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ABSTRACT
The dynamical state of star-forming molecular clouds cannot be understood without determining the

structure and strength of their magnetic Ðelds. Measurements of polarized far-infrared radiation from
thermally aligned dust grains are used to map the orientation of the Ðeld and estimate its strength, but
the accuracy of the results has remained in doubt. In order to assess the reliability of this method, we
apply it to simulated far-infrared polarization maps derived from three-dimensional simulations of super-
sonic magnetohydrodynamical turbulence, and we compare the estimated values to the known magnetic
Ðeld strengths in the simulations. We investigate the e†ects of limited telescope resolution and self-
gravity on the structure of the maps. Limited observational resolution a†ects the Ðeld structure such that
small-scale variations can be completely suppressed, thus giving the impression of a very homogeneous
Ðeld. The Chandrasekhar-Fermi method of estimating the mean magnetic Ðeld in a turbulent medium is
tested, and we suggest an extension to measure the rms Ðeld. Both methods yield results within a factor
of 2 for Ðeld strengths typical of molecular clouds, with the modiÐed version returning more reliable
estimates for slightly weaker Ðelds. However, neither method alone works well for very weak Ðelds,
missing them by a factor of up to 150. Taking the geometric mean of both methods estimates even the
weakest Ðelds accurately within a factor of 2.5. Limited telescope resolution leads to a systematic over-
estimation of the Ðeld strengths for all methods. We discuss the e†ects responsible for this overestimation
and show how to extract information on the underlying (turbulent) power spectrum.
Subject headings : ISM: clouds È ISM: kinematics and dynamics È ISM: magnetic Ðelds È

polarization È turbulence

1. MOTIVATION

The signiÐcance of magnetic Ðelds in the dynamics of
molecular clouds, and in star formation itself, is still
uncertain.

Theory and modeling have demonstrated that the
strength of magnetic Ðelds can have a profound inÑuence on
the processes which lead to the formation of stars. There is a
critical ratio of magnetic Ñux to mass above which magnetic
Ðelds can prevent gravitational collapse (magnetically
subcritical) and below which they cannot (magnetically
supercritical ; e.g., Mouschovias & Spitzer 1976). Redistri-
bution of magnetic Ñux by ambipolar di†usion in a mag-
netically subcritical region can lead to loss of support
against self-gravitation, and eventually to low-mass star
formation (see Shu, Adams, & Lizano 1987 ; Myers &
Goodman 1988 ; Porro & Silvestro 1993 ; Ciolek & Mous-
chovias 1993, 1994, 1995 ; SaÐer, McKee, & Stahler 1997 ;
Ciolek & 1998). However, magnetically subcriticalKo� nigl
regions do not appear to reproduce observations of molecu-
lar cloud cores (Nakano 1998), nor can this scenario explain
the large fraction of cloud cores containing protostellar
objects (Ward-Thompson, Motte, & 1999). It is pos-Andre�
sible that magnetically supercritical regions can be sup-
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ported by turbulence (Bonazzola et al. 1987 ; McKee &
Zweibel 1995), which, to support a highly supercritical
region, must be quite nonlinear (Myers & Zweibel 2001).
Recent three-dimensional simulations (Heitsch, Mac Low,
& Klessen 2001, hereafter HMK; Ostriker, Stone, &
Gammie 2001) demonstrate that strong turbulence can
provide large-scale support against collapse, though it
cannot prevent collapse on small scales. The degree to
which clouds are supported at all, of course, depends on
their lifetimes and on the star formation rate (Ballesteros-
Paredes, Hartmann, & Vazquez-Semadeni 1999 ; Elmegreen
2000).

Magnetic Ðelds a†ect other dynamical processes in
clouds besides gravitational collapse. In a strong magnetic
Ðeld, weakly compressible turbulence is anisotropic
(Sridhar & Goldreich 1994 ; Goldreich & Sridhar 1995,
1997) and energy dissipation is relatively more in waves and
less in shocks (Smith, Mac Low, & Zuev 2000), although the
overall rate of energy dissipation is not strongly dependent
on the Ðeld strength (Mac Low 1999). Magnetic Ðelds may
also play a role in collimating molecular outÑows and in
transferring their momentum to the ambient medium.

The actual strength of magnetic Ðelds in molecular clouds
will ultimately determine which theoretical picture is
correct, so observations of Ðeld strengths are crucial. The
integrated line-of-sight component of the Ðeld, weighted by
the density of the tracer species, can be measured through
the Zeeman e†ect. However, Zeeman mapping is time con-
suming and requires high sensitivity and the presence of
particular tracers (most commonly OH). Moreover, this
technique does not probe the Ðeld in the plane of the sky.
For all of these reasons, it is desirable to have a complemen-
tary method of mapping the Ðeld.
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Following the Ðrst detection by Cudlip et al. (1982), it has
been shown that the polarization of the far-infrared thermal
radiation emitted by magnetically aligned dust grains can
be used to map the orientation of the magnetic Ðeld on the
plane of the sky (see Hildebrand et al. 2000 for
methodology). This has been done, at various wavelengths,
for a number of nearby clouds (Gonatas et al. 1990 ; Jarrett
et al. 1994 ; Dotson 1996 ; Rao et al. 1998 ; Schleuning 1998 ;
Glenn, Walker, & Young 1999 ; Dotson et al. 2000 ; Schleu-
ning et al. 2000 ; Bastien, & Greaves 2000 ; Ward-Valle� e,
Thompson et al. 2000) and near the Galactic Center
(Werner et al. 1988 ; Hildebrand et al. 1990, 1993 ; Dowell
1997 ; Novak et al. 1997, 2000). Far-infrared polarization
maps display the morphology of the Ðeld relative to other
structures in the cloud and can also be used to estimate the
strength of the mean Ðeld according to a dynamical method
originally proposed by Chandrasekhar & Fermi (1953,
hereafter CF). Applications of the CF method generally
suggest Ðeld strengths in the milligauss range or above.
Such Ðeld strengths are larger than what is typically mea-
sured by the Zeeman e†ect (e.g., Glenn et al. 1999 ; Lai et al.
2000).

The CF method is subject to errors arising from line-of-
sight and angular averaging, and rests on the assumptions
of equipartition between turbulent kinetic and magnetic
energy, and isotropy of Ñuid motions. Spatial averaging, by
smoothing the maps, can give misleading impressions
about the magnetic Ðeld morphology. However, since the
information carried in the maps is unique, it is difficult
to test the magnitude of these e†ects with astronomical
observations.

Numerical simulations of turbulent, magnetized molecu-
lar clouds o†er the means to calibrate the accuracy of polar-
ization maps and develop new techniques to analyze them.
The actual strength and structure of the Ðeld are known at
all grid points and at selected times, as are the gas velocity
and density. It is possible to create synthetic polarization
maps, analyze them as though they were astronomical data,
and check the accuracy of the results. That is the subject of
this paper. Ostriker et al. (2001) have used a set of simula-
tions to calibrate the CF method in this manner.

