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ABSTRACT
We explore observed trends in the cores of a wide range of relaxed dark matterÈdominated halos

(about 7 orders of magnitude in mass) to constrain hypothetical dark matter candidates and scenarios of
structure formation. First, we argue that neither generic warm dark matter (collisionless or collisional)
nor self-interacting dark matter can be responsible for the observed cores on all scales. Both scenarios
predict smaller cores for higher mass systems, in conÑict with observations ; some cores must instead
have a dynamical origin. Second, we show that the mean core phase-space densities Q of dwarf spher-
oidal galaxies, rotating dwarf and low surface brightness galaxies, and clusters of galaxies decrease with
increasing velocity dispersion like QP p~3P M~1, as predicted by a simple scaling argument based on
quietly merging equilibrium systems over a range of about 8 orders of magnitude in Q. We discuss the
processes that set the overall normalization of the observed phase density hierarchy. We note the resem-
blance between the observed phase-space scaling behavior and density proÐles of dark matter halos and
stellar components in elliptical galaxies and conjecture that dark matter halos may su†er from the same
systematic departures from homology as seen in elliptical galaxies, thus explaining the shallower density
proÐles observed in low-mass halos. Finally, we use the maximum observed phase-space density in dwarf
spheroidal galaxies to Ðx a minimum mass for relativistically decoupled warm dark matter candidates of
roughly 700 eV for thermal fermions and 300 eV for degenerate fermions.
Subject headings : cosmology : observations È cosmology : theory È dark matter È

galaxies : formation È galaxies : kinematics and dynamics È galaxies : structure

1. INTRODUCTION

Recent work has drawn attention to the apparent conÑict
between predictions of collisionless cold dark matter
(CDM) on small scales and observations of rotation curves
of dark matterÈdominated galaxies. Numerical simulations
suggest that in a CDM cosmology, dark matter halos
should have steeply rising central cusps (o P r~1.5) and high
densities. While the observational conclusions are some-
what ambiguous on the innermost proÐle shapes (see, e.g.,
Swaters 2000 ; van den Bosch et al. 2000 ; van den Bosch &
Swaters 2001 ; Borriello & Salucci 2001 ; Dalcanton & Bern-
stein 2000 ; Burkert 1997), rotation curves consistently
imply low characteristic halo densities in the central
regions. Because o(\r)P [V (r)/r]2, the characteristic slope
of the rotation curve is proportional to the square root of
the mean enclosed density. Observations of dark matterÈ
dominated galaxies consistently Ðnd rotation curves that
rise with V /RD 10È20 km s~1 kpc~1, suggesting much
lower characteristic densities than implied by simulations of
halos in viable CDM cosmologies, where V /RD 30È50 km
s~1 kpc~1 (Moore et al. 1998, 1999 ; Navarro, Frenk, &
White 1996, 1997).

The growing belief that there truly is a conÑict between
theory and observations has led to a renaissance in explor-
ing alternative models for dark matter. By violating either
the ““ collisionless ÏÏ or ““ cold ÏÏ properties of traditional
CDM or by considering additional exotic properties, many
authors have sought to preserve the successes of CDM on
large scales while modifying the manifestations of dark
matter on small scales (Spergel & Steinhart 2000 ; Hogan &
Dalcanton 2000 ; Sommer-Larson & Dolgov 2001 ; Moha-
patra & Teplitz 2000 ; Peebles 2000 ; Goodman 2000 ; Riotto
& Tkachev 2000 ; Hu, Barkana, & Gruzinoz 2000 ; Shi &

Fuller 1999 ; Avila-Reese, & Valenzuela 2000 ; Han-Col•� n,
nestad & Scherrer 2000).

In this paper, we place broad constraints on these alter-
natives to CDM by revisiting observations of the structure
and phase-space density of halos over a wide range of scales.
Many of the above alternative dark matter scenarios make
speciÐc predictions for the sizes of dark matter cores as a
function of mass scale (see Spergel & Steinhart 2000 ; Hogan
& Dalcanton 2000 ; Hannestad 1999 ; Burkert 2000 ; Kocha-
nek & White 2000 ; Yoshida et al. 2000 ; Moore et al. 2000,
although some of these are in conÑict with each other, par-
ticularly regarding the long-term stability of self-interacting
cores). We confront these predictions with existing limits on
the scale of inner halo cores in ° 2 and argue that neither the
packing of phase space nor highly collisional dark matter
can be primarily responsible for the observed behavior of
dark matter cores at all scales.

In addition to discussing the scaling behavior of dark
matter cores, we focus on trends of mean core phase-space
density Q as a probe of structure formation history. In ° 3.1
we summarize the statistical and dynamical behavior of Q
in hierarchical clustering, including a simple argument pre-
dicting the decrease of Q with increasing mass and velocity
dispersion. Current observational limits on the variation of
phase-space density with mass are reviewed and sum-
marized in ° 3.2. We show in ° 4 that the phase-space
density of the dark matter halos is a very strongly declining
function of mass (consistent with the nearly constant
density seen across a similar mass scale in Firmani et al.
2001). This behavior is exactly as predicted by models in
which halos formed hierarchically, with successive mergers
leading to phase mixing and dilution of the coarse-grained
distribution function. We also note that the observed
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decline in phase-space density for dark matter halos and
their predicted density proÐles resemble those observed in
the baryon-dominated central regions of giant elliptical gal-
axies and that, by analogy, the structure of dark matter
halos may also su†er from the systematic departures from
homology similar to those seen in elliptical galaxies.
Finally, we use the maximum observed phase-space den-
sities to derive a limit on particle mass of greater than 700
eV for relativistically decoupled thermal relics.

2. CORES IN COLLISIONLESS AND COLLISIONAL

SOLUTIONS

Nonsingular dark matter central halo proÐles appear in a
wide range of environments, a fact that already argues
against the simplest explanation of cores based on ““ phase
packing.ÏÏ We illustrate this point using two such scenarios
for limiting the maximum density of cores in dark matter
halos (Hogan & Dalcanton 2000), namely, generalized
warm collisionless dark matter and warm collisional dark
matter.

In the Ðrst scenario, dark matter particles have some
primordial velocity dispersion, i.e., warm dark matter,
leading to a ““ phase-space density ÏÏ Q4 o/Sv2T3@2, whose
coarse-grained value is then either preserved or decreased
during subsequent epochs of structure formation (see ° 3.1 ;
eq. [2]). For halo material with a roughly isothermal, iso-
tropic velocity dispersion p, the primordial phase density
therefore sets a minimum core size corresponding to ““ phase
packing ÏÏ the material :

r
c,min2 \ J3

4nGQ0

1
Sp2T1@2 . (1)

If the halo has gone through a period of violent relaxation
or shock heating that thoroughly heats the matter

everywhere), then the core may be larger(Q0] Q@\ Q0than r
c, min.In the second scenario, the dark matter particles are

highly collisional, and thus they behave as a gas.1 The equi-
librium conÐguration of the halo will therefore be the solu-
tions of a classical, self-gravitating, ideal gas. For a
polytropic equation of state (p P oc) at all radii (i.e., con-
stant entropy) and assuming the system is nonrelativistic
and adiabatic (c\ 5/3), the density proÐle of the halo
becomes that of a Lane-Emden polytrope like a giant
degenerate dwarf star. (The material here is not degenerate
but is on an adiabat again limited by the initial For aQ0.)total mass M and radius R, solutions of the Lane-Emden
equation give a central density o \ 1.43M/R3 and central
pressure p \ 0.77GM2/R4. Using the equation of state
M P R~3, the characteristic velocity of the sphere is p2\

which is a similar scaling to equation (1).GM/J3RP R~4,
For both of these cases, we predict a simple scaling

relationship between the size of dark matter cores and the
characteristic velocity dispersion of the system. In general,
higher mass, high velocity dispersion systems should have

