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ABSTRACT
The process of gap formation by a growing planetary embryo embedded in a planetesimal disk is

considered. It is shown that there exists a single parameter characterizing this process, which represents
the competition between the gravitational inÑuence of the embryo and planetesimal-planetesimal scat-
tering. For realistic assumptions about the properties of the planetesimal disk and the planetary embryo,
a gap is opened long before the embryo can accrete all the bodies within its region of inÑuence. The
implication of this result is that the embryo slows its growth considerably and, thus, large bodies formed
during the coagulation stage should be less massive than is usually assumed. For conditions expected at
1 AU in the solar protoplanetary disk, gap formation is expected to occur around bodies of mass [1024
g. The e†ect of protoplanetary radial migration is also discussed.
Key words : planetary systems È planets and satellites : general È solar system: formation

1. INTRODUCTION

The formation of planets is one of the most complex
problems in astrophysics, involving accumulation of bodies
over some 45 orders of magnitude in massÈfrom dust
grains to giant planets. One issue that has received a lot of
attention is the formation of planetary embryos by the ac-
cretion of planetesimals. From the perspective of dynamics
we call an object an embryo when it becomes so massive
that one can no longer describe its behavior by means of
simple kinetic theory (in this paper we use the names
““ embryo,ÏÏ ““ protoplanet,ÏÏ and ““massive body ÏÏ
interchangeably). In other words, in the presence of
embryos the multiparticle distribution function cannot be
taken as a product of one-particle distribution functions ;
the gravitational inÑuence of the embryo is strong enough
to a†ect the distribution of planetesimals with which it
interacts. For example, a gap could form around the
embryo. To study properties of systems containing embryos
one must either resort to N-body simulations or try to
account properly for their inÑuence on the underlying plan-
etesimal population and on each other.

In the standard scenario, protoplanets grow in orderly
(Safronov 1972) or runaway fashion (Wetherill & Stewart
1989, 1993) by accreting planetesimals from the protoplane-
tary nebula. After the largest bodies become embryos, they
open gaps and accretion slows or stops. Thereafter these
massive bodies evolve more slowly as gravitational encoun-
ters perturb them into crossing orbits, and violent impacts
occur, thus gradually forming more massive objects. It is a
common belief now that the Earth-type planets and rocky
cores of the giant planets were formed by this two-stage
process.

The question that is not very often addressed is where the
boundary between these two stages occurs. This is an
important issue, because the answer tells us the Ðnal mass of
the objects that further evolve through chaotic collisional
evolution, as well as the number of such bodies and the
conditions for which statistical treatments of collisional
evolution are valid.

The standard paradigm for determining the embryo mass
(Lissauer 1987 ; Weidenschilling et al. 1997) presumes that
planetary growth stops when the embryo consumes all the
planetesimals within a ““ feeding zone ÏÏÈan annulus of

radial width of one Hill radius. Here the Hill radius is
deÐned as
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The estimate of is made for 1 AU and is based on&0 a2
standard assumptions for the protosolar nebula : &0B

AU)~3@2 g cm~2, implying that B1% of the20(a/1
minimum mass solar nebula is contained in solids (Hayashi
1981).

The usual assumption is that before the mass of the
largest protoplanet reaches the distribution of plan-Mis,etesimals is basically homogeneous. In some cases this is
not a reasonable assumption. In particular Ida & Makino
(1993, hereafter IM93) demonstrated using N-body simula-
tions that a protoplanet could scatter planetesimals strong-
ly if it is massive enough and thus can clear a zone around it
which is free from any solid bodies (the so-called
““ oligarchic ÏÏ stage of accretion). The mass required to clear
a gap in this way is not simply related to Kokubo &Mis.Ida (1998) later emphasized the importance of rapid heating
of the planetesimal population by the forming planet in
slowing down the subsequent accretion of planetesimals.

The process of clearing a gap in the planetesimal disk
around a massive body is analogous to gap formation in
gaseous disks (Takeuchi, Miyama, & Lin 1996), which
results from a competition between viscous spreading of the
disk and gravitational interactions with the protoplanet. In
a planetesimal disk the role of viscosity is played by mutual
scattering of planetesimals. One can easily estimate the
planetary embryo mass determined by this process. Let us
assume that the planetesimal random velocities are smallÈ
the disk is cold. Let be the orbital angular)\ (GM
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velocity. If is the mass of each of two planetesimal andm0 is the corresponding Hill radius, then therH \ a(2m0/Mc
)1@3

typical displacement in a close encounter of these planetesi-
mals on circular orbits separated by less than is andrH DrH,
the typical random velocity kick is Similarly, planetesi-)rH.
mals within from the massive object get kicked byRH DRHwith frequency (the inverse of the synodicD)(RH/a)
period). If they are not able to di†use back this distance
during the time interval between kicks by the embryo, then
a gap forms.

