DISTANCES AND METALLICITIES OF HIGH- AND INTERMEDIATE-VELOCITY CLOUDS

B. P. WAKKER

Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706; wakker@astro.wisc.edu Received 2000 July 26; accepted 2001 March 1

ABSTRACT

A table is presented that summarizes published absorption line measurements for the high- and intermediate-velocity clouds (HVCs and IVCs). New values are derived for N(H I) in the direction of observed probes, in order to arrive at reliable abundances and abundance limits (the H I data are described in Paper II). Distances to stellar probes are revisited and calculated consistently, in order to derive distance brackets or limits for many of the clouds, taking care to properly interpret nondetections. The main conclusions are the following. (1) Absolute abundances have been measured using lines of S II, N I, and O I, with the following resulting values: ~ 0.1 solar for one HVC (complex C), ~ 0.3 solar for the Magellanic Stream, ~ 0.5 solar for a southern IVC, and \sim solar for two northern IVCs (the IV Arch and LLIV Arch). Finally, approximate values in the range 0.5–2 solar are found for three more IVCs. (2) Depletion patterns in IVCs are like those in warm disk or halo gas. (3) Most distance limits are based on strong UV lines of C II, Si II, and Mg II, a few on Ca II. Distance limits for major HVCs are greater than 5 kpc, while distance brackets for several IVCs are in the range 0.5-2 kpc. (4) Mass limits for major IVCs are $0.5-8 \times 10^5 M_{\odot}$, but for major HVCs they are more than $10^6 M_{\odot}$. (5) The Ca II/H I ratio varies by up to a factor 2-5 within a single cloud, somewhat more between clouds. (6) The Na I/H I ratio varies by a factor of more than 10 within a cloud, and even more between clouds. Thus, Ca II can be useful for determining both lower and upper distance limits, but Na I only yields upper limits.

Subject headings: Galaxy: halo — ISM: abundances — ISM: clouds — ISM: structure —

radio lines: ISM — ultraviolet: ISM

On-line material: machine-readable tables

1. INTRODUCTION

The high- and intermediate-velocity clouds (HVCs and IVCs) consist of gas moving at velocities incompatible with a simple model of differential galactic rotation (Wakker 1991). An operational definition has been that HVCs have velocities larger than ~ 90 km s⁻¹ (positive or negative) relative to the LSR. The definition of IVCs has been less strict. In this paper they are defined as clouds with velocities relative to the LSR between ~ 40 and 90 km s⁻¹. In a few directions slightly lower velocities are included, if there is a clear connection with gas at higher velocities. This definition excludes many clouds with $|v_{LSR}| < 40$ km s⁻¹ that were considered an IVC by other authors, but in most cases these have ill-defined borders and often such velocities can be understood within the framework of differential galactic rotation, after allowing for turbulent velocities of up to 30 $\mathrm{km}\,\mathrm{s}^{-1}$.

The HVCs and IVCs are still poorly understood, although much progress has been made in the most recent decade. They appear to serve as tracers of energetic processes in the Galactic Disk and Halo (as part of a "Galactic Fountain"), but also as an ingredient in the continuing formation of the Galaxy (some are examples of accreting gas). Finally, some may be tidal remnants (most prominently the Magellanic Stream) or isolated clouds in the Local Group. A review of our understanding as of a few years ago was presented by Wakker & van Woerden (1997); an update has already proven necessary (Wakker, van Woerden, & Gibson 1999b). Ever since the discovery of the HVCs (Muller, Oort, & Raimond 1963), it has been clear that the key to a proper understanding lies in using interstellar absorption lines to determine distances (and metallicities) for this class of clouds. Thus, some of the recent progress has come from new models and improved mapping, but most has come from new observations of interstellar absorption lines.

Mapping.—The published HVC all-sky maps (Hulsbosch & Wakker 1988; Bajaja et al. 1985) have proven very useful to understand the properties and statistics of the HVCs. However, both these surveys suffer from low velocity resolution (16 km s⁻¹) and incomplete mapping. The Hulsbosch & Wakker (1988) survey covered the sky north of declination -18° on a 1° grid with a 0°5 beam, but the southern survey of Bajaja et al. (1985) suffered from lack of coverage (2° grid with a 0°5 beam) (although Bajaja et al. 1989 mapped selected areas on a 0°.5 grid). IVC maps have only been presented for the "Intermediate-Velocity Arch," a large structure crossing the northern Galactic sky at latitudes greater than 30° (Kuntz & Danly 1996). This paper was based on the data in the "Bell Labs Survey" (Stark et al. 1992), which has a 3° beam and 1 km s⁻¹ velocity resolution).

New data sets allow great improvements in mapping, especially for IVCs and southern HVCs. (a) The Leiden-Dwingeloo Survey (LDS) (Hartmann & Burton 1997), covers the sky north of declination -35° on a 0°.5 grid with 1 km s⁻¹ velocity resolution. (b) The HVC survey made at the "Instituto Argentina de Radioastronomia" (IAR) (Morras et al. 2000) provides a list of H I components with $|v_{\rm LSR}| > 80$ km s⁻¹ for declinations south of -23° on a 0.5 grid, extracted from spectra with 16 km s⁻¹ velocity resolution. (c) The H I Parkes All-Sky Survey (HIPASS) (Staveley-Smith 1997) covers the sky south of declination 0° on a 14.4 grid with 26 km s⁻¹ velocity resolution. (d) The Parkes Narrow Band Survey (Haynes et al. 1999; Brüns, Kerp, & Staveley-Smith 2001) covers the Magellanic Stream (both trailing and leading parts) on a 14.4 grid with 1 km s⁻¹ velocity resolution. This paper presents new IVC maps based on the LDS, and new maps for southern HVCs based on the IAR list. The LDS and both Parkes surveys are further used to construct H I spectra toward HVC and IVC probes.

Models.-Gardiner & Noguchi (1996) presented a modern version of the model in which the Magellanic Stream is formed by tidal stripping. Combined with the observational identification of the predicted leading arm by Lu et al. (1998) and Putman et al. (1998), this has led to a better understanding of the Stream and of which other HVCs could be part of the same tidal feature. Blitz et al. (1999) suggested that the majority of the HVCs are remnants of the formation of the Local Group and are similar to the original building blocks of the Milky Way and the Andromeda Nebula. Braun & Burton (1999) presented a variant of this interpretation, in which only some small HVCs are Local Group clouds. These models contrast with previous ones in which the HVCs/IVCs are generated in a Galactic Fountain (Bregman 1980) or are remnants of the formation of the Milky Way (Oort 1970). It now appears that examples of at least three (and possibly all four) of the proposed origins can be found (see, e.g., Wakker et al. 1999b).

Absorption-line studies.--Metallicities and distances are best determined using absorption-line studies, both in the optical and the ultraviolet. In the future, the optical emission lines of [S II] and H α may prove useful (Tufte, Reynolds, & Haffner 1998; Bland-Hawthorn & Maloney 1999), but their potential has not yet been realized. Most HVC/IVC metallicity and distance estimates are fairly recent, with half of the relevant papers published since 1994. This is partly due to the availability of the Goddard High Resolution Spectrograph (GHRS), the Space Telescope Imaging Spectrograph (STIS), and the Far-Ultraviolet Spectroscopic Explorer (FUSE), and partly to an increase in sensitivity of ground-based telescopes. A table of detections of absorptions associated with HVCs was presented by Wakker & van Woerden (1997). Several major discoveries have been made since. This paper aims at summarizing all relevant literature pertaining to deriving distances and metallicities for HVCs and IVCs.

Many of the papers in the literature discuss the implications of absorption-line detections and nondetections for deriving distance brackets or limits. Here a consistent set of criteria was applied to (re)derive these distance brackets and limits. In general, the conclusions agree with the original papers, but some new limits are found, and some are shown to have been in error. For this reanalysis, consistent distances were determined for the stellar probes (see description of col. [5] in the Appendix), and all published equivalent widths and logarithmic column densities were converted to column densities (see description of col. [13]). Further, improved H I data were obtained for almost all sight lines, superseding the published value for directions to probes (see description of cols. [8]-[10]). For about 50% of the probes new Effelsberg H I data were obtained, which are presented in a companion paper (Wakker et al. 2001a, hereafter Paper II). For about 25% of the probes, N(H I) is based on the LDS. The remainder are based on (refitted) published spectra, either of the two new Parkes surveys or (in a small number of cases) on published numbers. These H I column densities were used to rederive absolute and relative (to solar) abundances (see description of cols. [15]-[17]). Finally, a consistent set of criteria was applied to determine the significance of nondetections used to derive lower distance limits (see description of col. [18]).

This paper is organized as follows: first, a general overview is given of the format of the main Table 2 (§ 2). In § 3 a short discussion is given of the abundance results for the individual ions. Section 4 summarizes the derived distance limits, metallicities and abundance patterns for each of the clouds for which relevant information is known, and § 5 presents a final analysis. The values in each column of the main table are described in detail in the Appendix.

2. GENERAL DESCRIPTION OF THE TABLE

Table 1 provides an index to the main table (Table 2), to help find particular clouds or probes. The first part of this table lists the HVC and IVC names and the table page on which results for each cloud can be found. For a number of clouds an abbreviation is given in parentheses [e.g., "(=CHS)"]. This is used in the second part of the index, which lists the clouds seen toward each individual stellar or extragalactic target.

Table 2 lists the published results for all probes of each HVC/IVC, sorted by cloud. Results are given for seven HVC complexes, seven IVC complexes, and 21 smaller HVCs/IVCs. In the complexes a total of 47 cores have been observed. In addition there are 21 unnamed clouds, which often are only seen in absorption. Data are given for 326 different targets (stars and AGNs), with 1078 entries, one for each observation of an ion. Stars less distant than ~ 0.2 kpc were excluded to avoid including many nearby stars that provide little distance information (i.e., neither upper nor lower limits).

The classical HVCs (A, M, C, H, Anti-Center—see Wakker & van Woerden 1991) are listed first, followed by the GCN and GCP complexes, the Outer Arm, the Magellanic Stream and the smaller HVC complexes. A new HVC complex (complex WE) is introduced here (see § 4.19). Next follow results for the +165, +120, and +65 km s⁻¹ clouds projected onto the LMC. Then the classical IVCs (IV Arch, LLIV Arch—see Kuntz & Danly 1996) are listed, followed by other IVC complexes, including three named ones that are introduced in this paper: "K," the "PP Arch," and "gp"—see §§ 4.27, 4.28, and 4.29.

For most clouds the table first gives a summary of measured and expected abundances for each of the ions observed in the cloud. Also, on the first two lines for each cloud, the derived metallicity and upper/lower distance limit are summarized, if known. Details of the method used to derive these limits can be found in the Appendix under the description of columns (4) and (18).

If an abundance was actually measured for a particular ion, that value is listed in column (15) in the cloud summary lines. For the few cases where multiple determinations for one ion were made in the same cloud, the average value is listed (using only the higher quality measurements). A discussion of these abundances is provided in §§ 3 and 4.

Column (16) lists the expected ion abundances in square brackets, but only for ions that are the dominant ionization stage in the diffuse ISM. These values are used to determine whether nondetections are significant and can be used to set a lower distance limit. Expected abundances are derived by assuming an overall abundance level combined with a halo depletion pattern, as given by Savage & Sembach (1996a); see § 3 for a more detailed description. For the highly ionized ions (C IV, N V, O VI, Si IV) a "typical" value is

TABLE 1Index to Main Table

1	A, MI, IV4, WW63		15	LMC-HVC @+120 (=LMm)	
2	MII, CI		16	LMC-IVC @+120 (=LMm),	(a) + 60 (= LMl)
3	CI, CIII, C-south		17	LMC-IVC $@+60 (=LMl)$	
4	C-extension, C/K, G		18	LMC-IVC @+60 (=LMl)	
5	Н		19	LMC-IVC @+60 (=LMl)	
6	AC shell (=ACS) AC0, A	ACI, ACII,	20	IV7, IV6, IV17, IV11	
	Cohen Stream (=CHS)				
7	CHS, WW507, Other AC	C, GCN	21	IV9, IV15, Upper IV-Arch (=]	(Vupp), IV24, IV26,
	CHS, WW507, Other AC	C, GCN		IV21, IV19	•••
8	GCN, GCP, Outer Arm		22	Lower IV-Arch (=IVlow)	
9	Magellanic Stream (= M		23	IV spur, LLIV	
10	Pop. EP, Pop. EN	5)	24	LLIV, K	
11		a aity UVCa (wa/wh)	25	PP-Arch (= PP), southern IVC	(W couth)
12	L, WB, WE, positive-velo	beity $\Pi VCs (= wa/wb)$	26	(<i>//</i>	s (=1 v south)
	faint HVCs $(=$ fHVC)			gp	
13	LMC-HVC @ +160 (=)	,	27	Other neg-vel HVCs $(= on)$, O	ther pos-vel $HVCs$ (=op)
14	LMC-HVC @+160 (=1	LMn), (a) + 120 (= LMm)			
0159+625	Н	BR UMa	MI	HD 100340	IV spur, op
0224+671 (4C 67.05)	Н	BS 16034-0002	CI	HD 100600	IV spur
0239+108 (4C 10.08)	WW507	BS 16034-0114	CI	HD 100971 (SU Dra)	CIII
0300+470 (4C 47.08)	Н	BS 16079-0015	CI, IV15	HD 101075	CIII, IV21
0428+20 (PKS 0428+205)	Other AC	BS 16079-0017	CI	HD 101274	WW187,on,op
0538+498 (3C 147.0)	OA	BS 16086-0123	CI	HD 101714	IV21
0959+68W (FBS0959+685)	C-south	BT Dra	CI, IV15	HD 102383	WW187
1749+096 (4C 09.57)	C-extension	Barnard 29	K	HD 103718	CIII, IV21
1828+487 (3C 380.0)	OA	CTA 21	Other AC	HD 105058	IV4, IV17
1829+29 (4C 29.56)	OA	CTA 102	MS	HD 106420	IV4, IV17
1901+319 (3C 395)	OA	FBS 0959+685(0959+685)	C-south	HD 121800	IV9, IV19
1928+738 (4C 73.18)	OA	Fairall 9	MS	HD 127557	CIII, IV9
2037+511 (3C 418)	OA	Feige 40	IV spur	HD 135485	L
2331+073	MS	Feige 87 (PG 1338+611)	CIII, IV19	HD 137569	on
3C 33	IV-south	Hiltner 190 (LS I + 62 200)	Н	HD 146813	CI
3C 41	IV-south	Hiltner 198 (LS I + 61 251)	Н	HD 156110	C-extension,op
3C 75	CHS	HD 108	Н	HD 156359	WE
3C 78	CHS	HD 1383	Н	HD 173011	GCN
3C 109	Other AC	HD 2619	Н	HD 176502	OA
3C 123	ACS	HD 3175	MS	HD 178329	OA
3C 147.0 (0538+498)	OA	HD 10125	Н	HD 187350	GCN, GCP
3C 200	wa/wb	HD 12323	Н	HD 188350	GCN, GCP
3C 206 (PKS 0837-12)	WB	HD 12567	Н	HD 188859	GCP
3C 263.0	CIII	HD 12993	Н	HD 189818	OA
3C 351.0	CI	HD 13256	Н	HD 203664	gp
3C 380.0 (1828+487)	OA	HD 14069	CHS	HD 203699	IV-south, gp
3C 382	OA	HD 14633	IV-south	HD 205021	OA
3C 386	OA	HD 14947	Н	HD 205556	gp
3C 395 (1901+319)	OA	HD 14951	CHS, WW507	HD 212593 (4 Lac)	G, fHVC
3C 418 (2037+511)	OA	HD 15629	Н	HD 215733	PP
3C 454.3	MS	HD 16581	IV-south	HD 219188	MS
4C 06.41	wa/wb	HD 16582	Other AC	HD 220172	MS
4C 09.57 (1749+096)	C-extension	HD 17473	CHS, WW507	HD 223987	Н
4C 10.08 (0239 + 108)	WW507	HD 17481	CHS, WW507	HD 225160	Н
4C 29.56 (1829+29)	OA	HD 17505	Н	HDE 233622(BD $+50^{\circ}1631)$	LLIV
4C 33.48	OA, R	HD 17520	H	HDE 233791(AG + 53°783)	IVlow
4C 47.08 (0300+470)	Н	HD 17907	CHS, WW507	HDE 236894	Н
4C 67.05 (0224+671)	Н	HD 18059	CHS, WW507	HDE 237844(BD +56°1411)	LLIV
4C 73.18 (1928 + 738)	OA G GUVG	HD 18910	CHS, WW507	HDE 241573	ACI, ACII
4 Lac (HD 212593)	G, fHVC	HD 32641 (SAO 76954)	ACI, ACII	HDE 241597	ACI, ACII
AD UMa	A	HD 33090 (SAO 76980)	ACI, ACII	HDE 241882	ACI, ACII
AG + 53°783 (HDE 233791)	IVlow	HD 33233 (SAO 76994)	ACI, ACII	HDE 248894	ACS
B2 1607 + 26	K	HD 33415 (SAO 76016)	ACI, ACII	HDE 252550	AC0
BA 90700003	IVupp	HD 36402 (Sk $-67^{\circ}104$)	LMm, LMl	HDE 252605	AC0
$BD + 10^{\circ}2179$	wa/wb	HD 38268 (Sk $-69^{\circ}243$)	LMh, LMm, Lml	HDE 253069	AC0
BD + 36°2268 (HZ 25)	IVlow	HD 38282 (Sk $-69^{\circ}246$)	LMm, LMl	HDE 255055	ACS
$BD + 38^{\circ}2182$	MII,IV6,IVlow,op	HD 42904	AC0	HDE 256035	ACS
BD +49°2137	IV4, IV17	HD 45314	ACS	HDE 256725	ACS
BD $+50^{\circ}1631$ (HDE 233622)	LLIV	HD 68164	A, LLIV	HDE 269546 (Sk - 68°82)	LMm, LMl
BD + 56°1411 (HDE 237844)	LLIV	HD 75855	A	HS 0624+6907	OA W WY
BD + 59°367	Н	HD 76593 (SAO 14733)	A	HZ 22 (PG 1212+369)	IVupp, IV26
BD +62 338	Н	HD 77770	A, LLIV	HZ 25 (BD $+36^{\circ}2268$)	IVlow
BD +63 253	H	HD 83206	WW63, LLIV, on	H 1821+643	OA
BD +63 985	CIII, IV21	HD 86248	WW211	H. O. +23B (PG 1205+228)	IV spur
BD +67 598	LLIV	HD 87015	IV24	H. O. +41B	IV26
		1113 02521	MII,IV6,IVlow,op	H. O. +43B (PG 1205+228)	IV spur
BD +75 306 (SAO 6225) BD +75 310 (SAO 6253)	A A	HD 93521 HD 98152	IV26	III Zw 2 (PG $0007 + 106$)	MS

