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ABSTRACT
The standard equilibrium for radiation-dominated accretion disks has long been known to be

viscously, thermally, and convectively unstable, but the nonlinear development of these instabilitiesÈand
hence the actual state of such disksÈhas not yet been identiÐed. By performing local two-dimensional
hydrodynamic simulations of disks, we demonstrate that convective motions can release heat sufficiently
rapidly as to substantially alter the vertical structure of the disks. If the dissipation rate within a vertical
column is proportional to its mass, the disk settles into a new conÐguration that is thinner than the
standard radiation-supported equilibrium by a factor of 2. If, on the other hand, the vertically integrated
dissipation rate is proportional to the vertically integrated total pressure, the disk is subject to the well-
known thermal instability. Convection, however, biases the development of this instability toward col-
lapse. The end result of such a collapse is a gas-pressureÈdominated equilibrium at the original column
density.
Subject headings : accretion, accretion disks È convection È hydrodynamics

1. INTRODUCTION

More than 25 years ago, Shakura & Sunyaev (1973, here-
after SS) showed that the inner portions of accretion disks
with luminosities near Eddington are likely to be domi-
nated by radiation pressure. Because the vertical com-
ponent of gravity increases proportional to z near the disk
midplane, true vertical hydrodynamic equilibrium could be
achieved only if the heating rate is constant with height. If
the physical dissipation rate scales locally with the density,
then hydrostatic and radiative equilibrium require the gas
density to be constant from the disk midplane to the disk
surface.

Unfortunately, this equilibrium is subject to numerous
instabilities. Lightman & Eardley (1974) pointed out that if
the viscous stress is proportional to the radiation pressure,
perturbations to the surface density grow on the
(comparatively long) viscous inÑow timescale. Shakura &
Sunyaev (1976) then observed that in these same conditions
the thermal content of the disk is likewise unstable, with a
growth time comparable to the (shorter) thermal timescale.
Bisnovatyi-Kogan & Blinnikov (1977, hereafter BKB)
noticed that if the radiation is locked to the gas even on
short length scales (i.e., if for the purpose of dynamics the
optical depth is treated as e†ectively inÐnite), such disks
should be convectively unstable because the speciÐc
entropy decreases upward (the radiation pressure decreases
upward while the density is constant) ; the linear growth
rate for convective ““ bubbles ÏÏ was worked out by Lomin-
adze & Chagelishvili (1984). This work has been recently
extended by Pietrini & Krolik (2000), who derived a hydro-

1 Chandra Fellow.

dynamic WKB dispersion relation in the presence of rota-
tion and including the e†ects of Ðnite optical depth. In other
recent work, Gammie (1998) demonstrated that a magnetic
Ðeld in radiation-supported disks can catalyze a short-
wavelength (kH ? 1, where H is the disk scale height) over-
stable wave mode. Blaes & Socrates (2001) found the
dispersion relation for radiation MHD modes within
radiation-dominated disks.

With so many instabilities potentially operating, one
must wonder what the real state of these disks is. Numerous
suggestions exist in the literature. BKB argued that the disk
structure could be determined by imposing the conditions
of constant speciÐc entropy (a state achieved as a result of
convection) and hydrostatic equilibrium. Liang (1977)
deÐned a new equilibrium by parameterizing the efficiency
of convective heat transport. Shakura, Sunyaev, & Zilitink-
evich (1978) found an analytic solution for the vertical
structure based on these same assumptions but that
included support from turbulent motions in the hydrostatic
equilibrium. They were able to Ðnd an analytic solution to
the equations granted the assumption that the rms Mach
number of the turbulence took a special value. Robertson &
Tayler (1981) argued that convection does not quench the
thermal instability, making rough estimates for the e†ect of
convection on transport. Others (Cannizzo 1992 ; Milsom,
Chen, & Taam 1994 ; Rozanska et al. 1999) have proposed
models based on the ““ mixing length ÏÏ prescription. Eggum,
Coroniti, & Katz (1987), Milsom & Taam (1997), and Fujita
& Okuda (1998) used two-dimensional radiation hydrody-
namic simulations to study various aspects of these disks.

Unfortunately, each of these previous attempts to under-
stand the structure of radiation-pressureÈdominated disks
has been lacking in one or more crucial respects. None of
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the analytic e†orts actually solved the force equation
without making some assumption about the character of
the answer, and none of the numerical simulations had the
resolution to actually determine the internal vertical struc-
ture (these simulations were primarily aimed at exploring
issues involving the global behavior of disks rather than the
particulars of vertical structure).

The object of the work presented here is to use radiation
hydrodynamic simulations to focus on the vertical equi-
librium of radiation-pressureÈdominated disks so that one
may actually determine the structure of bright accretion
disks in the range of radii where they release most of their
energy : their innermost rings. In addition to the intrinsic
interest of this e†ort for deepening our understanding of
accretion dynamics, solving this question is a prerequisite
for any e†ort to predict the spectrum of radiation emerging
from these disks : the nature of the disk atmosphere, and
therefore the character of any features imprinted on the
spectrum in the disk photosphere, depends crucially on the
vertical distribution of gas density and heat deposition.
Although the viscous mechanism operating in accretion
Ñows is likely due to magnetic stresses, we parameterize the
e†ects of viscosity so as to use a simpler hydrodynamic
code.

