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ABSTRACT
We quantitatively study the probability distribution function (PDF) of cosmological nonlinear density

Ñuctuations from N-body simulations with a Gaussian initial condition. In particular, we examine the
validity and limitations of one-point and two-point lognormal PDF models against those directly esti-
mated from the simulations. We Ðnd that the one-point lognormal PDF very accurately describes the
cosmological density distribution even in the nonlinear regime (rms variance overdensitypnl[ 4, d [
100). Furthermore, the two-point lognormal PDFs are also in good agreement with the simulation data
from linear to fairly nonlinear regimes, while they deviate slightly from the simulation data for d [[0.5.
Thus, the lognormal PDF can be used as a useful empirical model for the cosmological density Ñuctua-
tions. While this conclusion is fairly insensitive to the shape of the underlying power spectrum of density
Ñuctuations P(k), models with substantial power on large scales, i.e., are bettern 4 d ln P(k)/d ln k [ [1,
described by the lognormal PDF. On the other hand, we note that the one-to-one mapping of the initial
and evolved density Ðelds, consistent with the lognormal model, does not approximate the broad dis-
tribution of their mutual correlation even on average. Thus, the origin of the phenomenological lognor-
mal PDF approximation still remains to be understood.
Subject headings : cosmology : theory È dark matter È galaxies : clusters : general È

large-scale structure of universe È methods : numerical

1. INTRODUCTION

The probability distribution function (PDF) of the
cosmological density Ñuctuations is the most fundamental
statistic characterizing the large-scale structure of the uni-
verse. In the standard picture of gravitational instability,
the PDF of the primordial density Ñuctuations that are
responsible for the current structures in the universe is
assumed to obey a random Gaussian distribution. There-
fore, it is fully speciÐed by the two-point correlation func-
tion m(r) or, equivalently, the power spectrum P(k). As long
as the density Ñuctuations are in the linear regime, their
PDF remains Gaussian. Once they reach the nonlinear
stage, however, their PDF signiÐcantly deviates from the
initial Gaussian shape because of the strong nonlinear
mode coupling and the nonlocality of the gravitational
dynamics. The functional form for the resulting PDFs in
nonlinear regimes are not known exactly, and a variety of
phenomenological models have been proposed (Saslaw
1985 ; Suto, Itoh, & Inagaki 1990 ; Lahav et al. 1993 ;

& Yokoyama 1993 ; Suto 1993 ; Ueda & Yokoy-Gaztan8 aga
ama 1996). Once such a one-point PDF is speciÐed, one can
characterize the clustering of the universe with the higher
order statistics such as skewness and kurtosis. Moreover,
the two-point PDF is useful in estimating the errors in the
one-point statistics due to Ðnite sampling since the mea-
surement at di†erent positions is not independent, and their
correlations are supposed to be dominated by the two-point
correlation function (Colombi, Bouchet, & Schae†er 1995 ;
Szapudi & Colombi 1996). Also, the two-point PDF plays
an important role in analytical modeling of dark halo
biasing on two-point statistics.

From an empirical point of view, Hubble (1934) Ðrst
noted that the galaxy distribution in angular cells on the
celestial sphere may be approximated by a lognormal dis-

tribution rather than a Gaussian one. More recent analysis
of the three-dimensional distribution of galaxies indeed
conÐrmed this (e.g., Hamilton 1985 ; Bouchet et al. 1993 ;
Kofman et al. 1994). Interestingly, several N-body simula-
tions in cold dark matter (CDM) models also indicated that
the PDF of density Ñuctuations is fairly well approximated
by the lognormal (e.g., Coles & Jones 1991 ; Kofman et al.
1994 ; Taylor & Watts 2000), at least in a weakly nonlinear
regime.

Those observational and numerical indications have not
yet been understood theoretically ; Bernardeau (1992, 1994)
showed that the PDF computed from the perturbation
theory in a weakly nonlinear regime approaches the lognor-
mal form only when the primordial power spectrum is pro-
portional to kn with n \ [1. On the basis of this result,
Bernardeau & Kofman (1995) argued that the successful Ðt
of the lognormal PDF in the CDM models should be inter-
preted as accidental and simply results from the fact that the
power spectra of those models are well approximated by

with on scales of cosmological interest. Theykneff neff ^ [1
claimed that the lognormal PDF may fail either in a highly
nonlinear regime or in models with power spectrum with

In fact, Ueda & Yokoyama (1996) conclude thatneff D[1.
the lognormal PDF does not Ðt well the PDF in a highly
nonlinear regime, from the analysis of CDM simulations by
Suginohara & Suto (1991) employing N \ 643 particles in a
100 Mpc box.