WAKKER

TABLE 1-Continued

II (cas G PKS 003+15 MS Sk -66'16 LMm, LMI LT (a) 18 (Mt 16) LMm, LMI PKS 002+14 CHS Sk -67'16 LMm, LMI LS 1 + 61 251 (filtner 198) H PKS 0022-74 CHS Sk -67'16 LMm, LMI LS 1 + 61 251 (filtner 198) H PKS 0022-76 MS Sk -67'16 LMm, LMI LS 1 + 61 251 (filtner 198) H PKS 0022-712 MS Sk -67'16 LMm, LMI MI stain gp PKS 0023-723 MS Sk -67'16 LMm, LMI MI stain gp PKS 0023-0520 MS Sk -67'12 LMm, LMI MK 201 Cacuth, PKS 0037-15 MS Sk -67'13 LMm, LMI LMm, LMI MK 200 C1 PKS 1037-12 (3C'20'6) WB Sk -66'13 LMm, LMI MK 501 C-termion, K PKS 1037-12 (3C'20'6) WB Sk -69'13 LMm, LMI MK 505 CTS PKS 1037-12 (3C'20'6) WB Sk -69'13 LMm, LMI MK 505 CTS PKS 1320+170						
LH 10LH 10PKS 002+14CHSSK - 67'120LMm, LMILS 1 + 61 221 (Hilmer 190)HPKS 002-76MSSK - 67'120LMm, LMILS 1 + 62 200 (Hilmer 190)HPKS 023-72MSSK - 67'120LMm, LMIM13 starsgpPKS 0407-658MSSK - 67'120LMm, LMIM15 starsgpPKS 0407-752MSSK - 67'120LMIMrk 106APKS 0428+205 (0428+20)Other ACSK - 68'137LMIMrk 106C-south, ENPKS 0507-75MSSK - 68'137LMh, LMIMrk 205C-south, ENPKS 113-13wa/vbSK - 68'137LMhMrk 501C-cetansion, KPKS 1173-113wa/vbSK - 68'137LMhMrk 501CCN, gpPKS 1741-038C-sectansionSK - 69'103LMIMrk 505CHSPKS 1242-123MSSK - 69'103LMIMrk 876CL, C-southPKS 2251-214MSSK - 69'103LMI, LMIMrK 876CL, C-southPKS 2324-167MSSK - 69'103LMn, LMIMGC 2783WW187, on, opPKS 2324-167MSSK - 69'214LMn, LMIMGC 2783WW187, on, opPKS 2324-167MSSK - 69'213LMn, LMIMGC 2784MSSK - 69'213LMn, LMILMLMMGC 2784MSSK - 69'234LMn, LMILMMGC 2784MSSK - 69'234LMn, LMILMMGC 2784MSSK - 69'234LMn, LMILM <td>IU Cas</td> <td>G</td> <td>PKS 0003+15</td> <td>MS</td> <td>Sk -66°169</td> <td>LMm</td>	IU Cas	G	PKS 0003+15	MS	Sk -66°169	LMm
I S I + 61 231 (Hilmer 190) H PKS 022 - 76 MS SL - 67:200 LMm, LM M13 stans K PKS 023 - 712 MS SL - 67:166 LMh, LMm, LMI M13 stans gp PKS 0407 - 658 MS SL - 67:174 LMI Mtk 106 A, LLV PKS 0409 - 752 MS SL - 67:174 LMI Mtk 206 C-south, EN PKS 0627 - 50 MS SL - 67:137 LMI Mtk 205 C-south, EN PKS 0637 - 75 MS SL - 67:137 LMI Mtk 205 C-south, EN PKS 0507 - 75 MS SL - 67:137 LMI Mtk 205 C-south, PKS 05137 - 12 (C 206) WB SL - 67:137 LMI Mtk 501 C-cortension, K PKS 1737 - 12 (C 206) WB SL - 69'131 LMI Mtk 505 CILS PKS 1737 - 12 (C 206) WB SL - 69'130 LMI Mtk 507 CI, C-south PKS 1741 - 038 C-cetension SL - 69'103 LMI Mtk 174 CI, C-south PKS 1237 - 12 (MS SL - 69'103 LMI LMI Mtk 175, On, OP PKS 25243 - 123	· · · · · · · · · · · · · · · · · · ·					
I.S.I. + 62 200 (Hilmer 190)II.IKS 0222-04II.VCS. K 67'160L.M.L. L.M.L., L.M.L., L.M.L.M13 starsgpPKS 0407-658MSS 67'120L.M.L. M.L.M15 tarsgpNES 0407-658MSS 67'120L.M.L.Mrk 116 (I.Z.W.18)A.PKS 0428+205 (0242+20)MSS 67'126L.M.L.Mrk 116 (I.Z.W.18)S. Osouth, ENPKS 0437-75MSS 68'114 (R.I.D.L.M.L.Mrk 205C-south, ENPKS 1037-12 (G.206)WSS 68'113 (R.I.D.L.M.L.Mrk 501C-stemion, KPKS 1739-17C-stemionS 69'120L.M.L.Mrk 501C-stemion, KPKS 1739-17OAS 69'130L.M.L.Mrk 505CHSPKS 1739-170OAS 69'130L.M.L.Mrk 576C1PKS 1237-120D.S.S 69'104L.M.L.Mrk 576C1PKS 1237-120D.S.S 69'104L.M.L.Mrk 576C1PKS 2347-127MSS 69'104L.M.L.MGC 2373WU437PKS 2347-137MSS 69'120L.M.L.MGC 2373WU437PKS 2347-167MSS 69'120L.M.L.MGC 2373WU437PKS 2347-167MSS 69'120L.M.L.MGC 2373WU437PKS 2347-167MSS 69'210L.M.L.MGC 2373WU437PKS 2347-167MSS 69'210L.M.L.MGC 2374MSPKS 2347-167MSS 69'210L.M.L.		LMm, LM1			(/	LMm, LMl
M13 stars K PKS 0252–712 MS Sk A-07-160 LMm, LMI Mrk 106 A, LLIV PKS 0400–762 MS Sk -677120 LMm, LMI Mrk 106 A, LLIV PKS 0400–752 MS Sk -677120 LMI Mrk 205 C-south, EN PKS 0457–75 MS Sk -687123 LMI Mrk 205 C-south, EN PKS 0437–75 MS Sk -687137 LMI Mrk 206 C-south, EN PKS 0437–75 MS Sk<-687137	· · · · · · · · · · · · · · · · · · ·					,
M15 tatar.pppp. PKS 0407-658MSS.k67'120LMIMrk 116 (1 Zev 18)APKS 0428+205 (0428+20)Other ACS.k67'126LMm, LMIMrk 205C-south, PKS 0537-75MSS.k68'113 (10)LMI, LMIMrk 207C-south, PKS 0537-75MSS.k68'137LMh, LMIMrk 206C-CPKS 1136-13wa/whS.k68'137LMhMrk 501C-stunsion, KPKS 1739+17C-stunsionS.k69'51LMhMrk 501C-stunsion, KPKS 1741-038C-stunsionS.k69'104LMIMrk 505CHSPKS 1731-103C-stunsionS.k69'104LMIMrk 876C1, C-southPKS 2155-304GCNS.k69'104LMI, LMINGC 1705WW487PKS 2231-11MSS.k69'104LMI, LMINGC 2480opPKS 2341-123MSS.k69'104LMI, LMINGC 2481 UB3APKS 2345-167MSS.k69'121LMI, LMI, LMINGC 4769MSPKS 2345-167MSS.k69'210LMI, LMI, LMINGC 4769MSPKS 2345-167MSS.k69'210LMI, LMI, LMINGC 4769MSPKS 2345-167MSS.k69'210LMI, LMI, LMINGC 4769MSS.S.CosS.K69'210LMI, LMI, LMINGC 4769MSS.S.CosS.K69'210LMI, LMI, LMINGC 4769MSS.S.CosS.K69'210LMI, LMI, LMINGC 4769LINSS.S.Cos	LS I +62 200 (Hiltner 190)		PKS 0232-04			LMh, LMm, LMl
Mrk 1106 Å, LLV PKS 0469-752 MS S. S. Comm. LMI Mrk 110 (12015) C-south, EN PKS 0637-75 MS S. 6-6782 (H.D.65054) LMI, LMI Mrk 205 C-south, EN PKS 0637-75 MS S. 6-67135 LMI, LMI Mrk 200 C1 PKS 0637-75 W3 S. 6-6713 LMI Mrk 200 C1 PKS 1367-13 Wa/W0 S. 6-6713 LMI Mrk 509 GCN, gp PKS 1741-038 C-extension S. 6-9713 LMI Mrk 507 C1, C-south PKS 1257-304 GCN S. 6-9710 LMI, LMI Mrk 767 C1, C-south PKS 2345-167 MS S. 6-9710 LMI, LMI NGC 2780 WW187, on.p PKS 2345-167 MS S. 6-9720 LMm, LMI NGC 2780 WW187, on.p PKS 2345-167 MS S. 6-9721 LMm, LMI NGC 2749 MS PS 2345-167 MS		K	PKS 0252-712			LMm, LMl
Mrk 10 A PKS 0428 + 205 (0428 + 20) Other AC Set 322 (1D 26954) LAm, LM Mrk 207 C-south, EN PKS 0837 - 12 (02 206) WB Sk - 68° 13.5 LAM, LM Mrk 201 C-south, EN PKS 0137 - 12 (02 206) WB Sk - 68° 13.5 LAM, LM Mrk 501 C-extension, K PKS 1739 + 17 C-extension Sk - 69° 13.0 LM Mrk 595 CHS PKS 1739 + 17 Coltension Sk - 69° 10.0 LMm, LM Mrk 895 CHS PKS 1230 + 17 CN Sk - 69° 10.0 LMI, LM Mrk 876 C1, C-south PKS 2343 - 123 MS Sk - 69° 10.0 LMm, LM NGC 1705 WW487, on, op PKS 2344 - 10.0 MS Sk - 69° 10.0 LMm, LM NGC 2783 WV187, on, op PKS 2344 - 10.0 MS Sk - 69° 12.0 LMm, LM NGC 17469 MS PKS 2344 - 10.0 MS Sk - 69° 21.0 LMm, LM NGC 17469 MS PKS 2344 - 10.0 MS Sk - 69° 21.0 LMm, LM NGC 17469 <td>M15 stars</td> <td></td> <td>PKS 0407-658</td> <td></td> <td>Sk -67°174</td> <td>LM1</td>	M15 stars		PKS 0407-658		Sk -67°174	LM1
Mrk 205 C-south, EN PKS 0637–75 MS Sk68°137 LMI Mrk 209 C1 PKS 0137–12 (3 C26) WB Sk68°137 LMh, LMI Mrk 200 C1 PKS 0137–12 (3 C26) WB Sk68°137 LMh Mrk 500 Cextension, K PKS 1739–17 OA Sk69°120 LMh Mrk 501 Cextension, K PKS 1731–038 Cextension Sk69°103 LMh Mrk 817 C1, C-south PKS 2153–304 GCN Sk69°106 LMh, LMI NGC 2808 op PKS 2243–123 MS Sk69°107 LMh, LMI NGC 2808 op PKS 2240–036 MS Sk69°103 LMm, LMI NGC 2640 MS PKS 2244–109 MS Sk69°213 LMm, LMI NGC 2640 MS PKS 2245–167 MS Sk69°213 LMm, LMI NGC 7469 MS PKS 2245–167 MS Sk69°215 LMm, LMI NG 0039+048 MS, PP QSO 2005+4033 OA Sk69°215 </td <td>Mrk 106</td> <td>A, LLIV</td> <td>PKS 0409-752</td> <td>MS</td> <td>Sk $-67^{\circ}250$</td> <td>LM1</td>	Mrk 106	A, LLIV	PKS 0409-752	MS	Sk $-67^{\circ}250$	LM1
Mrk 290 C-south PKS 0837-12 (2 206) WB Sk68°135 LMh. LMI Mrk 200 CI PKS 1136-13 wa/wb Sk69°13 LMh Mrk 501 C-extension, K PKS 1739-17 C-extension Sk69°13 LMh Mrk 502 CHS PKS 1724-1038 C-extension Sk69°10 LMh, LMI Mrk 517 CI PKS 1223+210 EN Sk69°106 LMH, LMI Mrk 817 CI C-south PKS 2243-123 MS Sk69°106 LMh, LMI NGC 2705 WW487 PKS 2243-123 MS Sk69°105 LMm, LMI NGC 2783 WW187, on, op PKS 2344-109 MS Sk69°105 LMm, LMI NGC 7469 MS PKS 2343-167 MS Sk69°213 LMm, LMI NGC 7469 MS PKS 2345-167 MS Sk69°213 LMm, LMI NG 0039 r044 MS, PP OSO 2005+403 OA Sk69°213 LMm, LMI NG 0039 r045 MS Sk C-estensi	Mrk 116 (I Zw 18)	Α	PKS 0428+205 (0428+20)		Sk -68°82 (HD 269546)	LMm, LMl
Mrk 200 CI PKS 1136 -13^{-1} waywb S. 66°137 LMh Mrk 501 C-extension K -60°131 LMh Mrk 595 CINS PKS 1741 -038 C-extension Sk $-69^{\circ}21$ LMh Mrk 595 CINS PKS 1820 $+17$ OA Sk $-69^{\circ}103$ LMn Mrk 817 CI PKS 123 $+210$ EN Sk $-69^{\circ}103$ LMn Mrk 816 CI, C-south PKS 245 $+123$ MS Sk $-69^{\circ}103$ LMh NGC 1705 WW487 PKS 245 $+111$ MS Sk $-69^{\circ}107$ LMh, LMI NGC 2808 op PKS 2434 -163 MS Sk $-69^{\circ}203$ LMm, LMI NGC 7469 MS QSO 1637 $+574$ CI Sk $-69^{\circ}213$ LMm, LMI OF 0007 $+106$ (III 2w $_2$) MS QSO 2005 $+403$ OA Sk $-69^{\circ}216$ LMm, LMI DF 00039 +048 MS, PP QSO 200 $+200$ G Sk $-69^{\circ}216$ LMm, LMI DF 00029 +060 op R 168 $-69^{\circ}241$ LMm, LMI<	Mrk 205	-	PKS 0637-75		Sk -68°114 (R 116)	
Mrk 501 C-extension, K PKS 1739+17 C-extension Sk - 69'31 LMh Mrk 595 GCN, gp PKS 1820+17 OA Sk - 69'91 LMn, LMI Mrk 875 C1 PKS 1820+17 OA Sk - 69'103 LMI Mrk 876 C1, C-south PKS 1232+210 BK Sk - 69'104 LMI NGC 1705 WW487 PKS 2243-123 MS Sk - 69'104 LMh, LMI NGC 2841 UB3 A op PKS 2243-123 MS Sk - 69'203 LMm, LMI NGC 7363 WW187, on, op PKS 2344-109 MS Sk - 69'203 LMm, LMI NGC 7469 MS C-extension QS 1637 +574 C1 Sk - 69'213 LMh, LMI, LMI PG 0039+048 MS, PP QSO 2005 +403 GA Sk - 69'216 LMh, LMM, LMI PG 0047+060 (III Zv) MS PG 2020 + 402 GS S - 69'216 LMh, LMI, LMI PG 0043+051 LLV R 16 (Sk - 68'114) LMI Sk - 69'216 LMh, LMI, LMI PG 0045+075	Mrk 279	C-south	()			
Mrk 595 GCN, gp PKS 1741-038 C-extension S. 6-6972 LMm, LM Mrk 817 CI PKS 1923+210 EN S. 6-69710 LMm, LM Mrk 816 CI, C-south PKS 2155-304 GCN S. 6-69710 LMI Mrk 876 CI, C-south PKS 2251+11 MS S. 6-697105 LMh, LMI MGC 2808 op PKS 2251+11 MS S. 6-697105 LMm, LMI MGC 7843 WW187, on, op PKS 2344-103 MS S. 6-697203 LMm, LMI GC 7469 MS PKS 2345-167 MS S. 6-697214 LMm, LMI GW 147 C-stension QSO 1637+574 CI S. 6-697213 LMm, LMI GW 039+048 MS, PP QSO 2005+403 OA S. 6-697216 LMm, LMI PG 0039+143 IV-south R27 (S. 6-69720) LMI S. 6-697216 LMm, LMI PG 0039+048 MS, PP QSO 2005+403 OA S. 6-697216 LMm, LMI PG 0039+143 IV-south R16 (S. 6-69720) LMI </td <td>Mrk 290</td> <td></td> <td>PKS 1136-13</td> <td>wa/wb</td> <td>Sk −68°137</td> <td>LMh</td>	Mrk 290		PKS 1136-13	wa/wb	Sk −68°137	LMh
$\begin{array}{llllllllllllllllllllllllllllllllllll$,				
Mrk 817CIPKS 1923 + 210ENSk -69^{-103} LMMrk 876CI, C-southPKS 225155 - 304GCNSk -69^{-106} LMNGC 1705WW487PKS 2251 + 11MSSk -69^{-105} LMh, LMINGC 2808opPKS 2251 + 11MSSk -69^{-105} LMh, LMINGC 2841 UB3APKS 2251 + 11MSSk -69^{-105} LMh, LMINGC 7469MSPKS 2344 + 09MSSk -69^{-203} LMm, LMIOW HerC-xtensionQSO 1637 + 574CISk -69^{-213} LMh, LMI, LMIOW 167C-xtensionQSO 2005 + 403OASk -69^{-2215} LMh, LMI, LMIPG 0039 + 048MS, PPQSO 2005 + 403OASk -69^{-2216} LMh, LMI, LMIPG 0039 + 054OgNSRS CasHSk -69^{-2216} LMI, LMIPG 0039 + 054OgNSRS CasHSk -69^{-220} LMIPG 0039 + 054OgR 116 (Sk -69^{-220})LMISk -69^{-220} LMI, LMIPG 0039 + 054OgR 116 (Sk -69^{-220})LMISk -69^{-220} LMI, LMIPG 0039 + 054A, LLIVR 134LMISk -69^{-220} LMI, LMIPG 0035 + 059A, LLIVR 136 (Sk -69^{-230})LMI, LMIPG 0035 + 059LIIVSA10 2301A, Sk -69^{-236} LMIPG 0053 + 059LIIVSA10 2301A, Sk -69^{-236} LMIPG 0053 + 059LIIVSA10 2301A, Sk -69^{-236} LMI	Mrk 509					LMh
Mrk 876Cl. C-southPKS 2155-304GCNSk -69^{-106} LMINGC 1705WW487PKS 2251 + 11MSSk -69^{-106} LMh, LMINGC 2808opPKS 2251 + 11MSSk -69^{-105} LMn, LMINGC 3733WW187, on, opPKS 2340 - 036MSSk -69^{-203} LMm, LMINGC 7469MSPKS 2345 - 167MSSk -69^{-211} LMm, LMIDG 0007 + 106 (III Zw 2)MSQSO 1637 + 574CISk -69^{-213} LMm, LMIPG 0007 + 106 (III Zw 2)MSQSO 1053 + 493C-extensionSk -69^{-213} LMm, LMIPG 0039 + 134IV-southQSO 2005 + 403GSk -69^{-216} LMh, LMI, LMIPG 0039 + 134IV-southQSO 2005 + 402GSk -69^{-216} LMh, LMI, LMIPG 0039 + 134IV-southQSO 2005 + 403GSk -69^{-221} LMI, LMIPG 0039 + 134IV-southQSO 2005 + 403LMISk -69^{-224} LMIPG 0039 + 657A, LLIVR 127 (Sk -69^{-220})LMISk -69^{-224} LMIPG 0033 + 688LLIVR 136 (Sk -69^{-210})LMISk -69^{-234} LMm, LMIPG 0906 + 597A, LLIVR 136 (Sk -69^{-230})LMI, LMILMIPG 0905 + 593A, LLIVR 139LMISk -69^{-246} LMIPG 0905 + 593A, LLIVR 139LMISk -69^{-246} LMIPG 0905 + 597A, LLIVSA 0 76094 (HD 3223)LMI, LMILMIPG 0925	Mrk 595					LMm, LMl
NGC 1705 WW487 PKS 2231–123 MS Sk - 69°106 LMh, LM1 NGC 2808 op PKS 2231–11 MS Sk - 69°105 LMh, LM1 NGC 2808 A PKS 2241–036 MS Sk - 69°203 LMm, LM1 NGC 7469 MS PKS 2244+09 MS Sk - 69°203 LMm, LM1 OW Her C-extension QSO 1737+574 CI Sk - 69°213 LMn, LM1 PG 0007+106 (III Zw) MS QSO 1732+754 CI Sk - 69°215 LMm, LM1 PG 0007+106 (III Zw) MS RS Cas H Sk - 69°216 LMh, LM1, LM1 PG 0039+104 MS RS Cas H Sk - 69°216 LMn, LM1 PG 0032+054 op R 116 (Sk - 68°14) LM1 Sk - 69°221 (R 127) LM1 PG 0832+675 A, LLIV R 128 (Sk - 69°24) LM1 Sk - 69°243 (HD 3826) LMn, LM1 PG 0833+698 LLIV R 136 (Sk - 69°24) LM1 Sk - 69°243 (HD 3826) LMn, LM1 PG 0833+694 LLIV R 136 (Sk - 69°24						
NGC 2808opPKS 251+11MSSk -6^9 107LMn, LM1NGC 2841 UB3APKS 2340-036MSSk -6^9 103LMn, LM1NGC 7733WU187, on, opPKS 2345-167MSSk -6^9 204LMn, LM1NGC 7766CextensionQS 0157+574C1Sk -6^9 211LMn, LM1PG 0007+106 (III Zw 2)MSQS 0157+574C1Sk -6^9 213LMn, LM1PG 0039+048MS, PPQS 0205+403OASk -6^9 216LMn, LM1PG 0039+134IV-southQS 0205+403OASk -6^9 221 (R 128)LM1PG 0239+044opR 116 (Sk -68^2 114)LM1Sk -6^9 221 (R 128)LM1PG 033+636LLVR 127 (Sk -6^9 220)LM1Sk -6^9 224 (LM3, LM1, LM1PG 0323+656A, LLIVR 136 (Sk -6^9 221)LM1Sk -6^9 239LMn, LM1PG 0833+675A, LLIVR 136 (Sk -6^9 239)LM1Sk -6^9 234 (ID 3828)LMn, LM1PG 0895+573A, LLIVR 137LM1Sk -6^9 246 (ID 3828)LMn, LM1PG 0906+597A, LLIVR 139LM1Sk -6^9 274LMn, LM1PG 0905+291IV7, IV16wR 140LM1Sk -6^9 224LM1PG 0105+289LLVSA 12 391A, LLIVSk -6^9 274LM1PG 1106+254HV7 <un< td="">SA 0 253 (BD +75 306)ASk $-6^9$274LM1PG 1126+468MI, IV17SA 0 6223 (BD +75 306)ASk $-6^9$289LM1PG 1212+369 (HZ 2)IVup, IV26SA 0 76</un<>					Sk −69°104	LM1
NGC 2241 UB3ÁPKS 2340-036MSSk-69'195LMm, LMINGC 3783WW 187, on, opPKS 2344+09MSSk-69'204LMm, LMIOG 2783MSPKS 2245-167MSSk-69'211LMh, LMn, LMIOW 1erC-extensionQS0 1737+574CISk-69'213LMm, LMIOF 0007+106 (III Zw 2)MSQS0 1732+438C-extensionSk-69'216LMm, LMIPG 0039+048MS, PPQS0 2005+403OASk-69'216LMm, LMIPG 0043+039MSRS CasHSk-69'220 (R 127)LMIPG 0249+064opR 116 (Sk -68'114)LMISk-69'221 (R 128)LMIPG 0832+675A, LLIVR 127 (Sk -69'220)LMISk-69'224LMm, LMIPG 0832+675A, LLIVR 136 (Sk -69'243)LMISk-69'243LMM, LMIPG 0839+593A, LLIVR 136 (Sk -69'243)LMISk-69'243LMM, LMIPG 0855+291IV7, VIowR 140LMISk -69'246LM3280LMn, LMIPG 1085+689LLIVSAO 6253 (BD +75 300)ASk -69'274LMIPG 116 + 215HVCSAO 6253 (BD +75 310)ASk -69'274LMIPG 1212+369 (HZ 2)IVap, IV26SAO 76964 (HD 33243)ACI, ACIISk -69'274LMIPG 1212+369 (HZ 2)IVap, IV71, VIowR 140SA-69'274LMIPG 1216+468MI, IV17SAO 76964 (HD 33243)ACI, ACII </td <td>NGC 1705</td> <td>WW487</td> <td>PKS 2243-123</td> <td></td> <td>Sk -69°106</td> <td>,</td>	NGC 1705	WW487	PKS 2243-123		Sk -69°106	,
NGC 3783WW187, on, opFKS 2344 + 09MSSk - 69°203LMm, LMINGC 7469MSPKS 2345 - 167MSSk - 69°214LMm, LMIOW HerC-extensionQSO 1637 + 574CISk - 69°213LMm, LMIPG 0007 + 106 (III Zw 2)MSQSO 1732 + 389C-extensionSk - 69°215LMm, LMIPG 0039 + 048MS, PPQSO 2005 + 403OASk - 69°216LMm, LMIPG 0039 + 134IV-southQSO 2200 + 420GSk - 69°216LMm, LMIPG 0229 + 064opR 116 (Sk - 68°114)LMISk - 69°221 (R 127)LMIPG 0824 - 761LI.IVR 127 (Sk - 69°220)LMISk - 69°221 (R 128)LMm, LMIPG 0834 - 657A, LLIVR 127 (Sk - 69°221)LMISk - 69°225LMm, LMIPG 0835 + 593A, LLIVR 136 (Sk - 69°243)LMh, LMm, LMISk - 69°244LMm, LMIPG 0953 + 414HVC, IVIowR 140LMISk - 69°244LMm, LMIPG 0953 + 414HVC, IVIowR 140LMISk - 69°274LMm, LMIPG 1008 + 689LI.IVSA 0 6253 (BD + 75 310)ASk - 69°274LMm, LMIPG 1126 + 468MI, IV17SA 0 6253 (BD + 75 310)ASk - 69°274LMm, LMIPG 1126 + 468MI, IV17SA 0 7606 (HD 33405)ACI, ACIIISk - 69°274LMm, LMIPG 1225 + 546IV1, IV1ow, opSA 0 76054 (HD 33405)ACI, ACIIISk - 69°274LMm, LMIPG 1235 + 546IV1, IV1, IV10w, opSA 0 76954		op				LMh, LMl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		WW187, on, op	PKS 2344+09			LMm, LMl