2. SIMULATION METHODS

The tool we employ is the ZEUS simulation code (Stone
& Norman 1992) with its Ñux-limited radiation di†usion
module (Turner & Stone 2001). This code solves Ðve
coupled partial di†erential equations on a Ðxed Eulerian
grid : the mass-continuity equation, the Navier-Stokes
equation, the energy conservation equations for both gas
and radiation, and the radiation momentum conservation
equation. DeÐning the radiation quantities in a cylindrical
coordinate frame comoving with the Ñuid and retaining
only those terms of Ðrst order in v/c, these equations are as
follows :
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Here the convective derivative TheD/Dt 4 L/Lt] ¿ Æ $.
unit vectors in the radial, azimuthal, and vertical directions
are r, /, and z, respectively. The quantities o, e, and p are¿,
the gas mass density, energy density, velocity, and pressure,
respectively, while E, F, and P are the radiation energy
density, momentum density or Ñux, and pressure tensor,
respectively. Only absorptive opacity is included in the
Planck mean opacity and the energy mean opacityiP i

E
,

but scattering is added to absorption in the Ñux-mean total

opacity i. Energy injection is permitted via the function g
(see later discussion). The orbital frequency, )\

is evaluated at the central radius The disk is(GM/r03)1@2, r0.assumed to be azimuthally symmetric, and shearing box
coordinates (the Hill potential) are used to describe the
gravity (the )-dependent terms in eq. [2] all arise from this
approximation to the potential in rotating coordinates).

The mass-continuity and Navier-Stokes equations are
advanced in time using operator splitting. The radiation
transport problem is solved implicitly using the approx-
imation of Ñux-limited di†usion (Turner & Stone 2001). The
code assumes a gas equation of state with the gas energy
density e evolved adiabatically, but including absorption
and emission of radiation. The gas pressure is deÐned as

with c\ 5/3.p \ pgas \ (c [ 1)e,
In all our simulations, the problem area was a radial

segment of a geometrically thin, optically thick, radiation-
pressureÈdominated accretion disk. In terms of the disk
height, as predicted by the SS equilibrium,H \F0 i/(c)2)
where is the radiation Ñux at the top of theF0\ 3)2M0 /(8n)
disk and c is the speed of light ; we simulated the dynamics
in a region stretching in the vertical direction from
z\ [2H to ]2H and in the (cylindrical) radial direction
from to Two values of central radiusr \ r0[ 2H r0] 2H.

were chosen : and where Ther0 100r
g

200r
g
, r

g
\GM/c2.

black hole mass was 108 and we set the accretion rateM
_

,
at g s~1, appropriate for bright activeM0 \ (3È10) ] 1025
galactic nuclei shining at 20%È60% of the Eddington limit.

The initial condition in every case was a slightly modiÐed
SS equilibrium. Because that equilibrium becomes ill-
deÐned at the disk surface (where it predicts that the gas
density falls discontinuously to zero), we constructed a
more complete version of the same equilibrium, allowing for
the small amount of gas-pressure support that exists at the
top. In this initial equilibrium (but not in our simulations),
we assume that locally the radiation temperature equals the
gas temperature throughout the disk. Fixing the Ñux F0,column density &, and orbital frequency ), we used a shoot-
ing method to simultaneously solve the hydrostatic equi-
librium equation,

[ d(pgas ] prad)
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the radiative equilibrium equation,
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and the radiation di†usion equation,
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where We introduced a scattering opacity Ñoorfrad\ 13E.
to prevent the opacity from ever becoming small enougha0to undercut the validity of the di†usion approximation (see

further discussion below). The gas density in this solution is
very nearly constant from z\ 0 to almost H ; starting from
just below z\ H, it falls steeply but not discontinuously as
z increases. The radial and vertical velocity components
were set to zero initially while the azimuthal velocity com-
ponents were set to the shearing sheet value, [1.5)(r [ r0).We added random noise by multiplying o, e, and E at each
point by 1 ] 10~3d, where d is a random number between
[1 and 1.
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The column density of the accretion disk at the start of
the simulation is chosen to be the value in the SS equi-
librium. Ignoring relativistic correction factors and the cor-
rection factor accounting for the outward angular
momentum Ñux, it is

&\ 4
3ia

m5 ~1x3@2 , (9)

where is the accretion rate in Eddington units (for unitm5
efficiency), a is the ratio of the viscous stress to the pressure,
& has units g cm~2, and x \ rc2/GM. In all but one special
case, we Ðxed a at 0.01 for computing the surface mass
density at the start of the simulation.

At the top and bottom edges (z\ ^2H), the boundary
condition was chosen to be outÑow; that is, Ñuid quantities
in the cells adjacent to the problem area were set equal to
the boundary values. In addition, anywhere we set an
outÑow boundary condition we required the velocity to be
outward ; if not, it was set to zero. In the radial direction,
periodic boundary conditions were assumed for all quan-
tities except for which periodicity was enforced for thevÕ,quantity vÕ[ vKeplerian.The scattering opacity was taken to be the electron scat-
tering value cm2 g~1 with certain exceptions.ies \ 0.4
When regions of the simulation zone were optically thin, we
found that the di†usion routine took many steps to con-
verge, greatly slowing progress of the code. In addition, the
outÑow boundary condition for optically thin, Ñux-limited
di†usion was impossible to implement owing to a steep
density gradient and a uniform radiation Ðeld near the
boundary, where the disk has very low density but is none-
theless gas-pressure supported. To avoid the difficulties
associated with optically thin radiation transfer, an opacity
Ñoor was chosen such that the scattering optical depth
across each cell was at least unity was 2] 10~12 cm~1(a0for simulation 1 and 2 ] 10~13 cm~1 for simulation 2). This
adjustment of the opacity a†ected about half of the simula-
tion region but a much smaller fraction of the total mass. It
caused the radiative Ñux through the upper and lower
boundaries to be carried advectively with the Ñuid rather
than by di†usion relative to the Ñuid ; this forced outÑow
through the outer boundaries, maintaining consistency with
our outÑow boundary condition. Over a characteristic
thermal time for the Shakura-Sunyaev equilibrium,
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only a small fraction of the mass within the simula-([1%)
tion region was lost because of outÑow. The absorption
opacity was assumed to be purely bremsstrahlung : iabs o \