The aim of this paper is to study the extent to which the
lognormal model describes the PDF in weakly and highly
nonlinear regimes using the high-resolution N-body simula-
tions with N \ 2563. In particular, we extend our analysis
to the two-point PDF in addition to the one-point PDF
discussed previously. Bernardeau (1996) analytically com-
puted the two-point PDF using the perturbation technique
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and compared it somewhat indirectly with N-body simula-
tions in a weakly nonlinear regime. In contrast, we focus on
the highly nonlinear regime and examine the validity of the
empirical lognormal model.

This paper is organized as follows : ° 2 describes the log-
normal PDF derived through one-to-one mapping between
the linear and nonlinear density Ðelds. The detailed com-
parison between the lognormal predictions and N-body
results is presented in ° 3. Finally, ° 4 is devoted to conclu-
sions and discussion.

2. PROBABILITY DISTRIBUTION FUNCTIONS FROM THE

LOGNORMAL TRANSFORMATION

In this section we brieÑy outline the derivation of the
lognormal PDF assuming a one-to-one correspondence
between the linear and evolved density Ñuctuations.
Throughout the paper, we consider the mass density Ðeld
o(x ; R) at the position x smoothed over the scale R. This is
related to the unsmoothed density Ðeld o(x) as

o(x ; R) \
P

d3yW ( o x [ y o ; R)o(y)

\
P d3k

(2n)3 W3 (kR)o8 (k)e~ik Õ x . (1)

In the above expression, W denotes the window function
and and represent the Fourier transforms of the corre-W3 o8
sponding quantities. In what follows, we adopt the two con-
ventional windows

W3 (x)\ 4
5
6
0
0

e~x2@2 Gaussian ,
3(sin x [ x cos x)/x3 top hat .

(2)

Then, the density contrast at the position x is deÐned as
with denoting the spatiald(x ; R)4 [o(x ; R) [ o6 ]/o6 , o6

average of the smoothed mass density Ðeld. For simplicity
we use d to denote d(x ; R) unless otherwise stated.

2.1. One-Point L ognormal PDF
The one-point lognormal PDF of a Ðeld d is deÐned as

PLN(1)(d)\ 1
(2np12)1@2

exp
G
[ [ ln (1] d)] p12/2]2

2p12
H 1

1 ] d
.

(3)

The above function is characterized by a single parameter
that is related to the variance of d. Since we use d top1represent the density Ñuctuation Ðeld smoothed over R, its

variance is computed from its power spectrum explicitlyPnlas

pnl2 (R)4
1

2n2
P
0

=
Pnl(k)W3 2(kR)k2 dk . (4)

Here and in what follows we use subscripts ““ lin ÏÏ and ““ nl ÏÏ
to distinguish the variables corresponding to the primordial
(linear) and the evolved (nonlinear) density Ðelds, respec-
tively. Then depends on the smoothing scale R alone andp1is given by

p12(R)\ ln [1] pnl2 (R)] . (5)

Given a set of cosmological parameters, one can compute
and thus very accurately using a Ðtting formulapnl(R) p1(R)

for (e.g., Peacock & Dodds 1996, hereafter PD). InPnl(k)

this sense, the above lognormal PDF is completely speciÐed
and allows the deÐnite comparison against the numerical
simulations (see ° 3).

It is known that the above lognormal function may be
obtained from the one-to-one mapping between the linear
random Gaussian and the nonlinear density Ðelds (e.g.,
Coles & Jones 1991). We deÐne a linear density Ðeld g
smoothed over R obeying the Gaussian PDF,

PG(1)(g) \ 1
(2nplin2 )1@2 exp

A
[ g2

2plin2
B

, (6)

where the variance is computed from its linear power spec-
trum

plin2 (R) 4
1

2n2
P
0

=
Plin(k)W3 2(kR)k2 dk . (7)

If one introduces a new Ðeld d from g as

1 ] d \ 1
(1] pnl2 )1@2 exp

G g
plin

[ ln (1] pnl2 )]1@2
H

, (8)

the PDF for d is simply given by which(dg/dd)PG(1)(g),
reduces to equation (3).

At this point, the transformation equation (8) is nothing
but a mathematical procedure to relate the Gaussian and
lognormal functions. Thus, there is no physical reason to
believe that the new Ðeld d should be regarded as a nonlin-
ear density Ðeld evolved from g, even in an approximate
sense. In fact, it is physically unacceptable since the relation,
if taken at face value, implies that the nonlinear density Ðeld
is completely determined by its linear counterpart locally.
We know, on the other hand, that the nonlinear gravita-
tional evolution of cosmological density Ñuctuations pro-
ceeds in a quite nonlocal manner and is sensitive to the
surrounding mass distribution.