In ° 2, we describe the numerical models and the method
by which we generate polarization maps. Most of the results
relevant to polarization maps are in ° 3, in which we discuss
the morphology shown in the maps, implement the CF
method, devise an alternative to it, and show what can be
learned about the spectrum of magnetic Ðeld Ñuctuations.
Section 4 is a summary and discussion.

2. MODELS AND METHODS

2.1. Models of T hree-dimensional MHD Turbulence
We base our investigation on full three-dimensional

models of driven MHD turbulence in a cube with periodic
boundary conditions, simulating a portion of the interior of
a molecular cloud. We chose an isothermal equation of
state, because the cooling times are much shorter than the
dynamical times at the high densities typical of molecular
clouds. We performed the simulations at 1283 and 2563 grid
zones resolution using ZEUS-3D, a well-tested Eulerian
Ðnite-di†erence code (Stone & Norman 1992a, 1992b ;
Clarke 1994) with second-order advection and a von
Neumann artiÐcial viscosity to capture shocks. The MHD
induction equation is followed using the method of consis-

tent transport along characteristics (Hawley & Stone 1995).
We employed the massively parallel version of the code,
ZEUS-MP (Norman 2000), to produce a data set at
resolution 5123.

We used the uniform driving mechanism described in
Mac Low (1999). At each time step, a Ðxed pattern of veloc-
ity perturbations is added, with the amplitude adjusted such
that the energy input rate is kept constant. The driving
results in an rms Mach number of M\ 5 for models of
series G and of M\ 10 for such of series E (see Table 1).
The mechanism for generating the perturbation Ðeld allows
us to select Ðxed spatial ranges. All models presented in this
work employ driving at wavenumbers k \ 1È2 waves per
box length L .

Our measurements begin at system time t \ 0.0, when the
model has reached an equilibrium state between the energy
dissipation rate due to shock interaction and numerical dif-
fusion, and the driving energy input rate. Self-gravity is
implemented via an FFT-Poisson solver for Cartesian coor-
dinates (Burkert & Bodenheimer 1993). It is activated as
soon as the model reaches the dissipation equilibrium at
t \ 0.0.

The isothermal equation of state renders the system scale
free. In code units, the length of the box is L \ 2 and the
mass is M \ 1. We dimensionalize the results by choosing
the Jeans length Jeans mass and free fall time (seejJ, MJ, tffKlessen, Heitsch, & Mac Low 2000 for discussion of the
scaling). The number of Jeans masses and Jeans lengths in
each run are given in Table 1.

All the models are initialized with a uniform magnetic
Ðeld stretching across the box along the z-direction. The
Ðeld becomes distorted over time, but the magnetic Ñux '
through the boundaries should be constant according to the
equations of ideal MHD and is typically preserved by the
code to a relative accuracy of 10~3È10~4.

As in HMK, we scale the initial magnetic Ðeld strength by
the plasma beta b 4 8nP/B2. The parameter b is directly

TABLE 1

MODEL LIST

Name Resolution k
drv

b M/M
cr

jJ nJ
ER1A . . . . 5123 1È2 4.04 8.3 0.501 64
EH1A . . . 2563 1È2 4.04 8.3 0.501 64
EH1D . . . 2563 1È2 0.20 1.8 0.501 64
GI1A . . . . 1283 1È2 4.04 8.3 1.067 6.5
GI1B . . . . 1283 1È2 1.13 4.4 1.067 6.5
GI1C . . . . 1283 1È2 0.50 2.9 1.067 6.5
GI1D . . . . 1283 1È2 0.18 1.7 1.067 6.5
GI1E . . . . 1283 1È2 0.13 1.5 1.067 6.5
GI1F . . . . 1283 1È2 0.09 1.3 1.067 6.5
GI1G . . . . 1283 1È2 0.07 1.1 1.067 6.5
GI1H . . . 1283 1È2 0.05 0.8 1.067 6.5
GH1H . . . 2563 1È2 0.05 0.8 1.067 6.5

L . . . . . . . . . . 2563 1È8 2.00 O (. . .) (. . .)
MC81 . . . . 1283 7È8 2.00 O (. . .) (. . .)
MA81 . . . . 1283 7È8 2.00 O (. . .) (. . .)
MC41 . . . . 1283 3È4 2.00 O (. . .) (. . .)

gives the ratio of cloudNOTES.Èb \ P
th
/Pmag \ 8nc

s
2 o/B2. M/M

crmass to critical mass according to eq. (1). is the Jeans length, with a totaljJbox side length of L \ 2, and is the number of Jeans masses in the box.nJThe nonÈself-gravitating models L , MC81, MA81, and MC41 are taken
from Mac Low et al. 1998 and Mac Low 1999.
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related to the critical magnetic Ñux required to prevent
global gravitational collapse (see McKee et al. 1993),

'
c
\G1@2M

c'
, (1)

where the constant is found to be 0.13 for a uniformlyc'magnetized sphere (Mouschovias & Spitzer 1976) and 0.16
for a uniformly magnetized sheet (Nakano & Nakamura
1978). Here we choose the latter value. We Ðnd

b \ 8
A'

c
'

jJ
L

c'
B2\ 8

AM
M

c

jJ
L

c'
B2

, (2)

where is the ratio of mass to critical mass asM/M
c
\'

c
/'

in HMK. The models discussed in this paper span the range
b \ 0.05È4.04 and The MachM/M

c
\ 0.88È8.3. Alfve� n

number is related to b and the sonic Mach number MMAby Thus, we consider bothMA \M(b/2)1@2. sub-Alfve� nic
and models.super-Alfve� nic

A detailed discussion of the model sets is given by HMK.
Here we describe their physical properties just brieÑy. The
supersonic turbulence supports the gravitationally unstable
region against global collapse, however, it cannot prevent
local collapse, in the presence of magnetic Ðelds too weak to
provide magnetostatic support. Collapsing regions evolve
from shock-induced Ðlaments and cores. The models reach
density contrasts of 2È3 orders of magnitude above and
below the mean density. The gravitationally bound regions
can be interpreted as the initial stages of a protostellar core
which may subsequently evolve into stars. Once a core
begins to collapse, we cannot resolve it well enough to
follow its evolution further (Truelove et al. 1997 ; HMK).

The isotropy of a model depends largely on its Ðeld
strength. For the weak-Ðeld model Eh1a, the resulting dis-
tribution of magnetic energy is fairly isotropic, whereas for
the models with stronger Ðelds (e.g., Eh1d), the Ðeld imprints
its initial direction onto the gas Ñows. The Ñows, in turn, act
on the Ðeld. Two quantities of interest for the polarization
studies are the ratio of the mean Ðeld energy to the total
magnetic energy, SBT2/SB2T, and the dispersion in the
angle d between the local magnetic Ðeld direction and the
mean direction, p2(d) (the two are not equivalent ; for
example, the energy in the Ðeld could be increased by col-
lecting it into strong unidirectional Ðlaments with no dis-
persion in angle). Both quantities are given in Table 2.