cm~1. The total opacity is1052o11@2e~7@2 i \ies ] iabs] a0/o.
Without creation of new photons, Ñux lost out of the top

of the disk would ultimately deplete the disk of radiation. In

a real disk new photons are created in a way that depends
on the local gas density, temperature, and magnetic Ðeld.
Here we wish merely to model the radiation process in a
phenomenological fashion. To this end, we simply call the
local radiation rate g (units of ergs cm~3 s~1) and deÐne it
by either of two prescriptions : in one case g P o, while in
the other g is proportional to the total pressure averaged
over the simulation region but locally proportional to the
gas density within any given cell. The former choice was
meant to mimic the assumption underlying the SS vertical
equilibrium. The latter choice is based, of course, on the
thought that the stress is proportional to the total pressure.

Ultimately, the energy for these new photons comes from
dissipation of gas motions (and in a real disk, resistive dissi-
pation of magnetic Ðeld energy). However, there is no clear-
cut way to connect photon creation to local viscosity. For
example, if, as seems likely, most of the angular momentum
transport in disks is due not to something that behaves like
viscosity but rather to MHD turbulence (Balbus & Hawley
1998), there is no simple local connection between stress
and heating, much less between stress and radiation. Conse-
quently, we do not place any viscous counterpart to the
radiation creation term g in the gas momentum and energy
equations.

The Ðnal item to be noted in specifying the simulations is
the resolution. The results we present were done with a
128 ] 128 grid, but we reran part of simulation 1 with
resolutions of 64 ] 64 and 256 ] 256 to check for con-
vergence. In those cases in which the disk collapsed as a
result of thermal instability, we stopped the simulation
when nearly all the disk mass was contained within the
central one quarter of the vertical coordinate. At that point,
the central half (in both radial and vertical directions) was
rebinned to twice the resolution, and the simulation was
restarted.

The simulations and their characteristics are listed in
Table 1. The three parameters varied were the radius, accre-
tion rate and resolution ; the radius and change theM0 , M0
optical depth as described by equation (9) and also change
the ratio of Each simulation consisted of two suc-prad/pgas.cessive phases :

A. The disk was Ðrst allowed to come to a statistically
steady equilibrium modiÐed by convection with the inte-
grated heating rate Ðxed globally, but scaled locally with the
density, This readjustment took several thermalg \F0 o/&.
times.

B. The heating rate was then allowed to vary in propor-
tion to the average total pressure (““ a ÏÏ prescription) to
search for possible thermal instability. In this case,

g \ F0 oSpgas ] pradT
&Sp0T

, (11)

where is the volume-averaged pressure at the end ofSp0Tphase A.

TABLE 1

SIMULATION PARAMETERS

M0 /1025 Box Size, 4H
Number (g s~1) r/r

g
Resolution (cm) /rad /gas a0

1 . . . . . . . . 3 100 1282 2.4] 1013 95 0.50 2 ] 10~12
2 . . . . . . . . 10 200 1282 1.6] 1014 160 0.95 2 ] 10~13
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3. READJUSTMENT BY CONVECTION

In this section we discuss the results from phase A of the
simulations.

3.1. Approximate Analytic Description of the
T ime-Steady State

To provide a context for the simulation results, we begin
by discussing how one might Ðnd approximate analytic
solutions for the vertical structure of radiation-dominated
disks. Because the inÑow time is very long compared to the
dynamical time, one might expect the disks totdyn\ 2n)~1,
be in hydrostatic equilibrium. In the absence of convection,
one would also expect the heat Ñux to be carried by photon
di†usion.

On the other hand, when convection is active one might
estimate the heat Ñux in terms of mixing length theory (e.g.,
as described in Clayton 1968). If one could deÐne an e†ec-
tive mixing length l, the fraction of the heat carried by
convection is

Fconv
F0

\ 13
Az
h
B~1@2A l

h
B2A a

0.01
B
(h*$ ln T )3@2 , (12)

where *$ ln T is the di†erence between the true logarithmic
temperature gradient and the adiabatic temperature
gradient. To the degree that convection is efficient,
entropy gradients are erased so that the disk becomes nearly
isentropic.

Thus, one way to approximately determine the structure
of these disks is to require all three of these conditions :
hydrostatic balance, isentropy, and photon di†usive equi-
librium (or at least that photon di†usion carry a speciÐed
fraction of the heat). However, this is impossible because
any two of these three conditions suffice to determine the
structure of the disk. For example, SS applied the two con-
ditions of hydrostatic equilibrium and photon di†usive
equilibrium without reference to the condition of isentropy
(in fact, their equilibrium, as we have already remarked, has
a strongly unstable entropy gradient). In this solution, the
density is constant with altitude up to z\ H and drops
sharply to zero for values greater than H. Thus, the mass-
weighted average height of the disk is SzT 4
/0H ozdz//0H odzD H/2.