The ““ viscous ÏÏ spreading distance is during oneDrH K1@2
synodic period, where K is the number of collisions of a
given small body with other planetesimals between con-
secutive approaches to the massive body. Assuming that the
thickness of the planetesimal disk is one can easilyDrH,
see that ThisK D rH2(&0 /m0)(a/RH )\ a2&0/(m0 M
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implies that a gap in the planetesimal disk opens when
or whenRH2 Z rH2 K,
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or, alternatively, when
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Here is a dimensionless function characterizing thef (v/)rH)
e†ect of the planetesimal velocity dispersion, v ; we expect
f (x)D 1 for and f(x)D x~2 ln x for x ? 1 (see ° 4.2). Ifx [ 1
the mass given by equation (4) is smaller than the isolation
mass given by equation (2), the accretion stops because the
protoplanet forms a gap, rather than because it consumes
all the bodies in its feeding zone. Assuming typical values
for protoplanetary disks one can get
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It is obvious from this estimate that gap formation could be
very important in slowing down planetary accretion.

In this paper we analytically study the process of clearing
a gap around a massive body in a planetesimal disk. We use
an approach to treating the surface density evolution that
was Ðrst developed by Petit & in their seminal seriesHe� non
of papers (1987a, 1987b [hereafter PH], 1988). In ° 2 and
Appendix A we derive a generalized form of their evolution
equation, including the Ñuxes produced by the protoplanet
and those generated by mutual gravitational perturbations
between the planetesimals of the swarm.

In ° 3 we describe the solutions of the evolution equations
for cold planetesimal disks and compare our results with
those obtained using N-body simulations. We comment on
the applicability of our Ðndings to the planet formation in
the early solar system and describe brieÑy the relation
between the surface density and planetesimal velocity dis-
persion evolution in ° 4.

2. DERIVATION OF THE GENERAL EQUATION

All the following calculations assume a Keplerian disk,
although they could be easily extended to the case of an
arbitrary rotation law. We consider a disk of bodies (we will

refer to them as planetesimals, but these could be other
bodies, such as planetary ring particles) with N(m, r,
t)dm\ &(m, r, t)dm/m being the surface number density of
particles with mass between m and m] dm, whose guiding
centers move at a distance r from the central body. It is
important to keep in mind that r is the guiding-center
radius rather than the instantaneous radius. The instanta-
neous surface number density can be obtained only if &(m, r,
t) is supplemented by the random velocity distribution of
planetesimals.

We also assume that a single massive body with mass M
pmoves on a circular orbit in this planetesimal swarm (we

take the orbit to have a Ðxed radius, and we comment later
on the e†ects of migration), and we assume that its mass is
much larger than the masses of the individual swarm par-
ticles. The mass of the central body is and the distanceM

c
,

of the planet from the central body is a. We will also use the
relative masses of the bodies with respect to M

c
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The interactions between particles in the gravitational

Ðeld of a central body are described by HillÏs equations,
which are valid in the limit k, which is always true ink

p
> 1,

the problems that we will study. It was demonstrated by
& Petit (1986) that in this case the motion of nearbyHe� non

gravitationally interacting particles can be separated into
center-of-mass motion, which is invariant during the inter-
action, and relative motion. If one deÐnes new dimension-
less coordinates where all the distances and relative
velocities are normalized by then the equa-a(k1] k2) 1@3,tions of relative motion of particles 1 and 2 do not depend
on their masses in these coordinates. Let us set h to be the
distance between the guiding centers of interacting particles
in these coordinates and P(h,*h)d *h to be the probability
of having a change in h in the range (*h,*h ] d *h) in an
encounter. Then P(h,*h) does not depend upon the masses
of particles involved in a collision, but does depend on the
random velocity distribution function of the planetesimals.

In Appendix A we derive the general equation of the
surface density evolution, which in many aspects parallels
the derivation of equation (44) in PH. Let us set N

i
\

Let A\ (r/2)(d)/dr) be the function determiningN(m
i
, r, t).

the local shear, A\ [(3/4)) for a Keplerian rotation law.
Then the surface density evolution is given by
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where
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Note that the factor r is replaced with a in equations (6)È(7),
where it is appropriate, because at this level of approx-
imation there is no di†erence between them, since they are
both much larger than the Hill radius.
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This di†ers from the equation derived in PH because it
does not assume that surface density varies slowly on scales
of the order of the Hill radius. If we made this assumption
and expanded N(m, r, t) up to the second order in h locally
we would reduce equation (6) to the one derived in PH,
equation (44), which we reproduce here :
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Here and are dimensionless moments of the probabil-I1 I2ity distribution P(h,*h) :
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We can now easily include the e†ect of a massive body on
the surface density evolution. To do this we take surface
density to consist of two parts : one representing a contin-
uous distribution of small masses, corresponding to plan-
etesimals, and another arising from the massive body. One
can write the contribution from the embryo in the following
form:

Nem(m, r, t)\ 1
2na

d(m[ M
p
)d(r [ a) . (12)

We neglect migration of the embryo, so we assume a is
Ðxed.

Substituting (12) into (6) and assuming that the embryo is
much more massive than any of the planetesimals, M

p
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we get
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We can make other simpliÐcations by taking the following
into account. In our particular problem the relevant length

scale for any structure is the Hill radius of the massive body
When interacting with the massive body, planetesimalsRH.

can get kicks that change their guiding centers by AtDRH.
the same time mutual interactions between the planetesi-
mals are unable to produce such large displacements (since

One can thus assume that for planetesimal-k
p
? k

i
).

planetesimal interactions the surface density varies only
slowly on the scale and locally expand the Ðrst partrH > RHof the right-hand side of equation (6) in a Taylor series in h,
as was done in equation (8). At the same time the second
part of the right-hand side, representing the interaction with
the large body, cannot be simpliÐed in a similar way.