Equipartition between turbulent kinetic and turbulent
magnetic energy is often assumed in astrophysics ; it has
been shown to hold rigorously only in certain cases, such as
weak wave turbulence (Zweibel & McKee 1995) andAlfve� n
the incompressible turbulence modeled by Gold-Alfve� nic
reich & Sridhar (1997). Observations do not yet yield clear
evidence for or against equipartition, although data col-
lected by Crutcher (1999) and statistical analysis of theoreti-
cal models (Padoan & Nordlund 1999) tend to speak
against it. The models discussed here are not in exact equi-
partition ; the ratio of turbulent magnetic tom \Emagturb/Ekinturbulent kinetic energy for each model is listed in Table 2
and is typically a few tenths. It is unclear whether these
departures from equipartition occur for physical reasons
related to the nature of nonlinear, compressible MHD turb-
ulence or occur because of numerical di†usivity or the
nature of the forcing. We take the deviation from equi-
partition into account in ° 3.3 to correctly interpret our
polarization maps.

TABLE 2

CHARACTERISTIC PARAMETERS OF ALL MODELS

p(d)
Name b m Emag/Ekin SB2T/SBT2 (deg)

ER1A . . . . 4.04 0.96 1.03 13.06 22.3
EH1A . . . 4.04 0.35 0.37 12.00 15.0
EH1D . . . 0.20 0.52 1.30 0.79 14.0
GI1A . . . . 4.04 0.21 0.23 8.90 20.0
GI1B . . . . 1.13 0.36 0.45 3.90 17.0
GI1C . . . . 0.50 0.69 0.91 3.10 13.0
GI1D . . . . 0.18 0.48 1.00 0.88 14.0
GI1E . . . . 0.13 0.31 1.00 0.45 13.0
GI1F . . . . 0.09 0.28 1.20 0.32 11.0
GI1G . . . . 0.07 0.27 1.30 0.27 11.0
GI1H . . . 0.05 0.24 1.70 0.17 8.7
GH1H . . . 0.05 0.26 2.00 0.15 9.1

L 1 . . . . . . . . . 2.00 0.83 1.15 2.55 15.4
L 2 . . . . . . . . . 2.00 1.07 1.78 1.53 14.4
L 3 . . . . . . . . . 2.00 1.03 2.45 0.73 12.7
MC81 . . . . 2.00 0.41 0.50 4.45 16.4
MA81 . . . . 2.00 0.79 1.31 1.51 14.5
MC41 . . . . 2.00 0.39 0.48 7.82 15.4

NOTES.ÈAll values are taken at t \ 0.0 except for models L 1 to L 3, who
are a time series of decaying turbulence (Mac Low 1999). m \Emagturb/Ekin,the ratio of turbulent magnetic to turbulent kinetic energy, where Emagturb
does not include the mean (z-) Ðeld contribution. is the ratio ofEmag/Ekintotal magnetic energy (including uniform component in z-direction) to
kinetic energy, is the ratio between the turbulent magneticBturb2 /SBT2
energy and mean Ðeld energy, and p(d) gives the dispersion of Ðeld(\Emagturb)
angle around the mean Ðeld direction in degrees.

2.2. Generating Polarization Maps
The model cubes include density, magnetic Ðelds, and

velocity Ðelds. These data allow us to derive the Stokes
parameters Q and U, and the polarized intensity P accord-
ing to Zweibel (1996)

P\ Q] iU\ 1/N
P

f (y)
(B

x
] iB

z
)2

B
x
2] B

z
2 cos2 cdy , (3)

where and give the Ðeld vectors in the plane of skyB
x

B
zperpendicular to the line of sight and are taken directly

from the simulations. We integrate along the line of sight in
the y-direction. Zweibel (1996) assumed cos2 c\ 1.

The function f (y) is a weighting function which accounts
for the density, emissivity, and polarizing properties of the
dust grains. As the simplest assumption, we take f (y) to be
the local gas density normalized by the column density
N \ / f (y)dy. The factor

cos2 c\ B
x
2] B

z
2

B
x
2] B

y
2] B

z
2 (4)

accounts for suppression of polarization by the magnetic
Ðeld component along the line of sight (e.g., Fiege & Pudritz
2000c ; Padoan et al. 2001). The polarized intensity is
oP o\ (Q2] U2)1@2, and the polarization angle is

/\ 1
2

arctan
U
Q

. (5)

Equation (3) is an approximate solution of the full radi-
ative transfer equation for the Stokes parameters (Martin
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1974 ; Lee & Draine 1985), valid for small polarization and
low optical depth. At far-infrared wavelengths, and at
typical column densities for molecular clouds, the medium
can safely be assumed to be optically thin (Hildebrand et al.
2000).

We deliberately leave out any statement about the polar-
ization degree p as we are only interested in the polarization
angles, but not in the ratio between polarized and contin-
uum intensity. By this we intend to keep the argument as
simple as possible, not embarking on a discussion on the
efficiency of grain alignment mechanisms. This simpliÐca-
tion certainly limits our study to the investigation of polar-
ization angles only. However, we note that according to
equations (3) and (4), a substantial component of out-of-
plane magnetic Ðeld, either random or ordered, tends to
reduce the polarization. See Padoan et al. (2001) for a full
discussion of the e†ect of magnetic Ðeld structure on the
polarization amplitude.

Polarization maps are made at Ðnite resolution. We
simulate the telescope beam by applying a Gaussian Ðlter of
the form

F(x, x@)\ 1

J2nw
exp

C
[ 1

2
Ax [ x@

w
B2D

(6)

to the complex polarization P given in equation (3). The
width w of the smoothing Ðlter should not exceed one-
eighth of the box length L . For w[ L /8, the tails of the
ÐlterÈexceeding the mapÏs areaÈwould contribute to such
an extent that neglecting them would yield too small an
average. For each model, we generated polarization maps
with a set of smoothing widths 0 ¹ w¹ L /8.

3. RESULTS

The two-dimensional polarization maps serve a threefold
purpose : We discuss how their structure depends on self-
gravity and limited observational resolution (° 3.1), and we
show that there is no preferred alignment between Ðlamen-
tary structures in our simulations and the magnetic Ðelds
(° 3.2). Finally, in ° 3.3 we discuss the Chandrasekhar-Fermi
method of determining the mean Ðeld and an extension,
which determines the rms Ðeld, both of which we test and
calibrate.

3.1. Structure in Polarization Maps
The polarization maps showing column density and

polarization vectors (Fig. 1, left column, model Eh1d) are
highly structured. Shock fronts moving through the gas ini-
tiate formation of Ðlaments and knots. After one free-fall
time (Fig. 1, lower left panel), the Ðlaments fragment and
concentrate due to self-gravity. Qualitatively, no inÑuence
of self-gravity on the large-scale structure of the Ðeld is
discernible, although there is some e†ect on the smallest
scales.