Nevertheless, the fact that the lognormal PDF provides a
good Ðt to the simulation data empirically as discussed in
° 1 implies that the transformation equation (8) somehow
captures an important aspect of the nonlinear evolution in
the real universe. In ° 3 we present detailed discussion on
this problem. Before that, we derive the two-point lognor-
mal PDF by applying this transformation in ° 2.2.

2.2. Two-Point L ognormal PDF
Consider two density Ðelds, andd1\ d(x1 ; R) d2\

located at and respectively, and smoothedd(x2 ; R), x1 x2,over R. We denote the two-point PDF by forP(2)(d1, d2 ; r)
the two Ðelds with a speciÐed separation r, i.e., satisfying the
condition o x1[ x2 o\ r.

In the case of the Gaussian Ðelds and this two-g1 g2,point PDF is given by the bivariate Gaussian (e.g., Bardeen
et al. 1986)

PG(2)(g1, g2 ; r) \
1

2nJdet M
exp

C
[

1

2
(g1, g2)M~1(t

:

g1
g2

)
t
;

D
,

(9)

where

M 4
(
t
:

Sg12T Sg1 g2T
Sg1 g2T Sg22T

)
t
;

\<
t
>

plin2 mlin(r)
mlin(r) plin2

=
t
?

, (10)

mlin(r ; R) \ 1
2n2

P
0

=
Plin(k)W3 2(kR)

sin (kr)
kr

k2 dk . (11)
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TABLE 1

SIMULATION PARAMETERS FOR THE CDM MODELS

L box
Model )0 j0 !a p8 (h~1 Mpc) Realizations

SCDM . . . . . . . 1.0 0.0 0.50 0.6 100 3
LCDM . . . . . . . 0.3 0.7 0.21 1.0 100 3
LCDM300 . . . 0.3 0.7 0.21 1.0 300 3
OCDM . . . . . . 0.3 0.0 0.25 1.0 100 3

a Shape parameter of the power spectrum.

From an analogy of equation (8), let us assume that the
transformation from to is given by the form(g1, g2) (d1, d2)

1 ] d
i
\ aebgi (i\ 1, 2) . (12)

The coefficients a and b are determined by the following

conditions :

Sd1T \ Sd2T \ 0 , (13)

Sd12T \ Sd22T \ pnl2 , (14)

Sd1 d2T \ mnl(r) . (15)

In the above expressions, angular brackets denote the
average over the two-point PDF, which in the present
model reduces to

SF(d1, d2)T 4
PP

~1

=
F(d1, d2)P(2)(d1, d2 ; r)dd1 dd2

\
PP

~=

=
F[d1(g1), d2(g2)]

] PG(g1, g2 ; r)dg1 dg2 . (16)

FIG. 1.ÈOne-point PDFs in CDM models with Gaussian (left panels) and top-hat (right panels) smoothing windows ; R\ 2 (cyan), 6 (red), and 18 h~1
Mpc (green). The top, middle, and bottom panels correspond to the PDFs in SCDM, LCDM, and OCDM, respectively. Solid lines : the lognormal PDF
adopting calculated directly from the simulations. L ong-dashed lines : the lognormal PDF estimated from the nonlinear Ðtting formula of Peacock &pnlDodds (1996). Values of in each panel are estimated from the simulations.pnl
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After a straightforward calculation, one obtains

a \ 1
(1] pnl2 )1@2 , b \

C ln (1] mnl)
mlin

D1@2
. (17)

Then this procedure yields the two-point lognormal PDF,

PLN(2)(d1, d2 ; r)\ 1
2n(S2[ X2)1@2

] exp
C
[ S(L 12] L 22)[ 2XL 1 L 2

2(S2[ X2)
D

]
1

(1] d1)(1] d2)
, (18)

where

X 4 ln (1] mnl) , (19)

S 4 ln (1] pnl2 ) , (20)

L
i
4 ln [(1] d

i
)J1 ] pnl2 ] , (i\ 1, 2) . (21)

Again the nonlinear two-point correlation function mnl(r ; R)
can be computed as

mnl(r ; R)\ 1
2n2

P
0

=
Pnl(k)W3 2(kR)

sin (kr)
kr

k2 dk , (22)

and thus equation (18) can be fully speciÐed using the PD
nonlinear power spectrum.