Similarly, BKB assumed hydrostatic balance and isen-
tropy but made no assumption with regard to radiative
balance. If the turbulence is subsonic, then this approx-
imation is appropriate since the turbulent pressure will be
much smaller than the radiation pressure. Then the di†usive
Ñux is simply

Fdif\
F0 z
H

. (13)

The density distribution they found is
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where is the central density, given byo
c

o
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\ 35&

32H
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The mass-weighted average height of this disk is
SzT \ 35H/128, about half that of the SS solution. The spe-

ciÐc entropy, s \ (4/3)a1@4E3@4/o, is found to be

s \ 2
1051@4
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In this case, if the dissipation is proportional to density,
then the convective Ñux is
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where f\ z/H. Thus, for small f, the ratio of the convective
Ñux to the di†usive Ñux is simply 19/16 ; i.e., the convective
Ñux is always comparable to the di†usive Ñux. At f\ 1,

so all the radiation escapes di†usively. TheFcon\ 0,
volume-integrated radiation energy in the disk is reduced
by a factor of 3 with respect to the SS solution, so the
thermal timescale is decreased by the same factor.

Alternatively, one could also insist that the speciÐc
entropy is constant and that the disk be in radiative balance
but ignore hydrostatic equilibrium (this assumes that the
convective Ñux is small compared to the di†usive Ñux). In
that case, if the dissipation is proportional to density, then
the density proÐle would be

o \ o
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where cn is a Jacobi elliptic function and is the centralo
cdensity, given by

o
c
\ Jn!(1/4)&

4!(3/4)H
. (19)

The entropy turns out to be identical to equation (16)
except for a di†erent numerical factor in front :

which is 1.3 times greater than in4(4/3)1@4!(3/4)/!(1/4)/Jn,
the BKB solution. The average radiation energy density in
this solution is 4 times smaller than in the SS solution. A
disk obeying these assumptions would be out of hydrostatic
balance by whereo

c
)2H[J2dn(u o 1/2)sn(u o 1/2) [ z/H],

and dn and sn are Jacobi elliptic functions.u \ J2o
c
z/&

For hydrostatic equilibrium to exist, turbulence must
provide this deÐcit. The quantity in parentheses can be
approximated by D0.4 sin n(z/H)4@5, so the turbulent
velocity must be of order the sound speed, DH).

Thus, at most two of these three plausible conditions can
be satisÐed exactly. On the other hand, it is possible to
approximately satisfy all three if small departures are
allowed for each one. Shakura et al. (1978) tried to modify
both the hydrostatic balance and energy transport equa-
tions to allow for small departures (speciÐcally, the kinetic
energy contribution in the hydrostatic equilibrium equation
and convective heat transport in the energy equation).
However, they were able to Ðnd an analytic solution only
for the special case in which the rms Mach number
M\ 2/3. When that is the case, the density distribution is

o \ o
c

C
1 [

A z
H
B2D

, (20)

where Unfortunately, there is no particularo
c
\ 3&/(4H).

reason to expect that M takes this value (in fact, the simula-
tions we performed indicate that it is smaller by an order of
magnitude). Consequently, it is necessary to solve the equa-
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tions of motion numerically in order to Ðnd the true com-
promise between these three conditions that is found in real
disks.

3.2. Dynamical Readjustment Due to Convection
We are now ready to report the results of our simula-

tions.
Within the body of the disk, the timescale for thermal

equilibration of the radiation and the gas is the shortest
timescale ; it is a fraction less than 1/20 of a dynamical
timescale. Consequently, deep inside the disk, the gas and
radiation temperatures quickly become equal. Near the
surface, the timescale for radiation to di†use outward is
comparable to or shorter than the thermal equilibration
timescale, so in those regions the gas temperature is any-
where from 10 to 103 times greater than the radiation
temperature.

Though our initial condition satisÐes hydrostatic equi-
librium, it is convectively unstable. Pietrini & Krolik (2000)
showed that in the WKB approximation (i.e., kH ? 1), the
most rapidly growing modes in the linear regime are those
whose wave vectors are nearly horizontal and that the
growth rate for these modes is

)conv \
S3

2
)
A z
H
BC

1 [
A z
H
B2D~1@2

, (21)

almost independent of wavelength when i&? 1 (note the
typographical error of a factor of 2 in eq. [20] of Pietrini &
Krolik). That is, they predicted that convective motions in
this equilibrium will grow most rapidly near the surface of
the disk and the basic growth timescale is the dynamical
time. Our simulations conÐrm this prediction quantitatively
for for example, at 0.4H the analytic growthz/H [ 1/2 ;
time is 9 ] 105 s while the measured growth time in simula-
tion 1 is 106 s. However, near the disk surface the WKB
approximation breaks down because there are sharp gra-
dients in density and pressure. As a result, the numerical
growth rate we Ðnd is slower than the analytic value by a
factor of a few near zD H.

In the nonlinear regime, growth is most rapid for longer
wavelengths, much as in the case of the Rayleigh-Taylor
instability (Garabedian 1957). Horizontal density modula-
tions near the top of the simulated disks with wavelengths
of order H/10 grow within a few dynamical times of the
start of the simulation (Fig. 1). Overdense blobs fall, become
Kelvin-Helmholtz unstable, and form an inverse mushroom
shape. The disk rapidly becomes turbulent, mixing high-
and low-entropy regions, and then smooths out a bit while
steady convective motions continue.