Smoothing these maps with a Gaussian Ðlter of w\ L /32
width (Fig. 1, right column, Eh1d) leads to a clumpier
appearance of the previously well-deÐned Ðlaments. Any
substructure in these is lost. Single shock structures are
smeared out. As expected, the Ðeld appears more uniform,
thus in our case indicating more and more its initial orienta-
tion. Small-scale variations in the Ðeld indicating turbu-
lence and deÐning the turbulent cascade are lost due to the
smoothing.

Figure 2 quantiÐes this e†ect in model Eh1d. It shows the
power spectrum of the angle between the local and the

mean magnetic Ðeld. This is equivalent to the line-of-sight
averaged spectrum of the transverse magnetic Ðeld Ñuctua-
tion amplitude (recall that the total power in Ñuctuations is
given in Table 2). Increasing the smoothing width from
w\ 0 to w\ L /8 results in a power loss of 96%. Structures
at a wavenumber of k \ 8 are suppressed by more than 2
orders of magnitude. The diamonds in Figure 2 indicate the
power spectrum of perturbed against mean Ðeld energy

where is the magnetic energy correspond-Emagturb/Emag, Emagturb
ing to the perturbed Ðeld components perpendicular to the
mean Ðeld. We use this as a measure of the true disorder in
the magnetic Ðeld and as a gross check of whether the polar-
ization angles mirror the behavior of the energies. Some
power loss between the true angular dispersion and even the
unsmoothed Ñuctuation amplitude is inevitable, because the
latter involves line-of-sight averaging, while the former is a
true three-dimensional quantity.

Inspection of Figure 1 shows no dramatic e†ects caused
by self-gravity after one free-fall time. Figure 3 shows that
the width of the distribution of polarization angles does not
change signiÐcantly under the e†ect of self-gravitation but
does certainly decrease with increasing beam width, as
expected. The emerging asymmetry results from the reduced
statistics due to the increasing beam width. Although every
pixel contributes to the histogram, the number of indepen-
dent measurements decreases with increasing beam width.

3.2. Shock-induced Filaments
There is an ongoing debate on the mechanisms gener-

ating the observed Ðlamentary structures of molecular
clouds (e.g., Loren 1989 ; Johnstone & Bally 1999 ; Mat-
thews & Wilson 2000). Shocks come to mind as a natural
explanation, either compressing the material (as in the
simulations presented here) or generating downstream
Ñows resulting in the Ðlaments (Loren 1989). The alignment
of the magnetic Ðeld with the Ðlaments has been used as a
test for the validity of di†erent Ðlament models. The obser-
vations seem to favor no deÐnite alignment. Maps of
OMC-III (Matthews & Wilson 2000) show a perpendicular
alignment, thus perhaps supporting the model of Fiege &
Pudritz (2000a, 2000b), in which they propose helical Ðelds
to conÐne Ðlamentary structures. Rizzo, Morras, & Arnal
(1998) found parallel and perpendicular alignment in their
maps of background starlight polarization for Lupus 1 and
Lupus 4, whereas Rao et al. (1998) Ðnd varying alignments
for Orion-BNKL. Further examples of varying Ðeld align-
ments can be found in Dotson (1996) and Ward-Thompson
et al. (2000).

In the simulations presented here, the Ðlaments are solely
due to shock interactions. We do not Ðnd a preferred align-
ment of the magnetic Ðeld with the Ðlaments. We illustrate
this in Figure 4, which shows the full polarization map for
the 5123 zone model Er1a, and with a selection of Ðlaments
of the same model in Figure 5. A detailed study of the
Ðlaments will be presented in a forthcoming paper.

3.3. Estimating the Field Strength : Chandrasekhar-Fermi
Method

Chandrasekhar & Fermi (1953) suggested a method of
estimating the mean magnetic Ðeld strength SBT in the
galactic spiral arms. It relates the line-of-sight velocity dis-
persion to the dispersion of polarization anglesp(vlos)p(tan d) in the plane of sky around a mean Ðeld component.
The angle d is deÐned as the di†erence between the local
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FIG. 1.ÈL eft column: Surface density (corresponding to continuum density) of the full computational domain, overplotted with polarization vectors as
determined by eq. (3) for the self-gravitating model Eh1d. The magnetic Ðeld is supercritical with At t \ 0.0 (upper panel ), gravity has beenM/M

c
\ 1.8.

switched on, which shows its e†ect in the lower panel, at t \ 1.0, a free-fall time later. The initially uniform Ðeld is vertically orientated (as well as for all other
maps shown). The surface density is 7.7] 10~3\ & \ 1.0] 100 for the upper panel and 4.0] 10~3\ & \ 3.0] 100 for the lower panel. Right column:
Surface density and polarization vectors as in left column, but smoothed with a Gaussian Ðlter of w\ L /32 corresponding to 8 pixels. L is the box length. The
Ðeld gets more ordered and the previously well-discernible shock structures are blurred or even come out as clumpy, Ðlamentary structures. The surface
density is 1.0] 10~2\ & \ 4.5] 10~1 for the upper panel and 1.0] 10~2\ & \ 5.5] 10~1 for the lower panel.

polarization angle in the map and the mean polarization
angle averaged over the total map, i.e., in terms of equation
(5) d 4 /[ S/T. The CF method rests on three main
assumptions : (1) that there is a mean Ðeld component in the
observed region, (2) that the turbulence responsible for the
magnetic Ðeld perturbations is isotropic, and (3) that there
is equipartition between the turbulent kinetic and the mag-
netic energy. Under these conditions, the mean Ðeld com-
ponent SBT is given by

SBT2\ 4no
p(vlos)2

p(tan d)2 , (7)

where o stands for the mean density. Because of the angular
variations in the denominator, the result depends strongly
on the actual mean Ðeld strength and will in fact only be
meaningful if there is a noticeable mean Ðeld component.

In terms of the parameter m, the ratio of turbulent magnetic
to turbulent kinetic energy listed in Table 2, equation (7)
generalizes to

BCF 4 SBT2\ 4no
p(vlos)2

p(tan d)2 m . (8)

We initially set m \ 1 when implementing the CF method,
because observations do not yield clear evidence for or
against equipartition (e.g., Crutcher 1999), but we correct
for later (see Table 2).m D 1

CF originally stated their technique in terms of the polar-
ization angle itself, not in terms of tan d, restricting the
method to small angles where tan d B d. Using the exact
expression enables us to apply the method beyond the
small-angle regime. However, for d B^n/2, equation (7) is
meaningless, which is why we present in the following para-
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FIG. 2.ÈPower spectrum of polarization angles with respect to mean
magnetic Ðeld of model Eh1d and ratio corresponding to*Emag/Emag,the perturbed over the mean Ðeld (diamonds) against wave-SB

x
2T/SB

z
T2,

number k. The energy ratio is shifted vertically by * log (*Emag/Emag)\ 0.5
for clarity. w denotes the smoothing width, 0 ¹ w¹ L /8, with L \ 256 the
box length. At w\ L /8, 96% of the power in polarization angles is lost.

graphs a modiÐcation of the CF method (° 3.3.1) and an
empirical recipe (° 3.3.3) and compare both methods with
the help of model data (° 3.3.2). Finally, we discuss the e†ect
of limited telescope resolution on the resulting Ðeld strength
estimates in ° 3.3.4.