3. THE LOGNORMAL PDFs AGAINST N-BODY

SIMULATIONS

The previous section discussed a prescription to derive
one-point and two-point lognormal PDFs assuming
one-to-one mapping between the linear and nonlinear
density Ðelds. As remarked, however, the assumption does
not seem to be justiÐed in reality. So in this section we
compare the lognormal PDFs extensively with the results of
cosmological N-body simulations and discuss their validity
and limitations. The analysis for the one-point PDF below
signiÐcantly increases the range of d compared with several
previous works. As far as we know, the direct estimation of
the two-point PDF in the nonlinear regime from simula-
tions has not been performed before, and this is the Ðrst
attempt.

3.1. N-Body Simulations
For the present analysis, we use a series of cosmological

N-body simulations in three CDM models (SCDM,
LCDM, and OCDM for standard, lambda, and open CDM
models, respectively ; Jing & Suto 1998) and four scale-free
models with the initial power spectrum P(k)P kn (n \ 1, 0,
[1, and [2 ; Jing 1998). All the models employ N \ 2563
dark matter particles in a periodic comoving cube, andL box3 ,
are evolved using the P3M code. The gravitational soften-
ing length is for the CDM (scale free)L box/2560 (3L box/5120)
models and is kept Ðxed in the comoving length. The ampli-
tude of the Ñuctuations in CDM models, is normalizedp8,according to the cluster abundance (e.g., Kitayama & Suto
1997). The scale-free models assume an EinsteinÈde Sitter
universe (density parameter cosmological constant)0 \ 1,

The other parameters of the CDM models are sum-j0\ 0).
marized in Table 1.

The mass density Ðelds are computed on 5123 grids in the
simulation box. First, we assign particles to each grid point
using the cloud-in-cell interpolation. Then, we apply the
smoothing kernel in the Fourier space and obtain the
smoothed density Ðelds after the inverse Fourier transform.
Note that the density Ðelds on those grids are not com-
pletely independent for and we do heavyR[ L box/512,
oversampling in this sense. Nevertheless, the error bars
quoted in our results below are estimated from the variance
among the three di†erent realizations for each model
(except the n \ [1 model, which has only two realizations)
and thus are free from the oversampling.

3.2. T he One-Point PDF
Consider Ðrst the one-point PDFs in CDM models (Fig.

1). The PDFs are constructed by binning the data with
*d\ 0.1, but we do not plot all the data points just for an
illustrative purpose. We compute the density Ðelds
smoothed over Gaussian (left panels) and top-hat (right
panels) windows with di†erent smoothing lengths ; R\ 2, 6,
and 18 h~1 Mpc are plotted in cyan, red, and green
symbols, respectively, with error bars. The corresponding
values of are summarized in Table 2 and are also shownpnlon each panel. Solid lines show the lognormal PDFs adopt-
ing directly evaluated from simulations. The agreementpnlbetween the lognormal model and the simulation results is
quite impressive. A small deviation is noticeable only for
d [[0.5.

We also show the lognormal PDFs in dashed lines,
adopting calculated from the nonlinear Ðtting formulapnlof PD (values in parentheses in Table 2). Therefore, the
predictions do not use the speciÐc information of the
current simulations and are completely independent in this
sense. While these predictions are in good agreement with
simulation data for h~1 Mpc, the results for R\ 18R[ 6
h~1 Mpc are rather di†erent. Actually, this discrepancy
should be ascribed to the simulations themselves, not to the
model predictions ; Table 2 indicates that the in thepnlcurrent simulations become systematically smaller than the
PD predictions for larger R. This is because the simulations
assume (incorrectly) no Ñuctuations beyond the scale of the
simulation box size, This constraint systematicallyL box.reduce the Ñuctuations as the smoothing scale R
approaches We made sure that this is indeed the caseL box.by repeating the same analysis using the CDM simulations
evolved in h~1 Mpc (Jing & Suto 1998) ; theL box\ 300
variance of Ñuctuations at R¹ 18 h~1 Mpc from the simu-
lations agrees with the PD prediction to within 2% accu-
racy. Thus, we conclude that the lognormal PDF with the
PD formula accurately reproduces the simulation results in
the CDM models.

Next, turn to the scale-free models. Figure 2 shows plots
corresponding to those in Figure 1, but for n \ 1 to [2
models. In this Ðgure, we compare the simulation data
(symbols with error bars) with the lognormal PDF predic-
tions (solid lines) adopting from simulations (Table 3).pnlGenerally, their agreement is good also in these models. A
closer look at Figure 2, however, reveals that the simulation
results start to deviate from the lognormal predictions at
both high- and low-density regions and that the deviation
seems to systematically increase as n becomes larger. While
this tendency is qualitatively consistent with the earlier
claim by Bernardeau (1994) and Bernardeau & Kofman
(1995) on the basis of the perturbation theory, our fully
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FIG. 2.ÈSame as Fig 1, but in the scale-free models (n \ 1 to [2, top to bottom) ; (cyan), (red), and (green)R\ 0.02L box 0.05L box 0.15L box

nonlinear simulations show that the deviation from the log-
normal PDF is not so large even in these scale-free models.