After D90 dynamical times, the disk achieves an approx-
imate statistical steady state. Convection continues to
occur, creating small-amplitude Ñuctuations, but average
properties remain very nearly constant. The outgoing Ñux
at the top of the box Ñuctuates about the mean heating rate,
evidence that the simulation has reached a steady state.
Several stable convective cells are formed in which low-
entropy sinking regions of size DH are surrounded by
upwelling plumes with twice the entropy (Fig. 2 ; to be
precise, at any given height within the body of the disk, the
speciÐc entropy in the plumes is roughly twice the lowest
speciÐc entropy elsewhere in the disk at that height). The
plumes are not completely resolved since at their narrowest
in the midplane they are spanned by only 2 pixels. If the

heating rate is proportional to the local density, mean con-
ditions in the disk remain constant for the duration of phase
A of the simulation, 11 initial thermal times, or 180 dynami-
cal times. In contrast to the ““ square-wave ÏÏ density proÐle
of the initial equilibrium, the mean density proÐle exhibits a
smooth fall from the midplane out to the top. The mass-
weighted average height of the disk changes by a factor of
D2 as convection carries more Ñux outward, reducing the
radiation pressure and causing the disk to collapse. The
reduced height further reduces the thermal time, causing
more Ñux to escape and further collapse until radiation
pressure supports the disk again. At the end of the readjust-
ment process, the volume-integrated radiation energy was
reduced relative to what it was in the initial equilibrium by
a factor of 4.4 and 4.6 in simulations 1 and 2, respectively.
These factors are slightly larger than the factor of 3 predict-
ed by the analytic BKB scaling but is close to the factor of 4
predicted by equation (18). We reran simulation 1 at lower
(642) and higher (2562) resolution to check for convergence.
We found that the radiation energy density in the 642 simu-
lation disagreed by 20% at the end of phase A, demonstrat-
ing that at this resolution the simulation was not converged.
At a higher resolution of 2562, we were able to run the
simulation for only about a thermal time since the run time-
scales as N4, but we found that the di†erence between the
total radiation energy density of the 1282 and 2562 simula-
tions had a standard deviation of only 0.6%, indicating that
the 1282 simulation was indeed converged. We utilize this
higher resolution run when studying the initial convective
collapse (e.g., Fig. 1).

The mean time-steady density proÐle of simulation 1,
phase A, is shown in Figure 3, where it is contrasted with
the various approximate analytic solutions discussed in
° 3.1. This distribution lies somewhere between the solu-
tions of BKB and equation (18). These analytic solutions
break down near the surface, where, in actuality, gas-
pressure support becomes important and LTE no longer
holds. We do not Ðnd any dependence of the inner disk
structure on the opacity Ñoor (we increased it by a factor of
2 and found the disk structure was identical). The Shakura
et al. (1978) solution, with column density equal to the simu-
lation result, deviates signiÐcantly from the simulation
mean.

3.3. Heat Transport
The most dramatic feature in Figure 2 is the sharp con-

trast in speciÐc entropy between rising and sinking regions.
Nonetheless, as one might expect from the nonlinear devel-
opment of an instability that feeds on vertical entropy gra-
dients, convection does an excellent job of smoothing out
the radially averaged speciÐc entropy proÐle (Fig. 4). Within
a few dynamical times, the radially averaged speciÐc
entropy in the disk becomes very nearly constant for z[
0.8H ; this (on average) isentropic region contains 98% of
the disk mass. Convection is so efficient that this is accom-
plished with relatively small amplitude motions : the rms
Mach number in simulation 1 is MD 0.1, vindicating
the quasi-hydrostatic approximation made in the BKB
solution.

Although the radially averaged density distribution in the
disk is close to that predicted by the two isentropic models
(see Fig. 3), the actual value of the mean speciÐc entropy in
the disk is about 25% smaller than the analytic prediction
(eq. [16]). This departure may be due to the fact that the
entropy is set by the requirement of radiative di†usion
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FIG. 1.ÈDensity distribution in simulation 1 (at 2562 resolution) at times 1, 2, and 3. Gray scale is linear from o \ 0 (black) to 6] 10~9 g cm~3t/tdyn \ 0,
(white). Horizontal axis is radial distance from the central radius of the simulation ; vertical axis is altitude from the disk midplane ; both are in centimeters.

matching the total Ñux at the top of the disk. In the simula-
tions, the density gradient near the disk surface is somewhat
di†erent than that predicted by the analytic models because
turbulent support becomes comparable to radiation
support (MD 1). As a result, the entropy necessary to
maintain the Ñux can be slightly di†erent.

This strong turbulence near the disk surface Ðnds its ulti-
mate origin in the reduction in optical depth across convec-
tive cells as the density falls sharply near the disk surface.
When photons can di†use across a cell in an eddy turnover
time, the radiation does not e†ectively couple to the Ñuid
and the sound speed relevant to Ñuctuations on those
length scales drops to the (much lower) gas sound speed.
Because photon di†usion prevents the radiation from being
compressed along with the gas, the gasÏs compressibility
increases dramatically. That permits large local density
enhancements, which lead in turn to rapid cell sinking and
high-speed motions.

Compressive motions call into play the artiÐcial viscosity
employed in ZEUS. In simulation 1, phase A, dissipation

due to artiÐcial viscosity comprises 9% of the total heating
rate within the box. In the immediate vicinity of a shock, the
dissipation can be signiÐcant, but averaged over larger
volumes and times, it does not qualitatively alter the diskÏs
thermal properties.

The mean di†usive Ñux, and the con-Fdif \ ScL
z
E/(3i)T,

vective Ñux, Fcon\Sv
z
(E] e) ] /0z dz($¿ :P ] p$ Æ ¿)T,

averaged radially and in time, are shown in Figure 5. The
convective Ñux is comparable to the di†usive Ñux near the
midplane of the disk as predicted by the BKB solution. It is,
of course, the additional heat loss due to convection that
reduces the thermal time so much. In line with intuitive
expectation, the di†usive Ñux rises steadily with height
within the disk until it carries almost all the heat at the disk
surface. The integrated heating rate and the total Ñux are
nearly equal at the top of the box, indicating that the disk is
in quasi-equilibrium.