3.3.1. A ModiÐcation

The CF method in its original form estimates the mean
magnetic Ðeld. When the mean Ðeld is much less than the
rms Ðeld, the dispersion in Ñuctuation angle p2(tan d) is
dominated by points where d B n/2. Since
SBT P p(tan d)~1 (see eq. [7]), the result is usually an
underestimate of SBT.

The CF method can be extended to yield an estimate of
SB2T that is free of this problem. Suppose andSBT \ züSBT

FIG. 3.ÈDistribution of polarization angles for two times and various
smoothing beam widths w of model Eh1d. The bottom panel starts with
t \ 0.0, when gravity is switched on. The upper panel shows the angle
distribution one free-fall time later. With increasing w, the distributions get
narrower, whereas self-gravity does not a†ect the distributions signiÐcantly
except for the smallest scales (w\ 0).

FIG. 4.ÈSurface density of the full computational domain of 5122 cells,
overplotted with magnetic polarization vectors as determined by eq. (3) for
the not yet self-gravitating model Er1a at t \ 0.0. The magnetic Ðeld is
supercritical by a factor of 8.3. The white boxes mark the Ðlament locations
as shown in Fig. 5. Every eighth polarization vector is shown. The surface
density is 3.1] 10~2\ & \ 7.2] 10~1.

the x-z plane is the plane of the sky. Then

SB2T \ SBT2] S*B
z
2T ] SB

x
2T ] SB

y
2T . (9)

By deÐnition of the angle d
B

x
\ SBT tan d . (10)

Squaring and averaging equation (10), assuming that the
magnetic Ðeld Ñuctuation energies are the same for all com-
ponents (see ° 3.3.6), and using equation (7), equation (9)
becomes

BCFmod4 SB2T \ 4no
p(vlos)2

p(tan d)2 [1] 3p(tan d)2] , (11)

including the correction for equipartition as in equation (8).
When the Ðeld is highly disordered, and the dispersion in

polarization angles is large, equation (11) reÑects the under-
lying physical assumptions of equipartition between kinetic
and magnetic energy together with isotropy. The formula is
valid for arbitrary ratios of turbulent magnetic to turbulent
kinetic energy if we multiply the right-hand side by m. When
the Ðeld is highly ordered, comparison of equation (11) with
equation (7) shows that the mean and rms Ðelds are nearly
the same.

3.3.2. Calibration with Model Data

We plotted the ratio of the estimated and model Ðeld
strength in Figure 6. The upper left panela 4 Best/Bmodeldisplays a for the CF method, averaged over two lines of
sight perpendicular to the mean Ðeld direction and over
three physical times. The lower left panel shows the disper-
sion of a single measurement relative to the corresponding
mean value. It decreases with increasing Ðeld strength. For
strong Ðelds, the CF method overestimates the Ðeld
strength derived from the unsmoothed maps (Fig. 6, star



806 HEITSCH ET AL. Vol. 561

FIG. 5.ÈMagnetic polarization vectors and surface density for six selected Ðlaments of model Er1a as denoted in Fig. 4

symbols) by a factor of 2 to 3. Thus, we conÐrm the results of
Ostriker et al. (2001) for the small-angle approximation. For
weaker Ðelds however, the method starts to develop a sig-
niÐcant scatter, as shown in the lower panels of Figure 6.

The right column in Figure 6 shows the corresponding
results for the CF method in its modiÐed version according
to equation (11). For the unsmoothed case (star symbols
again), the strongest Ðeld is overestimated by a B 3.
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FIG. 6.ÈOverestimation factors andaCF \BCF/SBT arms \BCFmod/Brmsfor the CF method in its original and modiÐed version for all models of
type G, averaged over two lines of sight perpendicular to the mean Ðeld
direction and three physical times (upper panels). The dotted lines corre-
spond to a \ 1, 2, 3. Symbols stand for smoothing widths applied. Increas-
ing beam sizes lead to systematic overestimation of the Ðeld strengths. The
beam size is given fractions of the box length, with a total grid size of 1282
zones. The lower panels contain the relative standard deviations with
respect to the corresponding mean value.

Whereas the original method breaks down at a Ðeld
strength of the modiÐed version still yieldsBmodel\ 1.2,
acceptable results for Bmodel\ 0.9.

The minimum Ðeld strength alone, however, does not tell
us much about the reliability of the method. The parameter
of interest is the Mach number asAlfve� n MA \ Sv2T1@2/cA,
the angular variations p(tan d) of polarization not only
depend on the energy content in the Ðeld, but on the turbu-
lent kinetic energy as well. A Ðeld strength of Bmodel\ 0.9
would correspond to in the parameter set ofMA \ 1.25,
models G. With typical parameters of m s~1 andc

s
\ 200

cm~3, we can then scale kG. Fieldn(H2)\ 103 Bmodel \ 7
strengths in molecular clouds are seen to be mostly larger
than kG (Crutcher 1999). In denser regions, the ÐeldBZ 10
strengths seem to increase with density as BP o0.47
(Crutcher 1999), whereas the nonthermal line widths (the
““ turbulence ÏÏ) decreases with decreasing size as *vNTP
R0.21 (Caselli & Myers 1995). Thus, we conclude that both
methods should yield acceptably accurate results for molec-
ular cloud regions up to their densest parts, as long as the
observations sample the angular variations with sufficient
resolution (see ° 3.3.4).

We have to address the question of energy equipartition.
Since m is generally less than unity in our models (see Table
2), the CF method and its extension overestimate both SBT
and SB2T by a factor of Figure 7 (left and middle1/Jm.

panels) shows ““ corrected ÏÏ for non-a 4 Best/Bmodelequipartition. Both methods now hit the model Ðeld
strength at a factor between 1 and 1.5, at least for sufficient-
ly large Ðeld strengths and for unsmoothed maps. The cor-
rection slightly reduces the largest deviations of the
weak-Ðeld estimates. We conclude that for a sufficiently
well-resolved (see below) polarization map and for large
Ðeld strength, both methods yield reliable results. A main
uncertainty factor is the ratio of magnetic to kinetic energy
m in the observed region.

Whereas the original CF method underestimates low
Ðeld strengths, the modiÐed version overestimates them.
For weak Ðelds, the polarization angles can reach 90¡ with
respect to the mean Ðeld, which yields o tan d o\ O in
equations (7) and (11).

Similarly to the original CF method, the modiÐed version
yields overestimated Ðeld strengths with increasing smooth-
ing beam width. From the lower row in Figure 6 we con-
clude that even for the strongest Ðelds the relative scatter is
of order 20%. Smoothing the maps leads to smaller scatter
except for the weakest Ðeld strengths.