PG 0007 + 106 (III Zw 2)MSQSO 1732 + 389C-extensionSk $-69^{2}213$ LMm, LMIPG 0039 + 048MS, PPQSO 2005 + 403OASk $-69^{2}215$ LMm, LMIPG 0039 + 134IV-southQSO 2200 + 420GSk $-69^{2}216$ LMh, LMn, LMIPG 0039 + 134IV-southQSO 2200 + 420GSk $-69^{2}216$ LMh, LMn, LMIPG 0229 + 064opR 116 (Sk $-68^{*}114$)LMISk $-69^{*}221$ (R 127)LMIPG 0804 + 761LLIVR 127 (Sk $-69^{*}220$)LMISk $-69^{*}224$ LMm, LMIPG 0832 + 675A, LLIVR 128 (Sk $-69^{*}220$)LMISk $-69^{*}225$ LMm, LMIPG 0833 + 698LLIVR 134LMISk $-69^{*}239$ LMm, LMIPG 0859 + 593A, LLIVR 137LMISk $-69^{*}243$ (HD 38268)LMh, LMm, LMIPG 0953 + 414HVC, IVlowR 139LMISk $-69^{*}247$ LMm, LMIPG 0955 + 291IV7, IVlowR 140LMISk $-69^{*}247$ LMm, LMIPG 1161 + 215HIVCSAO 6225 (BD + 75 306)ASk $-69^{*}274$ LMn, LMIPG 1262 + 228 (H, O, + 23B)IV spurSAO 76954 (HD 33024)ACI, ACIISk $-69^{*}282$ LMh, LMM, LMIPG 1252 + 254IV1, IV10wSAO 76954 (HD 33024)ACI, ACIISk $-69^{*}282$ LMh, LMM, LMIPG 1263 + 456IV41, IV17, IV10w, oPSAO 76954 (HD 33023)ASk $-69^{*}282$ LMh, LMM, LMIPG 1212 + 369 (HZ 22)IVu, NU1, IV19SAO 76954 (HD 33233)						,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OW Her		-	CI		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PG 0007+106 (III Zw 2)		QSO 1732+389		Sk -69°213	LMm, LMl
PG0043 + 039MSRSCasHSk-69°220 (R 127)LMIPG0229 + 064opR 116 (Sk - 66°210)LMISk-69°221 (R 128)LMIPG0804 + 761LLIVR 127 (Sk - 69°220)LMISk-69°221 (R 128)LMm, LMIPG0833 + 698LLIVR 128 (Sk - 69°221)LMISk-69°239LMm, LMIPG0833 + 698LLIVR 136 (Sk - 69°243)LML, LMm, LMISk-69°243 (HD 38268)LMh, LMm, LMIPG0906 + 597A, LLIVR 136 (Sk - 69°243)LMISk-69°243 (HD 38268)LMh, LMM, LMIPG0905 + 591IV7, IVlowR 139LMISk-69°243 (HD 38268)LMIPG0953 + 414HFVC, IVlowR 140LMISk-69°247LMm, LMIPG0955 + 291IV7, IVlowR 140LMISk-69°274LMm, LMIPG116 + 215HFVCSAO 6223 (BD + 75 310)ASk-69°276LMm, LMIPG122 + 369 (HZ 22)IVapp IV26SAO 76960 (HD 33415)A CI, ACIISk-69°282LMh, LMm, LMIPG122 + 369 (HZ 22)IVupp, IV26SAO 76960 (HD 33090)ACI, ACIISk-69°289LMIPG125 + 546IV41, IV1, IV10wSAO 76960 (HD 33090)ACI, ACIISk-69°280LMh, LMm, LMIPG125 + 546IV11, IV10wSAO 76960 (HD 33090)ACI, ACIISk-70°115LMIPG1351 + 640	PG 0039+048	MS, PP	-			,
PG 0229+064 op R 116 (Sk - 68°114) LMI Sk - 69°221 (R 128) LMI PG 0804 + 761 LLV R 127 (Sk - 69°220) LM1 Sk - 69°224 LMm, LM1 PG 0833 + 698 LLV R 128 (Sk - 69°221) LM1 Sk - 69°239 LMm, LM1 PG 0859 + 593 A, LLV R 136 (Sk - 69°243) LMh, LMn, LM1 Sk - 69°243 (HD 38268) LMh, LMm, LM1 PG 0955 + 593 A, LLV R 137 LM1 Sk - 69°247 LMm, LM1 PG 0955 + 291 IV7, IVlow R 140 LM1 Sk - 69°248 LM1 PG 1116 + 215 HVC SA 0 6225 (BD + 75 306) A Sk - 69°270 LM1 PG 122 + 369 (HZ 22) IVup, IV26 SAO 7633 (HD 76539) A Sk - 69°274 LMm, LM1 PG 122 + 369 (HZ 22) IVup, IV26 SAO 76994 (HD 33243) ACI, ACII Sk - 69°280 LM1 PG 123 + 456 IV4, IV17, IV16w, OP SAO 76994 (HD 33243) ACI, ACII Sk - 69°280 LMh, LM1 PG 123 + 456 IV4, IV17, IV10w SAO 76994 (HD 33233) ACI, ACII	PG 0039+134		-			LMh, LMm, LMl
PG 0804+761LIVR 127 (Sk $-69^{\circ}220$)LMISk $-69^{\circ}224$ LMm, LMIPG 0832+675A, LIVR 128 (Sk $-69^{\circ}221$)LMISk $-69^{\circ}225$ LMm, LMIPG 0833+698LLIVR 134LMISk $-69^{\circ}239$ LMm, LMIPG 0859+593A, LLIVR 136 (Sk $-69^{\circ}243$)LMh, LMm, LMISk $-69^{\circ}243$ (HD 38268)LMh, LMm, LMIPG 0906+597A, LLIVR 137LMISk $-69^{\circ}246$ (HD 38222)LMm, LMIPG 0955+291IV7, IVlowR 139LMISk $-69^{\circ}248$ LMIPG 1008+689LLIVSA 12 391A, LLIVSk $-69^{\circ}270$ LMIPG 1126+468MI, IV17SAO 6253 (BD +75 310)ASk $-69^{\circ}274$ LMm, LMIPG 1205+228 (H.O. +23B)IV spurSAO 76954 (HD 33415)ACI, ACIISk $-69^{\circ}274$ LMm, LMIPG 1212+369 (HZ 22)IV upp, IV26SAO 76954 (HD 32641)ACI, ACIISk $-69^{\circ}282$ LMh, LMm, LMIPG 125+546IV4, IV17, IV low, opSAO 76954 (HD 3323)ACI, ACIISk $-69^{\circ}290$ LMh, LMm, LMIPG 1328+611 (Feige 87)CIII, IV19SN 1981DonSk $-70^{\circ}115$ LMIPG 1519+640CISN 1987ALMK, LMM, LMI, LMISk $-1^{\circ}33$ LMm, LMIPG 1619+522C/KSN 1987ALMh, LMm, LMISk $-1^{\circ}13$ LMm, LMIPG 1619+646CISN 1987ALMh, LMm, LMISk $-1^{\circ}141$ LMm, LMIPG 1619+640CISN 1987ALMh, LMm, LMISk $-1^{\circ}141$ LMm, LMI<	PG 0043+039	MS				LM1
PG 0832+675 A, LLIV R 128 (Sk - 69°221) LMI Sk - 69°225 LMm, LMI PG 0853+698 LLIV R 134 LMI Sk - 69°239 LMm, LMI PG 0859+593 A, LLIV R 136 (Sk - 69°243) LMh, LMm, LMI Sk - 69°246 (HD 38268) LMm, LMI PG 0906+597 A, LLIV R 137 LMI Sk - 69°246 (HD 38282) LMm, LMI PG 0953+414 HVC, IVIow R 140 LMI Sk - 69°248 LMI PG 0955+291 IV7, IVIow R 140 LMI Sk - 69°255 LMI PG 1116+215 HVC SAO 6225 (BD +75 306) A Sk - 69°270 LMI PG 122+468 MI, IV17 SAO 6253 (BD +75 310) A Sk - 69°276 LMh, LMI PG 122+369 (HZ 22) IVupp, IV26 SAO 76016 (HD 33415) ACI, ACII Sk - 69°282 LMh, LMm, LMI PG 1255+546 IV1, IV10w SAO 76980 (HD 32631) ACI, ACII Sk - 69°290 LMI, LMm, LMI PG 1351+640 CII, IV10w SAO 76994 (HD 33233) ACI, ACII Sk - 69°200 LMh, LMm, LMI PG 1519+640 CI SN 1981D on S			· · · · · · · · · · · · · · · · · · ·			LM1
PG 0833+698 LLIV R 134 LMI Sk -69°239 LMn, LMI PG 0859+593 A, LLIV R 136 (Sk -69°243) LMh, LMm, LMI Sk -69°243 (HD 38268) LMh, LMn, LMI PG 0906+597 A, LLIV R 137 LMI Sk -69°247 (HD 3828) LMI PG 0955+291 IV7, IVIow R 139 LMI Sk -69°247 LMI, LMI PG 1008+689 LLIV SA 12 391 A, LLIV SA -69°270 LMI PG 1116+215 HIVC SAO 6225 (BD +75 306) A Sk -69°270 LMI PG 1205+228 (H.O. +238) IV spur SAO 14733 (HD 76593) A Sk -69°276 LMh, LMI, LMI PG 1221+369 (HZ 22) IVupp, IV26 SAO 76016 (HD 33415) ACI, ACII Sk -69°282 LMI PG 1255+546 IV11, IV1ow SAO 76980 (HD 33230) ACI, ACII Sk -69°280 LMI PG 1338 +611 (Feige 87) CIII, IV10w SAO 76980 (HD 33233) ACI, ACII Sk -69°290 LMh, LMm, LMI PG 1519+640 CI, CI, II, IV19 SN 1981D on Sk -70°115 LMI PG 1519+640 CI CIII, IV9, IV19 SN 1983N			(,			,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(,			,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	· · · · · ·		(/	
PG 0955 + 291 IV7, IVIow R 140 LMI Sk - 69°248 LMI PG 1008 + 689 LLIV SA 12 391 A, LLIV Sk - 69°255 LMI PG 1116 + 215 HVC SAO 6225 (BD + 75 306) A Sk - 69°274 LMI PG 1126 + 468 MI, IV17 SAO 6235 (BD + 75 310) A Sk - 69°274 LMm, LMI PG 1205 + 228 (H. O. + 23B) IV spur SAO 14733 (HD 76593) A Sk - 69°276 LMh, LMI PG 1212 + 369 (HZ 22) IVupp, IV26 SAO 76054 (HD 32641) ACI, ACII Sk - 69°280 LM1 PG 1259 + 593 CIII, IV10w SAO 76996 (HD 33090) ACI, ACII Sk - 69°290 LMh, LMn, LMI PG 1338 + 611 (Feige 87) CIII, IV19 SN 1981D on Sk - 70°111 LMm, LMI PG 1519 + 640 CI CI, SN 1983N fHVC, op Sk - 71°31 LMm, LMI PG 1619 + 522 C/K SN 1991T wa/wb, fHVC Sk - 71°41 LMm, LMI PG 1648 + 536 CI, C-south SN 1993J fHVC, LLIV Sk - 71°42 LMm, LMI		,				,
PG 1008 + 689 LLIV SA 12 391 A, LLIV Sk - 69°255 LM1 PG 1116 + 215 fHVC SAO 6225 (BD + 75 306) A Sk - 69°270 LM1 PG 1126 + 468 MI, IV17 SAO 6253 (BD + 75 310) A Sk - 69°274 LMm, LM1 PG 1205 + 228 (H. O. + 23B) IV spur SAO 14733 (HD 76593) A Sk - 69°276 LMh, LM1 PG 1213 + 456 IV4, IV17, IV10w, op SAO 76954 (HD 32641) ACI, ACII Sk - 69°282 LMh, LMm, LM1 PG 1255 + 546 IV4, IV17, IV10w, op SAO 76994 (HD 33090) ACI, ACII Sk - 69°280 LMh, LMm, LM1 PG 1259 + 593 CIII, IV10w SAO 76994 (HD 33233) ACI, ACII Sk - 70°111 LMm, LM1 PG 1318 + 611 (Feige 87) CIII, IV9, IV19 SN 1981D on Sk - 71°31 LMm, LM1 PG 1510 + 635 CI SN 1983N fHVC, op Sk - 71°33a LMm, LM1 PG 1519 + 640 CI SN 1987A LMh, LMm, LM1 Sk - 71°33a LMm, LM1 PG 1619 + 522 C/K SN 1993J fHVC, op Sk - 71°42 LMm, LM1 PG 1619 + 536 CI, C-south		-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			· · · · · ·			
PG 1212 + 369 (HZ 22)IVup, IV26SAO 76016 (HD 33415)ACI, ACIISk $-69^{\circ}282$ LMh, LMm, LMIPG 1213 + 456IV4, IV17, IVlow, opSAO 76954 (HD 32641)ACI, ACIISk $-69^{\circ}289$ LMIPG 1255 + 546IV11, IVlowSAO 76980 (HD 33090)ACI, ACIISk $-69^{\circ}290$ LMh, LMm, LMIPG 1259 + 593CIII, IVlowSAO 76994 (HD 33233)ACI, ACIISk $-70^{\circ}111$ LMm, LMIPG 1338 + 611 (Feige 87)CIII, IV19SN 1981DonSk $-70^{\circ}115$ LMIPG 1351 + 640CI, CIII, IV9, IV19SN 1983NfHVC, opSk $-71^{\circ}3$ LMm, LMIPG 1519 + 640CISN 1987ALMh, LMm, LMISk $-71^{\circ}41$ LMm, LMIPG 1619 + 522C/KSN 1991Twa/wb, fHVCSk $-71^{\circ}42$ LMm, LMIPG 1700 + 518C-extensionSN 1993JfHVC, LLIVSk $-71^{\circ}45$ LMm, LMIPG 1708 + 602C-southSN 1994DfHVCTon S180MSPG 1710 + 490C-extension, C/K, opSN 1994SIV4, IV17, opV421 HerC-extension, opPG 1718 + 481C-extension, SW DraC-southSW DraC-southC-southPG 1743 + 477C-extension, C/KSk $-66^{\circ}28$ LMIFFPG 2302 + 029MSSk $-66^{\circ}28$ LMILMI		-				,
PG 1213 + 456IV4, IV17, IVlow, opSAO 76954 (HD 32641)ACI, ACIISk $-69^{\circ}289$ LMIPG 1255 + 546IV11, IVlowSAO 76980 (HD 33090)ACI, ACIISk $-69^{\circ}290$ LMh, LMm, LMIPG 1259 + 593CIII, IVlowSAO 76994 (HD 33233)ACI, ACIISk $-70^{\circ}111$ LMm, LMIPG 1338 + 611 (Feige 87)CIII, IV19SN 1981DonSk $-70^{\circ}115$ LMIPG 1351 + 640CI, CIII, IV9, IV19SN 1983NfHVC, opSk $-71^{\circ}33$ LMm, LMIPG 1510 + 635CISN 1986GfHVC, opSk $-71^{\circ}33a$ LMm, LMIPG 1519 + 640CISN 1987ALMh, LMn, LMISk $-71^{\circ}41$ LMm, LMIPG 1619 + 522C/KSN 1991Twa/wb, fHVCSk $-71^{\circ}42$ LMm, LMIPG 1700 + 518C-extensionSN 1994DfHVCTon S180MSPG 1708 + 602C-southSN 1998SIV4, IV17, opV421 HerC-extension, opPG 1718 + 481C-extension, C/K, opSN 1998SIV4, IV17, opV421 HerC-extension, opPG 1722 + 286C-extension, C/KSk $-65^{\circ}40$ LMIPG 2302 + 029MSSk $-65^{\circ}28$ LMI		•				,
PG1255 + 546IV11, IV1owSAO76980 (HD 33090)ACI, ACIISk $-69^{\circ}290$ LMh, LMm, LMIPG1259 + 593CIII, IV1owSAO76994 (HD 33233)ACI, ACIISk $-70^{\circ}111$ LMm, LMIPG1338 + 611 (Feige 87)CIII, IV19SN1981DonSk $-70^{\circ}115$ LMIPG1351 + 640CI, CIII, IV9, IV19SN1983NfHVC, opSk $-71^{\circ}3$ LMm, LMIPG1510 + 635CISN1986GfHVC, opSk $-71^{\circ}33a$ LMm, LMIPG1519 + 640CISN1987ALMh, LMm, LMISk $-71^{\circ}41$ LMm, LMIPG1619 + 522C/KSN1991Twa/wb, fHVCSk $-71^{\circ}42$ LMm, LMIPG1648 + 536CI, C-southSN1993JfHVC, LLIVSk $-71^{\circ}42$ LMm, LMIPG1700 + 518C-extensionSN1994DfHVCTon S180MSPG1710 + 490C-extension, C/K, opSN1998SIV4, IV17, opV421 HerC-extension, opPG1718 + 481C-extension, KSW DraC-southC-southC-southonPG1743 + 477C-extension, C/KSk -66^{\circ}28LMILMIPG2302 + 029MSSk -66^{\circ}28LMILMI			. ,	,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			· · · · · ·			
PG 1338 + 611 (Feige 87)CIII, IV19SN 1981DonSk $-70^{\circ}115$ LM1PG 1351 + 640CI, CIII, IV9, IV19SN 1983NfHVC, opSk $-71^{\circ}3$ LMm, LM1PG 1510 + 635CISN 1986GfHVC, opSk $-71^{\circ}33a$ LMm, LM1PG 1519 + 640CISN 1987ALMh, LMm, LM1Sk $-71^{\circ}41$ LMm, LM1PG 1619 + 522C/KSN 1991Twa/wb, fHVCSk $-71^{\circ}42$ LMm, LM1PG 1648 + 536CI, C-southSN 1993JfHVC, LLIVSk $-71^{\circ}45$ LMm, LM1PG 1700 + 518C-extensionSN 1994DfHVCTon S180MSPG 1708 + 602C-southSN 1994IfHVCTon S210MSPG 1710 + 490C-extension, C/K, opSN 1998SIV4, IV17, opV421 HerC-extension, opPG 1718 + 481C-extension, KSW DraC-southC-southC-southPG 1743 + 477C-extension, C/KSk $-65^{\circ}40$ LM1FC-southLM1PG 2302 + 029MSSk $-66^{\circ}28$ LM1FC-southLM1		,	. ,	,		
PG 1351+640CI, CIII, IV9, IV19SN 1983NfHVC, opSk $-71^{\circ}3$ LMm, LMIPG 1510+635CISN 1986GfHVC, opSk $-71^{\circ}33a$ LMm, LMIPG 1519+640CISN 1987ALMh, LMm, LMISk $-71^{\circ}41$ LMm, LMIPG 1619+522C/KSN 1991Twa/wb, fHVCSk $-71^{\circ}42$ LMm, LMIPG 1648+536CI, C-southSN 1993JfHVC, LLIVSk $-71^{\circ}45$ LMm, LMIPG 1700+518C-extensionSN 1994DfHVCTon S180MSPG 1708+602C-southSN 1994IfHVCTon S210MSPG 1710+490C-extension, C/K, opSN 1998SIV4, IV17, opV421 HerC-extension, opPG 1718+481C-extension, KSW DraC-southC-southonPG 1743+477C-extension, C/KSk $-65^{\circ}40$ LMIPG 2302+029MSSk $-66^{\circ}28$ LMI		,	(/			
PG 1510+635CISN 1986GfHVC, opSk $-71^{\circ}33a$ LMm, LMIPG 1519+640CISN 1987ALMh, LMm, LMISk $-71^{\circ}41$ LMm, LMIPG 1619+522C/KSN 1991Twa/wb, fHVCSk $-71^{\circ}42$ LMm, LMIPG 1648+536CI, C-southSN 1993JfHVC, LLIVSk $-71^{\circ}45$ LMm, LMIPG 1700+518C-extensionSN 1994DfHVCTon S180MSPG 1708+602C-southSN 1994IfHVCTon S210MSPG 1710+490C-extension, C/K, opSN 1998SIV4, IV17, opV421 HerC-extension, opPG 1718+481C-extension, KSW DraC-southC-southonPG 1743+477C-extension, C/KSk $-65^{\circ}40$ LM1FURLFURLPG 2302+029MSSk $-66^{\circ}28$ LM1FURLFURL						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
PG 1619 + 522C/KSN 1991Twa/wb, fHVCSk $-71^{\circ}42$ LMm, LMlPG 1648 + 536CI, C-southSN 1993JfHVC, LLIVSk $-71^{\circ}45$ LMm, LMlPG 1700 + 518C-extensionSN 1994DfHVCTon S180MSPG 1708 + 602C-southSN 1994IfHVCTon S210MSPG 1710 + 490C-extension, C/K, opSN 1998SIV4, IV17, opV421 HerC-extension, opPG 1718 + 481C-extensionSU Dra (HD 100971)CIIIvZ 1128onPG 1722 + 286C-extension, KSW DraC-southLM1PG 1743 + 477C-extension, C/KSk $-65^{\circ}40$ LM1LM1PG 2302 + 029MSSk $-66^{\circ}28$ LM1LM1				· •		
PG 1648 + 536 CI, C-south SN 1993J fHVC, LLIV Sk -71°45 LMm, LMI PG 1700 + 518 C-extension SN 1994D fHVC Ton S180 MS PG 1708 + 602 C-south SN 1994D fHVC Ton S210 MS PG 1710 + 490 C-extension, C/K, op SN 1998S IV4, IV17, op V421 Her C-extension, op PG 1718 + 481 C-extension, K SW Dra C-south on PG 1722 + 286 C-extension, K SW Dra C-south LM1 PG 1743 + 477 C-extension, C/K Sk -65°40 LM1 LM1 PG 2302 + 029 MS Sk -66°28 LM1 LM1						
PG 1700 + 518 C-extension SN 1994D fHVC Ton S180 MS PG 1708 + 602 C-south SN 1994I fHVC Ton S210 MS PG 1710 + 490 C-extension, C/K,op SN 1998S IV4, IV17, op V421 Her C-extension, op PG 1718 + 481 C-extension SU Dra (HD 100971) CIII vZ 1128 on PG 1722 + 286 C-extension, K SW Dra C-south C-south FG 1743 + 477 C-extension, C/K Sk - 65°40 LM1 LM1 FG 2302 + 029 MS Sk - 66°28 LM1				, ,		
PG 1708+602 C-south SN 1994I fHVC Ton S210 MS PG 1710+490 C-extension, C/K,op SN 1998S IV4, IV17, op V421 Her C-extension, op PG 1718+481 C-extension SU Dra (HD 100971) CIII vZ 1128 on PG 1722+286 C-extension, K SW Dra C-south C-south C on PG 1743+477 C-extension, C/K Sk -65°40 LM1 LM1 LM1 LM1 PG 2302+029 MS Sk -66°28 LM1 LM1 LM1 LM1 LM1						
PG 1710+490 C-extension, C/K,op SN 1998S IV4, IV17, op V421 Her C-extension, op PG 1718+481 C-extension SU Dra (HD 100971) CIII vZ 1128 on PG 1722+286 C-extension, K SW Dra C-south C-extension, C/K Sk -65°40 LM1 PG 2302+029 MS Sk -66°28 LM1 C-extension C-extension						
PG 1718 + 481 C-extension SU Dra (HD 100971) CIII vZ 1128 on PG 1722 + 286 C-extension, K SW Dra C-south PG 1743 + 477 C-extension, C/K Sk -65°40 LM1 PG 2302 + 029 MS Sk -66°28 LM1						
PG 1722+286 C-extension, K SW Dra C-south PG 1743+477 C-extension, C/K Sk -65°40 LM1 PG 2302+029 MS Sk -66°28 LM1		, , , ,				, 1
PG 1743 + 477 C-extension, C/K Sk $-65^{\circ}40$ LM1 PG 2302 + 029 MS Sk $-66^{\circ}28$ LM1			```		vZ 1128	on
PG 2302+029 MS Sk -66°28 LM1						
$\frac{PG 2351 + 010}{MS} \frac{MS}{Sk} - 66^{\circ} 118 \frac{LMm, LMI}{MS}$						
	PG 2337+070	MS	SK -66°118	LMm, LMI		

