of the expected value of 12,indicating that the distributions are both acceptable
descriptions of the data. Comparing the values of this sta-
tistic does not discriminate between distributions ; however,
this statistic was created as a goodness-of-Ðt measure, and
thus a comparison of its values for di†erent models is not
necessarily very powerful in discriminating between these
models. The actual distributions of these cumulative prob-
abilities are also presented by Figures 3È8.

Finally, Table 3 presents both the frequentist likelihood
ratio test and the Bayesian odds ratios comparing the log-
normal to power-law distributions. As noted above, the
likelihood ratio test is quantitatively the same as the Bayes-
ian odds ratio using delta function priors set to the parame-
ters that maximize the likelihoods (which violates the
deÐnition of a prior). The Bayesian odds ratios given here
use the priors described in ° 2.5. As can be seen, the likeli-

hood ratio test and the odds ratio give quantitatively di†er-
ent results. Based on the odds ratio, the B9 and C17 samples
are insufficient to discriminate between the two distribution
functions. On the other hand, the odds ratio favors the
lognormal distribution for the F220 sample.

4. DISCUSSION AND CONCLUSIONS

The parameters and parameter ranges di†er for the three
di†erent burst samples. It is not clear whether we yet have a
sufficiently large, properly deÐned burst sample from which
to calculate the energy distribution. The two samples with
spectroscopic redshifts do not have correct detection
thresholds : the threshold for detecting the burst itself is
usually reported, but the intensity threshold that triggers
further localization and spectroscopic redshift determi-
nation has not been reported. Indeed, there may not yet be
a formal deÐnition of such a follow-up threshold. Thus
these two samples are Ñawed. On the other hand, the valid-
ity of the variability-determined redshifts has not yet been
proven, although the detection threshold was deÐned in
choosing the burst sample. The importance of the detection
thresholds for statistical studies of burst samples argues for
well-deÐned (and reported) intensity thresholds for trigger-
ing the follow-up observations of the expected large number
of HET E-2 and Swift burst localizations.

The distributions of cumulative probabilities and the
averages of these distributions indicate that the two func-
tional forms used here are sufficient to describe the distribu-
tion of energies ; consequently, I concluded that the data do
not justify trying more complicated distribution functions
at this time. The Bayesian odds ratio does not distinguish
between these two functional forms for the two samples
with spectroscopic redshifts, although it does favor the log-
normal distribution for the large F220 sample with redshifts
derived from the variability of the burst light curves.

The energy distribution cannot be determined for ener-
gies below the lowest energy threshold (i.e., the lowest burst
energy corresponding to the Ñuence thresholds). Indeed,
Hakkila et al. (1996) make a distinction between the
““ observed ÏÏ and ““ intrinsic ÏÏ luminosity functions in their
study of luminosity functions for cosmological bursts based
on the shape of the peak Ñux distribution ; they point out
that the observed distribution may be much narrower than
the intrinsic distribution. In my study the true low-energy
cuto† of the power-law distribution cannot be determined.
Similarly, the likelihood contours for the lognormal dis-
tribution do not rule out broader distributions with lower
central energies.

We anticipate that the HET E-2 and Swift missions will
result in the construction of a large burst sample with spec-
troscopic redshifts. Properly deÐned subsets can be studied
to identify trends with burst redshift, duration, and other
properties. As we move from the study of individual bursts
to the study of burst ensembles, we must deÐne and report
the criteria (e.g., detection thresholds) by which the burst
samples are collected. The promise of future missions can be
realized fully only with the careful consideration of the
burst databaseÏs selection criteria.

I thank the referee, C. Graziani, for his comments, which
have improved the text. This work was performed under the
auspices of the US Department of Energy by the Los
Alamos National Laboratory under contract W-7405-Eng-
36.
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