1 In Hogan & Dalcanton (2000), we argued that the moderately col-
lisional case would not be stable. A constant-density core requires a tem-
perature gradient for support. However, if dark matter were only
moderately collisional, particles would di†use outward in less than a
Hubble time, erasing the necessary temperature gradient. This di†usive
heat conduction would runaway to form a dense central cusp. Thus, we
restrict ourselves to the highly collisional case, in which the di†usion time
is sufficiently long for cores to be stable over a Hubble time.

smaller cores, with For dwarf spheroidal gal-rcore P 1/Jp.
axies (p D 10 km s~1), rotating dwarf and low surface
brightness (LSB) galaxies (p D 50È100 km s~1), and clusters
(p D 1000 km s~1), we expect core sizes to scale like roughly
10:2-3 :1 if, in fact, the core size is set more by primordial
conditions than subsequent heating/relaxation. If we take a
Ðducial core size of 1 kpc for dwarf spheroidal galaxies, then
rotating dwarfs and LSBs would have 300È500 pc cores,
and primordial galaxy cluster cores would be microscopic
(100 pc) and observationally undetectable. Likewise, if we
set the Ðducial scale at clusters, with kpc, thenrcore D 50
dwarf spheroidal galaxies would have implausibly large
cores (0.5 Mpc, comparable to the separation between giant
spiral galaxies in the Local Group and inconsistent with
possible detections of extratidal stars in nearby spheroidal
galaxies ; see, e.g., Majewski et al. 2000).

Even if we are detecting cores limited by primordial
phase-space density in dwarf spheroidal galaxies, similar
cores in larger systems would be undetectable. Detectable
cores in more massive galaxies and clusters must therefore
be due to other processes, for example heating and/or
violent relaxation during formation. This implies that the
properties of warm or self-interacting dark matter would be
most directly probed by the properties of dwarf spheroidal
galaxies, not rotating dwarf and LSB galaxies. On the other
hand, if the cores seen in rotating LSBs are due to the e†ects
of self-interaction, then the dense halos of dwarf spheroidal
galaxies may be the end result of core collapse and may
indeed be singular. We will return to many of these points
below when we consider the phase-space density of dark
matter cores.

3. EVOLUTION AND SCALING OF PHASE-SPACE DENSITY

3.1. Predictions of Phase-Space Density in
Gravitational Clustering

We may characterize systems by their mass per volume of
phase space, or ““ phase-space density ÏÏ Q, a quantity that
obeys important symmetries and in some circumstances
admits detailed observational constraints. For a collision-
less, dissipationless gas, the Ðne-grained value of Q does not
change, and the evolution of the system consists of various
distortions of the ““ phase sheet ÏÏ occupied by particles, in
such a way that the coarse-grained phase-space density can
only decrease. This is related in a straightforward way to
the increase of thermodynamic entropy ; for a uniform mon-
atomic ideal thermal gas of N particles,

S \ [kN[ln (Q) ] constant] . (2)

The value of the Ðne-grained phase-space density is Ðxed
when the dark matter particles become microscopically col-
lisionless. This quantity is therefore a primordial relicQ0reÑecting the interactions and masses of the dark matter
particles. Unfortunately, the primordial value of the Ðne-
grained cannot be directly measured.2 The astronomi-Q0cally observable quantity is the mean coarse-grained
phase-space density, which can be estimated dynamically
from rotation curves, stellar velocity dispersions, gas emis-
sion, or gravitational lensing using the measured rms veloc-
ity and density. We adopt units for Q most closely related to

2 In some models could be measured in a direct laboratory detectionQ0of dark matter particles or from e†ects of gravitational lensing of projected
catastrophes of surface density (Hogan 1999).
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these observable quantities : Q4 o/Sv2T3@2. This coarse-
grained phase-space density is a strict lower limit to the
primordial and we may use observations to set physi-Q0,cally interesting constraints on primordial conditions.

In addition to probing initial conditions, observations of
Q can be made as a function of mass, allowing us to follow
the evolution of the coarse-grained phase-space density in
hierarchical clustering, i.e., to study the process of the clus-
tering itself. We may make a zeroth-order prediction for the
expected evolution of Q using the following simple argu-
ment, noting in advance that the physics of dynamical
merging is vastly more complicated than we have assumed
in making this rough estimate of the expected scaling.

Suppose that structures form by the hierarchical merging
of systems, each of which is in approximate virial equi-
librium. Without gravity or dissipation, a merged system
could be carefully, adiabatically assembled from parts to
eliminate almost any increase in entropy or decrease of Q.
Two blobs can be slowly merged into one, and if they do
not mix, the entropy of the new merged blob is just the sum
of the two initial entropies, and therefore Q is preserved.
The total phase-space volume is just the sum of the two
initial volumes since nothing in velocity space changes. The
addition of gravitational dynamics to the picture, however,
requires that the increase in mass be accompanied by an
increase in velocity dispersion in order to maintain virial
equilibrium. This guarantees that Q, in fact, decreases stead-
ily as a power of increasing mass.

We may place limits on the minimum possible decrease in
Q, which is compatible with maintaining virial equilibrium
during the merging hierarchy. Consider the merger of a
blob 1 and a smaller blob 2 into a third blob 3, with the
phase density of each depending on the volumeQ

i
\M

i
/V

ioccupied in phase space. All three blobs have a homolo-V
igous structure and are in virial equilibrium with character-

istic size and velocity dispersion SetR
i

p
i
. M2 \ vM1,hence, We assume that as the small blob 2M3\ (1] v)M1.sinks into blob 1, its material is tidally stripped. The strip-

ping of material with density occurs at a radius whereo2and thus this gentle merging process approx-o1Do2,imately preserves the physical space density as each layer is
homologously added to form the larger system. Empirically,
the core matter density of dark matter halos is indeed
observed to be approximately constant from rotating
dwarfs to clusters (Firmani et al. 2001), and thus this gentle
merging assumption may not be a terrible deviation from
the true behavior of dynamically relaxed systems.

With our assumption of constant space density during
merging, the added material leads to an increase in volume

However, in order to preserve virialR3\ (1] v)1@3R1.equilibrium (p2P M/R), it is also necessary to grow the size
of the blob in velocity space, Thus, thep3 \ (1 ] v)1@3p1.system responds by a symmetrical fractional increase in R
and p. The phase volume increases by the factor V3\

implying that systems assembled fromR33 p33\ (1 ] v)2V1,this hierarchy follow VP M2, and hence they obey

QP M~1 P p~3 P R~3 . (3)

No matter how gradually the assembly is done, a certain
amount of extra phase wrapping is needed to achieve this
equilibrium, decreasing Q.