shown within square brackets in column (13); this serves as a point of comparison for the value observed in the HVC.

The overall abundance is assumed to be near solar, unless shown otherwise in the notes column (col. [20]), on the first line pertaining to the cloud. A number followed by Z_{\odot} in the notes column indicates that the abundance has actually been measured. This is the case for complex MI (0.8 solar), complex CI (0.1 solar), the Magellanic Stream (0.25 solar), the PP Arch (0.5 solar), IV6, IV9, IV19 (1 solar), and the LLIV Arch (1 solar). Parentheses around the abundance indicates clouds where an abundance different from solar is suspected, but not directly proven.

After the cloud summary, the table lists the individual observations relevant for that cloud. In many cases the sight line to a probe intersects more than one cloud, so that one probe may be listed under two, three, or even four different clouds (see Table 1).

Note	(20)	$(0.1Z_{\odot})$			1	f	7	ω <i>z</i>	ŧ	5,6 5.7	5		∞ m	6			10	11,S	s s	12,13
	(18) (19)	J		87	2 2 2 2 2 3 2 3	121	104 20)	87 33 80	80	38 33	80	08 08	90 33 33	33	70 70		117 117 117	63 83	83 83 83	107 94) 107
A/A _O D? Ref		0	34	35	2 0		96 U	Г	-	L			-	58 U)17 15	5	15 U	ЧЧ	X >0.012 U >0.016 U
	(17)	0.062	0.15 >0.034 0.0087		0.062	28	0.0096							0.0058		0.00017 0.0015 0.051 0.13	.00017 0.0015 0.051 0.13	>0.015		>0.0 >0.0
A_{ref}^{10-9}	(16)	[74000]	[1900] [1400] [22]]	-										[22]	[19000] [22] [7800] [87]				
Aion 10-9	(15)	$4.6E4 \pm 4.8E4 \ [74000]$	5200 ± 4500 >1300 19+5	>1300	18 ±0 4.6E4 ±4.8E4 5200 ±4500	07 >0	21±2 ⊘.3 0 1		797	<0.71 <0.71 <0.42	72	4.5 2.1	<0.38 <0.38 <0.91	13 土5	<47 <11	6.6 ± 1.4 3.3 ± 0.9 1600 ± 80 44 ± 11	6.6 ± 1.4 3.3 ± 0.9 1600 ± 80 44 ± 11	×530 >530	<200 <330 2</td <td>>27 >35</td>	>27 >35
code	(14)			ZŻ		\$ щ	≥z≩	zðð	\$ 8 Z	ζ ν ν	A	* A #	*	z	zz		цццц	l ⊐ Z ≩	zz	ЧЧЧ
N_{ion}^{-2}	(13)			>500	9100 ± 9600		17±2 ∕_2.8 ∕_7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	t.0.2	412 2.13 4.15	<0.74	°.1∧ 4.0 4.0 2.4 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	 <td>3.0 ± 1.0</td><td><3.5 <12</td><td></td><td>2.8 ± 0.6 1.4 ± 0.4 710 ± 20 19+5</td><td>100 € 100 €</td><td>06 06</td><td><0.025 0.54 0.71</td>	3.0 ± 1.0	<3.5 <12		2.8 ± 0.6 1.4 ± 0.4 710 ± 20 19+5	100 € 100 €	06 06	<0.025 0.54 0.71
Vion 11	(12) (12)			-157	/c1- 160	B1	-160							-165			-95.3 -95.3 -95.3	2		-107 -108.2
ion	(11)	IO	Sill MgII Call	MgII		MgII			Call Mall	Nal Nal	Nal	Nal	Call Call	Call	Call Call Call	Sill MgI Call Fell Mnll	MgI Call Fell MnII	Call Sill	Sill	Nal Call Call
tel	(10)			WE	Ef	-	Ef WE(Ef WE		e e €	Dw	Dw	ef	Ef	Ef Ef		Ef	Β	Εť	Ef
$N_{\rm HI}^{\rm N_{\rm HI}}$	(6)			38 ± 3	20 ± 1	0.60 ± 0.10	$\begin{array}{c} 80\pm1\\ 30\pm6\end{array}$	34 ± 4 24\pm4 2014	0.1⊥0.+ 20⊥5	$^{29}_{182\pm3}$	6.0 ± 1.3	9.7±1.3	76±15	24 土4	7.5 ±0.5 106 ±0.8		43 ±2	2.5 ± 0.5 17 ± 1	18 ± 1 27 \pm 1	<2.0
IHA	s/III/s (8)			-157	-170	-123		-166 -155	-117 152		-167	-187	-180	-155	-100 -117			-86 -102		WW63 (-108)
Cld	6			AVI	AVI		r AVI AIII	AIV AIV		AF	A	A	AIV	AIV	MI /r MI		IV4	IV4 IV4	IV4 IV4	WW 63
type	(9)			Sey	dlrr		RR Lyr PAGB	2.6 HB .97 A0V				B9V	A0V	A0V	HB RR Lyr		SN	sdB HB	B8V A2V	B3V
2	(2) kbc	< 6.8	0. 7 <	l	Ι	I	t 6.8 a 4.6	a 2.6 s 0.97	0.016	a 0.40 s 0.28 s 0.24	p 0.28	3p 0.19 B9V	p 0.14	s 0.97	s 5.2 s 4.3	< 0.7 > 0.5	1	a 2.7 a 0.74	p 0.51 p 0.17	t 0.66
d	(4)	6.9 ×	> 4.0	I	I		9 . 9±1.0 8 . 1	4.0 ± 1.0 1.5 ± 0.2		0.58±0.06 s 0.28 0.58±0.06 s 0.28 0.50±0.06 s 0.24	0.45±0.21p 0.28	0 . 35±0.13	0.22±0.06p 0.14	1. 51 0.2	5.8±0.7 4.7±0.5	(< 0.8) > 0.6	I	2.9±0.7 a 2.7 0.80±0.20 a 0.74	0 .55± 0.27p 0.51 B8V 0.19±0.04p 0.17 A2V	0.90±0.20t 0.66 B3V
q°	(3)			42.88	44 . 84	43.81	43 . 28 35 . 01	39.74 40.28	10 56	28.79 29.14	39.08	33.45	38.91	40.28	54.71 56.29)	55 . 96	70.44 57.40	58.79 55.80	46.93
1 °	(2)			161.14 42.88	160.53 44.84	166.85 4	160.40 43.28 147.75 35.01	156.94 39.74 156.95 40.28	- 0C-COT	139.02 24 139.02 2 139.45 2	159.45	154.62 33.45	154.65 38.91	156.95	157.20 64.71 165.53 66.29		150.75 65.96	141.93 70.44 134.23 67.40	140.59 68.79 141.16 65.80	167.70 46.93
Probe	(1)	Complex A		Mrk 106	I Zw 18	1 UB3	AD UMa PG 0832+675	PG 0859+593 SA 12 391	DC DODE SOT	BD +75 306 BD +75 306 BD +75 310	HD 75855	HD 681 64	HD 76593	Mistaken claims SA 12391	Cloud MI PG 1126+468 BR UMa	MI ext (IV4)	SN 1998 S	PG 1213+456 BD +49 2137	HD 106420 HD 105058 Mictology aloine	HD 83206

PUBLISHED RESULTS FOR ALL HV/IV CLOUDS

TABLE 2

Note	(20)	14	cI	14,16 16 15 16	$0.1Z_{\odot}, 17$		18					19	20		T f	21			3
D? Ref	(18) (19)			57 57 57 77					79 106	62 62	125 119	125 119 119	119 125 119	011 011	121	$112 \\ 114 \\ 114 \\ 114 \\ 114 $	114	114	114 19 33
A/A _© D	(17) (>0.34 U >0.27 U	>1.1 >0.13 U \$0.13 U	,	0.080 >0.0057	9	$\begin{array}{c} 0.060 \\ < 0.83 \\ 0.098 \end{array}$	$< 0.095 \\ 0.010 \\ 0.50 $	<0.091 0.052 0.098 0.098	0.0098 0.0056	0.33	0.058 0.080 >0.0057	0.060	0.50	$>0 T_{s} > 140$	1			
${\rm A}_{ m ref}^{ m ref}$	(16)					[1400] $[1900]$		[120] [22] [780]						3					
A _{ion}	(15)	>1.2E5 >2.0E5	>4.0E4 >290 >290	, N	7500 ±3200 [9300] >530	8	2100 ≪310 1800±400	<350 22±1 1.6E4±6.5E3	<2900 110 ± 50 1800 ± 400 1000 ± 200	21 ± 2 21 ±2 12 +3	6200 ± 500	5400 ±700 7500 ±3200 >530	2100 <310	<350 <350 1.6E4 ±6.5E3	8 7	 3.9E4 	∑ 8: 0 8: 0	6.8	<43 <1.9 <15
code	(14)	ZZZ	цххл	s s z s z					ZZZ	zz	zz	zzz	zzz		цпг	∠≥≥≥	: A A	zð	* * *
N_{ion}^{1011} -2	10 cm (13)	>600 >1000	$< 0.53 \\ > 200 \\ 1.4 \pm 0.3 \\ 1.4$	<pre><80 </pre> <pre><80 </pre> <pre><80 </pre> <pre></pre> <pre< td=""><td>[2000]</td><td></td><td></td><td></td><td>8.2 ± 1.4 1700±400</td><td>20 ± 1 20 ± 1 4.1 ± 0.9</td><td>1900 ± 100</td><td>1000±100 1400±600 >100</td><td>580±110 400 <58</td><td><65 3000 ±1200</td><td>887 875</td><td></td><td>200 VVV</td><td>8.45 8.4.6</td><td><2.4 <0.15 <1.2</td></pre<>	[2000]				8.2 ± 1.4 1700±400	20 ± 1 20 ± 1 4.1 ± 0.9	1900 ± 100	1000±100 1400±600 >100	580±110 400 <58	<65 3000 ±1200	887 875		200 VVV	8.45 8.4.6	<2.4 <0.15 <1.2
Vion bru /e		-85 -85 >	85 						-118 -135	-137 	-112		-133 -133 -133	-133		V			
tel ion	(10) (11)	JB CII OI	Sill Call Call	JB CII OI SiII Call	IN IN IN	MgII SiII	Silli PII SII	Arl Call Fell	FeIII Ef Call WE SII	Ef	ЕË		OVI Silli Pii	Arl Fell Fell	Dw	Ef Call Ef Call Ff Call	出田田	西田田	Ef Call Ef Nal Call
VHI NHI 1018 cm-2	(9)	<0.50		<0.50					7.2 ± 3.0 92 ± 7	33+5	31 ± 0.9 19 ±0.9				4.2 ± 0.3 33 ± 1	33 ± 2 68 ± 1 31 ± 1	36 ± 2 36 ± 2 78 ± 1.3	35 ± 2 35 ± 2	0.2±0.c 7.9±1.1
		MIII (-93) <0.50		II (93)					A -115 A -136		A -109				8 —129 8 —122	A -121 8 -125			- 109 - 109
Cld	(7)	IIM		IW A					CIA	U	CIA				CIB	CIA	-		c c
z type	крс (5) (6)	< 3.5 a 3.5 B3V		t 1.7 09.5V MIII (–93) <0.50	> 4.3) > 0.8				- QSO - Sey		- Sey OSO	,			080 		5s 3.3 (HB)	4.2±0.5 s 3.1 HB 2.4±0.5 s 1.7 (HB)	9 <u>+</u> 0.2t 1.5 RRLyr
p	мрс (4)	< 4.0 4.0		1.9	(> 6.1 > 1.2 > 1.2											8.8±1. 6.1±0. 4.8±0.	4.5 <u>+</u> 0.	4.2±0. 2.4±0.	1.9±0.
$\stackrel{\circ}{q} \stackrel{\circ}{l}$	(2) (3)	182.16 62.21		183.14 62.15	Ŭ				111.89 52.02 91.49 47.95		100.30 53.48 98.27 40.38				90.08 36.38 86.64 40.36	91.60 48.86 89.40 45.07 91.05 46.60	92.14 47.40	100.69 47.28 90.69 46.46	99.41 51.21
Probe	(1)	Cloud MIII BD+382182 1		93521	CI				PG 1351+640 1 Mrk 290		Mrk 817 1 Mrk 876				3C 351.0 QSO 1637+574	BS 16034-0002 BS 16034-0114 BS 16079-0017		PG 1510+635 1 BS 16079-0015	BT Dra

TABLE 2—Continued

Probe	$q \qquad 1$	q	z ty	type C	Cld	I IHA			IIOI.	1101		Mion	Iol -	De la			2001
0	0 0	kpc	kpc		kı G	\$	10^{18} cm^{-2}	00 00	km/s	10^{11} cm^{-2}	0.00	10 ⁻⁹	10-9 16	, E D	0101010	10)	
PG 1648+536	8 3	0.5	S	Ŭ		3 12	十1	Ef MgII		(CT)	Γ, L	(CT)	(01)	(11)	L 1.	609	(07)
PG 1519+640	100.27 46.17	0.70 <u>+</u> 0.20a 0.50		sdB (ן ט	-121 8.9	8.9 ± 1.6	Ef Nal Mai		000 2.0 2.0		020 22				00200	
								Fell Call		40 13 13		00 √140 √45			ц	800	
HD 146813 Mistaken claims	85.71 43.81	0.41±0.13p 0.28 B8V	p 0.28 B		CIB –	$-109 37 \pm 2$	± 2	Ef Sill		<230	Z	<620				50	s,22
BTDra	99.41 51.21	1.9±0.2 t	t 1.5 RRLyr	RLyr (CIA –	− 109 7.9±1.1	土1.1	Ef Nal Call	-110 -136	1.7 ± 0.05 6.0	ΝN	22 ±3 76		$0.011 \\ 0.035$	n	19 33	23 24
СШ								CII NI OVI NaI		[2000]		≫0 4300 7.9E4±4.3E4	[35000] [9300] [74000]	>0 0.046 0.11		0.1	$0.1Z_{\odot}$,25
								MgII Sill Call Fell				$>05000 \pm 280018 \pm 21300 + 700$	[1400] [1900] [22] [780]	>0 0.14 0.0081 0.041			
PG 1351+640	111.89 52.02	I	0	oso c	CIII –	-156 56±2	± 2	Ef CII SIII Call	-163	>0 >0 9.9+1.0	щщΖ	20 20 18 18 18 18 18 18 18 18 18 18 18 18 18		0.000		67 67 79	f,26 f,26
PG 1259+593	120.56 58.05	I	⊘ 	oso c	CIIIC –128	-128 84±1	Ŧ1	NI E		3600 6.6E4 ±3.7E4 460 ±110	- - -	4300 7.9E4±4.3E4	_	0.046 0.11		26 26	
								Sill MgII Hell		4200 ± 2300 >0 1100+500	цццц	5000 ± 2800 >0 1300+600		0.14 >0 0.041	1	126 121 121	f
	134.16 49.74 133.45 48.27	0.70±0.10t 0.52		н	ШA	$-176 3.0 \pm 0.$ $-138 31 \pm 1$				 20.58 30.58 31.5 	ыщ≽₿	0 6 1 6 1 7		2		333	f,27 3,28
BD +03 983 PG 1338+611 HD 127557	155 /4 55 42 112 54 55 25 109 43 47 13	0.40 ± 0.108 0.32 0.30 ± 0.108 0.25 0.28 ± 0.060 0.21		A0V SdB VOA	ווו ססכ	-141 2.5 -126 56 -135 3.5	2.5 ± 0.9 56 ± 1 3.5 ± 1.0	Ef Call Dw Sill		c1.0 2.5 00∧	≥ z z	<0.4 <6.2 <2600				83 83	29 S
175 18	135.50 51.13 134.74 55.33	0.23±0.05p 0.19			ШA	-149 5.0 -130 57	5.0 ± 0.8 57 ± 0.8			<0.24 <0.15	M	<0.26				84	2
C-south		> 1.2	> 0.8					OVI Nal MgII SII Call Fell		[2000]		<360 3600±1300 8100±1900 <580 11E4+4.2E3	[1400] [1900] [22]	<pre><0.17 <0.095 0.095 0.43 </pre>		(0.12	(0.1 <i>Z</i> ₀),30
Mrk 876	98.27 40.38	I	ð I	oso o	т Ө	-173 4.4 ±0.9	±0.9	Ef H ₂ OVI		$<\!$		<4.5E4	60			119 119	20
Mrk 279 Mrk 205	115.04 46.86 125.45 41.67		<u>ي ي</u>	Sey C		-123 31 -120 1.2	31 ± 5 1.2 ± 0.3	Ef SII Ef MgII	-175 -147 -147	470 ± 160 2500 ± 400 43 ± 11	zz≧	$1.1E4 \pm 4.2E3$ 8100 ± 1900 3600 ± 1300		$0.33 \\ 0.43 \\ 0.095$		119 125 75	31 32
FBS 0959+685 PG 1648+536	FBS 0959+685 142.46 41.95 PG 1648+536 81.38 39.35		— Q a 0.76 sc	QSO sdB		-140 15 ± 4 -164 17 ± 2	土 4 2	Dw MgII Ef MgII Ealt		c:+∑ 0: 0: 0: 12 12 12 12 12 12 12 12 12 12 12 12 12	≥≥⊐-	<pre>>>00 >>00 >>>00 >>>>00 >>>>00 >>>>>00 >>>>>></pre>		8	- L	64 49 60 [2]	f,33
PG 1708+602 SW Dra	89.28 35.91 127.27 47.33	1 . 1±0.3 1.0±0.1	a 0.65 sc t 0.74 R	sdB () RR Lyr ()	11 80	-189 24 ± 2 -145 25 ± 1		Ef Nal Dw Call		9.00 7 √0	л Ц 🕅				_	62 62	6

TABLE 2—Continued

		2	2007			-	./. 10l	82		1m /o	1_{rm} / $_{s}$ 1011 $_{rm}$ -2		10-9	10-01)		
	(2)	(3)	(4)	(5) ((9)	(7) (1	8) 10	(8) (9)	(10) (11)		(13)	(14)	(15)	(16)	(17)	(18) (19)) (20)
									NaI MgII				8	[1400]	2		$(0.1Z_{\odot}),34$
									SIII SII Call			V	<2.0E4 <49	[1900] [1900] [22]	<1.1		
	79.02	37.77	I	ð I	QSO C	ī		0.60 ± 0.10	GB		Ñ	Щ	62	[77]	70.07 N	121	
	74.38	34.83	I	88 				4.1 ± 0.1	GB MgII		R 1	Щ	9		i Ne	121	
QSO 1732+389	64 . 03	31.00	l	5 	D CO DSD		-195 151 3	5.4 ± 1.3	Dw HI		£70 200	τ			$T_s > 15$ T < 00	112	
-	63.60	38.86	I	– BI	BLLac C			32 ± 1 10 ± 1			<2000	v ⊦z;	<2.0E4		$1_{s} > 90$	1125	-
-	41.35	22.99	I	- Lae	radio c			29			≪4.9 ⊗35	Z٢	<49		$T_s > 20$	5 70	
4C 09.57	34.93	17.63	I	B	BLLac c		-139 1	15 ± 3	Dw HI				~3 8F4		$T_s > 90$	112	T,35 21
	ç	- - -		č				26 ± 3	Dw HI		00 19				$T_s > 110$	112	
PKS 1/41–038	21.60	13.12	I	3 	o c C		-132 - 	14 <i>±</i> 2 33±2	Dw HI Dw HI		≪48 ≪63				T _s >50 T _s >80		
	64.84	31.60	s s 1 0 6 s	0 (5 I vr	CeIII1		17 +0 7	CO Dav Call	V	<1.0E4		<3.1E4		1	-	21
-	62.84	24.91		1.9	RRLVr C			17 ± 0.7 73 ± 1	Dw Call		-11 	ΖZ	7 7 7			202	
	51.71	30.57	0	0.46 sd	sdOB C		-	6.0 ± 2.0			71.6	: ц,	₹ 70 70			62	
	74.41	30.65	0.80±0.30 a 0.41		sdB C			1.5 ± 1.0	Call Dw Call				88 270			62 70	
	70.99 75.43	35.71 36.08	0.72±0.33 p 0.42 0.70+0.30 a 0.41		B3Vn C sdB C		-145 8. -134 1	8.1 ± 0.5 1 9 ±0.7	Dw Sill Dw Nal		<230	z _				2C 9	
		00.00						···· ·			<6.3	гı	<330			62	
			> 0.8	> 0.6					Nal MgII Call					[14000] [22]			
														[7800]			
	80.47	43.96	0.80±0.30 a 0.56 sdB	0 . 56 sd	-	C/K	-85 4.	4.4 ± 0.8	Dw MgII Fell		₹ 203 03		2301400			98 Л	
PG 1743+477 PG 1710+490	74.41 75.43	30 . 65 36.08	0.80±0.30a 0.41 0.70±0.30a 0.41	0.41 sdB 0.41 sdB		CK CK	88 3. 94 2	3.9 ± 0.7 22 ±0.8	Dw Call Dw Nal Call		<4.1<1.0<6.3	ГГZ	<110 <4.6			70 62	_
1			> 1.3						IO					[740000]			
									MgI Møll					[14000]			
									All					[1600]			
				i				-						[77]	i I		t
QSO 2200+420	92.60 -10.45	-10.45	I		BLLac G		-109 1	18±2	H M S		<120 <7800	∨ ⊦z	<4 3F4		T _s >450	112	1. 1.2
2.	99.90	-6.71	1.3±0.1 t 0.15 B9Iab	0.15 B9)Iab G		-107 6	60 ± 8	Ef OI		<1500		<2600			L 45	
									MgI MgII		₹4:1 38	≥≥	6.9 ≜65			L 42 L 42	
									AIII		× 18 18 18	M	000				
-	117 60						с сс т		D C.II		°0,	\$;					

te	(20)),37	T,38	39	39 40 41),42		,),43 44		$(0.1Z_{\odot}),45$ 21,46 21,47	48	49
Note)	(0.1Z _O),37				$(0.1Z_{\odot}),42$		$(0.1Z_{\odot}),43$		$0.1Z_{\odot}$		
Ref	(18) (19)	e)	43 96 96	5 5 5 8 6 5 6 7 8 6	62 62 62		70 96 96	e) 96 96 96 96	96 96	(i 112 96	96 96 96 96 96	62 62 96
D3	(18)			Г	-		ГГГ		1 1	ц.	コーーー	Ц
A/A _© D? Ref	(17)		$T_s=47$									
A_{ref}_{10-9}	(16)	[35000] [74000] [1400] [721]	[]]									
Aion 10-9	(15)		0.92 <49 ⊘.7	58888 8888 8888 8888 8888 8888 8888 88	3.1	<2100 <5500 <68	$\overset{38}{<} \overset{38}{<} \overset{38}{<} \overset{41}{<} \overset{38}{<} \overset{38}{\sim} \overset{38}{<} \overset{38}{\sim} \overset{38}{<} \overset{38}{\sim} \overset{38}{\sim} \overset{38}{\sim} \overset{38}{\sim} \overset{38}{\sim} \overset{38}{\sim} \overset$	$\begin{array}{c} < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 3300 \\ < 330$	<2000 <5100	<5.2E4 <1.0E5 <1300	<pre><3300 <1800 <1500 <16 <16</pre>	$\overset{<}{\wedge} \overset{<}{\wedge} \overset{<}{\sim} \overset{<}{\wedge} \overset{<}{\sim} \overset{\sim}{\sim} \overset{<}{\sim} \overset{<}{\sim} \overset{\sim}{\sim} \overset{<}{\sim} \overset{\sim}{\sim} \overset{\sim}$
code	(14)		ΓZZZ	JZJJJ			zzzz	v v v v z z z z z		v v	v v v z z z z j	ZLLL
v_{ion} v_{ion} V_{ion} V_{aon} V_{aon} -2	(13)		170 <8.3 <5.3 <4.1	× 50 × 50	\$ 5.0 5.0 5.0	<160 <420 <5.2	 12 5.4 3.8 	<pre><5.1 <150 <390 <390 <390</pre>	<160 <410	<1.4E4 <1.7E4 <220	 Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Contro	2.55.15.1
Vion km/s 10	(12)									$\Box \Delta$.		
ion	(11)	CII OI MgII Call			Call Call Call Call	CII OI MgII		MgII CII CII CII OI		8855		Call Nal Call MgII
tel 2	(10)		Ef Ef S	E E	ef ef Ef	Ef	Dw Ef Ef	Ef Ef Ef	Ef	Dw Dw Ef	Ef Dw ef	ef Dw
$v_{\rm HI}$ $v_{\rm HI}$ $N_{\rm HI}$ $v_{\rm HI}$ $v_{\rm m}^{-2}$	(6)		$190 \\ 17 \pm 5 \\ 194 \pm 1 \\ 42 \pm 2$	13 ± 2 16 ± 2 9.7 ± 1.2	30 ± 1 30 ± 2 95 ± 2 81 ± 2 81 ± 2	<i>7.7</i> ±1.6	33 ± 2 8.4 ±1.1 9.9 ±1.5 9.3 ±3.5	6.8 ±1.1 10 ±1 12 ±1	8.0±1.7	27 ± 2 17 ± 1 18 ± 1	13 ± 2 13 ± 2 16 ± 2	25 ±2 13 ±4
IHA IHA	(8)		-199 -201 -203	-162 -202 -170			-160 -172 -160 -163	145 184 144	-153	-164 -120 -149	-175 -136 -201	
Cld	(1)		ΗΗΗ	H H			HII H	IIIH IIIH	IIIH	нн	н нн	н
type	(9)		radio 09.51 B311 09.51b	B0III	B1Ia B1V B1V: B1V: B0.5III	O6Ia:f	Cep O8e B1IL. B1Ib	790 V80	06.5V	QSO BL Lac O5f	05e 09V B0.5III	06.5V
knc 1	(5)		$0.11 \\ 0.07 \\ 0.1$	60.0		0.05		0.37	0.20		0.04 0.03 0.05	0.02
d	(4)	• 5.0	<u>5.0±0.68 0.11</u> 3.5±0.8t 0.07 3.4±0.3t 0.1	2. <u>3+</u> 0.4t 0.09 B0III	$\begin{array}{c} 2.1 \pm 0.21 & 0.02 \\ 1.9 \pm 0.38 & 0.04 \\ 1.8 \pm 0.38 & 0 \\ 1.6 \pm 0.31 & 0.07 \\ 1.6 \pm 0.31 & 0.07 \end{array}$		2.0±0.2t 0.03 1.8±0.4t 0 1.7±0.2t 0.03 1.3±0.1s 0.01	• 3.6 3.6±0.3t 0.37 (3.4±0.3t 0.21 (3.4±0.2t 0.20 06.5V	• 2.3 	2.1±0.1t 0.04 0 1.7±0.2t 0.03 0 1.2±0.2t 0.05 1	1.1±0.1t 0.02 O6.5V
q°	(3)	^	-1.15 -1.28 1.07 1.82	2.13	-0.64 1.22 0.04 2.56	1.25	0.78 - 0.14 - 0.89 - 0.51	I -5.87 -3.50	-3.40	6.24 -9.86 -1.74	1.01 0.88 2.49	06.0
l°	(2)	- core I	130.98 131.11 130.91 128.29	129.62	132.60 130.70 130.73 130.86	- core II 117.93	$\begin{array}{rrrr} 114.47 & 0.78 \\ 117.44 & -0.14 \\ 119.02 & -0.89 \\ 116.18 & -0.51 \end{array}$	- core III 132.91 130.83	133.11 -	other 132.13 145.00 134.99	134.77 137.22 120.74	137.19
Probe	(1)	Complex H -	0159+625 BD +59 367 BD +62 338 HD 101 25	BD+63 253	HD 13256 LS 1+62 200 LS 1+61 251 HD 12567	Complex H – core II HD 108 117.93	RS Cas HD 225160 HD 1383 HD 223987	Complex H - core III HD 12323 132.91 - HDE 236894 130.83 -	HD 12993	Complex H – 4C 67.05 1 4C 47.08 1 4D 14947 1	HD 15629 HD 17520 HD 2619	HD 17505