We also make some additional changes : we move the
origin of r to a (simply set r [ a \ r@) and switch from r@ to a
dimensionless distance from the planetary embryo H \

Then we getr@/(k1@3
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In deriving this form of the evolution equation we assumed
only that So, this nonlinear integrodi†erentialk

p
?k1.equation can adequately describe the evolution of the

surface density of planetesimals in the disk-protoplanet
system.

2.1. Single-Mass Planetesimals
The constituent bodies of planetesimal disks are likely to

have quite a broad range of masses. However, right now we
are going to concentrate on the simple case of single-mass
planetesimals ; that is, we assume all planetesimals to have a
unique mass Then N(m,H) \ p(H)m0. (& 0/m0)d(m [ m0),where is the surface mass density of particles at inÐnity,&0which we take to be a reference value [it follows then that
p(O) \ 1]. By substituting this assumption into equation
(14) and performing an integral over one obtains thatm2

1
I

Lp
Lq

\ L2p2
LH2 [ j

C
p(H) oH o

[
P
~=

=
dH1 p(H1) oH1 oP(H1, H [ H1)

D
, (15)

where andk0\m0/Mc

I4 I1] I2
2

\ 1
2
P
~=

=
o h o S2h *h ] (*h)2Tdh , (16)

j \ M
p

21@3n&0 a2Ik01@3
(17)

(see eq. [3]). The new time variable q is deÐned as
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One should note that the Ðrst term in the right-hand side of
equation (15) and the expression in brackets are both
dimensionless ; all the dimensional information is hidden in
j and q.

For a cold disk (rms velocity dispersion of planetesimals
in the r-direction it was demonstrated by PH thatv

r
>)rH)

I\ 7.77 , (19)

and thus
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For a hot disk one has (see the discussion after(v
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eq. [32] in ° 4.2)
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It is assumed here that the ratio of vertical to radial random
velocity dispersions in a planetesimal disk is equal to 0.5.
Using (21) one Ðnds that
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In the intermediate regime, when there is nov
r
D )rH,

analytic expression for I and one has to interpolate between
the two asymptotic behaviors given by equations (19) and
(21).

The parameter j quantiÐes the inÑuence of the planetary
perturbations on the uniformity of the planetesimal disk.
The Ðrst term on the right-hand side of equation (15)
describes the nonlinear di†usion of particles due to mutual
gravitational scattering and tends to iron out any initial
inhomogeneities. The second term represents the e†ect of
the planet, which tends to carve out a gap in the distribu-
tion of planetesimals. The steady state originates when these
two e†ects balance each other.

When the protoplanetary mass is large, j is also large and
the expression in brackets dominates the evolution. It leads
to gap formation. On the contrary, if the planetary mass is
small we can neglect the corresponding term in the right-
hand side of equation (15) and obtain a nonlinear di†usion
equation, which drives the planetesimal distribution toward
a homogeneous state. So, one can say that a gap (or at least
a signiÐcant depression in the surface density of the
planetesimals) is formed when From equations (15)Èj Z 1.
(18) one can derive the characteristic time required for a gap
to form when j Z 1 :
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where T \ 2n/) is the orbital period of the embryo. Note
that is approximately the synodic period of a body attopenfrom the embryo and thus is independent of the plan-RHetesimal mass the surface density &, and the numericalm0,factor I.

In ° 3 we conÐrm these arguments by solving equation
(15) numerically.

3. NUMERICAL RESULTS

3.1. Solution of the Equation of Evolution
We solved equation (15) in a simpliÐed setting in which

we completely neglect the velocity evolution of the plan-
etesimal population. Thus, we assume the integral I
embodying all the kinetic properties of planetesimals to be
Ðxed in time. For simplicity we set I\ 1 ; this a†ects only
the timescale of the gap formation by a constant factor and
does not change the evolution at all.

We also assume that planetesimals have very small
random motion on the scale of the embryoÏs Hill radius :

This simpliÐes our treatment a lot, because in thisv>)RH.
case scattering is deterministic so that P(h,*h)
\ d[*h [ h@(h) ] h]. The behavior of the function h@(h),
which gives the Ðnal semimajor axis di†erence as a function
of the initial di†erence, was described in detail by PH. For
the sake of convenience we reproduce this dependence in
Appendix B. Also, in this approximation, the instantaneous
surface number density is given simply by p(H), because the
guiding center and instantaneous radii coincide. The
assumption of a cold disk might be reasonable in cases such
as the early stages of gap clearing in a planetesimal disk,
when scattering by the embryo could be in the shear-
dominated regime, or all the time in dense planetary rings
(Petit & 1987a).He� non

We solved equation (15) with periodic boundary condi-
tions, simply assuming that Lp/LH \ 0 at H \ ^L. The
functional form of P(h,*h) is given by equation (B1). We
usually assume L \ 20.0 here (in units of the Hill radius of
planet) and take the initial surface number density to be
constant : p(H, 0) \ 1.