While not rigorously proved, we argue that equation (3)
must be close to the slowest possible decline in the coarse-
grained phase-space density with increasing mass. We have

assumed the quietest form of merging, invoking only
enough phase mixing to bring the system into virial equi-
librium. Other models for the evolution of Q may apply
better in other circumstances3 (see, e.g., Hernquist, Spergel,
& Heyl 1993), but in general, these should involve more
phase mixing and thus more sharply declining values of Q.
For example, although the predicted scaling for Q is the
same as equation (3) even when the two masses are compa-
rable (i.e., v is not much less than 1), in such a situation one
expects ““ violent relaxation ÏÏ rather than tidal stripping,
leading to additional phase mixing and steeper evolution in
Q. Likewise, while the assumption of homology has not
been justiÐed in detail, and indeed no account has been
taken of changes in density proÐle shapes and other degrees
of freedom available to real systems, these extra degrees of
freedom must come with a net lowering of coarse-grained Q
relative to the quiet, homologous case used in our deriva-
tion. A shallower decrease than equation (3) would require
the hierarchical merging to create a systematic increase in
physical densityÈa situation that we consider unlikely. We
conjecture that the simple constant density scaling may
have a rigorous dynamical basis as a limiting case.

As an aside, we note that similar constant space density
scaling is predicted for systems that formed via simulta-
neous, monolithic ““ top-hat ÏÏ collapse instead of through
the merging hierarchy. This applies, for example, to halos
formed from the very low mass end of CDM-like power
spectra ; the characteristic overdensities do/o are roughly
constant over a range of mass scales, leading to similar
collapse epochs and similar Ðnal halo densities. This will
naturally lead to a QD M~1 scaling indistinguishable from
the merging hierarchy. Thus, if these low-mass systems
survive and retain the densities imprinted at formation, they
could be indistinguishable from the rest of the merging hier-
archy. Note, however, that the CDM prediction for the
normalization of the QD M~1 scaling, as estimated from
simulations (e.g., et al. 2001), is higher than theDave�
observed envelope, as we show below.

3.2. Observational Constraints on Phase-Space Densities
We have argued above that considerable information on

primordial conditions, dark matter physics, and the
merging hierarchy may be contained in the scaling of Q with
mass. With this in mind, we now consider the most recent
observational data and derive the best current measure-
ments of the mean phase-space density of dark matter cores
in dynamically relaxed halos on mass scales from D108 to
D1015 We will discuss the interpretation of theseM

_
.

results in ° 4.

3.2.1. Phase-Space Densities in Dwarf Spheroidal Galaxies

The lowest mass systems that can be used to measure
dark matter densities are the dwarf spheroidal galaxies in
the Local Group. These galaxies are extremely di†use and

3 Note that our derivation is based on fundamentally di†erent assump-
tions than made by Hernquist et al. (1993) for a similar phase-space evolu-
tion calculation. Following Hausman & Ostriker (1978) and assuming
parabolic orbits for merging of identical galaxies, they argued that the
velocity dispersion of the merged remnant is identical to the velocity dis-
persions of the progenitors and thus that the gravitational radius of the
virialized remnant must increase in proportion to the mass. This implies
that both the physical density and the phase density of the remnants
should decrease as M~2. We argue that this is not the quietest limiting
hierarchy, although some such mergers certainly occur.
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low-mass and are supported by velocity dispersion rather
than rotation. They have typical stellar velocity dispersions
on the order of 10 km s~1 and luminosities D104 times
fainter than bright spiral galaxies (see the review by Mateo
1998). Dynamical mass-to-light ratios (M/L s) for these
systems in some cases are very high sug-(Mtot/L V

D 100),
gesting that they are completely dark matterÈdominated.4

We have derived the core dark matter density of the
dwarf spheroidal galaxies assuming that the dwarfs are dark
matterÈdominated and that the stars e†ectively behave like
test particles in the halo potential. We do not assume that
dark matter has the same density structure as the stars,
given that current observations are not yet sufficient to dis-
tinguish between the cases of mass following light and of the
dwarves being embedded in a larger halo (see, e.g., Klenya
et al. 1999). However, the possible detection of ““ extratidal ÏÏ
stars in Carina (Majewski et al. 2000 ; Irwin & Hatzidimi-
triou 1995 ; Kuhn, Smith, & Hawley 1996) beyond a clear
break in the proÐle at a radius of D30@, suggests that the
dark matter core radius is unlikely to be more than a factor
of 2 larger than the observed core radius for this particular
case.

Assuming that the stars have an isotropic velocity disper-
sion and following Pryor & Kormendy (1990), the central
density of the halo is where iso0D \ (3 ln 2/2n)(p

*
2/Gr

c
2), p

*the observed one-dimensional central velocity dispersion of
the stars and is the observed ““ core ÏÏ radius at which ther

csurface density of stars falls to half the central value. The
corresponding characteristic phase-space density of the
halo of dwarf spheroidal galaxies is therefore

QDS B
o0D

(3g
*
2 p

*
2)3@2 \ ln 2

31@22n
1

Gg
*
3 r

c
2 p

*
, (4)

where the scaling factor accounts for the fact thatg
*

4 p/p
*the dark matter particles do not necessarily have the same

velocity dispersion as the stars (which formed from presum-
ably dissipative baryonic processes). For an isothermal
model for the dark matter halo, (whereo0D \ (9/4nG)(p2/r02)is the King radius), suggesting that Byr0 g

*
\ 0.48(r0/rc).assuming we implicitly assume that the core radiusg

*
D 1,

of the dark matter is roughly twice that of the stellar surface
density proÐle. Note that because of the current inability to
trace the density proÐles of dwarf spheroidal galaxies, isQDSnot necessarily a central phase-space density but instead is
representative of the mean phase-space density within a
core radius.

In calculating we have used data for the eight LocalQDS,Group dwarf spheroidal galaxies from Mateo (1998), which
are fainter than and have internal kinematicM

V
\ [14

4 Alternatively, dwarf spheroidal galaxies may not be in virial equi-
librium, and instead their high velocity dispersions may be due to tidal
disruption (see, e.g., Kuhn & Miller 1989). However, there is a relatively
tight relationship between M/L and luminosity (Mateo et al. 1998), sug-
gesting that the values of M/L are intrinsic to the galaxy and are not a
product of environment. Further support for the existence of dark matter
in dwarf spheroidal galaxies comes from simulations by Oh, Lin, &
Aarseth (1995) that show that dwarfs retain their equilibrium velocity
dispersion even when being tidally disrupted, the calculations of Burkert
(1997) that the properties of extratidal stars in Sextans are consistent with a
high dark matter content, and the arguments of Mateo et al. (1998) that
Leo I (which has one of the highest values of M/L ) is sufficiently isolated
that it can not have been strongly a†ected by tidal heating. While there are
clear cases of tidal disruption (i.e., the Saggitarius dwarf), we consider it to
be unlikely that tides are universally responsible for the high velocity
dispersions in dwarf spheroidal galaxies.

measurements, excluding the tidally disrupting dwarf Saggi-
tarius. We have used values for and given in the com-p

*
r
cpilation of Mateo (1998) but have supplemented these with

newer values for Ursa Minor and Draco from Klenya et al.
(1999) and for Leo I from Mateo et al. (1998).