Note (20)	7.50 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.		$\begin{array}{c} (0.1Z_{\odot}) \\ 52,53 \\ 52,54 \\ 52,55 \\ 52,56 \end{array}$	$(0.1Z_{\odot})$ 52,53 52,55 52,55 52,56	57 T T 58 57 57 58
D? Ref (18) (19)	24	92 92 92 92) 92 92 92 92 92 92 92 92 92 92	33 33 33 33 33 33 33 33 33 33 33 33 33
		Т		-	L L 1 200 200
A/A _O (17)	FFFFFFF				$T_{\rm s} > 50$ $T_{\rm s} > 70$ $T_{\rm s} > 30$
$\substack{\mathbf{A}_{\mathrm{ref}}\\10^{-9}\\(16)}$	[22]	[22]	[22]	[22]	[14000]
$\underset{(15)}{\text{Aion}}$	0.96 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00		<1.9	 4.1 4.1 4.1 4.2 4.1 4.1	$\begin{bmatrix} -4.2 \\ -4.2 \\ -3.3 \\ -4.0 \\ -4.7 \\ -4.7 \\ -4.0 \end{bmatrix}$
2 code (14)		****	******	******	$\vdash \vdash \vdash Z \And ^{\mathbf{N}} \And \And ^{\mathbf{N}} \And$
s 10^{11} cm ⁻² (13)	220 160 160 15 55 20 20 1.5 1.5 1.4 (0.92	<pre><0.66 <0.64 <1.4 <2.0 </pre>	<1.2	<pre><1.2<0.70<0.70<0.70<0.70<1.2<1.2<1.2<1.2<1.2</pre>	$\begin{array}{c} & \bigcirc & $
km/s 1 (12)	-63.9 -70 -73.0 -73.1 -73.1 -57.9 -55.9 -59.3	~~~			
ion (11)	C C C C C C C C C C C C C C C C C C C	Nal Call Call Nal Nal Nal Call Call		Nal Call Call Call Call Call Call Call C	Nal MgII Call HI HI HI Ma MgI Nad MgII MgII Call
tel i 10)	Ar DW DW DW W	Ef Ar Ar		Ef Dw Dw Dw Dw	5 Ef 5 Ar 6 Ef Ef Ef
$10^{18} { m cm}^{ m HI}_{ m cm}$	$\begin{array}{c} 230\\ 230\\ 16\\ 55\\ 55\\ 20\\ 1.5\\ 33\pm 1\\ 13\\ 33\pm 1\\ 13\\ 34\pm 1\\ 72\pm 1\\ 100\pm 9\end{array}$	$\begin{array}{c} -116 & 37 \pm 4 \\ -111 & 120 \pm 5 \\ -114 & 110 \pm 5 \\ -112 & 150 \pm 5 \end{array}$	$\begin{array}{c} 62\pm 4\\ 77\pm 9\\ 66\pm 3\\ 78\pm 10\\ 77\pm 3\\ 66\pm 3\\ 66\pm 3\\ 155\pm 1\end{array}$	$\begin{array}{c} 30\pm 3\\ 24\pm 9\\ 23\pm 4\\ 23\pm 4\\ 33\pm 3\\ 33\pm 3\\ 21\pm 3\\ 42\pm 1\end{array}$	$\begin{array}{c} 5.3\pm0.5\\ 15\pm0.4\\ 13\pm0.6\\ 27\pm0.9\\ 22\pm2\\ 22\pm2\\ 15\pm1\\ 15\pm1\end{array}$
km/s (8)	801010010010	-116 -111 -114 -112	-203 -187 -187 -187 -188 -188 -197		
Cld		AC0 AC0 AC0 AC0	ACI ACI ACI ACI ACI ACI	ACII ACII ACII ACII ACII ACII	CHS CHS CHS CHS CHS CHS CHS CHS CHS
type (6)	2 00000	A0V B9V A0V A0V	B9V A0V A2V A2V B5V B5V A7V	B9V A0V A2V A0V B5V B5V A7V	Sey radio Sey A0V A2V A0V
$_{\rm kpc}^{z}$		5s 0.10 5s 0.05 3s 0.04 3s 0.03	$5_{\rm S} 0.08$ $3_{\rm P} 0.07$ $3_{\rm S} 0.06$ $3_{\rm S} 0.06$ $9_{\rm P} 0.06$ $3_{\rm S} 0.05$ $3_{\rm S} 0.05$	$5 \ 0.08 \ 3 \ 0.07 \ 3 \ 0.07 \ 3 \ 0.07 \ 3 \ 0.06 \ 3 \ 0.06 \ 3 \ 0.06 \ 3 \ 0.06 \ 3 \ 0.06 \ 3 \ 0.06 \ 3 \ 0.06 \ 3 \ 0.06 \ 3 \ 0.04 \ 3 \ 0.06 \ 3 \ 0.04 \ 0.06 \ 3 \ 0.04 \ 0.06 \$	> 0.2
$_{(4)}^{d}$	1.5) 	 0.3) 0.90±0.05\$ 0.40±0.05\$ 0.05\$ 0.04 0.05\$ 0.04 0.04<td>(> 0.4) 0.40±0.058 0.08 1 0.36±0.038 0.07 0.36±0.038 0.06 0.30±0.038 0.06 0.29±0.0938 0.06 0.29±0.099 0.05 1 0.29±0.099 0.05 1 0.25±0.038 0.04 0.201 0</td><td>(> 0.3) 0.40±0.05\$ 0.08 0.36±0.03\$ 0.07 0.30±0.03\$ 0.06 0.30±0.03\$ 0.06 0.29±0.09\$ 0.05 0.25±0.08\$ 0.05 0.20±0.03\$ 0.04</td><td>> 0.3 > 0.3 > 0.2</td>	(> 0.4) 0.40±0.058 0.08 1 0.36±0.038 0.07 0.36±0.038 0.06 0.30±0.038 0.06 0.29±0.0938 0.06 0.29±0.099 0.05 1 0.29±0.099 0.05 1 0.25±0.038 0.04 0.201 0	(> 0.3) 0.40±0.05\$ 0.08 0.36±0.03\$ 0.07 0.30±0.03\$ 0.06 0.30±0.03\$ 0.06 0.29±0.09\$ 0.05 0.25±0.08\$ 0.05 0.20±0.03\$ 0.04	> 0.3 > 0.3 > 0.2
<i>b</i> (3)	(> 1.66 3.36 3.87 1.52	(> 6.25 6.74 6.83 5.89	\bigcirc	(> 1.75 0.46 1.95 0.68 1.04 1.04 1.37	 -44.05 -44.91 -44.51 -46.55 -49.52 -45.24 -45.24
ران	88 –1 85 20 86 20 86 80 80 80 80 80 80 80 80 80 80 80 80 80	179.91 6 179.86 6 180.74 6 180.63 5		184.37	147.93 -44 170.25 -44 174.86 -44 164.76 -46 156.66 -49 166.39 -49
Probe (1)	AC Shell 3C 123 3C 123 HDE 256725 HDE 256725 HDE 256035 HDE 256035 HD 45314	Cloud AC0 HDE 252550 HDE 253069 HD 42904 HDE 252605	Cloud ACI HDE 241573 HDE 241597 HDE 241597 HDE 241597 HD 33233 HD 33233 HD 32641 HDE 241882	Cloud ACII HDE 241573 HD 33415 HD 3341597 HD 2341597 HD 330300 HD 330900 HD 32641 HDE 241882	Cohen Stream PKS 0202+14 3C 75 3C 75 3C 78 Mrk 595 HD 14069 HD 17481 HD 17481

TABLE 2—Continued

Note (20)	57 57 57	57 57 58 57	$(0.1Z_{\odot})$	T,59	57 58	58,V	57 58	57 58 V	57 58	T,60 T, T,	62,63		64					64		
D? Ref (18) (19)	92 68 68	8888	S.	112 92 92	68 68	92) 68	(88 89	89	68 68	39 39 39	110	110	118	110	110	110	110	110	110	110
_	Ц	ГГ		0	<u> –</u> –		-	Г	-											
A/A _☉ (17)				$T_{s} > 320$						$T_s > 20 T_s > 20 T_s > 20 T_s > 40$	0.0060			>0.022					0.032	
$\underset{(16)}{\operatorname{A}_{ref}}$			[1400] [221	1																
											2700								1400	
$\stackrel{ m A_{ion}}{10^{-9}}$ (15)	 √7.8 √3.7 ∞ ∞	6.6 666 0.5 0.5 0.5		<7.3 <1.0	4 1.1 4	 2.6 8.4 10 10 	06 20 20	<120	¹ 20 21	<3200	2100 ±2700	<1900	002/	00c>	<4300	<1.1E4 <1.4E4	<1.1E4		$\leq 3100 \\ 1100 \pm 1400$	<3.0E4 <1.2E5
code (14)	a s s a	s s ⊗ s ⊗		∊⋧⋧	s≽	> > >	s s s	s N	sð	+ + + Z	Γ	цц-			ц.	цц,	ц Ц	ГГ		ЧЧЧ
${}^{\rm N_{ion}}_{10^{11}}{}^{\rm cm-2}_{\rm cm}$	<0.30 <0.24 <6.8	 <ul< td=""><td></td><td><92 <1.1 <0.50</td><td>7.3 .58</td><td><0.30 <0.24</td><td>0.580.58</td><td><0.24</td><td><5.3 <0.58</td><td><pre><1.6</pre><pre><2.0</pre><pre><2.0</pre><pre><2.0</pre></td><td>430 ±340 L</td><td>√380 1500</td><td>910 ± 80</td><td>>150</td><td><pre></pre></td><td></td><td>∕_250</td><td><95 1800±200</td><td><69 25±17</td><td>~2660 ~2600</td></ul<>		<92 <1.1 <0.50	7.3 .58	<0.30 <0.24	0.580.58	<0.24	<5.3 <0.58	<pre><1.6</pre> <pre><2.0</pre> <pre><2.0</pre> <pre><2.0</pre>	430 ±340 L	√380 1500	910 ± 80	>150	<pre></pre>		∕_250	<95 1800±200	<69 25±17	~2660 ~2600
km/s 10 (12)	2 2 V 6	° ~ ∠ ~ ∂		• • 8	~ ₽'	~~~	%∨₽	. ~ ~	, v 8	\vee \vee \vee \vee	-283	-283 >1600 <380 <150	-280	-283 283		V	\times	-210 18	-227	, <u>2</u> <u>6</u>
tel ion (10) (11)	Ef Nal Ef Nal MgII	Dw MgII Dw Nal MgII Call Call	Nal MgII Call	Ef HI Ef Nal Ef Nal		Ef Nal Ef Nal (Nal	MgII Call	Dw MgII Dw Nal	MgII Call	Ar HI Ar HI Ar HI Dw Sill		CIV N I I I			SII	IIIS UII	ЫÇ	NV NV	SIII SIIIS VIIS	
-																				
${}^{\rm N_{\rm HI}}_{\rm 10^{18}cm^{-2}}$	3.9 ± 0.6 6.6 ± 1.1	13 ± 2 6.1 ± 4.9		130 ± 0.8 15 ± 0.9 50 ± 1		4.0 ± 0.9 2.9 ± 0.9		5.8 ± 2.1 2.8 ± 0.9		5.0 ± 0.6 14 ± 0.5 2.0 ± 0.4 7.3 ± 1.2						2.2 ±2.2				
$\lim_{(8)}^{v_{\rm HI}}$ 1 (8)	-106 -116			-335 -274 -276		—277 —270		-247 -320		-110 -222 -121 -203) —283					-227				
Cld (7)	CHS CHS	CHS CHS		WW507 WW507 WW507		WW507		WW507 WW507		WW363 WW418 WW468 WW468 WW255	(WW419) — 283									
type (6)	A0V B9.5V	A0V B7IV		radio A2V A0V		A0V B9.5V		A0V B7IV		radio Sey B2IV	Sey									
kpc (5)	0.21 0.18	0.14 0.13	> 0.2			0.21 0.18		0.13		0.16	1									
$d_{ m kpc}$	0.30±0.08p 0.21 0.25±0.13p 0.18	0.20±0.02s 0.14 A0V 0.18±0.03p 0.13 B7IV	> 0.3	0.30±0.03 s 0.21 0.30±0.03 s 0.21		0.30±0.08p 0.21 A0V 0.25±0.13p 0.18 B9.5V		0.20±0.02s 0.14 A0V 0.18±0.03n 0.13 B7IV	1	— — 0.20±0.03 p										
$\overset{o}{}^{(3)}$	-44.21 -45.40	-44.73 -45.99		-43.40 -45.44 -45.24				-44.73 -45.99		-18.56 -27.78 -33.60 -52.21										
ر) د ا	167.87 - 168.50 -	172.35 - 157.03 -		161.87 - 166.54 - 166.39 -		167.87 - 168.50 -		172.35 -		176.81 181.83 166.64 170.76	35.97 - 29.86									
Probe (1)	HD 18059 HD 17907	HD 18910 HD 14951	Cloud WW507	4C 10.08 HD 17473 HD 17481		HD 18059 HD 17907		HD 18910 HD 14951		Other AC clouds PKS 0428+205 3C 109 CTA 21 HD 16582	Complex GCN Mrk 509									

TABLE 2—Continued

Ref Note (19) (20)) 63,65		E	т. 1,66 т.	T,67	ΕE	5 12 13 15	f f,72	Ψ́Η		F
D? Ref (18) (19)	55) 110 110 110 1110 1110 1110 1110 1110		Υ Υ	, 6 6 6 6	5 5 112	5 112 112 76	92 92 92	121			5
A/A _© (17)	0.0076		>0 ⊤_>20	T _s >2460	1 _s >590 T _s =55 T _s =38	$T_{s}^{2} > 140$ $T_{s}^{3} = 147$ $T_{s}^{2} > 570$ $T_{s}^{2} > 620$		99 7 8 F	$T_s > 2000$ $T_s > 2000$	1s >410	$T_s=69$
$\substack{A_{ref}\\10^{-}9}(16)$		[22]	[14000] [22]								_
$\substack{\text{Aion}\\10^{-9}\\(15)}$	<7900 270±280 <6600 <72 <120	<0.78 <0.59 <0.59	9		0.36 0.034	0.86		22	8	<1.4 <4.0 <2.6 <0.44	0.20
code (14)	\neg \neg \neg \neg \neg \neg \neg \neg \neg \land \geqslant \geqslant \geqslant	X X X	ŀ				JZZZZ	сы п	- 王 F I	⊦≊≊≊≊	τ
$10^{11} { m cm}^{ m Nion}_{ m (13)}$	$\begin{array}{c} 420\pm30\\ 220\pm50\\ 320\pm50\\ <110\\ <100\\ <130\\ <140\\ \\ 320\pm50\\ 320\pm50\\ \\ 320\pm50\\ \\ 320\pm50\\ <140\\ \\ 680\pm60\\ \\ 580\pm60\\ \\ 54\pm16\\ <2.2\\ <2.2\\ <2.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2\\ <1.2$	₹2.3 41.2 41.2	[1600] [350] [2000] <51	200 40 40 57 57	39 3.7 3.7	<pre><170 100 </pre> <pre>100 </pre> <pre></pre> <pre><td>610 ± 200 610 ± 110 <420 600 ± 160</td><td>3773</td><td>0.0 0.0 0.0 0.0</td><td>€ 1.2 0.46 0.46 0.46</td><td>5.8</td></pre>	610 ± 200 610 ± 110 <420 600 ± 160	3773	0.0 0.0 0.0 0.0	€ 1.2 0.46 0.46 0.46	5.8
${\rm km/s}^{\rm vion}$ (12)	-260 -256 -250 -140 -140 -140 -140]		73 73	-121 -213	-120 -70				-128
tel ion (10) (11)	md(CTV CTV NV NV NV SII NV NV SII SII Dw Call Dw Call Dw Call	Call Dw Call Dw Call Dw Call Dw Call	CIV NV OVI MgII Ar HI		Ar HI Ar HI HI	Ef HI Dw HI Dw HI Ef CIV	Ef CIV Ef CIV NV	GB MgII Un	Ef MgII Dw HI	Dw Call Dw Call Dw Call Dw Call Dw Call	Ef HI
$\begin{array}{c} v_{HI} & V_{HI} \\ km/s & 10^{18} \ cm^{-2} \\ (8) & (9) \end{array}$	20 ±20 20 ±20 3.3 ±0.8 6.3 ±0.7 1.0 ±0.5	299 ±3 200 ±6 200 ±10	\$	102 ± 0.4 29 ± 0.5 40 ± 0.5	c.0±21 110	$\begin{array}{c} 180\pm 8\\ 122\pm 0.3\\ 93\pm 1\\ 130\pm 20\\ < 3.0\end{array}$	3.3±0.5 8.5±0.7	33土2	$\begin{array}{c} 20\pm 2\\ 32\pm 4\end{array}$	83 ±2 47 ±2 45 ±2 104 ±1	29 ± 2
$\lim_{(8)}^{v_{\rm HI}}$ 1	-256 -140 -208 -231 -211	+99 +95 +90	168	-73 -71 -71	- 8/ -84	-81 -118 -110 -116 -116 (-213)		-121	-100 -121	-93 - 131 - 91 - 91 - 91	-128
Cld (7)	BL Lac (GCN) B0.5V WW302 B1Vne WW345 A0III WW345	GP GP	٩	OA OA OA	0A OA	OAAOOAOOAOOAOOAOOAOOAOOAOOAOOAOOAOOAOOA	0A 0A	OA	0A 0A	04 04 04 04 04	R
type (6)	BL Lac B0.5V B1Vne A0III	B1Vne A0V A0III	oiber	radio QSO	oso QSO	radio QSO QSO QSO QSO		QSO	OSO OSO	B3V B5V B3V B1III	radio
$z \\ kpc \\ (5)$	t 0.07 1 p 0.03	> 0.1) 4 p 0.07 1 p 0.03 1 p 0.03	l					ļ		2 p 0.16 t 0.10 5 p 0.08 2 p 0.04]
d kpc (4)	BLLa BLLa 1.1 t 0.07 B0.5V 0.32±0.14 p 0.07 B1Vne 0.11±0.01 p 0.03 A0III	(> 0.3 > 0.1) $0.32\pm0.14p 0.07$ $0.11\pm0.01p 0.03$ $0.11\pm0.01p 0.03$ $0.11\pm0.01p 0.03$	I					I		$\begin{array}{c} 0.63 \pm 0.22 \ p \ 0.16 \\ 0.40 \ t \ 0.10 \\ 0.29 \pm 0.05 \ p \ 0.08 \\ 0.18 \pm 0.02 \ p \ 0.04 \end{array}$	
$\overset{\circ}{}^{b}$	-52.25 -3.51 -13.42 -13.92	-13.42 -14.43 -13.92	36 14 36	10.55	11.76	8.37 4.29 23.50 6.03 27.42		23.54	$23.35 \\ 10.20$	14.98 14.36 16.00 14.03	8.37
ار (2)	17.73 - 21.18 38.67 - 40.55 -	38.67 - 40.92 - 40.55 -	46.07	46.97 57.51	63.03	66.39 76.83 77.23 88.82 94.00		105.63	145.71 161.64	$\begin{array}{c} 72.15\\91.18\\70.88\\107.54\end{array}$	66.39
Probe (1)	PKS 2155-304 HD 173011 HD 187350 HD 188350	Complex GCP HD 187350 HD 188859 HD 188350	Outer Arm PKS 1820+17	3C 386 4C 29.56	3C 382 3C 395	4C 33.48 QSO 2005+403 3C 380.0 3C 418 H 1821+643		4C 73.18	HS 0624+6907 1 3C 147.0	HD 178329 HD 189818 HD 176502 HD 205021	Complex R 4C 33.48