In Figure 1 we show the evolution of the surface density
with time (we use the dimensionless time q given by eq. [17])
for j \ 1 and 100. In the Ðrst case a gap is never actually
formed, and in the steady state there is only a density
depression around the planet. Thus the particles can be still
accreted by the protoplanet, but the efficiency of this
process is reduced. In the case j \ 100 the gap is formed
very quickly, which is in general agreement with the
expected timescale for gap formation in this(qopen D j~1
case), although it takes some time after that for the density
distribution to settle to a steady state.

In both cases one should note inside the gap a bump,
which decays with time. It corresponds to the horseshoe
orbits in the immediate vicinity of an embryo. This is in
agreement with Monte Carlo and N-body simulations per-
formed earlier (Petit & 1988 ; Tanaka & Ida 1997,He� non
hereafter TI97 ; Spahn & 2000).Sremc— evic�

In Figure 2 we show the Ðnal state of the surface density
for several values of j, so that one can see that gap gets
deeper and wider as j increases. It also looks like the condi-
tion j \ 1 is a reasonable approximate criterion for gap
formation.

3.2. Comparison with N-Body Simulations
We may compare our analytical results from equation

(17) with N-body simulations by IM93 and TI97. Figure 3
of IM93 and Figure 1 of TI97 show well-developed gaps in
a gas-free planetesimal disk. The gaps seen in N-body simu-
lations are never clean because random motion of planetesi-
mals is naturally included, and this permits some of them to
be present in the gap. The parameters used in the pro-
duction of these Ðgures correspond to jB25/I in the Ðrst
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FIG. 1.ÈTime evolution of the surface density in a cold planetesimal disk with a single massive body at H \ 0, for two values of the parameter j deÐned in
equation (17). L eft, the case j \ 1 described ; right : j \ 100 considered. The dimensionless time q is indicated on the Ðgure ; larger q corresponds to a deeper
gap. At the center of a forming gap, note the presence of a bump, which is due to particles in horseshoe orbits near the massive body. The increase in
asymptotic surface density at late q is an artifact of the use of periodic boundary conditions at H \ ^20, which forces to be conserved./~2020 p(H)dH

case while in the second j B 60/I. In both cases the velocity
dispersion of planetesimals is large and we(v/)rH D 20È70),
expect I> 1 (see ° 4.2), meaning that j ? 1 and the condi-
tion for gap formation in the distribution of guiding centers
of planetesimals should be fulÐlled. It was also demon-
strated by TI97 that gas drag could clear the gap of residual
high-velocity planetesimals and thus stop accretion com-
pletely (see, however, the discussion in ° 4.1).

In Figure 6 of IM93 there is shown a sequence of sce-
narios for di†erent ratios of the toM

p
/m0Èplanet

planetesimalÈmasses. In the case when theM
p
/m0\ 10,

gap is barely seen at all, j B 2.2/I ; since planetesimals are
not strongly heated, presumably Forj [ 1. M

p
/m0\ 30,

FIG. 2.ÈFinal distribution of the surface density for a cold disk with a
single massive body, for several values of the parameter j : 0.2, 0.5, 1, 10,
and 100. The higher values of j correspond to progressively deeper gaps in
the Ðgure. The increase in asymptotic surface density at late q is an artifact
of the use of periodic boundary conditions.

when the gap becomes pronounced, j B 6.6/I and j D 1.
Finally for when the gap is quite signiÐcant,M

p
/ m 0\ 100,

j B 22/I ; heating also becomes important, and j ? 1. In
addition, these results conÐrm our prediction below in ° 4.2
that for j D 1, when the gap starts to form, planetary per-
turbations begin to dominate planetesimal random velocity
stirring within of the planet. This comparison showsDRHthat estimates of gap formation based on the parameter j
are qualitatively consistent with N-body simulations.

4. DISCUSSION

4.1. Applications
We have established the usefulness of the parameter j in

describing gap formation. Now we are going to use it to
determine the mass of the body that could open a gap in a
planetesimal disk. This is simply done by setting j \ 1. We
rewrite this condition as

Mcrit\ 21@3nI&0 a2
Am0
M

c

B1@3
, (24)

where is the planet mass for which j \ 1. One canMcriteasily see that this value of critical planetary mass coincides
with our simple estimate in equation (4) if we set f (v/)rH)\
21@3nI.

As we mentioned in ° 1, it is usually assumed that accre-
tion stops when the planet hovers up a zone in the plan-
etesimal disk with width equal to its Hill radius (eq. [1]).
Then the ratio of the two critical masses is

Mcrit
Mis

\ I
27@6n1@2

A m0
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B1@3A M
c
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. (25)

We expect the total mass of the circumstellar disk to be of
order 0.1È0.01 of the mass of the central star (OsterlohM

c& Beckwith 1995 ; Mannings & Sargent 2000). For the pro-
tosolar nebula it is often assumed that surface density of gas
at 1 AU is D2000 g cm~2 (Hayashi 1981). The mass fraction
of heavy elements, which contribute to solid-body forma-
tion in this disk, is D0.01. Using this information we can
estimate that at 1 AU and the corre-M

c
/(&0a2) D 105È106
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sponding factor does not contribute a lot to the ratio in
equation (25) (it varies roughly from 7 to 10). The factor
2~7@6n~1@2IB 1.5 for a cold disk (see eq. [19]) and is signiÐ-
cantly smaller for hot disks [it is likely to be D(m0/Mp

)2@3,
see ° 4.2].