3.2.2. Phase-Space Densities in Rotationally Supported Galaxies

On somewhat larger mass scales than the dwarf spher-
oidal galaxies, the stars and gas in galaxies tend to become
rotationally supported. Measurements of the rotation speed
as a function of radius can be used to derive the massV

c
(r)

interior to r, assuming that the disk is in centrifugal equi-
librium. Assuming that the dark matter halo is spherical
and dominates the mass at all radii, we can approximate the
mean density of the halo within a radius r as

ogal(\r) B
3

4nG
V

c
2(r)
r2 . (5)

There is a growing body of evidence that the assumptions
that go into the above equation are not strictly true. For
example, recent measurements from the Ñaring of H I disks,
the shapes of X-ray isophotes, warps in galactic disks, and
the dynamics of polar ring galaxies all suggest that galaxy
halos are not spherical but are somewhat Ñattened (i.e.,
oblate ; see the summary Ðgure in Olling & MerriÐeld 2000
and discussion in Sackett 1999). However, models by Olling
(1995) show that for the observed range of Ñattenings, the
true central density is not more than a factor of D50%
greater than what would be derived in the spherical case.

A much larger uncertainty comes from the contribution
that the baryons in the disk make to the dynamics. The
mass of atomic gas is usually easily determined through the
distribution of H I (including a correction for helium).
However, the molecular gas phase can be the dominant
contributor in the inner disk of massive spiral galaxies but is
rarely observed, and then is only detected indirectly
through the CO tracer. The mass in stars is also uncertain,
given that for most stellar populations, most of the mass is
due to stars that make little contribution to the total light.
Thus, the density given by equation (5) represents an upper
limit to the enclosed density of the dark matter halo. Fortu-
nately, for many rotating dwarfs and LSB galaxies, the
baryonic disk is sufficiently di†use that for all reasonable
stellar M/L s, the enclosed mass is dominated by the dark
matter halo. Unfortunately, this limits our analysis to gal-
axies with relatively low rotation speeds (V

c,max [ 100
versus km s~1 for bright spiral galaxies).V

c,max D 250
While some ““Malin-like ÏÏ LSB disks are known to have
higher rotation speeds, these galaxies typically have large
central bulges as well and thus are likely to be baryon-
dominated in the central regions.

To calculate we have chosen to use the rotationogal,curve decompositions for NGC 247 km s~1 ;(V
c,max D 100

Carignan & Puche 1990), DDO 154 km s~1 ;(V
c,max D 45

Carignan & Beaulieu 1989), and NGC 3109 (V
c,max D 60

km s~1 ; Jobin & Carignan 1990) as compiled and analyzed
in van den Bosch et al. (2000). These were three cases found
in the literature in which the H I observations were suffi-
ciently resolved to accurately trace the rotation curve in the
inner halo. In this analysis, the core radius is taken as ther0radius at which the density proÐle of the dark matter halo
changes slope : o(r) P r~a(r] r0)a~3.

To calculate the mean phase-space density of the dark
matter cores, we derive the halo velocity dispersion by con-
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sidering the circular velocity measured at the core radius.
For an isothermal distribution, the core radius is r0\
(9p2/4nGo)1@2, suggesting that Note, however,V

c
2(r0)B 3p2.

that the density distribution of the halo is not necessarily
that of an isothermal sphere and thus that our approx-
imation of p will necessarily be uncertain. For NGC 3109
and NGC 247, the core radius derived by van den Bosch et
al. (2000) is greater than the radius of the last measured
point in the rotation curve,5 so we take forp \ V

c,max /J3
these two cases. For DDO 154, the best-Ðt core radius is 3
kpc, well within the last measured radius. The Ðnal velocity
dispersions are then andp247 \ 62, p3109\ 38, p154\ 22
km s~1. However, because of the difficulty in securely iden-
tifying the halo core radius, these velocity dispersions are
probably uncertain by D50%.

The resulting average phase-space density within r is
therefore

Q
D
(r)[

9J3
4nGr2

1
V
c
(r0)
C V

c
(r)

V
c
(r0)
D2

. (6)

3.2.3. Cluster Phase-Space Densities

Clusters of galaxies provide the best laboratories for mea-
suring the phase-space density of collapsed dark matter
halos on the largest mass scales. Analyses of their X-ray
properties and internal dynamics show that many (though
not all) clusters are well-relaxed systems and thus are
appropriate for studying the equilibrium state of high-mass
dark matter halos.

On the other hand, clusters are far from ideal. Unlike
dwarf spheroidal galaxies, the centers of clusters have a
signiÐcant mass contribution from baryons, mostly in the
form of hot X-rayÈemitting gas. Current estimates are that
10%È25% of the cluster mass within is in the gas phaser500(where is the radius within which the density contrast isr500500 ; e.g., Ettori & Fabian 1999). This problem only inten-
siÐes in the very centers of clusters, where the density of the
intracluster gas is the highest and where the dynamical mass
may be dominated by the stellar population of a central
giant elliptical galaxy. There are also fewer dynamical
probes in the centers of clusters, simply because of limited
sampling volume for velocity tracers. The best dynamical
studies to date, which incorporate velocity anisotropy for
an ensemble of clusters, do not probe much within a radius
of D50 h~1 kpc (Carlberg et al. 1997 ; van der Marel et al.
2000). The mass proÐles of the centers of clusters are also
difficult to probe with X-rays. The historically low
resolution of X-ray telescopes has not allowed measure-
ments of the temperature of the gas to be spatially resolved
at very small scales (although the experimental situation is
rapidly improving). Finally, clusters are among the most
massive bound structures seen today, and thus many are
still in the process of formation. We therefore may expect to
see some degree of variation in their properties, reÑecting
incomplete relaxation.

Of all the methods of constraining the central densities of
clusters, the most secure estimates come from observations
of strong gravitational lensing within cluster cores (i.e.,
arcs). For a spherical mass distribution, the mean density

5 One complication is that for NGC 247, the core does not seem to have
a constant density (unlike NGC 3109 and DDO 154) and instead has a
density rising inward like r~1.

within the radius of the lensed arc isoarc rarc

oarc \ 3c2
16nG

D
s

D
l
Dls

1
rarc

. (7)

The use of elliptical mass distributions can reduce this
density by typically 20%. To account for the baryonic con-
tribution within we reduce the above measurement ofrarc,by a factor to estimate the darkoarc (1 [ fbaryon) D 0.8
matter density.

The resulting average phase-space density within israrctherefore

Q
C
B

(1[ fbaryon)oarc
(3ggal2 pgal2 )3@2 . (8)

We have again included a scaling factor to allow forggalsystematic di†erences between one-dimensional velocity
dispersion of the galaxies and the dark matter.(pgal)However, weak lensing and dynamical studies (e.g., Tyson,
Kochanski, & DellÏAntonio 1998 ; Carlberg et al. 1997) all
suggest that mass traces light on greater than 100 kpc scales
within clusters and thus ggalB 1.