With these observations in hand, we can evaluate the
possible relevance of estimates made through mixing length
theory. On the one hand, the fact that the mean speciÐc
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FIG. 2.ÈSpeciÐc radiation entropy distribution in simulation 1
(resolution 1282) in units of cm2 s~2 K~1 at Axes are as in Fig.t \ 97tdyn.1 ; regions above the maximum of the color scale are white.

entropy is very nearly constant as a function of altitude is
consistent with the usual expectation that convection very
nearly erases any di†erence between the actual temperature
gradient and the adiabatic temperature gradient. Moreover,
our Ðnding that the convective and di†usive heat Ñuxes are
similar deep inside the disk could in principle allow us to
turn around equation (12) and evaluate an e†ective mixing
length. However, there are both technical and conceptual
problems preventing this. The technical problem is that the
limited numerical accuracy with which we can measure the
mean temperature gradient will lead to a highly uncertain
estimate of the di†erence between it and the very similar
adiabatic gradient. The conceptual problem is that the large

FIG. 3.ÈDensity distribution at t \ 0 ( Ñat-topped solid line) and t \
in simulation 1 (bell-shaped solid line) compared to the prediction of90tdynBKB (dotted line), eq. (18) (dashed line), and Shakura et al. (1978) (dot-

dashed line).

FIG. 4.ÈHorizontally averaged entropy as a function of height at t \ 0
(solid line) and at (dashed line) from simulation 1.t \ 95tdyn

instantaneous contrasts in speciÐc entropy at Ðxed altitude
demonstrate that the mixing length picture has question-
able validity here because the cell sizes are comparable to
the entire thickness of the disk.

Above the surface of the disk, the opacity Ñoor that we
impose creates a numerical artifact in the character of heat
transport. With the true opacity, that region would be opti-
cally thin and the heat would be carried almost exclusively
by free-streaming radiation ; the opacity Ñoor causes the
heat to be carried advectively. We believe that this has little
consequence for dynamics in the disk body because the
region in which the opacity Ñoor is implemented contains
only D1% of the disk mass and because a simulation with
an opacity Ñoor twice as large gave similar results.

4. EVOLUTION ON THE THERMAL TIMESCALE

4.1. T hermal Instability
One of the important questions motivating this study is

whether the thermal instability predicted on the basis of the

FIG. 5.ÈHorizontally averaged di†usive energy Ñux (dotted line) com-
pared to the convective Ñux (solid line), total Ñux (dashed line), and inte-
grated heating rate (dot-dashed line) from to 95 in simulation 1.t/tdyn \ 90
The dominance of convective heat Ñux for cm is an artifacto z oZ 4 ] 1013
of our opacity Ñoor ; in real disks the Ñux at high altitude is free streaming.
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a model actually occurs in radiation-dominated disks. We
began this part of our study by verifying that our simulation
code reproduced this instability in one dimension, when the
radiation energy generation rate is proportional to the local
radiation energy density. We increased a to 0.1 in this test
(only) to reduce the thermal timescale, thereby avoiding a
long-term drift in the radiation pressure, which occurred
only in the one-dimensional simulations.2

The growth timescale predicted by Shakura & Sunyaev
(1976) in the long-wavelength, radiation-dominated limit
is numerically equal to5(a))~1\ (5/4)ttherm^ 8tdyn,2.5] 107 s for a \ 0.1 and Our measuredr/r

g
\ 100.

growth time was 2.5 ] 107 s, a remarkable conÐrmation of
their analytic prediction.

On the other hand, in two-dimensional simulations con-
vection becomes possible, so we now describe phase B of the
simulations. To test for thermal instability, the disk was Ðrst
evolved over several thermal timescales with the heating
rate proportional to the total mass (phase A described in
° 3). We began with this prescription for the heating rather
than the a model for two reasons. First, we wished to
separate evolution driven by the convective instability from
evolution driven by thermal instability. Second, as a result
of the heat lost by convection, the total pressure in the disk
after convection sets in is smaller than the initial total pres-
sure. Consequently, if the heating rate is set by proportion-
ality to the total pressure, the proportionality constant that
gives thermal balance for the initial disk conÐguration will
not result in enough heating to maintain thermal balance
after the convective readjustment. Equation (11) ensures
thermal balance at the beginning of phase B.

At the start of phase B, we Ðrst let the thermal instability
grow out of convection-driven Ñuctuation. Comparing the
total radiation energy in the box at the time when the
heating prescription was changed to a dissipation to the
time-averaged radiation energy in the simulations with dis-
sipation proportional to gas density, the integrated numeri-
cal Ñuctuation in the radiation energy was less than 0.1%.
In both simulations, as soon as the heating prescription was
changed, departures from equilibrium began to grow. The
initial growth was well described by an exponential ; in
simulation 1 its e-folding time was ^0.9 thermalD18tdyn,times as measured in the convective equilibrium. Simula-
tion 2 showed the same growth time, Because theD18tdyn.single-zone linear theory of Shakura & Sunyaev (1976) was
speciÐc to their equilibrium, we cannot directly compare
this growth time with analytic predictions ; however, it is
comparable to the thermal time of the collapsed disk, D

Thus, as predicted by Robertson & Tayler (1981),16tdyn.convection does not quench the thermal instability.
However, as we shall see momentarily, it does signiÐcantly
change its character.

2 The drift is an artifact of the opacity Ñoor. When the radiation Ñux is
purely di†usive, only the radiation energy gradient matters ; consequently,
the general level of radiation energy density is determined only up to an
additive constant. In real disks, the di†usion approximation breaks down
in the optically thin region, so it is possible to think of this additive con-
stant as determined by the condition that the Ñux must be carried by
free-streaming radiation at the top of the box. However, in our one-
dimensional simulation the Ñux is di†usive everywhere because of the
opacity Ñoor, so there is nothing in the equations to prevent numerical
drifts in the general level of radiation energy density. By contrast, in the
two-dimensional simulations the Ñux leaving the box is carried by advec-
tion of radiation, which then Ðxes the radiation normalization as in the
free-streaming case.