If we take planetesimals to be rocky bodies with radius
D50 km and mass D1021 g, then m0/(&0a2)D 10~6È10~7.
In the end we obtain that

Mcrit/MisD 10~1È10~2 . (26)

This result means that accretion is slowed down long before
the clearing of the feeding zone. We conclude that the
masses of planetary embryos are D10 to 100 times smaller
than predicted by arguments based on clearing the feeding
zone (see eq. [2]).

This conclusion neglects one possible avenue of contin-
ued embryo growth, which could be important in a realistic
protoplanetary nebula. It was suggested that excitation of
planetesimal random velocities in the vicinity of a growing
protoplanetary embryo could lead to planetesimal fragmen-
tation in catastrophic collisions (Wetherill & Stewart 1993 ;
Weidenschilling et al. 1997). The smaller fragments are
strongly a†ected by the gas drag and could be driven into
the gap, thus weakening to some extent the decrease in
accretion rate caused by the gap formation. Our present
study concentrates on only gravitational interactions
between planetesimals, but we hope that the e†ects of frag-
mentation and gas drag could be later incorporated into
this theory.

4.2. Random Motions of Planetesimals
Equation (15) fully describes the surface density evolution

(or its steady state structure) only if it is supplied with infor-
mation about random motions of particles within the plan-
etesimal disk, which determine P(h,*h) and its moment I.
For a cold disk (zero velocity dispersion) I is given by equa-
tion (19). In our case the planetesimal swarm is unlikely to
be cold, because planetesimals will be scattered by the
planet and also will scatter each other. An important point
to note here is that these two types of scattering probably
operate in quite di†erent regimes. Indeed, the natural
parameter determining the heating regime is the ratio of the
velocity dispersion to the shear across the Hill radius. For
the scattering by the planet this parameter is S D v/)RH,
with while for the interaction with otherRH \ a(M

p
/M

c
)1@3,

planetesimals it is with sos D v/)rH, rH \ a(2m0/Mc
)1@3,

that Thus, scattering by the planetarys DS(M
p
/m0)1@3.embryo could be in a shear-dominated regime, while

mutual scattering of planetesimals is practically always in a
dispersion-dominated one.

During a passage within a Hill radius from a massive
body, a planetesimal initially on a circular orbit gets a sig-
niÐcant kick, so that its velocity dispersion increases by

Thus, the part of the disk within a Hill radius fromD)RH.
the planetary embryo will be heated to corre-vD)RH,
sponding to S D 1 in time ThusD)~1(a/RH)\ )~1k

p
~1@3.

the stirring rate by planetary scattering is

ds2
dt
K
pl

D )
A M

p
3

m02M
c

B1@3
for S [ 1 , (27)

within a radial distance from the embryo. The same kindRHof estimate could be derived for the excitation of the vertical
random motions.

This heating rate quickly leads to s ? 1 and, thus, the
self-heating of the planetesimal population should be calcu-
lated in a dispersion-dominated regime. In particular the
integral I in equation (15) describing the scattering of plan-
etesimals by their mutual interactions should be calculated
in this approximation.

Stewart & Ida (2000) considered velocity stirring in the
dispersion-dominated regime. Their results demonstrate
that the horizontal stirring rate is

ds2
dt
K
self

\ )
&0
m0

rH2SPVST , (28)

if the vertical velocity dispersion is of the same order as a
horizontal one (as we normally expect), and they provide a
closed analytic form for the stirring coefficient as aSPVSTfunction of planetesimal velocity dispersion. The coefficient

is deÐned to represent the change in the square of theSPVSTrelative eccentricity (see & Petit 1986), averagedHe� non
over the vertical and horizontal orbital phases, and the
velocity distribution of planetesimals (Ida 1990 ; Stewart &
Ida 2000) :

SPVST \
P

*e
u
2(e

u
, i

u
, h, q, u) f (e

u
, i

u
)de

u
2 di

u
2 3

2
o h o dh

dq du
4n2 ,

(29)

where q, and u are the relative eccentricity, inclina-e
u
, i

u
,

tion, and horizontal and vertical orbital phases, h is the
separation of semimajor axes of the interacting particles,
and is the corresponding distribution function. Wef (e

u
, i
u
)

assume that and h are properly normalized by the Hille
u
, i

u
,

radius for particles participating in the collision [in this case
our deÐnition of di†ers from Stewart & Ida 2000 by aSPVSTfactor of where and are the(m1] m2)4@3/(3M

c
)4@3, m1 m2masses of interacting planetesimals].

Vertical stirring is described by a formula similar to equa-
tion (28) but with a di†erent stirring coefficient,

SQVST \
P

*i
u
2(e

u
, i

u
, h, q, u) f (e

u
, i

u
)de

u
2 di

u
2 3

2
o h o dh

dq du
4n2 .