To calculate for speciÐc clusters, we have restrictedQ
Courselves to lensing clusters that also host strong cooling

Ñows. Allen (1998) argues persuasively that cooling Ñow
clusters are the most likely to be fully relaxed and demon-
strates that they are the only clusters whose X-ray and
lensing mass estimates are consistent. We have plotted Q

cfor the six cooling Ñow clusters with giant arcs that were
analyzed in Allen (1998). For the three cases in which more
detailed mass models have been developed to Ðt the strong
lensing data, we have revised the spherical estimate of oarcaccordingly (MS 2137.3[2353, Mellier, Fort, & Kneib
1993 ; PKS 0745[191, Allen, Fabian, & Kneib 1996 ; Abell
2390, Pierre et al. 1996).

Our calculation for gives the mean phase-spaceQ
Cdensity with the radius of strongly lensed arcs. However, we

wish to compare with the mean core phase-space den-Q
Csities derived for dwarfs and rotating disks. These latter

quantities are calculated within a core radius, and thus
there is some inherent uncertainty in treating as a meanQ

C““ core ÏÏ phase-space density. At the radii at which these arcs
are typical, detailed dynamical studies by Carlberg et al.
(1997) and van der Marel et al. (2000) show that the cluster
density proÐles are still rising like r~1 at the innermost
measurable radii (D35 h~1 kpc) ; if this behavior continues
toward the center at which it terminates in a smaller con-
stant density core, then the core phase-space density could
be a factor of 10È100 times higher than the above estimate
of on scales of D1 kpc. Work by Williams, Navarro, &Q

CBartelmann (1999) argues that shallow inner cores must be
rare, but on the other hand, Tyson et al. (1998) reconstruct
the density proÐle of one cooling Ñow cluster with a con-
stant density core kpc, derived from Ðtting(r

c
D 35 h~1

eight images of a multiply lensed background galaxy), sug-
gesting that in some cases may be close to the true coreQ

Cphase density. If clusters do not have a smaller constant
density core within and instead the most appropriaterarcassignment for is the typically larger radius where thercoredensity proÐle changes from r~1 to r~3, then the phase-
space density that should be compared to and willQDS Q

Dbe substantially smaller than calculated for ConsideringQ
C
.

these uncertainties, our calculated values of are uncer-Q
Ctain by possibly as much as a factor of 10.
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4. INTERPRETATION

We have plotted the characteristic phase-space densities
for dwarf spheroidal galaxies, rotationally supported gal-
axies, and clusters of galaxies in Figures 1 and 2. It is imme-
diately apparent that there is a systematic decrease in the
phase density as a function of scale, with more massive
systems having dramatically lower phase-space densities.6
A similar trend was noted by Burkert (1995) and Sellwood
(2000), although over a much smaller range in scale.

4.1. Hierarchical Assembly
Immediately, the factor of 102È103 di†erence in phase

density between dwarf spheroidal galaxies and rotating gal-
axies in Figures 1 and 2 suggests that the cores in rotating
dwarfs cannot be due to ““ phase packing ÏÏ of material with a
primordial phase density. This agrees with our analysis in
° 2 about the behavior of core sizes as a function of velocity
dispersion.

Figure 2 also demonstrates that at the same physical
scale (D1 kpc), the phase-space densities of rotating dwarfs
are substantially smaller than for dwarf spheroidal gal-
axies.7 This suggests that the cores of more massive halos
cannot be made up purely of ““ sinking satellites ÏÏ (see, e.g.,
Syer & White 1998) ; most accreted objects must have
undergone substantial disruption and phase mixing while
being incorporated.

6 While the cluster measurements of Q are uncertain, they are unlikely
to compensate for the observed factor of 108 variation in phase density.

7 As a caveat, the amount of beam smearing in the inner parts of the
rotating dwarf measurements may be considerable, leading to artiÐcially
low central densities (van den Bosch et al. 2000). These three cases have
been chosen to minimize this concern, however.

FIG. 1.ÈMean interior phase-space density Q within the approximate
core radius as a function of the velocity dispersion of the system. The
circles are dwarf spheroidal galaxies, open triangles are rotating dwarfs
(DDO 154, NGC 247, and NGC 3109 in order of decreasing maximum Q ;
innermost points have highest Q, and the solid triangle marks the phase
density at the core radius), and asterisks are clusters (multiple points at the
same velocity dispersion represent di†erent mass determinations for the
same cluster, given within the radius of a strongly lensed arc). Errors in Q
are at least a factor of 2, possibly greater, for clusters (see text). The dashed
line shows QP p~3 scaling, the minimal predicted decrease in Q. The
dotted line shows QP p~4 for reference.

FIG. 2.ÈMean interior phase-space density Q as a function of the
radius within which Q was measured. The circles are dwarf spheroidal
galaxies, open triangles are rotating dwarfs (DDO 154, NGC 247, and
NGC 3109 in order of decreasing maximum Q ; the solid triangle marks the
phase density at the core radius), and asterisks are clusters (multiple points
at the same radius represent di†erent mass determinations for the same
cluster given within the radius of a strongly lensed arc). The apparent
correlation between Q and for dwarf spheroidal galaxies results fromrcorethe lack of signiÐcant variation in the velocity dispersion of the dwarf
spheroidal galaxies, such that the variation in Q is driven entirely by the
variation in we consider the uncertainties in to be sufficientlyrcore ; rcorelarge that this apparent correlation is not necessarily physically meaning-
ful. The dashed line shows QP R~3 scaling, the minimal predicted
decrease in Q. The dotted line shows QP R~2 for reference.

Figures 1 and 2 strongly suggest that halos formed as the
result of a merging hierarchy. As discussed above, if larger
systems build up from smaller chunks, relaxation processes
necessarily lead to substantial phase mixing while reaching
virial equilibrium, and thus with each successive merger,
there is a dilution of the coarse-grained phase-space density.
Figures 1 and 2 are strong support (if any were needed) for
hierarchical formation of galaxies and clusters (i.e., bottom-
up rather than top-down) ; if less massive objects were
to fragment from larger mass objects, their phase-
space density would be lower, not higher as is observed,
unless there were substantial dissipation involved in the
fragmentation.

Moreover, the envelope deÐned in Figure 1 by our
sample is close to the minimal decrease QP 1/p3 predicted
from our simple scaling argument in ° 3.1. It is a profound
fact that cores of relaxed dark matterÈdominated systems
obey a scaling relatively close to this limit, suggesting that
they formed in a fairly quiet collisionless hierarchy.8 In this
situation the maximum Q on all scales remembers the initial
Q at the start of the hierarchy (the top left-hand corners of
Figs. 1 and 2) ; the Q of the Ðrst systems to collapse sets a
maximum Q for all the systems that form from subsequent
clustering. We discuss the origin of this ““ seed point ÏÏ in
° 4.2.