The e†ect of self-gravity on the Ðeld strength estimates is
minute (Fig. 8). For small smoothing widths w, the varying
small-scale structure due to self-gravity leads to some sta-
tistical scatter, which is averaged out for large w. The CF
methods seem to be insensitive to e†ects of self-gravity on
small scales.

So far, we have been considering Ðeld estimates derived
from line-of-sight velocities perpendicular to the mean Ðeld
direction, i.e., for an angle a between line of sight and mean
Ðeld of a \ 90¡. This is the optimal condition for the CF
method to work. Correspondingly, especially the original
CF method is expected to break down for a \ 0¡, as it relies
on a strong mean Ðeld component, which will vanish for
a \ 0¡. The left two columns in Figure 9 demonstrate this
e†ect for the original and modiÐed CF method. Both
methods fail to recover the model Ðeld strength by up to 3
orders of magnitude. Ostriker et al. (2001) discuss this pro-
jection e†ect in more detail.

3.3.3. A Recipe

The fact that and vary by roughly the sameaCF armslogarithmic range, but with opposite signs, suggests that by
taking the geometric mean of equations (7) and (11)

(BCFBCFmod)1@2\ (4no)1@2 p(vlos)
p(tan d)

][1] 3p(tan d)2]1@4 (12)

we would arrive at a more accurate estimate for the
actual Ðeld strength. This results in a ratio agm 4

of(SBTSB2T)1@2/Bmodel
agm \ JaCF arms

\ aCF[1 ] 3p(tan d)2]1@4
\ arms[1] 3p(tan d)2]~1@4 . (13)

Applying this recipe yields the right panel of Figure 7.
Clearly, the large deviations of and cancel suffi-aCF armsciently to yield estimates accurate to a factor of agmB 2.5
even for the weakest, unsmoothed Ðelds and is more accu-
rate than that for moderately strong Ðelds. Smoothed maps
of course lead again to a systematic overestimation, here up
to a factor of 10. We emphasize strongly that equation (14)
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FIG. 7.ÈL eft and middle panels : Overestimation factors and against model Ðeld strength for the CF method in its originalaCF\ BCF/SBT arms\BCFmod/Brmsand modiÐed version for all models of type G as in Fig. 6, but after correcting for nonequipartition (see Table 2) with The dotted lines correspond to1/Jm.
a \ 1, 2, 3. Both methods return the model Ðeld strength nearly exactly for sufficiently high Ðeld strength and no smoothing. Right panel : Geometric mean

against model Ðeld strength, averaged and corrected for nonequipartition as for and Where the separate estimates andagm\ (aCF arms)1@2 aCF arms . aCF armsmiss the weak Ðeld strengths by a factor of more than 150 for unsmoothed (w\ 0) maps, yields an estimate accurate up to a factor of B2.5 for the sameagmw\ 0 maps. Smoothed Ðelds are still systematically overestimated.

is only motivated by the (logarithmically) comparable devi-
ations of andaCF arms.We are well aware that this is somewhat unsatisfactory
from the theoretical point of view. One could argue that the
““ correction ÏÏ in equation (11) of [1] 3p(tan d)2]1@2 to
account for the systematic underestimation by equation (7)
is too large. For large p(tan d), i.e., generally for small Ðeld
strengths, equation (11) depends only on which itselfp(vlos),would grow at least in a limited way with decreasing Ðeld
strengths. The rightmost panel of Figure 9 presents a test of
how reliable we can expect this recipe to be. It shows the
geometric mean for the projection angle a \ 0¡, i.e.,agmmean Ðeld component and line of sight are parallel. Where
both the CF methods in their original and modiÐed version
fail by 3 orders of magnitude, still estimates the Ðeldagmcorrectly within a factor of 7.

To further test equation (14), we applied it to a set of
models with varying physical properties (Fig. 10). Models
L 1, L 2, and L 3 are a time series of decaying turbulence
taken from Mac Low (1999). Models MC81, MA81, and
MC41 (Mac Low et al. 1998) are simulations of driven turb-
ulence as series G, but with driving wave length of k \ 3È4
(MC41) and k \ 7È8 (MA81, MC81). See Tables 1 and 2 for
their parameters. All these models have weak initial Ðelds,
corresponding to Gi1b. As in Figure 7, the scatter of isagmmore than 1 order of magnitude lower than for andaCF arms.The unsmoothed estimates are accurate again up to a factor
of Again, smoothed Ðelds are likely to be over-agm B 2.5.

estimated. Note that on the whole leads already toarmsslightly more accurate estimates than aCF.We conclude that the geometric mean gives moreagmreliable estimates than or even for very weak Ðelds,aCF armsbeing more accurate as well for moderate and strong Ðelds.
Thus, this recipe may prove useful when being applied to
observational data.

3.3.4. Smoothing, Subsampling, and T heir E†ect in a
Turbulent Medium

Field estimates derived from smoothed maps tend to
overestimate the Ðeld strength with increasing ““ beam
width ÏÏ (Fig. 6, all symbols except stars). We will discuss how
limited telescope resolution in polarization maps of turbu-
lent regions can lead to this overestimation.

Both CF methods rely on perturbations of the magnetic
Ðeld around a mean component. If all the power of these
perturbations resided on spatial scales 1/kü \ wü \ w,
increasing the smoothing width above w would have no
e†ect on the power distribution of polarization angles, and
varying smoothing widths would yield identical results. On
the other hand, if the perturbations grew with increasing
length scale, as e.g., in a turbulent power spectrum, a larger
smoothing width w would result in a greater power loss on
larger scales, and thus to an overestimation of the Ðeld.
Note that in equations (7) and (11) we Ðnd the angular
variations in the denominator. So losing power in the varia-
tions increases the Ðeld estimate. The turbulence is driven
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FIG. 8.ÈOverestimation factors andaCF\BCF/SBT, arms\BCFmod/Brmsfor the self-gravitating model Eh1d. At t \ 0.0, gravity isagm\ (aCF arms)1@2switched on. Note that all three panels are plotted in the same logarithmic
scale.

between wavenumbers k \ 1È2 in our simulations, thus
letting the code evolve a turbulent cascade down to the
dissipation scale at grid cell size. This turbulent cascade in
our models is well reÑected in the power spectrum of
angular variations p(d) (Fig. 2). We lose more and more
power when applying larger smoothing widths w. This
power loss should depend on the steepness of the power
spectrum. This suggests that it might be possible to measure
the spectrum of magnetic Ðeld Ñuctuations by smoothing
polarization maps by di†erent Ðlter widths and comparing
the dispersion of polarization angles.