In both simulations, convection-driven Ñuctuations lead
to disk collapse. However, the pure a model without con-
vection predicts that the instability has the same growth
rate whether the sign of the temperature perturbation is
positive or negative. To test whether radiation energy
growth can also occur, we reran phase B, although this time
artiÐcially increasing the radiation energy density by 5% at
the start. In the case, the disk still collapsed on ar \ 100r

gthermal timescale. However, in the case, the radi-r \ 200r
gation energy density grew on a thermal timescale. The simu-

lation was stopped after most of the mass was lost through
outÑow from the simulation grid. We speculate that the
positive energy perturbation at was reversedr \ 100r

gbecause the initial growth in radiation energy triggered such
strong convection that soon the disk was losing more heat
than it gained. Because the primary distinction in physical
conditions between the two cases was that the ratio of radi-
ation to gas pressure was larger by a factor of 1.7 at r \

than at it is possible that their contrary200r
g

r \ 100r
g
,

fates were related to this fact. However, we have not been
able to convincingly identify any particular diagnostic that
enables us to predict which cases will collapse rather than
expand despite initially positive temperature perturbations.

We also tried the further experiment of imposing a factor
of 2 increase in the local radiation energy density at the end
of phase A of the simulation. This had the resultr \ 100r

gof the disk heating and expanding until a signiÐcant
amount of mass was lost owing to strong outÑow.

On the basis of these numerical experiments, we conclude
that convection biases the development of the thermal
instability in the linear regime so that negative radiation
energy density perturbations are favored. In some circum-
stances, this bias is strong enough that even when the initial
perturbation is an increase in the radiation energy density,
the ultimate result of the instability is collapse. However,
this is not always possible, and sufficiently large positive
perturbations can overcome convection and lead to
runaway growth in the radiation energy density. Our simu-
lations, unfortunately, are not capable of following runaway
growth very far because so much of the disk mass is quickly
pushed out of the problem area. Consequently, we cannot
say how these cases develop in the long term.

In all these numerical experiments we have restricted our-
selves to very simple phenomenological descriptions of the
heating and, in the case of the simulations with imposed
perturbations, very simple and uniform perturbations. Real
disks undoubtedly behave di†erently. We regard these
simulations therefore as demonstrating that it is possible for
thermal instability to occur after convective readjustment
when the heating rate is roughly described by the a model
and that in some circumstances convection can cause a bias
toward collapse. However, these simulations certainly do
not provide the Ðnal answer to the question of whether and
how thermal instability a†ects physical disks.

4.2. Final State
After the initial exponential collapse, the radiation energy

density approaches a constant value as the disk becomes
gas-pressure supported and thus thermally stable. This is a
consequence of the fact that for Ðxed surface mass density &
and Ðxed stress parameter a, there exist exactly two thin-
disk solutions : one radiation-pressure supported with high
accretion rate and Ñux and one gas-pressure supported with
low accretion rate and Ñux (an advection-dominated solu-
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tion can also exist, but it is no longer thin). Figure 6 shows
the radially averaged gas density in the Ðnal state of simula-
tion 1, phase B, while Figure 7 shows the radiation and gas
pressures. Despite the fact that the gas pressure is larger
within the bulk of the disk, becomes larger thanprad pgasnear the photosphere simply because the gas density drops
precipitously. The density-weighted mean of o z o is smaller
by a factor of 12.5 at the end of phase B than at the begin-
ning of phase A. Twice the grid is rebinned by a factor of 2
to follow the collapse. We Ðnd that the gas becomes strong-
ly clumped in the radial direction Ðlling only of theD14È12simulation region. Since centrifugal forces balance gravity
in the radial direction, the clumps remain stable. In a real
disk, we expect that viscous stresses will erase this radial
stratiÐcation.

To illustrate the relationship between the initial
radiation-pressure supported state and the Ðnal gas-
pressureÈsupported state, we explicitly Ðnd them in terms of
the parameter where m is/\ prad/pgas \ (13aT 4)/(ok

B
T /m),

the average mass per particle and T is the temperature.
Ignoring the radial clumping, we approximate the disk as a
single vertical zone from z\ 0 to H, writing the hydrostatic
equilibrium equation in the form

(1] /)pgas \ oH2)2 . (22)

FIG. 6.ÈRadially averaged density proÐle at the end of simulation 1,
phase B.

FIG. 7.ÈRadially averaged pressure proÐles at the end of simulation 1,
phase B. Solid line is radiation pressure ; dashed line is gas pressure.

In the a prescription, the radiation equilibrium equation
becomes

3
2

a)(1] /)pgas H \ 4c/pgas
i&

. (23)

DeÐning &\ 2oH, we solve for / :

(1] /)10\/6c0 , (24)

where is deÐned asc0

c0\
A 8c
3aies&

B7 2am4
3&)k

B
4 . (25)

When radiation pressure dominates, /? 1, so /radD c01@4.When gas pressure dominates, if /> 0.1, then /gas D c0~1@6.
Thus, we expect that If then it must/gas D/rad~2@3. /gas D 1,
be solved for numerically using equation (24).