(30)

Now we can say more about the relation of the integral I to
the kinetic properties of the planetesimal population. One
can easily see that the average over all possible *h for a
given initial h used in deÐnition (16) is equivalent to averag-
ing over the vertical and horizontal orbital phases at a given
relative eccentricity and inclination and then over the dis-
tribution of relative eccentricities and inclinations ; that is

I\ 1
2
P
~=

=
o h o dh

P
f (e

u
, i

u
)de

u
2 di

u
2 du dq

(2n)2 [2h *h ] (*h)2] .

(31)

From the conservation of the Jacobi constant one has
Then, substituting2h *h ] (*h)2\ (4/3)[*(e

u
2) ] [*(i

u
2)].

into equation (31) we get that

I\ 49(SPVST ] SQVST) . (32)

This is an important result, because it relates the evolution
of the surface density of a spatially inhomogeneous plan-
etesimal population to the viscous stirring in a homoge-
neous disk.

Using these expressions we can determine the relative
role of self-heating of the disk and planetary heating in the
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vicinity of the massive body. Of course, the former domi-
nates beyond several from planet, but within of theRH DRHembryo one can get from equations (17), (27), (28), and (32)
the simple result that

(ds2/dt) opl
(ds2/dt) oself

D j . (33)

This means that for when a gap starts to form,j Z 1,
embryo perturbations begin to dominate planetesimal
heating within of the planet ; i.e., when the planetDRHdominates the surface density evolution it also dominates
the heating.

The evolution of kinetic properties of planetesimals could
be neglected if there is an e†ective velocity damping due to
inelastic collisions between bodies, as in the case of planet-
ary rings (Petit & 1987a), or if there is a strong gasHe� non
drag. In the planetesimal case, however, gravitational stir-
ring dominates over damping (Kenyon & Luu 1998), and
then the fact that a gap in the distribution of guiding centers
is opened does not automatically mean that planetesimals
cannot reach the planet, because in the course of scattering
their velocity dispersion grows as well (see eq. [33]).
However, the accretion rate will drop anyway at least
because of the less pronounced focusing (Safronov 1972 ;
Dones & Tremaine 1993). Also, inhomogeneous random
velocity evolution or gas drag could remove the residual
planetesimals from the forming gap, thus bringing their
surface density around the embryo to zero and shutting
down accretion completely (see TI97 for N-body simula-
tions in the presence of the gas drag). For this reason we
believe that our results with no velocity evolution are appli-
cable to the problem of planet accumulation in many cases.

All the stirring coefficients are functions of the vertical
and horizontal velocity dispersions of the planetesimal
population. Stewart & Ida (2000) have in particular shown
that for s ? 1 (we used this resultSPVST, SQVST P s~2 ln s
to derive eq. [21]). It means that to close the problem prop-
erly we need to couple equations for the velocity evolution
to equation (15). In doing so, one should bear in mind that
random motions are highly nonuniform in space, since stir-
ring by the massive body is strongly localized within several
Hill radii from it. Also, it is not clear that the velocity dis-
tribution of planetesimals can be adequately described by
the Schwarzschild distribution, as is usually assumed for
simplicity. For this reason we will not pursue this subject
here and postpone its more detailed exploration to a future
work.

It is important to note, however, that IP s~2 ln s and
j P s2/ ln s for s ? 1, as follows from equations (21)È(22).
Thus, as j grows and the embryo heats up planetesimal
population around it, the planetesimal ““ viscosity ÏÏ
decreases (increasing j even more through this velocity
coupling), which facilitates gap opening. This only strength-
ens our conclusion that a gap must form when the condi-
tion is fulÐlled, even without knowing the details ofj Z 1
the random velocity evolution of planetesimals.

4.3. E†ects of Planetary Migration
In ° 3 we studied gap opening around a massive body,

assuming that the background distribution of surface
density of planetesimals is symmetric with respect to the
position of the embryo. In this case we assumed that the
embryo is Ðxed in radius and that there is no migration
at all.

It is more than likely that in real protoplanetary disks
there are signiÐcant surface density gradients, which could
drive embryo migration. This could in principle introduce
signiÐcant changes into our picture. Indeed, if the embryo is
able to migrate quickly it may move out of the gap it starts
to form and, thus, gap formation would be suppressed.

Planetary migration will naturally occur in the course of
embryo accumulation, since in the process of scattering
planetesimals the massive body exchanges its angular
momentum with them, which leads to its migration. Indeed,
planetesimals passing within from the embryo get dis-RHplaced by a distance thus an embryo itself is displacedDRH,
by During the time interval *t approximatelyDRH(m0/Mp

).
planetesimals pass within the embryoÏs Hill(&0/m0)RH2)*t

sphere. The surface number densities on both sides will be
di†erent by although it is likely that as theD(&0/m0)(RH/a),
embryo moves in some direction it plows planetesimals in
front of it, leaving behind a depression, which would tend to
oppose the migration (see Ward & Hourigan 1989 for a
similar e†ect in gaseous disks). Thus, our previous assump-
tion about the surface density di†erence is likely to be an
upper limit and the actual migration will be weaker. One
can easily calculate that the rate of this ““ maximum ÏÏ migra-
tion is

1
RH

da
dt

\ dh
dt

D )
&0 a2
M

c
. (34)

The time it takes the embryo to migrate through a zone
with a width equal to its own Hill radius is then

and should be longer than given by)~1M
c
/(& 0a2) topenequation (23) if a gap is to be maintained. Thus, the neces-

sary condition here is

AM
p

M
c

B1@3
[

&0 a2
M

c
. (35)

If, say, (and then all bodies with&0 a2/M
c
\ 10~5 j Z 1),

masses g will open a gap faster than they migrateZ1018
through it.