2	19) (20)	$0.25 Z_{\odot}$ 75		122 76 118 64 121 76 121 76				118 118 66 78	66 8 8 79	(66) τ 122	22 8 79	(96) 177	(96) (56)	1 T	44 T	1 1 - F	44 T T	74) 76,π	21 76, $ au$ 99 76			
D? Ref	(18) (19)		3033	2222	222	222			C	97	1	Ξ÷	i o <u>i</u>	17	1	1 1	1		20			
A/A _☉	(17)	<pre><0.0012</pre> <pre><0.0012</pre> <pre>>0.095</pre> <pre>>0.012</pre> <pre>0.012</pre> <pre>0.012</pre>		0.059 0.17 0.094	$T_s > 50 > 0.18 > 0.48$	$0.28 \\ 0.081 \\ T_{-} > 10$	$T_{s} > 50$			>0.047 >0.012	0.33	110	14.0	$T_s > 460$	$T_s > 460$ T > 480	$T_s > 40$	$T_s > 670$ T > 670	20/07 11 20.11	>0.11 0.062			
$_{10-9}^{\rm A_{ref}}$	(16)	[3600] [4800] [4700] [22]	[nov 1]																			
A_{ion} 10-9	(15)	 <2.5 <2.5 3600 ±700 >>440 <1742 2742 2742 2742 	2.7E4 ±1.2E4 4900 ±3800 1.0E4 ±5.3E3	2300 ± 500 6600 ±7100 3600+1300	>6800 >1.8E4	$1.1E4 \pm 5.3E3$ 3100 ± 900	<1.3E5		2.5	>1700 >440	6200 ± 400 27+2	<2.8E4	<pre></pre>					>4300	$> 4200 \\ 2000 \pm 800$	<7000	/19	419 58 58
J	(14)		× [−] ×	z」≷≷	⊦z≷	8 8 F	- Z + -	ארר סכ	88	zz	z≯	≥ z		Z F	ьt	- +	ьŕ	M	88			M M
$_{10^{11}cm^{-2}}^{N_{ion}}$	(13)	[1600] [350] [2000]	$\begin{array}{c} 300 \pm 130 \text{ W} \\ <0.18 & \tau \\ 240 \pm 190 \text{ W} \\ 93 \pm 46 \text{ W} \end{array}$	70 ± 9 4200 ± 700] 280 ± 300 150 ± 50	<54 100 ±10 130 ±90	140 ± 70 130 ± 30	 <!--</td--><td>1300 ± 300 < 410</td><td><510 <2.2</td><td>>1500 >390</td><td>5500 ± 400 24 +2</td><td><3900 1100 ±100</td><td><pre>4500 + 400</pre></td><td>4300 ±400 <41</td><td>41</td><td><170</td><td><29 ∧50</td><td>>1300</td><td>>1300 610 ± 240</td><td><230</td><td>74 9</td><td><4.9 <4.8</td>	1300 ± 300 < 410	<510 <2.2	>1500 >390	5500 ± 400 24 +2	<3900 1100 ±100	<pre>4500 + 400</pre>	4300 ±400 <41	41	<170	<29 ∧50	>1300	>1300 610 ± 240	<230	74 9	<4.9 <4.8
v _{ion} km/s	(12)		375 304 290		-350 -335	 388 310	V 150	-175 -175		+195 +176	+193			C41+					$^{+254}_{+200}$			
tel ion	(10) (11)	CIV NV OVI Nal MgII SII SII Call		Ef MgII OVI GB MgII GB MgII	G D W	GB MgII GB MgII Dw HI	-		NV Nal	(Sill Sill	SII Call	PK(SII SII	PK(SII	PK HI	PK HI DV HI		PK HI PK HI			Ef Sill		PK Call PK Call
$\overset{\mathrm{VHI}}{\mathrm{km/s}}\overset{\mathrm{NHI}}{=} \overset{\mathrm{NHI}}{\mathrm{cm}^{-2}}$	(6)		$\begin{array}{c} 1.1\pm 0.1\\ 3.0\pm 0.2\\ 4.9\pm 0.1\\ 0.90\pm 0.10\end{array}$	3.1 ± 0.6 4.3 ± 0.1 4.1 ± 0.1	28 ± 1 <1.5 <0.70	1.3 ± 0.1 4.1 ± 0.1 11 ± 1	9.7 ± 0.8	<2.0 <3.0 89±1				14 ± 0.8	75 ± 1	80 ± 2	80 土2 0 4 土1 6	7.4 ±1.0 114 ±3	124 ± 2 147 ± 3	31 ± 0.9		3.3 ± 0.6		26 ± 0.9 8.3 ± 0.9
^{vHI} km/s 1	(8)			333 372 324	-338 (-350) (-335)	-366 -277 -174		(-175) (-175) +190				+149	+194	+218	+257	+148	+200 +243	+245		-273	+	
CId	6		MS WW485 MS WW509	MS MS MS	MS MS (MS)	WW532 MS MS	SW	SMS MS						MS	MC	SW	MS	SM				MS WW524
z type kpc	5) (6)		020 020 020 020	- Sey - QSO - OSO	- radio - Sey - QSO		- radio							- radio	dio		- radio	- QSO		1.8 B0.5II	Υ Υ Υ	t 1.3 Bolll
	(4) (5		1 1 1 1		1 1 1	1 1 1	ļ	1 1 1						Į			I	I		5.5 t	+	E0.7 t 1
	(3) (4		38.18 -38.58 -41.94 -45.33	-45.47 -50.13 -50.23	-50.56	-58.67 -61.15 -7190 -71	-71.90 -71.82	-00.07 -83.16 -57.83						-42.88	40.88	-40.04	-36.13	-27.16				—
l°	(2)	Е		83.10 97.50 78.46		120.22 — 85.40 — 65.56 —								290.02 -	178 61			286.37 -				300.22 -
Probe	(1)	Magellanic Stream	3C 454.3 CTA 102 PKS 2251+11 PKS 0003+15	NGC 7469 PKS 2344+09 PG 2302+029	2331+073 III Zw 2 PKS 2243-123	PG 0043+039 PKS 2340–036 PKS 2345–167	PKS 0103-453	ton S210 Ton S210 Fairall 9						PKS 0252–712	DVS 0107 658	PKS 0202–76	PKS 0409–752	PKS 0637–75		HD 219188 HD 2175		C/ 10/1H

A/A _© D? Ref Note	(61) (01)	0.00075 0.252 ₆ >0.043 >0.012 <0.0018 <0.031 0.24 0.24 <0.36 <0.36 <0.35 0.032 0.031 0.031				1 1 1 1 1 1 1 1 1 1 1 2 12 1	2 22 25 31 12 25	91 12 12 12 12 12 12 12 12 12 1
A_{ref} 10-9 (16)	(01)	[23000] [4800] [4100] [4700] [93] [93] [93] [1900] [1900]						
code A _{ion} 10-9		270 ± 170 >4000 >1100 <3.6 <3.6 <1.500 <1.500 <1.500 <1.800 <1.900 <1.900 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.0000 <1.000 <1.000 <1.0000 <1.0000 <1.0000 <1.0000 <1.0000 <1.00000 <1.00000 <1.00000 <1.000000000000000000000000000000000000	W 1.7E4 ±5.0E3 W 1.0E5 ±5.0E4 W 1.0E5 ±5.0E4	w 1.0E5 ±5 W <2.6E5 W <1500 W <2.7E4	≥≥≥≥⊐≥≥	**************************************	ZUUUZ&U&Z&UV ***	ZZZLLLZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
v_{ion} v_{ion} v_{ion} km/s 10^{11} cm^{-2}		[1600]	$\begin{array}{rrr} +260 & 290 \pm 50 \\ +260 & 1700 \pm 800 \\ +260 & 1800 \pm 800 \end{array}$	· · ·	· · · ·	$\begin{array}{c} +260 < 4500 \\ +260 < 26 \\ +260 < 26 \\ +260 < 2460 \\ +241 \\ 6.9E5 \\ +1.6E5 \\ +230 \\ +230 \\ +240 > 300 \\ +240 > 300 \\$	$\begin{array}{c} +260 < < 4500 \\ +260 < < 26 \\ +260 < < 26 \\ +260 < < 4500 \\ +236 \\ +236 \\ < 3300 \\ +240 > 3300 \\ +240 > 3300 \\ +240 > 3300 \\ +240 > 3300 \\ +240 > 3300 \\ +240 < 1100 \\ +236 \\ 3700 \pm 10000 \\ +240 < 110 \\ +240 < 1000 \\ +240 < 850 \pm 100 \\ +200 < 850 \\ +200 < 850 \pm 100 \\ +200 < 850 \\ +200 < 850 \\ +200 < 850 \\ +200 < 850 \\ +200 < 850 \\ +200 < 850 \\ +200 < 850 \\ +200 \\$	$\begin{array}{c} +260 < < 4500 \\ +260 < < 26 \\ +260 < < 26 \\ +246 0 < < 4500 \\ +246 0 < 220 \pm 140 \\ +240 > 3300 \\ +240 > 3300 \\ +240 > 3300 \\ +240 > 3300 \\ +240 < 3300 \\ +240 < 110 \\ +240 < 110 \\ +240 < 110 \\ +240 < 110 \\ +241 < 56 \pm 3 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 \\ < 55 $
tel ion		C F F F F F F F F F F F F F F F F F F F	1.7 ±0.4 PM Sill Sill Sill	SII AllI Fell	AP	АР	AP (AP () () AP AP
$km/s 10^{18} cm^{-2}$			+287		+240 83 ±9			
e Cld			WW487		WW187 +240			
l = z type oc kpc		> 02	— Gal		- Sey			
$b d \circ b d \circ b \circ $,	√0 4.0	261.08 -38.74		22.95 —			22.95 -11.25 -11.25 -22.94
1°		д ц			3 287.46			287.46 282.19 264.59 264.50 10 287.47
Probe	÷	Population EP	NGC 1705		NGC 3783	NGC 3783	NGC 3783	NGC 3783 NGC 3783 NGC 2808 HD 86248 HD 102383 HD 102383

477

±±±± 1.1.5 2.1.6 1.0.3 2.1.5 2.5 2.1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	$\begin{array}{c} 3.2\pm 1.5\\ 0.79\pm 0.18\\ 1.3\pm 0.3\\ 4.8\\ 4.8\\ 0.10\\ 0.10\\ 0.10\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 250\\ 0.10\\ 0\\ 10\\ 0\\ 250\\ 0\\ 3\\ 250\\ 0\\ 0\\ 3\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	+246 3.2 ±1.5 L +272 0.79 ±0.18 L +301 1.3 ±0.3 L +125 48 N +122 0.55 N +122 0.10 N +122 0.10 N +140 29 N +140 29 N +140 20 L	+246 +272 +301 +125 +122 +122 +122 +122 +122 +122 +140	+246 +272 +301 +301 +125 +122 +122 +122 +122 +122 +140 +140	Ef Nal +246 Nal +272 Nal +272 ef Nal +301 ef Nal +125 KI +122 Cal +122 Cal +122 cal +122 ef CIV +140 Nal +140	 <2.5 Ef Nal +246 Nal +272 Nal +272 (K1 +125 (K1 +122 (Cal +122 	Ef Nal +246 Nal +272 Nal +272 Nal +301 ef Nal +125 KI +122	 2.5 Ef Nal +246 2.5 Af Nal +272 Nal +301 3.0 2.6 Nal +301 	<2.5 Ef NaI +246 NaI ±277	(+250) <2.5 Ef Nal +246 Nal +272	→ − SN (+250) <2.5 Ef Nal +246 Nal +272	1.56 SN (+250) 2.5 Ef Nal +246 Nal +272 Nal +272 Nal +272 Nal +301 1.92 SN (+125) <6.0 ef Nal	HVCS WIII JOW OF NO H I
	25500 25000 255000 255000 255000 255000 25500 25500 25500 25500 25500	+2/2 0.77 ± 0.17 ± 0.17 ± 0.17 ± 0.13 ± 0.3 L +301 1.3 ± 0.3 L +125 48 N +122 0.55 N +122 0.10 N +122 0.10 N +140 29 N +140 20 L	+272 +301 +125 +122 +122 +122 +120 +140 +140 +140	Nat +2/2 Nat +301 Nat +301 Nat +125 KI +122 Calt +122 Calt +122 Calt +126 Nat +140 Nat +140 Mg1 +140	ef Nal +2/2 Nal +301 ef Nal +125 KI +122 Cal +122 Cal +122 ef CIV +140 Nal +140	 Nati +2/2 Nati +301 4301 4301 4125 K1 4122 Cal +122 	 (Nai) +2/12 (6.0) ef Nai +125 (Ki) +122 	Nal +2/2 Nal +301 260 25 Not -135		717+	717+	SN (+125) < 6.0 ef Nal +2.72 Nal +2.72 Nal +125 N	(56 - N) (+250) < 2.5 Ef Nal +246 N.4 (-270)
ZZTTTTZZZZZZ	0.55 0.10 17 29 200 250 250 250 250 250 255 0 35 250 255 0 35 250 255 0 255 0 255 0 255 0 255 0 255 0 255 250 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	00 7 7	+122 0 +122 0 +125 0 +140 - +140 -	Call +122 0 Call +122 0 Call +122 0 CIV +140 2 Nal +140 4 Mgl +140 1 All1 +140 1	EXI +122 0 Cal +122 0 Call +125 0 Call +125 ef CIV +140 ² Nal +140 ²	KI +122 0 Cal +122 0	KI +122 0		(+125) 260 ef Nat +230	Nal +301 (+125) <60 ef Nal +125			Nal +2/2 Nal +301 Nal +301 +135
ZTTTTTZ	17 29 200 250 250 250 250 250 250 250 250 250		+125 +140 +140 +140 +140	Call +125 CIV +140 Nal +140 MgI +140 All +140	call +125 ef CIV +140 Nal +140		+122	KI +122 0 Cal +122 0	KI +122 0 Cal +122 0	KI +122 0 Cal +122 0	KI +122 0 Cal +122 0	+122 + 122	KI +122 0 Cal +122 0
/\	2000 L 20	20 20 20 20	+140 29 N +140 20 L +140 100 L	Mai +140 29 N Mgi +140 20 L Alli +140 100 L	NaI +140	Call +125 <6.0 ef CIV +140	Call +125 ef CIV +140	Call +125 <6.0 ef CIV +140	Call +125 <6.0 ef CIV +140	Call +125 <6.0 ef CIV +140	Call +125 <6.0 ef CIV +140	Call +125 <6.0 ef CIV +140	Call +125 <6.0 ef CIV +140
	20 L 100 L 2500 L 2500 L 2500 N 035 N	20 L	+140 20 L +140 100 L	+140 20 L +140 100 L		Nal +140 29 N	Nal +140 29 N	Nal +140 29 N	Nal +140 29 N	Nal +140 29 N	Nal +140 29 N	Nal +140 29 N	Nal +140 29 N
/\	2000 LL // 2500 LL // 0.35 N LL //		+140 IVN L	+140 I00 L	+140 20 L	+140 20 L	+140 20 L	+140 20 L	+140 20 L	+140 20 L	+140 20 L	+140 20 L	+140 20 L
	2500 L 250 L 0.35 N	200 L	I +140 200 L	I +140 200 L	I +140 100 L I +140 200 L	I +140 100 L I +140 200 L	I +140 100 L I +140 200 L	I +140 100 L I +140 200 L	I +140 100 L I +140 200 L	I +140 100 L I +140 200 L	I +140 100 L I +140 200 L	I +140 100 L I +140 200 L	I +140 100 L I +140 200 L
ZZ	0.35	, , ,	2500 L	+140 2500 L	+140 2500 L	+140 2500 L	+140 2500 L	+140 2500 L	+140 2500 L	+140 2500 L	+140 2500 L	+140 2500 L	+140 2500 L
		0.35	+140 0.35	+140 0.35	+140 0.35	+140 0.35	+140 0.35	+140 0.35	+140 0.35	+140 0.35	+140 0.35	+140 0.35	+140 0.35
	0.10	zz	0.10 N 26 N	+140 0.10 N +140 2.6 N	+140 0.10 N +140 2.6 N	+140 0.10 N +140 2.6 N	+140 0.10 N +140 2.6 N	+140 0.10 N +140 2.6 N	+140 0.10 N +140 2.6 N	+140 0.10 N +140 2.6 N	+140 0.10 N +140 2.6 N	+140 0.10 N +140 2.6 N	+140 0.10 N +140 2.6 N
۲	1600 L	1600 L	+140 1600 L >	+140 1600 L >	FeII +140 1600 L	FeII +140 1600 L	FeII +140 1600 L	FeII +140 1600 L	FeII +140 1600 L	FeII +140 1600 L	FeII +140 1600 L	FeII +140 1600 L	FeII +140 1600 L
±16 N w	40±16 N	±16 N w	MgII +231 40±16 N	MgII +231 40±16 N	$\begin{array}{c} \text{MgII} +231 & 40\pm16 & \text{N} \\ \text{CD} & \text{Marin} & 225\times540 & \text{M} \end{array}$	$< 6 MgII + 231 40 \pm 16 N$	$< 6 MgII + 231 40 \pm 16 N$	$< 6 MgII + 231 40 \pm 16 N$	(+230) < 6 MgII +231 40±16 N (+275) < 0.70 CD Main +232 $(-0.75) < 0.70$ W	(+230) < 6 MgII +231 40±16 N (+275) < 0.70 CD Main +232 $(-0.75) < 0.70$ W	(+230) < 6 MgII +231 40±16 N	(+230) < 6 MgII +231 40±16 N	(+230) < 6 MgII +231 40±16 N
±60	350±60 L	350±60 L	мви +2/3 /2040 w CII -149 350±60 L	мви +2/3 /2040 w CII -149 350±60 L	Ef CII -149 350±60 L	~ 0.00 UD MgII +2/3 > 340 W ~ 0.00 Ef CII -149 350 ± 60 L	~ 0.00 UD MgII +2/3 > 340 W ~ 0.00 Ef CII -149 350 ± 60 L	~ 0.00 UD MgII +2/3 > 340 W ~ 0.00 Ef CII -149 350 ± 60 L	(+2.12) < 0.10 UB MgH $+2.12 > 0.40$ W (-150) < 2.0 Ef CII -149 350 ± 60 L	(+2.12) < 0.10 UB MgH $+2.12 > 0.40$ W (-150) < 2.0 Ef CII -149 350 ± 60 L	- - 0.80 (+2.1.) (-1.50) (-1.50) (- - 0.80 (+2.1.) (-1.50) (-1.50) (- - 0.80 (+2.1.) (-1.50) (-1.50) (
ц.	32 ± 5 L	32 ± 5 L	-152 32 ± 5 L	-152 32 ± 5 L	-152 32 ± 5 L	-152 32 ± 5 L	-152 32 ± 5 L	-152 32 ± 5 L	-152 32 ± 5 L	-152 32 ± 5 L	-152 32 ± 5 L	-152 32 ± 5 L	-152 32 ± 5 L
ц	8.9 ± 3.6 L	8.9 ± 3.6 L	−145 8.9±3.6 L	−145 8.9±3.6 L	−145 8.9±3.6 L	−145 8.9±3.6 L	−145 8.9±3.6 L	−145 8.9±3.6 L	−145 8.9±3.6 L	−145 8.9±3.6 L	−145 8.9±3.6 L	−145 8.9±3.6 L	−145 8.9±3.6 L
L	210±30 L	210±30 L	CII +126 210 ±30 L	+126 210 ±30 L	Ef CII +126 210 ±30 L	<2.0 Ef CII +126 210 ±30 L	Ef CII +126 210 ±30 L	<2.0 Ef CII +126 210 ±30 L	<2.0 Ef CII +126 210 ±30 L	<2.0 Ef CII +126 210 ±30 L	<2.0 Ef CII +126 210 ±30 L	<2.0 Ef CII +126 210 ±30 L	<2.0 Ef CII +126 210 ±30 L
Г Х	43±9 L >2	43±9 L >2	SiII +131 43±9 L >2	SiII +131 43±9 L >2	SiII $+131$ 43 ± 9 L >2	SiII $+131$ 43 ± 9 L >2	SiII $+131$ 43 ± 9 L >2	SiII $+131$ 43 ± 9 L >2	SiII +131 43 ±9 L >2	SiII +131 43 ±9 L >2	Sill $+131$ 43 ± 9 L >2	Sill $+131$ 43 ± 9 L >2	SiII +131 43±9 L >2
ZZ	z z 89	z z 89	CII +200 >0 N S:II +200 >0 N	CII +200 >0 N	GB CII +200 > 0 N	GB CII +200 >0 N	GB CII +200 >0 N	GB CII +200 >0 N	(+200) < 0.70 GB CII $+200 > 0$ N	(+200) < 0.70 GB CII $+200 > 0$ N	— — QSO (+200) <0.70 GB CII +200 ≫0 N	- - 0.80 (+200) <0.70 GB CII +200 >0 N	68.21 — QSO (+200) <0.70 GB CII +200 >0 N
z B	00 +48 W	00 +48 W	N N N7+	10 0 V									10 0 V
⊼ × -	90 ±48 w >1 1 7 ±0 3 1	90 ±48 w >1	111 00 D/0 L	+200 ×0 N	+200 >0 N	Sill +200 >0 N	Sill +200 >0 N	Sill +200 >0 N	+200 ×0 N	Sill +200 >0 N	+200 ×0 N	SIII +200 >0 N	+200 ×0 N
,	1.7 ± 0.3 L		MgII +267 90±48 W >1	SiII +200 >0 N MgII +267 90±48 W >1	SiII +200 >0 N MgII +267 90 ±48 W >1	SiII +200 ≥0 N MgII +267 90±48 W >1	SiII +200 >0 N MgII +267 90±48 W >1	SiII +200 ×0 N MgII +267 90±48 W >1	SiII +200 ≫0 N MgII +267 90±448 W >1	SiII +200 ≫0 N MgII +267 90±48 W >1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MgII +2.00 > 0 ±48 W > 1	SiII +200 >0 N MgII +267 90 ± 48 W >1
Ļ		1.7 ± 0.3 L	MgII +267 90 ±48 W >1 Call +204 1.7 ±0.3 L	SiII +200 >0 N MgII +267 90±48 W >1 Ef CalI +204 1.7+0.3 L	SiII +200 ≫0 N MgII +267 90±48 W >1 Ef CalI +204 1.7+0.3 L	SiII +200 >0 N MgII +267 90 ±48 W >1 +0.5 Ef Cal1 +204 1.7 +0.3 L	SiII +200 ×0 N MgH +267 90 ±48 W ×1 +0.5 Ef Call +204 1.7 +0.3 L	SiII +200 >0 N MgH +267 90 ±48 W >1 +0.5 Ef Call +204 1.7 +0.3 L	SiII +200 >0 N MgII +267 90±48 W >1 +204 1.6+0.5 Ef Call +204 1.7+0.3 L	SiII +200 >0 N MgII +267 90±48 W >1 +204 1.6+0.5 Ef CalI +204 1.7+0.3 L	SiII +200 >0 N MgII +267 90±48 W >1 — — SN +204 1.6+0.5 Ef Call +204 1.7+0.3 L	→ → SN +204 1.6+0.5 Ef Call +204 1.7+0.3 L	SiII +200 ≫0 N MgII +267 90±48 W >1 70.14 — SN +204 1.6+0.5 Ef Call +204 1.7+0.3 L
Ļ		1.7 ± 0.3 L	MgII +267 90±48 W >1 CalI +204 1.7±0.3 L	$ \begin{array}{cccc} SiII & +200 & >0 & N \\ MgII & +267 & 90 \pm 48 & W & >1 \\ Ef & CaII & +204 & 1.7 \pm 0.3 & L \\ \end{array} $	SiII +200 >0 N MgII +267 90 ±48 W >1 ±0.5 Ef Call +204 1.7±0.3 L	SiII +200 > 0 N MgII +267 90 ± 48 W >1 1.6\pm0.5 Ef Call +204 1.7\pm0.3 L	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiII +200 >0 N MgII +267 90±48 W >1 1.6±0.5 Ef Call +204 1.7±0.3 L	SiII +200 ≫0 N MgII +267 90±48 W >1 +204 1.6±0.5 Ef CalI +204 1.7±0.3 L	$\begin{array}{ccccccc} \text{SiII} & +200 & >0 & \text{N} \\ \text{MgII} & +267 & 90 \pm 48 & \text{W} & >1 \\ \text{MgII} & +204 & 1.6 \pm 0.5 & \text{Ef CalI} & +204 & 1.7 \pm 0.3 & \text{L} \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} \text{SiII} & +200 & >0 & \text{N} \\ \text{MgII} & +267 & 90 \pm 48 & \text{W} & >1 \\ \text{MgII} & +204 & 1.6 \pm 0.5 & \text{Ef CalI} & +204 & 1.7 \pm 0.3 & \text{L} \\ \end{array}$
		17 ± 03 L	MgII +267 90±48 W >1 Call +204 17±03 U	SiII +200 >0 N MgII +267 90±48 W >1 Ff Call +204 17±03 U	SiII +200 ≫0 N MgII +267 90±48 W ≫1 Ff Call +204 17±03 U	SiII +200 >0 N MgII +267 90 ±48 W >1 +05 Ff Call +704 17+03 1	SiII +200 ×0 N MgII +267 90 ±48 W ×1 +05 Ff Call +204 17+03 1	Sill +200 >0 N Mgll +267 90 ±48 W >1 +05 Ff Call +204 17+03 1	Bill +200 >0 N Mgll +267 90±48 W >1 +204 16+05 FF Call +204 17+03 1	SiII +200 >0 N MgH +267 90±48 W >1 +204 16+05 Ff Call +204 17+03 1	SiII +200 >0 N MgII +267 90±48 W >1 — — SN +204 16±05 Ff Call +204 17±03 1.	→ → SN +204 16+05 FF Call +200 20 N MgII +267 90±48 W >1	N 0200 20 N 1200 20 N NgH +267 90±48 W 20 N 14 − SN +2014 −2 SN +201
⊼ ≥ -	90 ±48 w >1 1.7 +0.3 L	90 ±48 W >I		+200 ×0 N	+200 ×0 N	Sill +200 >0 N	SiII +200 >0 N	Sill +200 >0 N	+200 ×0 N	SiII +200 >0 N	+200 ×0 N	Sill +200 >0 N	+200 ×0 N
≥.	90 ± 48 W 1.7 ± 0.3 L	90 <u></u> 48 W		+200	+200	SiII +200	Sill +200	Sill +200	+200	SiII +200	+200	Sill +200	+200
±48 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			CII +200 SiII +200	+200	GB CII +200	GB CII +200	GB CII +200	GB CII +200	CII +200	(+200) <0.70 GB CII +200	− − QSO (+200) <0.70 GB CII +200	− − 0S0 (+200) <0.70 GB CII +200	(+200) <0.70 GB CII +200
十十 十 十 十 十 十 1 3 3 6 4 8 4 8 4 8 4 8 5 6 7 5 6 7 5 6 7 5 6 7 7 6 7 7 6 7 7 7 7	~ 6		Sill -152 Sill -152 Sill -148 All -145 CII +126 Sill +131 CII +200 Sill +200	Sill -152 Sill -148 All -145 CII +126 CII +126 Sill +131 CII +200	SiII -152 SiIII -148 AIII -145 Ef CII +126 SiIII +131 GB CII +200			SiII −152 SiII −148 SiIII −148 AIII −148 AIII −145 CII +126 SiII +131 <0.70 GB CII +200	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SiII −152 SiIII −162 SiIII −148 AIII −145 AIIII −145 AIIIIIIIIIIIIIIIIIIIIIIIIIIII	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	- ^	- ^	Mgtt +140 1 Mgtt +231 Mgtt +275 Ct1 -149 Sitt -148 Sitt -148 Altt -148 Altt -148 Sitt +126 Sitt +200 Sitt +200 Sitt +200	Mgin +231 Mgin +275 Mgin +275 Cin -149 Siin -148 Siin +126 Siin +126 Cin +200	$\begin{array}{cccccc} & & & & & & & & & & & & & & & & $				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Note	(20)	95	96		×		97,W 97,W 97,W 79	W,76 W,76 W,76	
Ref Note	(18) (19) (20)		$109 \\ 109$	$\begin{array}{c} 109 \\ 340 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 109 \\ 100 \\$	$\begin{array}{c} 26\\ 26\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109$	$\begin{array}{c} 109\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109\\$		23 9 5 23 9 5 23 9	52 52 85
D?	(18	6 (מממ		מממ	
A/A_{\bigodot}	(17)	 <0.0017 <0.0029 0.0029 0.0020 0.0010 0.50 0.50<		$\begin{array}{c} 0.0029\\ 0.19\\ 0.61\\ 0.34\\ 0.31\\ 0.26\\ 0.50\end{array}$.00036 .00040 0.018 0.024 0.024	0.22 0.23 0.27	>0.081 0.17 0.081 0.050 0.050	0.017	$0.031 \\ 0.045$
A_{ref}^{-0}	(16)	[14000] [1600] [19000] [19000] [19000] [1900] [200] [200] [42]	1						
Aion 10-0	(15)	<pre><590 <590 <5.9 <5.9 110±20 110±20 1.8E4±5.7E3 930±170 1.8E4±5.4E3 <930 <2.9 (.2.9 0.87±0.11 0.85±0.12 0.85±0 0.85±0 0.85±0.12 0.85±</pre>	<590 <5.9	110±20 7400±3500 2.3E4±2.7E3 1000±2200 9300±1200 9300±2200 9300±2200 1.8E4±5.4E3 <1.2E4	0.80±0.06 0.87±0.11 39 52±0.2 52±6 <150 <290 <290	べ121 74 ±21 7400 ±2100 8700 ±1800 <1500 <590 <93	>180 370 110	37	67±11 98±9
code	(14)	·	ЧZ		a a Thrirra≰art		****	* 8 8 8	ZГГ
Nion 1011	(13)		<32 <0.32	$\begin{array}{c} 6.0\pm1.1\\ 400\pm190\\ 1300\pm100\\ 55\pm13\\ 50\pm9\\ 500\pm120\\ 950\pm290\\ 650\\ 650\\ 20\pm20\\ 050\pm120\\ 050\pm120$ 000\pm100	$\begin{array}{c} +168.6\ 0.043\ \pm0.003\\ +165\ 0.047\ \pm0.006\\ +165.4\ \ 2.1\\ +169.9\ \ 2.8\ \pm0.01\\ +169\ \ 2.8\ \pm0.3\\ -7.9\\ -7.0\\ -$	4.0±11.1 400±1110 470±1100 470±100 <79 <32	3.6 3.6 11	3.6 3.6	4.4 ± 0.3 5.5 ± 0.5 8.7 ± 0.3
Vion	(12) x11/s		V	+165 +171 +171 +171 +171 +171 +165 +165	+168.6 (+165.6 +165.4 +165.4 +169.9 +165	+165 +171 +165	+175 +150 +160 +155 +155	+150 +150	+169.6 +169.7 +165.7
tel ion	(10) (11)	CI Nal MgI MgI MgI PI PI CI TII CI TII CI TII CI TII CI ZII NDI ZIII ZIII ZIII ZIII ZIII ZIII	AB CI NaI	MgI MgI MgI MgI MgI Alli Alli Sill Sill Pli Cli		MnII Fell Fell NiII ZnII	张张张张	R	Id
N ^{HI}	(8) (9) (9)		5.4				2.0±1.0 2.0±1.0 11±1 5+10	20 ± 1	6.5±1.0 5.6
IHA	(8) (8)		+165				(+170) +170 +170a +170a	+170	$^{+165}_{+164}$
Cld	(2)						т ^{(*}		
z type	крс (5) (6)		26 SN				27 O4If+ 26 On9.71a 26 O3III(f*) 29 B1	29 B2Ia 27 B0: 27 09.5lb	26 B9Ia 26 Be 26 B0Iab
	крс к (4) (< 50	50 g				50 g 50 g 50 g 50 g		50 g 50 g 50 g
$q^{ m o}$	(3)		-31.94				-32.49 -31.77 -31.73 -35.07	-35.02 -33.30 -33.27	-31.86 -31.77 -31.37
l°	(2)	HVC on LMC @+160 km s	A 279.70				6 277.84 5 279.26 7 279.20 281.02	281.23 6 280.44 7 280.42	1 279.85 6 279.83 6 279.96
Probe	(1)	HVC on	SN 1987 A 279.70				Sk-67 166 Sk-68 135 Sk-68 135 Sk-68 137 Sk-69 51	Sk-69 52 Sk-69 106 Sk-69 107	Sk-69 211 2 Sk-69 216 2 Sk-69 276 2