To examine the validity of the lognormal PDF more
quantitatively, we compare the normalized skewness

TABLE 2

AMPLITUDE OF EVALUATED FROM THE CDM SIMULATIONSpnl(R)

R
Smoothing (h~1 Mpc) SCDM LCDM OCDM

Top hat . . . . 2 2.33 (2.24) 4.17 (4.08) 4.37 (4.23)
6 0.79 (0.77) 1.37 (1.40) 1.37 (1.38)

18 0.23 (0.24) 0.44 (0.50) 0.43 (0.47)
Gaussian . . . 2 1.11 (1.08) 1.95 (1.96) 1.97 (1.96)

6 0.36 (0.35) 0.64 (0.69) 0.63 (0.67)
18 0.065 (0.090) 0.15 (0.22) 0.13 (0.21)

NOTE.ÈThe values in parentheses are estimated from the nonlinear
Ðtting formula of Peacock & Dodds 1996.

S 4 Sd3T/Sd2T2 and the normalized kurtosis
K 4 (Sd4T [ 3Sd2T2)/Sd2T3. The lognormal PDF predicts
that

S(R) \ 3 ] pnl2 (R) , (23)

K(R) \ 16 ] 15pnl2 (R) ] 6pnl4 (R) ] pnl6 (R) , (24)

which are plotted in dotted lines in Figure 3 for six models :
two LCDM models with and 300 h~1 Mpc andL box\ 100
four scale-free models with n \ 1, 0, [1, and [2.

In practice, however, the density Ðeld d in numerical
simulations does not extend the entire range between [1
and O but rather is limited as owing to thedmin\d \ dmaxÐnite size of the simulation box. Thus, the nth-order
moments of d in simulations may be better related to

SdnT@\
P
dmin

dmaxdnPLN(1)(d)dd . (25)
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FIG. 3.ÈNormalized skewness S and normalized kurtosis K against from simulations and the lognormal PDF predictions. Symbols represent thepnlvalues estimated from simulations (quoted 1 p error bars represent the scatter in the realizations). The meaning of predictions plotted in di†erent lines is
explained in the text. Top-hat smoothing is assumed.

The speciÐc values for and may be roughly esti-dmin dmaxmated from the condition that the expectation number of
independent sampling spheres in the simulation box for

TABLE 3

THE rms IN THE SCALE-FREE SIMULATIONSpnl(R)

R
Smoothing (L box) n \ 1 n\ 0 n \ [1 n \ [2

Top hat . . . . . . . 0.02 2.48 3.10 3.18 2.79
0.05 0.80 1.10 1.28 1.28
0.15 0.15 0.28 0.43 0.54

Gaussian . . . . . . 0.02 1.00 1.34 1.51 1.47
0.05 0.26 0.44 0.62 0.71
0.15 0.03 0.09 0.17 0.25

or becomes unity :d \dmin d [ dmax
L box3

4nR3/3
P
dmax

=
PLN(1)(d)dd \ 1 , (26)

L box3
4nR3/3

P
~1

dmin
PLN(1)(d)dd \ 1 . (27)

Dashed lines in Figure 3 show the lognormal PDF predic-
tions based on equations (25)È(27). The Ðlled triangles and
squares represent the measurement of S and K from the
simulations, and the solid lines indicate the lognormal PDF
predictions using equation (25) with the actual values for

and in the simulations. Except for the n \ 1 scale-dmin dmaxfree model, the predictions in solid lines reproduce the simu-
lation data very well, which indicates that the lognormal
PDF is in fact a good approximation. The relatively large
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FIG. 4.ÈTwo-point PDFs in the LCDM model with Gaussian smoothing over R\ 2 h~1 Mpc (upper panels) and R\ 6 h~1 Mpc (lower panels). The
results at separation r \ 2R and 3R are plotted. Solid lines : The lognormal PDF adopting and calculated directly from the simulations. L ong-dashedpnl mnllines : The lognormal PDF estimated from the nonlinear Ðtting formula of Peacock & Dodds (1996).

discrepancy between the lognormal prediction and the
simulation in the n \ 1 model is real since one can clearly
recognize the systematic tendency with respect to n ; models
with smaller n, i.e., with substantial power on large scales,
are better described by the lognormal PDF. This is consis-
tent with the discussion by Bernardeau (1994).