Another type of migration could arise if the whole system
is immersed in a massive gaseous disk, as should be the case
in the early stages of protoplanetary evolution. In this case
Goldreich & Tremaine (1980) demonstrated that it takes
time for a planet to migrateD)~1(h

g
2*a/a3)(M

c
2/M

p
&

g
a2)

a distance *a in the radial direction, where is the diskh
gthickness, determined by its temperature, and is the&

gsurface density of the gaseous disk. In our case, the relevant
length scale is again thus the migration timescale*a D RH ;
is

tmigD )~1k
p
~2@3 M

c
&
g
a2

h
g
2

a2 . (36)

Comparing these two timescales we obtain
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(37)
Thus, migration due to the interaction with a gaseous disk
is unlikely to have an important e†ect on gap opening.
Tanaka & Ida (1999) have studied the e†ect of planetary
migration on the gap formation and embryo accretion rate
using N-body simulations. They incorporated both migra-
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tion caused by nebular tides and migration due to the plan-
etesimal kicks. Our adopted set of parameters g(M

p
D 1024

and a D 1 AU) falls into their ““ shepherd ÏÏ regime of migra-
tion, when the protoplanet opens a gap in the planetesimal
disk and the accretion rate decreases signiÐcantly. This
conÐrms our simple analytical estimates of the role of
migration.

5. SUMMARY

We studied the possibility that planetary formation due
to the accretion of planetesimals could be signiÐcantly
slowed or even stopped, due to gap formation around a
growing planetary embryo, caused by the strong gravita-
tional perturbations of planetesimals in its vicinity. We Ðnd
a critical parameter j, which describes the importance of
gap formation [eq. (17)]. Predictions based on this param-
eter were compared with numerical N-body simulations of
this process (IM93, TI97), and they are in good agreement.

Only the case of a single-mass distribution of the particles
in a disk was studied here. But it is plausible that our basic
results hold true even if a distribution of masses exists. Only
the characteristic planetesimal mass entering this parameter
should be chosen carefully, and this question merits further
investigation (see Kokubo & Ida 1996, 1998 for some
numerical results).

Our Ðndings were conÐrmed by solving the evolution
equation (15), neglecting the velocity dispersion evolution of
planetesimals in the disk. The kinematic properties of the
planetesimal population are important in this sort of study,
and the surface density evolution and velocity evolution of
planetesimals are closely related. Nevertheless, we hope to
have grasped the main qualitative features of the evolution

of the distribution of guiding centers even without keeping
track of the velocity evolution. The instantaneous density of
planetesimals depends on their kinematic properties and
should experience at least a decrease by a factor of several in
the vicinity of the embryo, leading to slowing down the
accretion (gas drag and inhomogeneous velocity evolution
could clear out the gap completely, although fragmentation
of planetesimals in catastrophic collisions could a†ect this
conclusion). We also stress that our results for a cold disk
provide an upper limit to the embryo mass required to open
a gap.

If the disk is not uniform, migration of the embryo itself is
also likely to occur in the course of its interaction with
planetesimals or with the more massive gaseous disk from
which the whole embryo-planetesimal system originally
condensed. We have estimated how this could a†ect our
results and show that gap formation is likely to occur even
when migration is present.

Finally, the evolution equation itself, coupled with the
equations of planetesimal velocity evolution, provide us
with a powerful tool to study the formation and evolution
of planetary embryos. Since our results seem to be in good
agreement with N-body simulations, we may use this
machinery for other problems of a similar nature. An
obvious example is the coupled evolution of several planet-
ary embryos.

I am grateful to my advisor, Scott Tremaine, for
his encouragement and guidance, and to K. Ohtsuki,
J. Goodman, and E. Chiang for fruitful discussions. I would
also like to acknowledge the Ðnancial support provided by
NASA grants NAG 5-7310 and NAG 5-10456.