Note (20)	98,W	99 100 101 102 103	86 ≽
D? Ref Note (18) (19) (20)	() 52 85 85 85		$\begin{array}{c}109\\109\\109\\109\\109\\109\\109\\109\\109\\109\\$
_	מממת	1	cccccc
A/A _☉ (17)	0.016	<0.0011 0.30 0.0037 0.011 0.011 0.011 0.018 0.51 0.51 0.51 0.51 0.51 0.14 <0.018 0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.022 <0.022	<1.4 ~ 0.0029 ~ 0.025 0.55 0.21 0.51 0.14 0.14 0.14 0.14 0.14 0.18 0.026 0.028 0.28 0.28
$\substack{\mathbf{A}_{\mathrm{ref}}\\10^{-9}\\(16)$		[740000] [14000] [1600] [19000] [19000] [19000] [19000] [21] [21] [21] [260] [2600] [2600] [2600]	[42]
${ m A_{ion}}{ m 10^{-9}}$ (15)	34 26土11		$ \begin{array}{c} < 63 \\ < 63 \\ < 75 \pm 0.38 \\ 1.05 \pm 0.38 \\ 1.01 \pm 10 \\ 5000 \pm 2400 \\ 5000 \pm 2400 \\ 530 \pm 150 \\ 630 \pm 1200 \\ 5000 \pm 1200 \\ 5000 \pm 1200 \\ < 6030 \\ < 7790 \\ < 7790 \\ < 7790 \\ < 7790 \\ < 770 \\ < 753 \\ < 7790 \\ < 770 \\ < 725 \\ < 725 \\ < 720 \\ < 725 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ < 720 \\ $
code (14)	≥⊐zzz		→×→→→→→→→→→→×××××→→→→→→→→→
${}^{\rm N_{ion}}_{10^{11}{ m cm}^{-2}}$ (13)	2.0 1.5 ± 0.6 2.7 ± 0.1 1.5 ± 0.9 4.2 ± 1.1	[1600]	$ \begin{array}{c} < 32 \\ 0.060 \\ 8.9 \pm 1.0 \\ 8.0 \pm 190 \\ 8.0 \pm 190 \\ 5.0 \pm 12 \\ 9.3 \pm 19 \\ 4.00 \pm 200 \\ 5.0 \pm 200 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.070 \\ 6.070 \\ 6.0070 \\ 6.0070 \\ 6.0070 \\ 6.0070 \\ 6.0070 \\ 6.0070 \\ 6.0020 \\ 6.0020 \\ 7.0 \\ 7$
$\lim_{km/s}$ (12)	+149 +141.6 +176.2 +173.8 +182.0		$\begin{array}{c} +122 \\ +122 \\ +122 \\ +122 \\ +122 \\ +122 \\ +122 \\ +122 \\ +122 \\ +122 \\ +122 \\ +122 \end{array}$
tel ion (10) (11)	Pk(Call Call Call Till Call Call	CI CIV CIV MgI MgI MgI MgI SIIV SIIV CII CII CII CII CII CII CII NIII NII	Zall Nal Nal Mgl Mgl Mgl Mgl Mgl Mgl Cal Cal Cal Cal Cal Cal Cal Cal Cal Ca
$\begin{array}{ccc} Cld & v_{HI} & N_{HI} \\ km/s & 10^{18} cm^{-2} \\ (7) & (8) & (9) \end{array}$	+155 5.8±1.0		+122 8.0
$\begin{array}{ccc} d & z & \text{type} & \text{C} \\ \text{kpc} & \text{kpc} & \\ (4) & (5) & (6) & (\end{array}$	50 g 26 OB+WN5-6 50 g 26 B1.5 50 g 26 B0.5	< 50	50 g 26 SN
$\begin{pmatrix} l & b \\ \circ & \circ \\ (2) & (3) \end{pmatrix}$	Sk–69 243=R136279.47 –31.69 (HD 38268) Sk–69 282 279.34 –31.38 Sk–69 290 279.29 –31.31	HVC on LMC @+120 km s ⁻¹	279.70 -31.94
Probe (1)	Sk-69 243=R13 (HD 38268) Sk-69 282 Sk-69 290	HVC on LMC	SN 1987 A

TABLE 2—Continued

Note	(20)	104		M	98.105.W	98			τ	τ			76				٢	-	W.76		98	98			×		τ		A		τ	8														
Ref]	(19)	37 37	37	818	8 98		124	124	124	124	124	124	40	124	124	124	124	124	40	124	81	105)	124	124	12	124	124	124	12	105)	124	χç	70	22	52	52	52	52	52	52	52	52	52	52	70	52
D;	(18)	D		Π	5	D	D	D	D	D	D	D	D;						b D	D				D										11)		D	D								
A/A _☉	(17)	0.018				000055	0.37	0.0090	0.72	1.9	4.6	0.84	0.032	/1000.	0.32 0.016	010.0	1.9	<u>.</u>	0.073	1.3				0.17		0.013	2.9	2.0	0.089	0.50	0.63			0.048			0.031	0.031								
${\rm A}_{ m ref}^{ m A_{ m ref}}$	(16)																																													
A_{ion} 10^{-9}	(15)	54 + 37			<100	5.5E4	2.7E5 ±2.0E5	340 ± 210	2.7E4±2.3E4	$6.9E4 \pm 5.1E4$	8.6E4±5.2E4	2.7E4±2.0E4	69	1.7E5	2.4E5 土1.4E5 500 土240	2 1F4 ±2 1F4	6 7F4 +5 4F4	$2.4E5 \pm 1.4E5$	160	$4.2E4 \pm 2.9E4$		2.4E5 ±6.0E4	$3.0E5 \pm 6.0E4$	1.3E5±9.7E4	<10	510 ± 390	$1.0E5 \pm 7.7E4$	$3.6E4 \pm 2.7E4$	200 ± 20	$1.6E4 \pm 7.8E3$	$2.0E4 \pm 1.5E4$		077	100 + 10	<5.4	<6.9	68 ± 6	68 ± 10	<4.3	<4.5	<5.6	<30	\$.8 8.1	<15 6 7 7 8	0.0	<22
code	(14)	ц	цź	zð	: 3	L :	Г	Ц	Г	Ц	Г	Ц	≥,	ц,		_ 1	I	۱	∍≥	Ц	z	z	Г	Г	≥	ц.	Ц	Ц	≥,	ц,	Ъ	≥.	_	<u>_</u> د	i Li	i Li	ц	Ц	Г	L	Г	Г	ц,	<u></u> .	_	Ц
N_{ion} 10^{11} cm $^{-2}$		270 ± 30 7.6+5.2		0 >300 2 11 +3	\sim	3200	2	20 ± 12				-		•••	/100 ±3400		0			-	5 70	+120 2.9E4 ±7.0E3	+118 3.6E4 ±6.7E3	+118 1.6E4 ±1.2E4	V	63 ± 47		4				4. 4		8.3+0.8	\checkmark	<0.52	3.2 ± 0.3	$1 2.0 \pm 0.3$	<0.32	<0.32	<0.42	2.2	<0.42	4.8 6.4	20.02	<1.3
v _{ion} km/s	(12)		501	+130 +108		+131	+131	+131	+131	+131	+131	+131	+130	+120	C21+	+125	+125	+125	+120	+125	+145	+120	+118	+118		+118	+118	+118	+123	+120	+118			+122	-		+107.1	+129.4								
tel ion	(11) (11)	AB CIV AlIII	SilV	Val Nal		Pk H_2	Ю	MgI	MgII	Sill	SII			PK H ₂	IO M ² I	Mall	Sill	SII	Call	Fell	Pk CIV	Pk(H ₂	H_2	Ю	NaI	MgI	Sill	SII	Call	(Fell	Fell G H		AB Nal		PI Nal		-			PI NaI	PI NaI	-	PI Nal	-	Pl- Nal	-
$\substack{v_{HI} \\ km/s 10^{18} cm^{-2}}$	(8) (9)	$^{+120-}_{+190}$ 14			+133 2.2 $+1.0$	+120 5.8							$+113 8.8\pm1.0$	$+130 3.0 \pm 1.0$							$+104 4.6 \pm 1.0$	$+122$ 12 ± 1											+122 0.0 $+122$ 8.0		+115 7.7	+115 7.6	+115a 4.7	+115b 2.9	$+116\ 7.3$	+116 7.1	+112 7.5		+115 7.2	C T T	+114 /.5 19 111 +	
Cld	(2)	+																																												
z type kpc	(Ĵ) (6)		104 20	2/ B2Ia									27								27 B1Ia												20 B2: 26 B071a			26	Ì			26 O-B0			26 B0		20 D01	
$d_{\rm kpc}$			ç	00 00 00 00 00 00 00 00 00 00 00 00 00	a a	а 20							50 g								50 g	о в											00 00 00 00 00 00 00 00 00 00 00 00 00			20 20 а				50 В	о в		50 g		20 20 20 20	
$b \circ k$	(3) (5			-32.00 2	- 36.33 5	-33.04 5							-32.89 5	-32.49 5							-32.54 5	-32.78 5									6	9. o	2 20 10 - 23 05 5	~	-92	-31.86 5			1.88	-31.88 5	1.77		-31.82 5	5	- 10.10 - 31 77 5	1
$\overset{\circ}{l}$	(2)			276.60	278.89	277.76 -33.04							277.70 -32.89	277.84							277.15	279.32	~								02 000	- 69.027	- 10°6/7	00.617	279.92	279.85			279.60	279.52	279.83		279.61	02 020	- 00.612 270.48	
Probe	(1)			SK-00 118 SV-66 169		+	(HD 36402)						Sk-67 120								Sk-67 169		(HD 269546)								10 00 10	SK-69 91	SK-09 193		Sk-69 204	Sk-69 211			Sk-69 213	Sk-69 215	Sk-69 216		Sk–69 224	50 07 51	SK-09 223	

Note (20)	98 W	98	106	97,W	98,W W	97,W 97,W W,86	W.16	107 108 109 111
A/A _☉ D? Ref Note (17) (18) (19) (20)	52 52	3 22 S	52 52 52			$\frac{12}{12}$ 12		
D? (18]	D 2					ים סמ	מממממ	
A/A _☉ (17)	0.0087	0.16	0.018	0.021	0.12	0.010	0.010	0.00095 >0.17 0.13 0.054 0.010 0.68 0.093 >0.073 >0.073 >0.073 >0.073 >0.073 >0.073 >0.0022 0.0461 1.0 0.0461 1.1 1.1 1.1 1.1 1.1 1.2 0.012 0.0022 0.0022 >0.0022 0.00
$\substack{A_{\rm ref}\\10^{-9}\\(16)}$								
$\substack{A_{ion}\\10^{-9}\\(15)}$	$5.2 \\ 19 \\ 21 + 10$		7.1 40±17 40+11		240±90 <93 1300±500			$\begin{array}{c} 340 \pm 130 \\ 8600 \\ 8600 \\ 2600 \\ 1.0E5 \pm 2.0E4 \\ 1.0E5 \pm 2.0E4 \\ 1.1\pm 1 \\ 3.90 \pm 50 \\ 3.90 \pm 50 \\ 1.1\pm 1 \\ 3.5E4 \pm 2.0E4 \\ 114000 \\ 1.0001 \\ 3.5E4 \pm 2.0E4 \\ 119000 \\ 3.5E4 \pm 2.0E4 \\ 119000 \\ 3.5E4 \pm 2.0E4 \\ 110000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 10000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 3.3254 \\ 10000 \\ 1$
10 10	<5.2 19 21	5.2 5200	↓ 1.6 6 6	64	240 1300 1300	22 240 240 250	55	$\begin{array}{c} 340\\ 8600\\ 8600\\ 10155\\ 111\\ 112\\ 112\\ 112\\ 112\\ 112\\ 112\\ $
code (14)	-18	цццц		a ≥ z z z		*****	×≥ רברר	
$\begin{array}{c} v_{ion} & N_{ion} \\ km/s & 10^{11} cm^{-2} \\ (12) & (13) \end{array}$	2 2 3+0.6	 <0.32 <1.3 <1.3 1.2 1.3 1.4 	$\frac{.52}{1.2 \pm 0.5}$	2.3 2.3 3.3 ±0.1 2.8 ±1.1 2.8 ±1.1	44 6.4±0.9 V 39 35±3 W 36 52±3 W	1 % 0. 0 0 0 0 	ο ώ 4 4 0 4 0 4 0	
s 10 ¹¹ (3 ∠0.3 1.	0.32 20.32 20.32	<pre></pre> 71.231.831.8	idinidi 100rr	. 4 0 v	0 4.8 0 2.3 0 2.3 0 2.3 2 26		[1600] [350] [440]
$\frac{v_{ion}}{km/i}$ (12)	+121.6	+130	+121.7 +135.3	+110 $+112.9$ $+105.7$ $+105.7$	+144 +139	+120 +120 +120 +132	+120 + 120 + 122 + 122 + 122 + 122 + 122	
tel ion (10) (11)	Pk Nal (Call Call	Nal Call Fell	Nal Call Call		Call Call	Call Call Call	Call Call H ₂ OI SII Fell	CC CC CC CC CC CC CC CC CC CC CC CC CC
tel ion (10) (1	⊂ k	Pk		PR	Pk((Pk (Pk	
$\begin{array}{ccc} v_{\rm HI} & N_{\rm HI} & t \\ km/s & 10^{18} {\rm cm}^{-2} \\ (8) & (9) \end{array}$		± 1.0		5.0±1.0	± 1.0	11 ±1 11 ±1	1 H	
/s 10 ¹	+111 6.1	+111 6.1 ±1.0	+105 7.4 +105a 3.0 +105b 4.4	10 5.0	+125 2.7±1.0		+112 11±1	
	+		$^{+105}_{+105a}$	+110	+	+112 +112	+	
Cld (7)	9-6							
e (6)	26 OB+WN5-6	47	la+	B2.5Ia B1.5 B0.5 B0.5	1	B5Ia O8.5I B1Iab	If .5 V	
$\begin{array}{c}z \\ kpc \\ (5) \end{array} (6$	26 OB	26 WN7	26 A0Ia+	26 B2.5I 26 B1.5 26 B1.5 26 B0.5 26 B0.5	28 pec	27 B5Ia 27 08.51 27 B1Iab	27 04If 29 05.5V	
d kpc kj (4) (1)	50 g .	50 g	50 g	200 a a a		a a a 20 a a	20 ac 20 ac	20
	69.	. 67	.61					\vee
	-31	-31	-31	5 -31.35 4 -31.38 -31.31 -31.31 -31.31	34	5 -32.19 1 -32.07 7 -32.06	5 - 32.02 9 -36.06	_
l 。 (2)	279.47	279.39	279.93	280.25 279.34 279.29	282.82	281.85 281.91 281.87 281.87	281.86 277.19	+65 km
	Sk-69 243=R136279.47 (HD 38268)							IVC on LMC @+65 km s ⁻¹
e (1)	Sk-69 243=1 (HD 38268)	Sk-69 246 (HD 38282)	Sk-69 247	Sk-69 274 Sk-69 282 Sk-69 282 Sk-69 290	Sk-71 3	Sk-71 33a Sk-71 41 Sk-71 42	Sk-71 45 LH 10:3120	on L)
Probe (1	Sk-6 (HD	Sk-6 (HD	Sk-6	Sk-69 Sk-69 Sk-69	Sk-7	Sk-7 Sk-7 Sk-7	Sk-7 LH 1	IVC