Incidentally, both the current simulations and the log-
normal PDF approximation conÐrmed the relatively strong
scale dependence of S and K for as pointed outpnl[ 1,
earlier by Lahav et al. (1993) and Suto (1993). In fact, the
degree of their scale dependence is also sensitive to the
underlying power spectrum. Thus, the hierarchical ansatz
for the higher order clustering is not valid in general.

In summary, we Ðnd that the one-point lognormal PDF
remains a fairly accurate model for the cosmological density
distribution even up to and d D 100, fairly indepen-pnlD 4
dently of the shape of the underlying power spectrum of
density Ñuctuations. The range of validity turns out to be
signiÐcantly broader than ranges from previous studies
based on lower resolution simulations, and0.1[p [ 0.6

(Kofman et al. 1994) and andd [ 4 0.3[p [ 1.5 d [ 9
(Bernardeau & Kofman 1995), for instance.

3.3. T he Two-Point PDF
While we would like to perform a similar comparison for
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the two-point PDFs, it is a function of four variablesÈd1,R, and rÈand thus the comparison becomes ratherd2,complicated. Therefore, we decided to use the conditional
two-point PDF for the purpose :

P(2)(d1 o d2 ; r)4
P(2)(d1, d2 ; r)

P(1)(d2)
. (28)

Since we already made sure that the one-point PDF is very
accurately approximated by the lognormal, our task is to
see if simulation results Ðt the conditional two-point log-
normal PDF:

PLN(2)(d1 o d2 ; r)4
C S
2n(S2[ X2)

D1@2

] exp
C
[ (SL 1[ XL 2)2

2S(S2 [X2)
D 1

(1] d1)
. (29)

The evaluation of the conditional two-point PDFs from
simulations is carried out as follows. From the smoothed
density Ðelds computed on the 5123 grid points, we Ðrst
select those grid points with d2[ *d2/2 \d\ d2] *d2/2.
The bin size is adjusted for each value of so that*d2 d2approximately 105 grid points satisfy the condition. Next
we pick up all grid points separated at r [ *r/2 D r ] *r/2
from the above grids. The separation interval *r is chosen
so that Finally, we compute the4nr2*r(512/L box)3D 103.
conditional two-point PDF with a constant bin size of 0.1
in d1.Figure 4 plots the resulting PDFs for the LCDM model
with the Gaussian smoothing window; the four upper
panels show the PDFs for the separation r \ 4 and 6 h~1
Mpc and the smoothing length R\ 2 h~1 Mpc, while the
four lower panels for r \ 12 and 18 h~1 Mpc and R\ 6 h~1
Mpc. Solid lines indicate the conditional lognormal PDFs
adopting the values of and from simulations, whilepnl mnldashed lines show those using the PD predictions (Tables 2,
3, 4, and 5). Clearly, the lognormal PDF is a reasonably
good approximation. The deviation at on thed2[ [0.5,
other hand, seems real and may be an enhanced feature that
we noted in the one-point PDF (Fig. 1).

TABLE 4

AMPLITUDE OF R) EVALUATED FROM THE CDM SIMULATIONSmnl(r ;
WITH GAUSSIAN SMOOTHING

R r
(h~1 Mpc) (h~1 Mpc) SCDM LCDM OCDM

2 . . . . . . . . . . 4 0.68 (0.64) 2.15 (2.10) 2.05 (2.06)
2 . . . . . . . . . . 6 0.36 (0.35) 1.10 (1.15) 1.06 (1.10)
6 . . . . . . . . . . 12 0.058 (0.063) 0.21 (0.26) 0.20 (0.24)
6 . . . . . . . . . . 18 0.021 (0.028) 0.10 (0.144) 0.087 (0.127)

NOTE.ÈThe values in parentheses are estimated from the nonlinear
Ðtting formula of Peacock & Dodds 1996.

TABLE 5

TWO-POINT CORRELATION R) IN THE SCALE-FREEmnl(r ;
SIMULATIONS WITH GAUSSIAN SMOOTHING

R r
(L box) (L box) n \ 1 n \ 0 n \ [1 n \ [2

0.02 0.04 0.40 0.82 1.29 1.35
0.02 0.06 0.13 0.36 0.67 0.83

Figure 5 indicates that the good agreement is achieved
not only in the Gaussian smoothed LCDM model but can
also be found in the other models and/or the top-hat
smoothing. Figure 6 plots the conditional two-point PDFs
at and in the scale-free models, whered2[ [0.7 d2Z 10
the deviation from the lognormal becomes manifest. Con-
sidering the error bars estimated from the di†erent realiza-
tions for each model, the deviation seems statistically real.