To illustrate this relation, we will describe the smoothing
as a convolution and then will determine analytically the
loss of power in a spectrum due to smoothing. The convolu-
tion would be

A(x@)\
P
~=

=
A(x)F(x [ x@) dx , (14)

with the wave function A(x)

A(x)\ ;
k/1

= A1
k
Bc

sin (2nkx) , (15)

and the Gaussian Ðlter function F(x [ x@) as in equation (6).
We identify A(x) with the of equation (10). InsteadB

x
2/SBT2

of convolving directly, we use the Fourier transforms F[A]
and F[F] of equations (15) and (6) to derive the power
spectrum of the convolved function oF[A] o via the con-
volution theorem

AŒ \ AŒ FŒ , (16)

where the hatted quantities denote Fourier transformations.
The Fourier transform of a Gaussian yields again a Gauss-
ian, in our case with an additional phase shift. The fre-
quency space variable is u :

FŒ (u) \ 1

J2nw

P
~=

=
exp

C
[ 1

2
Ax [ x@

w
B2D

e~iux dx

\ eiux exp
C
[ 1

2
(uw)2

D
. (17)

Applying the Fourier transform to the wave function A(x)
and integrating over k \ [1, O], we get

AŒ (u) \
P
~=

= P
k/1

= A1
k
Bc

sin (2nkx)e~iux dk dx

\ in
A2n

u
Bc

. (18)

Now we can multiply and and taking the absoluteAŒ FŒ ,
value gives us the power spectrum of the convolved function
A :

oAŒ o\ n exp
C
[ 1

2
(uw)2

DA2n
u
Bc

. (19)

As we are interested in the loss of power caused by the
smoothing, we now try to determine the amount of power
remaining in the spectrum after smoothing, i.e., the quantity

K(w) \
P
0

=
n exp

C
[ 1

2
(uw)2

DA2n
u
Bc

du . (20)

For c¹ 1, Figure 11 illustrates thelim
w?0 K(w) \ O.

behavior of K(w) for several values of c. Note that this is a
log-linear plot, so that, for example, K(w, c\3/4)Plog (w)2.
Curves for c[ 1 have negative cuvature, the ones for
c\ 1 have positive curvature. Normalizing the curves for
c\ 1 with K(0) and plotting them together with the inverse
of the ratio of estimated to model Ðeld strength ofaCFmodel Gh1h yields Figure 12. We normalized to w\ 0aCFas well, in order to compare the measurements to the analy-
tic curves K(w). We note that the measurements start to
Ñatten o† for small w/L because of line-of-sight averaging,
which we do not include in the analytic derivation. The
same argument applies for observations. Thus, even in the
ideal case of w\ 0, the measurement may not reach a \ 1
but may overestimate the actual Ðeld strength. Of course,
this would crucially depend on the length of line of sight
and, generally, on optical depth e†ects. They, however, are
negligible in the far-infrared regime. Because we need a
certain length in the line of sight in order to derive a mean-
ingful velocity dispersion this overestimation due top(vlos),line-of-sight averaging gives an intrinsic error in the CF
methods. The power spectrum of angular variations in the
simulations is by no means a clear power law, due to
numerical dissipation and the signatures of the driving
scale. Thus, the measured (Fig. 12) does not corre-1/aCFspond clearly to one of the analytic curves. However, if
observations show a well-deÐned power law in the angular
variations p(tan d), and provide sufficient resolution to
create a series of maps smoothed over larger and larger
areas, then it should be possible to extract information
about the exponent of the power law and to correct the Ðeld
estimate as well. Once a power-law description is found for



FIG. 9.ÈOverestimation factors and for all models of type G against model Ðeld strength as in Fig. 7,aCF\BCF/SBT, arms \BCFmod/Brms agm \ (aCF arms)1@2but taken along the mean Ðeld direction. Thus, the mean Ðeld component is not traced anymore. The dotted lines correspond to a \ 1, 2, 3. Naturally, the
Ðeld estimates deteriorate for the line of sight parallel to the mean Ðeld direction. Nevertheless, the suggested recipe yields results within a factor of 7 of the
actual Ðeld strength.

and geometric mean for an extended model set (see Table 1, lower part), corrected for nonequipartition as in Fig. 7.FIG. 10.ÈaCF, arms agm \ (aCF arms)1@2Where the separate estimates and scatter around a \ 1 by up to a factor of 700 for unsmoothed (w\ 0) values, reduces this scatter to a factor ofaCF arms agmless than 10.
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FIG. 11.ÈAnalytic results for the amount of power remaining in the
spectrum K(w) (see eq. [20]) for Ðve values of the power-law exponent c. In
this log-linear plot, exponents of c[ 1 and c\ 1 can be distinguished by
their curvature. L gives the box length.

the observed region, K(w)/K(0) supplies a correction factor
for the Ðeld strength estimate Best.In polarization maps derived from observations, an addi-
tional e†ect could potentially lead to a systematic over-
estimation. When we derive the Ðeld estimates from our
models, we use the complete domain, thus including all
wave lengths occurring in the problem. However, it is not
clear whether the observations do trace the largest scales in
the Ðeld perturbations, especially as observations of dust
polarization are mostly limited to dense cores and Ðlaments
only for sensitivity reasons. If the power of angular varia-
tions is distributed in a power spectrum which decreases
with increasing wavenumber, we expect to lose over-
proportionally much power when estimating the Ðeld
strength within a domain which is smaller than the largest
wave length contributing to the perturbations. Figure 13
illustrates this e†ect contributing to a systematic over-

FIG. 12.ÈAnalytic results for the amount of power remaining in the
spectrum K(w) (see eq. [20]) for three values of the power-law exponent c.
The stars denote the inverse of taken from model Gh1h. All curves haveaCFbeen normalized to w\ 0 in order to compare them. L is the box length.

FIG. 13.ÈOverestimation factors andaCF\BCF/SBT arms \BCFmod/Brmsagainst linear size of subframes for model Gh1h. and were deter-aCF armsmined by averaging over all possible subframes for a given box size.

estimation of the Ðeld strength. It shows the ratios a \
for subframes of 322, 642, and 1282 cells forBest/Bmodelmodel Gh1h at 2563 resolution. We averaged the estimates

from all possible subframes. The error bars indicate the
standard deviations of the means. With decreasing frame
size, the Ðeld is overestimated slightly, thus indicating a
decrease of p(tan d). However, bearing in mind the large
scatter around the mean values in Figure 13, this e†ect is
not very distinct.

We conclude that, although the CF methods are applica-
ble in principle to molecular clouds, the resulting Ðeld
strengths are most likely to be systematically overestimated
for two reasons : (a) Any smoothing introduced by the Ðnite
telescope beam size will lead to a systematic removal of
large-scale perturbations and thus to an overestimation of
the Ðeld strength. (b) Deriving Ðeld estimates for a domain
smaller than the maximum perturbation wave length
presentÈe.g., most probably for a dense Ðlament or coreÈ
leads to power loss on large scales and thus as well to an
overestimated Ðeld strength. These systematic over-
estimations due to limited resolution and sampling are dif-
ferent from uncertainties because of nonequipartition as
discussed in ° 3.3.2. In order to draw these conclusions we
assume that the underlying power spectrum of pertur-
bations follows a power-lawÈlike distribution, at least, that
it decreases with increasing wavenumber.