8 Since we can only measure Q where there are stars and gas (i.e., in the
central regions), it is not surprising that our estimates of Q follow the
lowest entropy envelope of the hierarchy.
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While we believe that cores were built hierarchically on
scales from galaxies to clusters, it is possible that lower mass
halos resulted from early monolithic collapse. Remarkably,
such systems would still follow the QP p~3 scaling. For
halos formed from the very low mass end of CDM-like
power spectra, the density contrast is(do/o)

M
2 P k3P(k)2

nearly constant with mass, and thus all perturbations col-
lapse at the same time. The synchronous formation of low-
mass halos will lead them to have similar densities (if the
densities in the Ðnal virialized halos tend to track the
density of the universe at their formationÈe.g., as claimed
by Navarro et al. 1996, 1997), yielding the same QP p~3
scaling derived for ““ quiet ÏÏ merging. If these monolithically
collapsed systems survive till the present or if they subse-
quently merge, their descendents will be indistinguishable
from the rest of the Q-p hierarchy.9

We note that the observed scaling of Q is not expected for
highly collisional dark matter. The prediction of QP p~3
was derived assuming that merging material settles where
its density matches the density of the enveloping galaxy. In
contrast, highly collisional dark matter is compressed to
higher density as it responds to higher local pressure, then
sinks to where it reaches local pressure and density equi-
librium, and Ðnally stops when the entropy matches. Thus,
matter in a quiet merger tends to be stripped at constant Q
rather than constant density. This preserves Q during
merging, leading to QP p0, i.e., constant phase-space
density at all mass scales. An exception occurs if collisions
are rare enough to allow rapid heat conduction, which leads
to a core-collapse instability and high central densities. This
case is, of course, dissipational, allowing the Q of a Ñuid
element to increase. It is possible (although we feel it is not
likely) that the high Q of the low-mass systems arises this
way.

4.2. T he Seed Point of the Phase-Space Hierarchy
While the arguments given in ° 3.1 set the slope of the Q-p

relation, the origin of the overall normalization remains
unclear. Within the framework of a merging hierarchy, the
normalization seen in Figure 1 is Ðxed by the phase-space
density of the lowest mass systemsÈthe ““ seeds ÏÏ of the
merging hierarchyÈlying somewhere upward and to the
left on Figure 1. These early systems will have the highest
observed phase-space densities and will set the mean core
phase-space density of all systems further down the merging
hierarchy.10 Thus, the phase-space density of the Ðrst gener-
ation of collapsed objects Ðxes the normalization of the
entire Q-p relation. What sets the masses of these early

9 After this paper was submitted, et al. (2001) tested our Q-pDave�
scaling against N-body CDM simulations and found nearly identical
behavior in their numerical halos. However, the N-body halos have a
signiÐcantly higher Q-p normalization, in agreement with the general con-
clusion that standard collisionless CDM predicts larger mean central den-
sities than observed. et al. (2001) found similar scalings forDave�
self-interacting dark matter simulations as well but at a lower overall
normalization ; however, there are still some discrepancies among results
reported by di†erent groups simulating the self-interaction process
numerically see, (e.g., et al. 2001 vs. Kochanek & White 2000), andDave�
which of these simulations best captures the necessary physics is still unde-
termined.

10 Note that in CDM there is no upper limit to Q and that dark matter
halos are predicted to exist along a continuation of the Q(p)P p~3 relation
indeÐnitely to low mass. Moore et al. (1999) have conjectured that it is this
cold initial phase-space density of CDM that leads to the very dense cores
in numerical simulations, regardless of the power spectrum of initial per-
turbations. It is possible, however, that extra heating could be provided by
smaller scale dynamical e†ects not yet resolved.

halos and, more importantly, what sets their phase-space
densities ?

There are three physical parameters that can alter the
phase-space density of the Ðrst collapsed objects. First is the
dark matter particle microphysics, which sets a maximum
value for the Ðne-grained primordial via equation (9) ; noQ0collapsed dark matter halos can have a coarse-grained
phase-space density higher than the primordial value of Q0unless the dark matter is dissipational. Second is the density
of the universe during the epoch when matter Ðrst collapses
and virializes if lower initial densities lead to lower phase
densities in the virialized halos (Navarro et al. 1996, 1997).
Third is the efficiency11 of phase mixing during the collapse
itself. Through violent relaxation and phase wrapping, the
primordial phase sheet is mixed to a lower coarse-grained
phase-space density. The process of relaxation and virializa-
tion during the Ðrst halosÏ collapse can set the phase density
of the lowest mass cores and thus the normalization of the
entire Q-p relation.

The phase-space density of the Ðrst collapsed objects will
depend on dark matter properties through a combination
of these three processes. For example, if violent relaxation
and phase mixing is inefficient (meaning that much of the
matter is not phase wrapped and is left at high Q), then the
maximum observed phase-space density will be Ðxed at the
primordial Ðne-grained value Alternatively, if the orig-Q0.inal phase sheet with density is well phase-mixed duringQ0collapse of the Ðrst objects, then the maximum observed
phase space density will be diluted from to a lower value.Q0In this case, if the overall density of the universe is lower
when the Ðrst halos form than CDM predicts (e.g., because
of a Ðltered power spectrum), then the early halos will possi-
bly virialize to lower space densities and possibly to lower
Q. In either of the these three cases, at Ðxed mass (or veloc-
ity dispersion) the seeds for the merging hierarchy will have
lower phase densities than CDM, and the normalization of
the Q-p relation will be reduced. On the other hand, CDM
simulations by Moore et al. (1999) show that introducing an
arbitrary cuto† in small-scale power produces no detectable
changes in the density proÐles of the dark matter halos. This
raises questions about the degree of coupling between the
initial densities of collapsing halos and their Ðnal central
densities ; it may turn out that the epoch of collapse has
little direct impact on Q in the cores of the Ðrst halos.

These three contributors to the Q-p normalizationÈ
primordial violent relaxation and phase mixing, and theQ0,
density at the epoch of collapseÈare not necessarily inde-
pendent. In most dark matter models, the latter two are
coupled directly or indirectly to For example, theQ0.physics of the dark matter sets the primordial phase-space
density via equation (9). This initial phase-space densityQ0corresponds to a characteristic velocity dispersion for dark
matter in the early universe. Given that the velocity disper-
sion of the initial conditions may a†ect the degree of violent
relaxation and the growth of angular momentum, it is pos-
sible that the efficiency of phase mixing during violent relax-
ation may be indirectly set by the primordial in otherQ0 ;
words, dark matter particle physics may be imprinted on
the normalization of the Q-p relation, even if does not ÐxQ0the maximum phase-space density of the Ðrst halos directly.
Likewise, the epoch at which the Ðrst objects collapse
depends on the power spectrum of initial Ñuctuations, a

11 By ““ efficiency,ÏÏ we mean both the fraction of matter that undergoes
phase mixing and the degree to which that matter is mixed.
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function that is in turn a†ected by In warm dark matterQ0.models, for example, free streaming creates a mass-Ðltering
scale (which can be related to that suppresses theMfilter Q0)power spectrum at low masses and delays the collapse of the
Ðrst objects.

If the Ðrst objects that collapse have sufficiently low mass,
we expect little change in the normalization for changes in
the dark matter properties. The density contrast (do/o)

M
2 P

is nearly constant at very small mass for CDM-likek3P(k)2
power spectra, so that all perturbations collapse at the same
time, as discussed above in ° 4.1. Changing the mass scale of
the Ðrst collapsed objects by adding a small-scale Ðlter will
therefore not change the initial epoch of structure formation
and will leave the normalization of Q versus p unchanged,
provided that the masses of the new seeds are still in the
regime where is constant. If the core phase-space(do/o)

M
2

densities of these Ðrst small halos are limited by the primor-
dial phase-space density then we also expect no shift inQ0,the Q-p normalizationÈat small mass, the Ðltering mass
scale for warm dark matter models varies like MfilterPso that all models predict the same degenerateQ0~1,
relation.