As in the case of the one-point PDF, we illustrate the
validity of the two-point lognormal PDF using the
moments. SpeciÐcally we evaluate andS(d1 d2)2T S(d1 d2)3Taccording to

S(d1 d2)nT(r) 4
PP

C(d1, d2)
(d1 d2)nPLN(2)(d1, d2 ; r)dd1 dd2 ,

(30)

where we select the range of the integration as

C(d1, d2) \ [(d1, d2) o dmin¹ d1 ¹ dmax, dmin¹ d2¹ dmax] ,

(31)

from the values of and directly measured fromdmin dmaxeach simulation model. The results are summarized in
Table 6, which indicates again that the two-point lognormal
PDF predictions reproduce the simulation data except for
n º 0. Thus, we also conclude that the two-point lognormal
model describes fairly well the PDF of cosmological Ñuc-
tuations for most and regions of of interest ; the smalld1 d2but Ðnite deviations exist only in and/ord1[ [0.5 d2[
[0.5, and also in andd1Z 10 d2 Z 10.

3.4. Does the L ognormal Transformation Approximate the
Gravitational Evolution of the Density Fluctuations?

The agreement between the lognormal predictions and
the simulation results might be interpreted as indirect evi-
dence that the lognormal transformation equation (8) is a
good approximation for the nonlinear gravitational growth
of the cosmological density Ñuctuations, at least on average.

In order to see if this is really the case, we consider the
relation of the smoothed density Ðelds at the same com-
oving position but at di†erent redshifts, and For thisz1 z2.purpose, we use one realization from the LCDM model
evolved in h~1 Mpc. If the lognormal transform-L box\ 300

TABLE 6

TWO-POINT MOMENTS : ANDS(d1 d2)2T S(d1 d2)3T

Model S(d1d2)2T S(d1d2)3T dmin dmax
LCDM . . . . . . . (0.76^ 0.4)] 103 (1.5^ 1.4)] 106 . . . . . .
Lognormal . . . 0.64] 103 1.1] 106 [0.96 90
LCDM300 . . . (1.4^ 0.2)] 103 (4.9^ 1.5)] 106 . . . . . .
Lognormal . . . 1.3] 103 6.2] 106 [0.98 165
n \ 1 . . . . . . . . . 3.1^ 0.1 73 ^ 11 . . . . . .
Lognormal . . . 4.0 140 [0.98 14
n \ 0 . . . . . . . . . 24 ^ 3 (2.6^ 0.6)] 103 . . . . . .
Lognormal . . . 30 5.6 ] 103 [0.99 30
n \ [1 . . . . . . . 88 ^ 18 (2.2^ 1.0)] 104 . . . . . .
Lognormal . . . 102 3.9 ] 104 [0.98 42
n \ [2 . . . . . . . 120 ^ 40 (4.1^ 2.1)] 104 . . . . . .
Lognormal . . . 120 5.3 ] 104 [0.96 46

NOTE.ÈFrom simulations and the lognormal PDF predictions. The
LCDM models adopt the Gaussian smoothing with R\ 2 h~1 Mpc and
the moments are evaluated at the pair separation of r \ 4 h~1 Mpc. For
the scale-free models, andR\ 0.02L box r \ 0.04L box.
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FIG. 5.ÈTwo-point PDFs for di†erent models and smoothing window functions. The upper panels plot the results in CDM models, the lower panels in
scale-free models.

ation equation (8) is exact, the density Ñuctuations, andd(z1)should satisfyd(z2),

1 ] d(z2)\
1

[1] pnl2 (z2)]1@2

] exp
AMln [1] pnl2 (z2)]N1@2
Mln [1] pnl2 (z1)]N1@2

] ln M[1 ] pnl2 (z1)]1@2[1] d(z1)]N
B

. (32)

Figure 7 plots the color contour of the joint probability

P[d(z), d(z\ 9)] of densities at z\ 2.2, 1.0, and 0 against
that at z\ 9 on the same grid points in the LCDM model.
We adopt Gaussian smoothing with R\ 6 h~1 Mpc (left
panels) and 2 h~1 Mpc (right panels). The solid lines in white
and magenta represent the lognormal transformation equa-
tion (32) and the conditional mean from simulations for a
Ðxed d(z\ 9). The lognormal transformation traces the
mean relation of simulations to some extent only when the
nonlinearity is weak (see higher z and larger R cases). On
the other hand, in the nonlinear region, the transformation
equation (32) starts to deviate from the mean relation of the
simulations signiÐcantly, and the distribution around the
mean relation becomes broad. A similar tendency was
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FIG. 6.ÈTwo-point PDFs for the scale-free models at negative (left panels) and positive (right panels) tails of the distribution of d2

found in a somewhat di†erent analysis by Coles, Melott, &
Shandarin (1993). In a sense, this is a physically natural and
expected result, but then it makes it even more difficult to
account for the good agreement between the lognormal and
simulation PDFs in those scales.