APPENDIX A

DERIVATION OF EQUATION (6)

Following Petit & (1987b), we Ðrst calculate the current of particles with mass (initially located at the guiding-He� non m1center radius through the circle of radius r, due to the interaction with a single particle of mass located at guiding-r1) m2,center radius The characteristic dimensionless relative distance for the two particles involved in this interaction isr2.

h \ o r1[ r2 o

r(k1] k2)1@3
. (A1)

It was demonstrated by & Petit (1986) that in coordinates normalized in this way the equations of relative motion ofHe� non
particles do not depend upon their masses. For the particle initially located to the left of the boundary at r to cross it to them1right one needs

*h [ *hmin\ o r [ r1 o

r
m1] m2

m2(k1 ] k2)1@3
, (A2)

where the factor arises because h describes relative motion of particles.(m1 ] m2)/m2Then the left-to-right part of this Ñow of particles in the mass interval during the time dt is obviously given(m1,m1] dm1)by

P
~=

r
dr1 2 oA o o r1[ r2 o

P
*hmin

=
d(*h)2nr1P(h, *h)N(m1, r1, t)dt dm1 . (A3)

Here is the local shear velocity between the interacting particles.o A o o r1[ r2oSumming over all possible positions and masses of particles we obtain the total left-to-right Ñow of particles in the rangem2(m1,m1 ] dm1) :

S*J
`
T \ dm1

P
0

=
dm2

P
~=

=
dr2
P
~=

r
dr1
P
*hmin

=
d(*h)N(m1, r1, t)N(m2, r2, t)P(h, *h)4nr1 oA o o r1 [ r2 o dt . (A4)
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This formula coincides with equation (28) of PH. We will further denote where i \ 1, 2, . . . for any function f forf
i
\ f (m

i
, . . . ),

brevity, and replace the factor under the integral with r (since weakly varies on the scale of the Hill radius).r1 r1Making the change of variables from and to R and h given by (see. eq. [30]È[31] of PH)r1 r2
r1 \ r ] R , (A5)

r2\ r ] R[ (k1] k2)1@3rh , (A6)

one can reduce equation (A4) to

S*J
`

T \ 4n oA o r3dt dm1
P
0

=
dm2(k1] k2)2@3

P
~=

=
dh
P
~=

0
dR
P
*hmin

=
d(*h)N1(r ] R)N2[r ] R[ (k1] k2)1@3rh]P(h, *h) o h o .

(A7)

We can change the order of integration over d(*h) and dR to get for S*J
`
T

S*J
`

T \ 4n oA o r3 dt dm1
P
0

=
dm2(k1] k2)2@3

P
~=

=
dh o h o
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=
d(*h)P(h, *h)
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D

0
dRN1(r ] R)N2[r ] R[ (k1] k2)1@3rh] ,

(A8)

with

D\ [ k2 r
(k1] k2)2@3

*h . (A9)

Considering now the right-to-left Ñow of particles through r one can get for this component of Ñux

S*J~T \ 4n oA o r3 dt dm1
P
0

=
dm2(k1] k2)2@3

P
~=

=
dh o h o

P
~=

0
d(*h)P(h, *h)

P
0

D
dRN1(r ] R)N2[r ] R[ (k1] k2)1@3rh] .

(A10)

Now, the total Ñux of particles through the boundary at r is given by Then the equation ofS*JT \S*J
`
T [ S *J~T.

evolution is obtained by setting
L
Lt

[2nrN1(m, r, t)]dt dm1 \ [ LS*JT
Lr

. (A11)

Here we do not di†erentiate r3 in the right-hand side because it varies only weakly on the scale of the Hill radius. Then the
right-hand side of equation (A11) contains which obviously equals Taking this into account, oneL(N1N2)/Lr, L(N1N2)/LR.
can trivially perform an integration over R in the right-hand side of (A11) to obtain Ðnally equation (6). In deriving it we have
also taken into account that

P
~=

=
d(*h)P(h, *h) \ 1 . (A12)

One should note that in deriving equation (A7) we assumed that where means averagingSN1N2TÕ\ S N1TÕSN2TÕ, SgTÕquantity g over the azimuthal angle. This might not be true in the planetary disks, which are cold and have a large viscosity
(Spahn & 2000), or during the initial stages of the gap development in planetesimal disk. However, we believe thatSremc— evic�
it is unlikely to a†ect our results, since for hot disks and late times this separability assumption should be adequate. Thus, it is
possible that our numerical results presented in ° 3 are somewhat di†erent quantitatively at very early times from what a more
detailed theory would predict. But we believe that our principal conclusions remain unchanged.

APPENDIX B

FORM OF h(h@) USED IN PH

Petit & (1987b) have solved numerically the Hill equations in the case in which the initial random motion ofHe� non
interacting particles is small. In this case the outcome of the interaction between two particles is deterministic, and they
obtained the following form for the function h(h@), where h is the initial di†erence of semimajor axes of particles and h@ is the
Ðnal value of the same quantity, normalized by where and are the masses of interacting bodies :a[(m1 ] m2)/Mc

]1@3, m1 m2

h@(h)\

4

5

6

0
0

h ] 3.34377(h5] 0.2h4 [ 3.14h3)~1 if h º 1.75622 ,
350h2[ 1204h ] 1038.5 if 1.75622[ h º 1.6777 ,
2895.903h5[ 20454.39h4] 57671.78h3

[ 81146.35h2] 56984.57h [ 15977.97 if 1.6777[ h º 1.2219 ,
[1832.5h2] 4361.35h [ 2596.5 if 1.2219[ h º 1.17 ,
[h [ 4.107085921(h~1 ] 4h4) exp ([5.58505361h3) if 1.17[ h º 0 .

(B1)
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