On the other hand, if the Ðltering is on a scale where
(do/o)2 decreases with M, then the Ðrst collapsed objects
have both larger masses and smaller primordial phase den-
sities. In this case, for a given normalization of the power
spectrum on large scales, the Ðrst collapse is sufficiently
delayed such that Q for the Ðrst objects drops faster than
M~1, reducing the normalization of the Q-p relation. Filter-
ing on these larger mass scales may also change the
expected degree of scatter in the Q-p relation ; with addi-
tional observational and theoretical investigation, one
could potentially use the slope and scatter of the Q-p rela-
tion to place limits on the mass scale of the Ðrst objects.
However, stronger constraints will probably come from
considering the abundance of low-mass halos.

4.3. L inks to Elliptical Galaxies
We note that qualitatively similar behavior to Figure 1 is

seen within other collisionless systems, namely, giant ellip-
tical galaxies, where the dynamics are dominated by stars
within the half-light radius. Like dark matter halos, these
elliptical galaxies may also have formed via successive
mergers of largely collisionless systems (particularly in clus-
ters, where progenitors are largely gas-poor and have old
[[10 Gyr] stellar populations ; Trager et al. 2000).12 Paral-

12 We note that while the existence of the Mg-p suggests that mergers of
elliptical galaxies may involve some amount of star formation (and thus
dissipation), the observed relationship is based on central light-weighted
line indices dominated by the most recent epoch of star formation. It is
unclear exactly to what degree this relationship is due to initial formation
or subsequent gas-rich mergers (Bender, Burstein, & Faber 1993), or, if due
to mergers, how much gas must be present in the progenitors to produce
this relation. Most importantly for this work, it is unknown if any gas
involved in mergers is dynamically signiÐcant. Several disparate lines of
evidence suggest not, given that cluster elliptical galaxies have very little
recent star formation (Trager et al. 2000) and that the mass of young stars
in most cluster elliptical galaxies is less than 1%, even at z\ 0.4 (Ferreras
& Silk 2000). This evidence suggests that if the Mg-p relation requires
dissipation and star formation during mergers, the amount of mass
involved is likely to be small. Thus, the degree of dissipation is likely to be
sufficiently small that it would not a†ect the structure of elliptical galaxies
on the scale of the half-light radius, which is the scale of most concern in
this section. All the same, the existence of the Mg2-p relation could be
taken as a possible caveat.

leling early work by Carlberg (1986) and Lake (1989a), Hern-
quist et al. (1993) used data on elliptical galaxies from
Bender, Burstein, & Faber (1992) to show a systematic
decrease in elliptical galaxy phase density with increasing
luminosity (roughly Assuming a Faber-JacksonQP L

B
~1.5).

(1976) relationship of the central phase-space den-L
B
P p04,sities of elliptical galaxies must scale with the central veloc-

ity dispersion as roughly with lD 6.QPp0~l,
However, the true velocity scaling may be shallower than

implied by Hernquist et al. (1993). Recent analyses of ellip-
tical galaxiesÏ light proÐles suggest that elliptical galaxies
are nonhomologous on large scales such that they di†er
from de Vaucouleurs proÐles systematically with increasing
mass (Caon, Capacciolo, & DÏOnofrio 1993 ; Graham &
Colless 1997), with lower mass elliptical galaxies having
shallower inner proÐles.13 Hjorth & Madsen (1995) argue
that taking this nonhomology into account should lead to a
shallower relationship between Q and L , and thus the
scaling of Q with should be likewise shallower (l\ 6)p0and possibly compatible with the lD 3È4 behavior seen in
Figure 1. If a proper reanalysis shows that the true relation-
ship is steeper than observed in dark matter halos, then the
di†erence is likely to reÑect a more disruptive, less quiescent
merger history, o†ering more opportunities for breaking
homology.

Given the similarities of the global phase-space density
behavior shared by both dark matter halos and elliptical
galaxies (particularly in the stellar-dominated inner
regions), they may also share the more detailed internal
phase-space evolution. It is plausible that even with their
possibly quieter hierarchy, dark matter halos may even-
tually reveal the same homology breaking seen in elliptical
galaxies. The nonhomology in elliptical galaxy light proÐles
is typically parameterized in terms of the function,Se� rsic
with surface brightness (where n \ 4&(r) P exp [[(r/r0)1@n]corresponds to a de VaucouleursÏ proÐle). Work by Caon et
al. (1993) and Graham & Colless (1997) shows that the

index n tends to increase systematically with the pro-Se� rsic
jected half-light radius The index n is 1È2 for ther

e
. Se� rsic

smallest elliptical galaxies kpc) and increases system-(r
e
[ 1

atically to 5È10 for the largest elliptical galaxies (r
e
D 10

kpc). In Figure 3 we plot the corresponding density proÐles
for n \ 1È7, using the Ðtting formula of et al.Ma� rquez
(2000) for the deprojected density. The lower mass elliptical
galaxies with n D 1 have density proÐles with shallower
cores than the higher mass elliptical galaxies (although the
overall density is higher). This may be analogous to the
detection of relatively shallow inner proÐles in the cores of
rotating dwarfs and steeper proÐles in massive clusters
(although see caveats in ° 3.2.3). We note also that the
density proÐle that corresponds to a projected de Vaucou-
leurÏs proÐle (n \ 4) is quite similar to the NFW density
proÐle found by Navarro et al. (1996) for simulated dark
matter halos, both plotted in Figure 4.

4.4. Constraints on the Mass of Dark Matter Candidates
In addition to giving us clues about the relaxation pro-

cesses involved in galaxy formation, the above observations
of the phase-space density can be used to place strong limits

13 Note that we are referring to light proÐles and phase densities mea-
sured on the scale of the half light radii, not at the innermost points
measured by the Hubble Space Telescope, where the densities may be sub-
stantially a†ected by the presence of central black holes.
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FIG. 3.ÈDensity proÐles corresponding to projected surfaceSe� rsic
density proÐles with n \ 1 [ 7 (larger n are(&(r)P exp [[(r/r0)1@n])heavier line weight). The dashed and dotted lines represent o P r~1 and
o P r~3, respectively.

on the masses of possible particle dark matter candidates. If
dark matter has a primordial velocity dispersion, then its
initial phase-space density is lowered compared to CDM,
which leads to lower overall densities in the Ðnal virialized
halo. Generalizing the Tremaine & Gunn (1979) argument
for massive neutrinos (see also Gerhard & Spergel 1992 ;
Lake, 1989b), Hogan & Dalcanton (2000) showed that the
primordial phase density of dark matter particles X canQ0be simply related to the mass (of particles that decouplem

Xwhen their momentum distribution is relativistic) through

Q0\ q
X

g
X

m
X
4 , (9)

where the coefficient from the distribution function integral
is 0.00196 for thermal particles and 0.0363 for degenerateq

Xfermions and is the number of e†ective photon degrees ofg
Xfreedom of the particle X.