To better understand the distribution of the linear and its
evolved density Ðelds, we compute the conditional prob-
ability P[d(z) o d(z\ 9)], i.e., the slice of Figure 7 at a given
d(z\ 9). The results are plotted in Figure 8 and exhibit
some regularity in the distribution. The peak positions seem
to show some scaling with respect to the value of d(z\ 9),
and also the tail of the distribution asymptotically
approaches a single power law. While we do not yet fully
understand the behavior, this regularity in the distribution
function may be useful in explaining our Ðndings that the
one-point and two-point lognormal PDFs work well
empirically.

4. CONCLUSIONS AND DISCUSSION

In the present paper we have estimated the probability
distribution functions of cosmological density Ñuctuations
from the high-resolution N-body simulations with a Gauss-
ian initial condition. In particular, we have critically exam-
ined the validity of the lognormal models for the one- and
two-point PDFs in both weakly and strongly nonlinear
regimes.

We have shown that the one-point lognormal PDF is a
fairly accurate model not only in weakly nonlinear regimes
as claimed previously but also in more strongly nonlinear
regimes, even up to and d D 100. Furthermore, wepnlD 4
extended the analysis to the two-point PDF and found that
the lognormal PDF serves also as an empirically accurate
model for the range of densities of interest. This is the case
fairly independently of the shape of the underlying power
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FIG. 7.ÈContour plots of the joint probability P[d(z) o d(z\ 9)] in the LCDM model h~1 Mpc) with Gaussian smoothing window; R\ 6 h~1(L box \ 300
Mpc (left panels) and R\ 2 h~1 Mpc (right panels). Top, middle, and bottom panels correspond to correlations of d(z\ 2.2), d(z\ 1), and d(z\ 0) against
d(z\ 9), respectively. White lines represent the lognormal transformation equation (32) ; magenta lines are the conditional mean at a Ðxed d(z\ 9).

spectrum of density Ñuctuations, although models with
large power on small scales (e.g., n º 0 scale-free models in
our examples) seem to show a small deviation from the
lognormal prediction at the tails of the distribution, espe-
cially for In particular, the lognormal PDFd [ [0.5.
reproduces very well the skewness and kurtosis measured
from the simulation data when the Ðnite size of the simula-
tion volume is properly taken into account.

The degree of agreement of the lognormal models that we
have shown is amazing considering the fact that the under-
lying mapping between the initial and the evolved density
Ðelds di†ers signiÐcantly from the simulation results even in
an averaged sense. We have explicitly shown the probability
distribution of the initial and evolved density Ðelds from
simulations, although we were not able to provide a physi-
cal explanation for the origin of the lognormal PDF. This

should be left as our future work, and we would like to
come back to it in a future paper. For this purpose, other
theoretical approaches based on perturbation theory
(Bernardeau 1992, 1994) and the spherical collapse model
(Fosalba & 1998) may be helpful.Gaztan8 aga

Nevertheless, our present work provides an empirical jus-
tiÐcation for the use of the lognormal PDF in a variety of
theoretical model predictions. For instance, Matsubara &
Yokoyama (1996) proposed to evaluate the e†ect of the
nonlinear gravitational evolution on the genus statistics
using the lognormal mapping. Taruya & Suto (2000) con-
structed an analytical model for halo biasing on the basis of
the one-point lognormal PDF of underlying mass density
Ðeld. Hikage, Taruya, & Suto (2001) applied this biasing
model in their predictions of the genus for clusters of
galaxies.
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FIG. 8.ÈConditional probability P[d(z) o d(z\ 9)] for a Ðxed d(z\ 9) corresponding to each panel of Fig. 7. In each panel, results for d(z\ 9)\ [2, [1,
0, 1, 2, and 3 times the p(z\ 9), the rms of d(z\ 9), are plotted.

Finally, the present results might be useful in considering
the prediction of weak lensing statistics (Valageas 2000 ;
Munshi & Jain 2000). To construct a model for PDF in
redshift space is another important topic (e.g., Watts &
Taylor 2001 ; Hui, Kofman, & Shandarin 2000), which is
relevant in discussing Lya forests & Croft(Gaztan8 aga
1999).
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