As a result of the clumping, this relation is only qualita-
tively borne out by our simulations. Simulation 1 begins
with (density-weighted average). As a result of the/rad\ 95
a renormalization that occurs in order to preserve thermal
balance when the heating prescription is changed, a changes
from 0.01 to D 0.05 (since the radiation pressure is reduced
by With this new value of a, we would expect on theD15).basis of the simple one-zone model just presented that the
Ðnal after collapse should be D0.9 ; we Ðnd 0.54 in/gassimulation 1. Similarly, simulation 2 begins with /\ 160.
The e†ective a again changes from 0.01 to 0.05, leading to a
predicted Ðnal (from eq. [24]) ; we Ðnd/gas \ 0.38 /gas ^0.95. The column density is artiÐcially increased because of
the clumping, so the e†ective decreases (eq. [25]),c0P &~8
leading to a larger The radial clumping is much/gas.stronger in simulation 2 than in simulation 1, which
explains the larger discrepancy. In simulation 2, pradD pgasin the Ðnal state, so weak convection is still present.

5. CONCLUSIONS

5.1. Evolution on the Dynamical T imescale
We have shown that in a very short time (of order the

dynamical time), convection modiÐes the structure of geo-
metrically thin radiation-dominated disks. Although there
are order unity contrasts in speciÐc entropy at Ðxed altitude
z, the radially averaged entropy becomes very nearly con-
stant with height as a result of convective mixing. The mean
density proÐle that emerges is close to the one predicted in
the analytic solution of BKB. As likewise predicted by that
analytic solution, the convective Ñux near the disk midplane
is comparable to the di†usive Ñux. More rapid upward heat
Ñux (for the same dissipation rate) results in smaller mean
radiation pressure, weaker support against gravity, and
therefore greater mean density. The decreased pressure may
cause a further decrease in the viscous stress, resulting in a
higher surface mass density and thus a lower radiationÈtoÈ
gas-pressure ratio. One consequence may be that the region
of thermal instability is reduced in size by a factor of a few,
changing the accretion rate at which near-Eddington disks
are subject to thermal instability.

5.2. Evolution on the T hermal T imescale
We have also shown that evolution on the thermal time-

scale is quite sensitive to the speciÐc character of the dissi-
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pation prescription. Dissipation proportional to density
leaves the disk in a long-term statistical equilibrium in
which convection and radiative di†usion carry almost equal
amounts of energy.

On the other hand, dissipation proportional to vertically
integrated pressure is subject to the thermal instability Ðrst
pointed out by Shakura & Sunyaev (1976), except with a
signiÐcant modiÐcation due to convection : it is biased
toward collapse rather than runaway expansion.

The result of thermal collapse is a new gas-pressureÈ
dominated equilibrium at the old column density. The pres-
sure in this new equilibrium is much smaller than in the
original one. Because the stress such a disk is capable of
exerting (assuming the a model still holds at least approx-
imately, as extensive MHD simulations indicate ; Balbus &
Hawley 1998) is much smaller than in the initial state, the
mass accretion rate through such a disk is much smaller
than the initial value. Consequently, if outer regions of the
disk continue to pass matter inward at the same rate, mass
must build up in the collapsed portions of the disk.

The long-term evolution (i.e., on the inÑow timescale) of
this situation is difficult to predict. We speculate that the
column density will continue to build up until thermal
instability sets in at The speciÐc point at whichpradD pgas.this occurs may be modiÐed by convective heat transport.
At this point, the disk no longer has a gas-pressureÈ
supported equilibrium available for Ðxed column density ;
so the disk may heat up, joining the advection-dominated
““ slim disk ÏÏ solution and leading to limit cycle behavior on
the inÑow timescale (Abramowicz et al. 1988), or convection
may lead to episodic release of energy on the dynamical
timescale, matching on average the energy dissipated
within.

5.3. Future Improvements
To simplify our calculations, we have made several

assumptions that can be tested with future work. First, we
have assumed that Ñux-limited di†usion is an appropriate
description of the radiation Ðeld. Since our simulations
were optically thick everywhere, this may be appropriate
but needs to be checked with a more accurate computation,
e.g., using the variable Eddington factor method described
in Stone, Mihalas, & Norman (1992).

Second, we have assumed simple dependences of the
heating rate on local disk conditions. Actual disks may have

a heating rate that depends on global disk parameters such
as height or radius. If a large fraction of the magnetic energy
is carried to the corona, the disk may never become
radiation-pressure supported (e.g., as suggested by Svenss-
on & Zdziarski 1994). Simulations of disk annuli indicate
that a signiÐcant fraction of the magnetic energy generated
within an accretion disk can be carried to the corona (Miller
& Stone 2000) but not necessarily enough to eliminate a
radiation-pressure dominated disk. These simulations need
to be extended to include radiation and a physical equation
of state to determine the magnitude of the transported
energy. Because disks with dissipation primarily at the
surface are gas-pressure supported, they are subject to
neither convective nor thermal instability.

We believe that the problems mentioned in the previous
paragraph may be best addressed with three-dimensional
radiation magnetohydrodynamic simulations in which the
magnetic Ðeld strength and dissipation rate are computed
self-consistently. The nature of convective transport as well
as the contribution of turbulence to heat transport (Balbus
2000) may have a large e†ect on our results. Magnetohydro-
dynamic turbulence might destroy the convective plume
structure since the magnetorotational instability operates
on the dynamical timescale. The damping of turbulence by
radiation di†usion or shocks at the scale of aH might deter-
mine the heating proÐle of the disk (Agol & Krolik 1998). If
the magnetic stress scales with gas pressure rather than
radiation pressure, the thermal instability is suppressed
(Piran 1978) ; whether this is the case can be addressed with
radiation MHD simulations. We have purposely limited the
scope and detail of our current simulations as our neglect of
three-dimensional magnetohydrodynamics will change the
nature of the equilibrium.
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