3.3.5. Resolution Test and Applicability to Observations

Figure 14 presents a test for resolution with models Gi1h
and Gh1h at 1283 and 2563 grid cells. Here, the beam width

is given in pixels to demonstrate what the actualw256resolution is. Note that in order to compare both models,
we have to compare them at the same physical beam width,
i.e., we have to shift a data point of model Gi1h at w128\ 4
pixels such that it corresponds to a point of pixels.w256 \ 8
We corrected all estimates with 1/m (see Table 2) in order to
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FIG. 14.ÈOverestimation factors andaCF \BCF/SBT arms \BCFmod/Brmsagainst beam width w for the strong-Ðeld models Gi1h and Gh1h at
resolutions of 1283 and 2563 cells. The beam width is given in pixels,w256where refers to the beam width of model Gh1h. We have to comparew256the di†erent resolutions at the same physical beam width, which is why the
data points of model Gi1h are shifted by a factor of 2, i.e., w128 \
2 ] w256 \ 4.

account for nonequipartition. Discrepancies at small scales
are to be expected as model Gi1h then already reaches the
grid scale. Figure 14 allows us to conclude that numerical
resolution does not a†ect our calibration of the CF
methods. Thus, we feel justiÐed in drawing conclusions for
observations of turbulent regions from our simulated obser-
vations of computational turbulence.

As the referee pointed out, our simulations refer to a
whole molecular cloud region comprising dense Ðlaments
and cores as well as the dilute gas. Observations, however,
are mostly restricted to dense objects. This restriction is
basically the same as the subsampling discussed in the pre-
vious section, as it simply reduces the number of measure-
ments for the derivation of p(tan d) and In fact, testsp(vlos).with the dense Ðlament- or core-regions in our models
yielded the same results as just using a subregion of the
polarization map. However, we prefer not to use the dense
regions as a basis for our work in order to make our argu-
ments more general.

3.3.6. Isotropy of Simulated Turbulence

We still have to substantiate the claim leading to equa-
tion (9), namely, that our simulated turbulent Ñows are iso-
tropic enough to validate that the Ðeld components
perpendicular to the mean Ðeld obeySBT \ züSBT SB

x
T \

and that the Ðeld perturbations in all three directionsSB
y
T

fulÐll The upper panel of Figure 15S*B
z
2T \SB

x
2T \SB

y
2T.

supports the second assumption. There occur only minor

FIG. 15.ÈRoot mean square Ðeld values (upper panel ) and mean values
(lower panel ) of the magnetic Ðelds in the three coordinate directions x, y,
and z. The initially uniform Ðeld is parallel to the z-direction. For the
z-direction, we determined the mean value after subtraction of the back-
ground Ðeld.

di†erences in the rms values. Note that the initially homo-
geneous background Ðeld is oriented along the z-direction.
Thus, we had to subtract this background in order to deter-
mine the corresponding mean values, yielding (Fig. 15,SB

z
T

lower panel). The scatter of the means is considerably larger ;
however, their absolute values are 3È4 orders of magnitude
lower than the corresponding Ðeld strengths. Ideally, the
means should vanish, especially in the directions perpen-
dicular to the initial Ðeld, namely the x- and y-directions.
Deviations from this ideal case are probably due to numeri-
cal di†usion in the code. This results in not conserving the
total Ñux per coordinate direction. The small shifts in the
means thus indicate how well the code actually does con-
serve the total Ñux.

4. CONCLUSIONS AND IMPLICATIONS

Reliable methods for measuring and mapping magnetic
Ðelds in molecular clouds are urgently needed in order to
assess the role of magnetic Ðelds in the dynamics of molecu-
lar clouds and in star formation. Probes based on far-
infrared polarimetry of the thermal emission from
magnetically aligned dust are now in widespread use.
Far-IR polarimetry is complementary to the Zeeman
method, which is the traditional means of measuring the
Ðeld. There are few independent checks of its accuracy as a
diagnostic of magnetic Ðelds.

In this paper we used numerical simulations of turbulent,
magnetized, self-gravitating molecular clouds to assess the
reliability of polarization maps. Although such simulations
qualitatively reproduce many of the features seen in molec-
ular clouds, we do not expect the computed densities,
velocities, and magnetic Ðelds to be completely realistic.
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We undertook the project with the expectation that analysis
of simulated data would bring out the same issues as
analysis of real data.

We assumed that the polarized emission is optically thin
and proportional to gas density. The Ðrst assumption
should be excellent. The second could be modiÐed, for
example, by modeling the grain temperature point to point
within the cloud. It might be possible to pick out particular
structures along the line of sight by comparing maps at
di†erent wavelengths, but establishing this is beyond the
scope of the present paper.

The salient properties of the models are given in Tables 1
and 2. Based on these models, our principal conclusions are
as follows :

1. Filaments produced by shocks do not show a pre-
ferred alignment with the magnetic Ðeld.

2. Self-gravity has no discernible e†ect on the structure of
the magnetic Ðelds in our simulations. However, we have to
bear mind that our self-gravitating regions are small with
respect to the simulated region.

3. The Chandrasekhar-Fermi method generalized to
large-amplitude Ñuctuations yields the mean Ðeld SBT to
within a factor of 2 as long as the(aCF\ BCF/SBT B 2),
angular structure in the Ðeld is well resolved. A modiÐed
version determining the rms Ðeld results inBCFmod arms \This version proves to work more reliablyBCFmod/Brms \ 2.
for slightly weaker Ðeld strengths. Both methods should be
applicable to magnetic Ðeld strengths typical of molecular
clouds.

4. The geometrical mean (BCF BCFmod)1@2 \
yields Ðeld esti-(4no)1@2[p(vlos)/p(tan d)][1 ] 3p(tan d)2]1@4

mates accurate up to a factor of agm \ (aCF arms)1@2 B 2.5
even for the weakest Ðelds. For moderate and stronger
Ðelds, Thus, this recipe improves the reliability ofagm B 1.
Ðeld strength estimates for the whole range of physically
realistic Ðelds in molecular clouds, and it may prove useful
when applied to observational data.

5. The original and modiÐed Chandrasekhar-Fermi
methods are based on the assumption of equipartition
between turbulent kinetic and magnetic energy. The Ðeld

Ñuctuations in the models are below equipartition, leading
to an overestimate of the Ðeld.

6. Limited angular resolution leads to systematic over-
estimation of the magnetic Ðeld strength for both methods.
Two e†ects can cause this overestimation : (a) In a power
spectrum decreasing with increasing wavenumber, smooth-
ing leads to an overproportionally large power loss on
larger scales. Thus, the angular variations are underesti-
mated, which leads to larger Ðeld strengths. (b) If the
domain used for deriving the Ðeld estimate does not trace
the largest wave modes, this again leads to power loss on
the largest scales.

7. If the power spectrum of magnetic Ðeld Ñuctuations is
a power law, Ðeld estimates made from a series of maps with
di†erent smoothing widths can in principle be used to esti-
mate the exponent of the Ñuctuation spectrum, assuming
that this is well enough deÐned over at least two decades.
With this information, one could correct for the overesti-
mated Ðeld strengths.
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