In the absence of dissipation, the coarse-grained phase-
space density can only decrease from its primordial value.
The maximum observed phase-space density therefore
places a lower limit on the mass of the X particle. Figure 1
shows that the highest observed phase-space densities are
found for dwarf spheroidal galaxies, with QobsD 10~4 M

_pc3 (km s~1)~3. This lower limit on implies thatQ0

m
X

[ 669 eV
C Qobs
10~4 M

_
pc~3 (km s~1)~3

D1@4

]
A0.00196

q
X

B1@4A 2
g
X

B1@4
. (10)

For thermal particles with 2 degrees of freedom, the data
suggest that eV. For degenerate fermions, with 2m

X
[ 669

degrees of freedom, eV.m
X

[ 322
These lower limits on particle mass correspond to the

largest Q actually observed. There may well be dark matter
halos with smaller velocity dispersions and larger Q halos ;

FIG. 4.ÈDensity proÐle of an n \ 4 proÐle (solid line) comparedSe� rsic
to an NFW density proÐle with o P (r/a)~1(1] r/a)~2, with a \ 50r0(dashed line).

indeed, these are expected in CDM. However, such systems
would never form stars and thus would remain undetected.
At velocity dispersions below 7 km s~1, the collisional
cooling of zero-metal atomic gas becomes very inefficient.
The speciÐc binding energy of the shallowest observed halo
potentials is close to the minimum temperature expected for
the protogalactic medium during early galaxy formation.

For standard collisionless warm matter, if the dark
matter saturates the limit from dwarf spheroidal galaxiesQ0(that is, eV), there is a corresponding Ðlteringm

X
B 700

scale at the masses of dwarf galaxies (see Sommer-Larsen &
Dolgov 2001 ; Hogan & Dalcanton 2000). This e†ect may
already be indicated by the paucity of dwarf galaxies rela-
tive to standard CDM predictions. We do not yet know
enough about the predictions of warm dark matter,
however, to compare with halo mass functions in detail.

5. CONCLUSION

The above examinations of the existing data on the struc-
ture and phase-space density of dark matter halos yields a
number of conclusions that may be relevant to constraining
the nature of the dark matter.

First, the behavior of halo core size with increasing
mass suggests that it is unlikely that either phase-space
packing or highly collisional dark matter is sufficient for
simultaneously explaining the dark matter cores of dwarf
spheroidal galaxies, rotating dwarf galaxies, and clusters of
galaxies. The generic behavior of these sce-rcore P 1/Jp
narios for core formation would predict far larger cores for
the dwarf spheroidal galaxies than for larger systems, in
contrast to observational evidence.

Second, if there were still any doubt, the dramatic
decrease in the characteristic phase-space density with
increasing mass is extremely strong evidence for a ““ bottom-
up ÏÏ hierarchical buildup of bound structures. Given that
the phase-space density can never increase with successive
mergers (in the absence of dissipation), smaller structures
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cannot generically have fragmented from larger ones. The
trend points to dwarf spheroidal galaxies as the lowest
entropy, and therefore dynamically most primitive, observ-
able systems.

Third, the observed dependence of QP p~3 approx-
imately agrees (over 8 orders of magnitude in Q) with a
simple scaling relation that assumes the minimal decrease
compatible with a gentle merging hierarchy with virial equi-
librium and homologous tidal stripping at each stage. The
same scaling is also compatible with a simple synchronous
collapse of di†erent mass systems to constant virial density.
The two descriptions are both appropriate, at di†erent
stages, for the collisionless hierarchy predicted in CDM
models. We also discuss the physics that sets the normal-
ization of the Q-p scaling relation and the scatter about it.

Fourth, examination of the phase-space density for dark
matter halos suggests some parallels to elliptical galaxies. In
most scenarios, both dark matter halos and cluster elliptical
galaxies are thought to be formed through collisionless
merging and accretion. We show that observationally, both
systems show similar decreases in the coarse-grained phase-
space density with increasing velocity dispersion. They also
show surprisingly similar density proÐles. If elliptical gal-
axies can be used as a rough analog to dark matter proÐles,
then they suggest that the structure of dark matter halos
may undergo subtle, systematic deviations from homology,
leading to somewhat Ñatter inner cores (and steeper fallo†
at large radii) for low-mass halos. The amplitude of these
deviations are sufficiently small that they are unlikely to be
well resolved in current numerical simulations, although
they may have already been detected observationally. This
nonhomology could help to alleviate some of the discrep-
ancies between observations of rotating dwarfs and predic-
tions of dark matter simulations on the smallest, most
poorly resolved scales. This parallel also provides sugges-
tive, although not conclusive, evidence that dark matter
halos are indeed collisionless on the scale of halo cores.

Fifth, the very high phase-space densities of dwarf spher-
oidal galaxies can be used to place constraints on the
masses of potential dark matter candidates. For dark
matter particles with 2 degrees of freedom, decoupled while
still relativistic, masses of (thermal fermions) orm

X
[ 700

eV (degenerate fermions) are preferred. Becausem
X

[ 300
systems with smaller masses and higher phase-space den-
sities than dwarf spheroidal galaxies may exist, the actual
particle masses may be substantially higher than these
limits. This seems likely since smaller p halos would be
invisible even if they exist ; in other words, we see halos

populated with stars right up to the cooling limit, which
would be a coincidence if they also correspond to the phase
density limit. This interpretation is again consistent with the
view that dwarf spheroidal galaxies are the most primitive
bound systems so far observed.

Finally, we conjecture that the addition of primordial
velocity dispersion can help to reconcile the discrepancies
between numerical predictions of dense central cores in
hierarchical clustering (see, e.g., Navarro et al. 1996, 1997 ;
Fukushige & Makino 1997 ; Moore et al. 1998, 1999 ;
Ghigna et al. 2000 ; Jing & Suto 2000) and observations of
much lower central densities (see, e.g., Flores & Primack
1994 ; Moore 1994 ; Burkert 1995 ; Navarro 1998 ; Stil 1999 ;
van den Bosch & Swaters 2001). Regardless of the origin of
the ““ universal ÏÏ density proÐle, simulations routinely
predict a denser, more concentrated halo than is actually
observed ; in other words, the predicted central phase-space
density for CDM is too high, which in turn suggests that the
CDM initial conditions themselves have too high a phase
density. Instead, if the primordial phase-space density is
lower than the CDM case, then even if the Ðnal density
structure is set by merging and relaxation, the Ðnal phase-
space density should be lowered as well, provided that the
primordial is not much higher than that which occurs asQ0a result of virialization at the earliest nonlinear collapse in
CDM. Numerical simulations by Huss et al. (1999) approx-
imately explore this conjecture through studying the mono-
lithic collapse of spherical overdensities with varying
velocity dispersion. However, numerical relaxation is
clearly a problem for these simulations, and we draw no
conclusion from them at this time. Future numerical work
will certainly shed light on this hypothesis. We note that
after the completion of this work, while the paper was in
press, a number of papers exploring these ideas have been
submitted (among them Bode, Ostriker, & Turok 2001,
Avila-Reese et al. 2000, and Knebe et al. 2001) ; we defer a
full discussion of these subsequent papers till a later date.
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