Note	(20)	96	M	M			Τ	т			M.	8		8	M	Μ									98,W	97,W	98,105,W	88	:	98						τ		ŀ	- H I	
Ref	(18) (19)	109	27) 34	27)	100 109	109	34	34)	109	109	109 1	26)	109	27)	27) 27)	26)	109	34)	901 34)	109	34)	34)	109	109	12	35 81		01 0	10	124	==	10)	11) 11)	124 124	() 10)	11)	10)	= 6	<u>a</u> = 2	124
D?		D				D			C		11				D					D			D	D		D	\square ;		-	п п 3		D	DI				Ď			C
${\rm A_{ref}}_{10-9}$ A/A $_{\odot}$	(16) (17)	.00095	×0.21 0.0052	.00073	0.0056	0.010	>2.6	>0.52	7.1		11000	.00015	.00014	0.061	0.017	0.013	11.0	0.95	1.4 1.4	1.1	>0.72	1.2 1.5	1.2	0.91			0.034	0.14	>0.55	000083 >0.41		>0.14	>0.28	00011	>0.35	1.6 0.17	>0.87	1.0 /1 9	2.1	<0.0
Aion 10-9	(15)	340 ± 130	<pre>>1.5E5</pre>	1.5	11 ± 1	390 ± 50	>7700	>1.8E4 7 4E4 - 1 2E4	<9700	<770	0.€> 200	0.23 ± 0.05	0.31 ± 0.06	130 ± 0.06	36 ± 0.2	28 ± 0.2	<20 ±20 <120	450 ± 190	$930 \pm 1/0$ 460 + 200	390 ± 70	>2.3E4	$4.0E4 \pm 8.3E3$ 2600 ± 600	2200 ± 800	~31 40土24			70 ± 22	1.0E5 430	>1.8E4	8.3E4 >1.5E5		>1.0E5	>2.1E5 3 7E5 ±7 8E5	э./ЕЗ <u>Т</u> 2.0ЕЗ 420 +280	>1.3E4	6.2E4 6600 ±5800	>2600	3100 ~6 6E4	7.3E4 7.1E4	Z.1D4 Ⅲ1.4D4
code	(14)	ц	≤∟	82	zz	Ц	Ц	ц.	ц	Г	ة L	≤z	z	≥z	z≥	82	zц	ц.	цЦ	Ч	ц,	ц	ц.	ц	A	≥z	≥;	33	н Г	цZ	zz	zц	ц -	ц	ц;	z _	Ц	z _	Z-	L
N_{ion}	10 UII (13)	22±8	+/0>1.0E4 54.6 0.69	0.097	0.74 ± 0.07	25 ± 3	>500	>1200	<630 ⊥ouu <630	<20	<0.25	$0.010 \\ 0.022 \pm 0.003$	0.020 ± 0.004	8.7 ± 0.004	2.3 ± 0.01	1.8 ± 0.01	c.υ± c1 <7.9	30 ± 13	30 ± 13 30 + 13	25 ± 5	>1500	2600 ± 500 170 ± 40	140 ± 50	2.6 ± 1.5	<1.2	3.6 >1000	3.4 ± 0.8	30	>1300	+60 +000 +90 >7000	1000	+90 >5000	+90>1.0E4 +70 - 1 8E4 ±1 3E4	1.004 ±1.504 20 +14	>630	3000 320 ± 280	>130	150 ~3200	3500	1000 ± / 00
Vion	(12)	+65	+64.6	+74.8	+0+ +65 +	+65		+70	6		6 23	+64.3	+65	+60.8	+73.5	+83.6	<u>co</u> +	+70 +70	C0+ 07+			+65+ 170	+65	+65		+73		C/+		09+ +00+	+90	+90	< 06+	+70	06+	06+	06+		<u>6</u>	+/1
tel ion	(11) (11)	AB CI	OI (Nal	(Nal	Nal	MgI	AIII	(Sill	IId	CII	KI Zer	(Cal	Cal	(Call	(Call	(Call	Till	(CrII	(MnII	MnII	(Fell	Fell (Nill	IIIN	IIIZ	Pk Call	Call	μ	AIII		Pk H ₂ CII	CIV	IO)	10 O	MeI	(MgII	(MgII Mall	(AIII	AIII Nis)		IIIC
VHI NHI 1	(6)	6.5																							+60 <2.0		4.9 ± 1.0	0.1∓1./		4.8										
	e/mv	+65																							+60		+45	+40-	-	+52										
Cld	6																													_										
type	(9)	26 SN																							28 B3Ia	29 WC6+08 27 B2Ia				27 WC5+09										
2		ad																							ad	60 bi	0 5 0			ы 10										
d	4 4	31.94 50																							2 50	6 50 6 50				4 50										
q°	(3)																								-34.02	-36.06 -32.66	-36.33			-33.04 50										
l°	(2)	279,70																							276.76	277.27 277.00	278.89			277.76 2)	ì									
Probe	(1)	SN 1987 A																							Sk-65 40	Sk-66 28 Sk-66 118	Sk-67 05			Sk-67 104 277.76 (HD 36402)										

Note	(20)			<i>ب</i> ب		97			٢	۰ <i>ب</i>		97,W	۲	86	9/,W	9/,W	96	M			٢		3	L III	W 70	Ň	97,W	A	W,76	97,W				Μ	:										M	٨
Ref Note	(19)	11	124	<u>e</u> =	124	40	57	124	124	124			124	2 r			124	12	124	124	124	124	12	+ e	40 C			10	23 5	23 5	52	30)	() 20 20	16	52	36)	22	52	52	22			27	52	18	10
D3	(18) (19)	n	D		D					n N	D	D	D	1				D C	D	D	D				11	2	D	D	D	D		⊃:			b D		, D	D	D		E			n D		5
A/A _☉	(17)	>0.18	2.2	>1.0 1.6	1.0	0.086	>.00020	/0.0/	~2.6	>1.4	>17	>0.11	>3.9			0,000,0	0.17	0.23	0.065	0.12	7.0	53	1.2	1.0	11 07	11.0/					0.0022	86000.	0.0034	0.031	0.0044	0.018	0.018	0.18	0.18		0.011	110.0	0.22	0.22	0.0059	1.200.U
${\rm A}_{\rm ref}_{\rm 9}$	(16)																																													
${ m A_{ion}}{ m 10^{-9}}$	(15)	>6300	4.2E4 ±2.5E4	>5.2E4	$3.3E4 \pm 2.3E4$	190	>2.0E5	>0.0E2	>1.0E5	>5.0E4	>3.2E5	>240	>1.3E5			7 30 C 7 30 C	$2.0E0 \pm 2.0E0$ 1.2E5 + 1.2E5	470 + 300	2500 ± 2900	4400 ± 4600	$2.5E5 \pm 2.3E5$	$1.0E6 \pm 7.8E5$	2600 ± 1600	сак.1 ∓ са∩.2	~240						4.5 ± 10	2.0 ± 0.8	1.0 ± 0.8	0.2 ±1.4	9.0 + 1.6	36 -0 9	36 ± 2	400 ± 4	400 ± 40	<4.7	4.0 4.0 1	700⊤100 100⊤100	490 ± 10 490 ± 20	480 ± 30	12±1	17 工1
code	(14)	zz	ц.	zد	Г	≥,	_	-		ц	Г	¥	Ц	z	28	≥ _		≥	Ч	Ц	Ц	Ц	≥.	μÈ	\$ 3	: 3	8	A	A	3	ц;	z;	z,	≤⊾	: പ	z	Ч	Ц	Г	ц.	<u>،</u> ۲	_	ב ב	ц	A	*
${ m N_{ion}}{ m 10^{11}cm^{-2}}$	(13)	>300 300	2000 ± 1200	2500	1600 ± 1100	7.4	4000 1 0E4 1 0 4E2	$1.0E4 \pm 9.4E3$ 7 9 ± 5 9	2000 ± 1900	1000 + 700	$6300\pm\!6100$	4.8	2500 ± 1500	600 3.0	0.2	1/ 1 5E4 3 6E4	$+.3E4 \pm 3.0E4$ 2000 + 1400	7.6 ± 0.6	40 ± 38	71 ± 60	4000 ± 2700	$1.6E4 \pm 7.6E3$	41 ± 2	5200 ± 2400	<0.24 4.8	<5.4	2.3	170	3.6	2.3	0.45 ± 1	0.20 ± 0.08	0.70 ± 0.08	67+0.5	0.79 ± 0.14	3 1 +0 08	3.1 ± 0.1	31 ± 0.3	3.0 ± 0.3	<0.32	<0.32	70 ±0.5	20 ± 0.5	7.9 ± 0.5	0.99 ± 0.10	1.0工0.1
v _{ion} km/s	(12)	06+ 06+	+70	< 06+ + +	+70	+70	-00 +00	- 19 + 4	- 19 +	+61		-		+73	18+	/0+		+67	+56	+56			+58			8	+70	+60	+80	+70	+61.8	+64.4	+/3./	+64.6	+61.3	+64.0	+64.0	+64.8		·		+0+.4	+91.4	+100.5	+46.7	+4/.0
tel ion	(10) (11)	Sill SilV	SII	(Fell			РК Но сл	ы МеI	Moll	Sill	SII	Call	_	Pk CIV	Nal	Lall		Nal	MgI	MgII	Sill	SII	Call	Not	PR Call		Call	Sill	Call	Call		AB(Nal	(Nal			PI (NaI		PI Call	-			PI Call				
$^{\rm VH}_{\rm km/s} \frac{N_{\rm HI}}{10^{18} {\rm cm}^{-2}}$	(6)					3.9 ± 1.0	<2.0							<2.0		16110	0.1 ± 0.1								00	0.4					10	10			8.8	8	2.0	7.8	0.74	6.8 2	ن د ە د	o, (2.1 2.1	1.6	8.2	7.Q
						+51	(109+)							(+70) <2.0		02	00+								(09+)	(00)					+65	+65			+57	15+	2	+57a	+57b	+0+	90+	CC+	+55h	+54c	+53	70+
type Cld	(6) (7)					O8III:	27 O4It+						!	811a	08V 07 511/6									011 a a	B11ae On9 71a	B0.7Ia	WC5+OB	O6Ib(f)	B0:	09.5Ib	32:	B0.7Ia			31	80I.a				31Ia	26 U-BU	e			Olafpe	971a
z t; kpc	(5)					27								27 B1la		07									17 17 17	27 F		28 0	27 E	27 0	26 B2:	26 E			26 F	26 B9Ia				26 B1Ia	07	1 07			26 (1 07
d kpc k						ы 0								ы 0 с	ы С		ac C							ć	50 5 ⊃⊂	а а О С	о 0 0 ы	ი თ 0	50 g	ы 0	50 g	ы 0			ы	0 0	a			50	ы	50			ы 0	
b	(3) (4)					-32.89 50	-32,49 50																	20.00	-32.30 30 31 77 50		-33.27 50					-31.95 5(-31.92 50	-31.86.50					-31.88 50				-31.8050	U 61.10-
l°	(2)					277.70										- 06-117										280.69 -	280.42	279.91			279.67	279.66			279.92	779.85					- 75.6/2					
Probe	(1)					Sk-67 120	SK-67 166							Sk-67 169	SK-6/ 1/4	0CZ /0-XC	3K-00 02 (HD 269546)							08 6114-11163-18	Sk-68 135 Sk-68 135	Sk-69 91	Sk-69 103	Sk-69 104	Sk-69 106	Sk-69 107	Sk-69 195	Sk-69 203			Sk-69 204	Sk-69 211				Sk-69 213	SK-69 215	OK-09 210			Sk-69 220=R127 279.96	2K-09 221=K1282/90

° (<u>ہ</u>	3.	, ∠ ιγρc			тни 8 – 2			ارم ا ا	- -			0)		
(2)			kpc (5) (6)	(7) Km/: (7) (8)	\$	10^{10} cm^{-2}	(11) (11)		/s 10 ⁻ 2)	$km/s \ 10^{11} cm^{-2}$ (12) (13)	(14)	(15)	(16) (17) (18)	(17) (1	(18) (19)	(20)
279.61	61 -31.82	2 50 g	5 26 B0	Ŧ	+63 6	6.5	N U Id	Nal Call	<0.42	42	. 1	<6.4 ~83			52	
279.68	68 –31.81	1 50 g	26	Ŧ	+61 7	7.0	Z Z Z H	Nal	<0.63	22.5	ч ц.,	0.0			22	0
279.48	48 - 31.7	20		+ č	c	1.5			V	- -	_≥.	<14 160 260 - 40	0.0		52 23) 52	98 97,W
				$^{+,0a}_{+70b}$			5 0 7 4			2.7 ± 0.3 3.0 ± 0.3		360 ± 40 390 ± 40	o o	0.16 0.18 U	52 52	
279.46	46 -31.67	7 50 8		,+ ,-		1.5 ± 1.0		Call	€. 6. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	ς Ω (A	160			33	W,76
21.9.45	45 - 31.6 15 - 31.6		26 BU.SIa:	+ -		1.5 ± 1.0	ン C 王 a	Call	7 99	2.5	∨ ≥≧	<160 <160	Ċ	11 620.0	57	91,W
279.45	45 - 31.68		26 WN6	+ +	+70 1	1.5 ± 1.0				2.3	≥ ≥	160		0.072 U	53 5	97.W
Sk-69 243=R136279.47	47 -31.6	50	g 26 OB+WN5-6			$.5\pm1.0$			\forall	32	Ļ	$\overline{\mathcal{Q}}$			52	98
									+70 2.8	, 15 7 15	× ×	190	0	0.086 U	932	M LO
							50	Call Call ±1	+100	5.7 9.6		001	0	0 11 11	() ()	07 W
							ט נ	+	+58.4 1	$.2\pm0.6$:	20 ± 67	ò Ö		52	
279.	279.39 -31.67	50	g 26 WN7	`+	+70 1	1.5 ± 1.0	Pk N		0℃	<0.32 I	,	\Diamond 1			52	98
		•					Ű		+62 4	4.3 ± 1.2 W	> :	290 土210	0.	0.13 U	12)	M
							00		0 : 0	ω. - - - - - - - - - - - 		<160 <160 10</td <td>Ċ</td> <td>11 000</td> <td>23)</td> <td>97,W</td>	Ċ	11 000	23)	97,W
							55	Call +6/.5		1.3 ± 0.3 1	18	80 ±01 1E4	00	0.039 U 0.31 II	25	M
							лĽ			400	2	1.1L 4 2.7E4	00	0.82 U	20	\$
279.93	93 -31.61	50	g 26 A0Ia+	Ŧ		7.1 ± 1.0	Pk		8	22	•	< <u>7.4</u>	5)	52	106
				+45a		3.8	번 전 전			$1.7 \pm 0.5 L$	ı	45 ± 13	00	0.020 U	52	
779 47		20		+ + +	+45 <i>0</i> 5 +70 1	ن ج +10	꽃 몇	Call +/6.3 Call +60		C.U ∓ C.U E C C.U E C.U E C C C C C C C C C	18	45±150 160	<u> </u>	0.020 U	7 6	07 W
279.81			26	- +		7.1	Ъ.	+		2.2 ± 0.2	Z	31 ± 3	ò Ö	0.014 U	85	
279.42		50	26	(+00)		<2.0	-			10	N	>500	Λ	>0.23 U	40	97,W
280.25	25 -31.35	50		Ŧ	+45 7			Call	<0.35			<4.9		-	85	M ;
020	c 10 X		ć						\vee			<25		11	85	≩
279.34	90 -31.37 34 -31.38	200	g 26 BUIab g 26 B1.5				50	Call +/5./ Call +76.3		4.0 ± 0.2	zz				8 %	
	-	2	1				9 円			2.0±0.9 N	z			D D	85	
279.93	93 -31.27	7 50 g	26	9+)	(+60) <2.0	0.0	PR			7.4	2	>370	Λ	>0.17 U	40	97,W
279.29		50					υË	СаШ +73 тып +64	+73.8 5	.1 ±1.1 8 ±3 1	ZZ				85 85	
							Ë			·0±2.1	zz			D	85	
280.49	49 -31.31	50	26						+58.0	20 ± 0.2	7				85	
280.4	48 –30.7			Ŧ	+55 🗠	⊲2.0	U F A	Call +5: T:II	5.5 2000	8.3±0.1 N	72	>420	λ	U 61.0≺	85 85	98 M
282.82	82 34.25	5 50 o	- 28 nec	Ŧ	+61 2	2.0 + 1.0	Pk(€ 07+ 1	 5+0.5	× 3	74 +45	C	0.036 11	°∞	W 86
		2	1	_			Í			.0 ± 0.5	: >	100 ± 56	-	0.049 U	12 (M
							0			4 ± 1.9	2	270 ± 170	-	0.12 U	8)	M
100		2	Ċ				Ű			.7±1.3	2 8	430 ± 230	-	0.20 U		M LO
281.91	83 - 32.19 91 - 32.07	20	57	÷		2 + 1.0	с Б	Call + +	+70 +70 0	2.3 2.3	≥ ≥	38	0.	0.017 U	53 5	97.98.W
281.	87 -32.06	6 50 g	27	Ŧ	+66	6.2 ± 1.0			∇	66	ß	<16			12	98,W
							Ű		+71 2	. 12		440	0	0.20 U		98,W
100	0 66 90	2	5	-			ŬČ È	Call +	+70 3.6	9.9	M	57	0	0.026 U	3 33	W,76
00°107	50 - 36.06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 05 5V	Ŧ	00+	0.1 ± 1.0			+80 3.0 +60 1 0F4	0.4		10	o.	070		11,90,W
		2	ì				S	Sill +	+51 320	0	L L			D	124	
							S		51 1.0E	4	1			11	124	
											1)		

$\begin{array}{ccc} b & d & z \\ \circ & \mathrm{kpc} & \mathrm{kpc} \end{array}$	z m kpc			type		^{vHI} km/s 1($_{ m km/s}^{ m V_{HI}}$ $_{ m 10^{18}cm^{-2}}^{ m N_{HI}}$	tel ion		10^{11} cm ⁻²	Ű	${ m A_{ion}}_{10^{-9}}$	$^{ m A_{ref}}_{ m 10^{-9}}$	A/A _©	D? Ref	z	Note
		(5) (6)	(9)		(2)	(8)	(6)	(10) (11)	(12)	(13)	(14)	(15)	(16)	(17)	(18) (19)		(20)
Upper IV Arch: IV14, IV13, IV7, IV16, IV6, IV5, IV17, IV11, IV12, IV9, IV15, IV8, IV10	Ι	16, IV6, IV5, IV17, IV	IV5, IV17, IV	7, IV	/11,	IV12, I	V9, IV15,	IV8, IV10									
$\begin{array}{ccccccc} IV7 & < 5.0 & < 3.9 \\ PG0955+291 & 199.89 & 51.94 & 5.0\pm0.6 & s & 3.9 & B5V & IV7 \end{array}$	< 5.0 < 3.9 $5.0\pm0.6 \text{ s}$ 3.9 B5V	< 3.9 s 3.9 B5V	B5V	IV7		-64	8.0±3.0 Ef	Ef Call	-64	1.8	L	23		0.010	U	93	112
< 1.9 < 1.7 > 0.4 > 0.4	< 1.9 < > 0.4 >	< 1.7 > 0.4	4					CIV CIV		[1600]		720±690		0.0020		-	$^{1Z_{\odot}}$
Λ	Λ	;						Nal MgII SIII SIII SIII SIII	2 -		000.	1.6 2.7E4 ±2.8E4 3.3E4 ±3.2E4 3.8E4 ±3.6E4 3500 ±3700	[14000] [19000] [19000]	0.00080 0.72 0.94 2.1 0.19			
						ć	c v					30 39±38 180±170 1.4E4±1.3E4	[22] [21] [87] [7800]	0.014 0.46 0.52 0.42	ŀ	Ę	2
.) 0.1 V5 B C. E a 0.4	4.0 a 3.5 B3V	3.5 B3V			1.	-/:3) <	00.0		-73 -73	0.25 1.3		>>0 >250		<0.12 >0.12	οp	93 93	113
183.14 62.15 1.9 t 1.7 09.5V IV6	1.9 t 1.7 09.5V IV6	1.7 09.5V IV6	IV6	IV6		-65	3.2 ±3.0 GB	GB CI* CIV NaI	-66.3 -67 -64 8 (23±5 240 0.052	чz-	720 ±690 1 6		0.0020		56 51	
								MgII SiII		870 ± 370 870 ± 370 1100 ± 200	ם ם ם	1.0 2.7E4 ±2.8E4 3.3E4 ±3.2E4			םםני ממני	56	114
								IIS IIIS	-66.3 -66.3	1200 ± 90 110\pm60	ม่าวว่าว	$3.8E4 \pm 3.6E4$ 3500 ± 3700		2.1 0.19	nn	56 56	
								(Call	—66.3	1.1 ± 0.1	ZЦ	36土34		0.016		56)	
								Call Till	-65.6 -66.3	0.95 1.3 ± 0.3	ப்ப	30 + 38		$0.014 \\ 0.46$	- ם ם	07 56	
								MnII	-66.3	5.6±0.8	ц ц ц	180±170 180±170		0.52		56 56	
171.46 66.38 0.40±0.10t 0.37 A0V IV6 -	0.40±0.10t 0.37 A0V IV6	IV6	IV6		ÌI.	_72	37±5	Ef Sill	C.00-	<00 <90	Z	<250		0.42	гc	ر 83	S
< 0.8 < 0.7 > 0.6 > 0.5		< 0.7 > 0.5	5					MgI Sill Call Mnll			//	$36 > 190 = 16 \pm 10$ 130	[19000] [22] [87]	0.00094 >0.0055 0.0073 0.39			
150.75 65.96 — SN IV17 –	— — SN IV17	IV17	IV17		I	54	102 ± 1	Ef MgI Call	59 59	36 27	zz	36 26		.00094 0.012			10,115
5.8±0.7 s 5.2 HB IV17	5.8±0.7 s 5.2 HB IV17	5.2 HB IV17	IV17			-63	78±0.6	Ef	59 70	140 12		$130 \\ 16$		$0.39 \\ 0.0071$	n D	117 70	116
PG 1213+456 141.93 70.44 2.9±0.7 a 2.7 sdB IV17 - BD +492137 134.23 67.40 0.80±0.20a 0.74 HB IV17 -	2.9±0.7 a 2.7 sdB IV17 0.80±0.20a 0.74 HB IV17	sdB IV17 HB IV17	sdB IV17 HB IV17			61 53	24 ± 1 46 \pm 1	JB Call Ef Sill		~1.3 ~90		<5.2 ≥190		>0.0055	D	83 83	11,S
	1 1	1 1	1 1		r I	-53a	$\begin{array}{c} 29 \pm 1 \\ 18 \pm 1 \end{array}$		-63 -76	1.2 0.76		4.3 6.3		0.0020	חח	93 93	
140.59 68.79 0.55±0.27p 0.51 B8V IV17 141.16 65.80 0.19±0.04p 0.17 A2V IV17	0.55±0.27p 0.51 B8V IV17 0.19±0.04p 0.17 A2V IV17	IV17 IV17	IV17 IV17			-59	39 ± 1 75\pm0.9	Εť		88	zz	<230			ЦЦ	83	sδ
IV11 (> 0.8 > 0.7) PG 1255+546 120.91 62.68 0.80±0.30a 0.71 sdB IV11	(> 0.8 > 0.7) 0.80±0.30 a 0.71 sdB IV11	sdB IV11	sdB IV11			-81	4.5±0.3 Dw	Sill Dw Sill		06>	∨ z	<2000	[19000]		_	83	S

Note (20)	$1Z_{\odot}$	117	s s		S,119 120	121		s	I		S	120 S				117 S	118	29
D? Ref Note (18) (19) (20		79 129 129	58 83 83	114		93 93 33		93 2) 23	5	03	688	93 83	84	2 2 2		79 83	00 129 58	70
D? (18)		D	с L С		חח	חח		ц -	L	F		ГС	n			Ħ	יסי	2
A/A _☉ (17)	<0.0083 0.78	0.78	0.0034		>0.029 >0.015 >0.012	>0.031 >0.053 0.070				>0.0015 >0.0015 0.0021	>0.0015	0.0049	0.00057		>0.025 0.81	0.011	0.81	10000
$\substack{\text{Aref}\\10^{-9}\\(16)}$	[00061] [00061]	1		[22]						[19000] [22]					[19000] [19000]	[77]		
${ m A_{ion}}{ m 10^{-9}}$ (15)	<pre><290 [19000] <291 [1.5E4±2.2E2 [19000] 7.5</pre>	⊲340 1.5E4±2.2E2	€./ <290	<41	>1000 >32 >25	>68 >120 150		<0.22 <400 <2.0	0.57	4.0 4.6 1.5	>54 >54	4.0 11 <320	1.2 1.2	<0.14 <0.13 <0.15	>900 1.5E4 ±7.6E3	25 ±10 37 ±1 ~~~~	1.5E4±7.6E3	<2.8 <2.8
code (14)		ZZZZZ	zzz	M	ЧЧЛ	лци		JZ≽_	4	-	Z-	лц	Μ	≥≥≥		ΖZ	zz	zz
$10^{11} { m cm}^{ m Nion}$ (13)	[1600] [440]		4.C 00⊘ 00⊘	<2.4	>90 0.95 0.76	2.0 3.5 8.0		<0.13 <230 <1.2 0.20	07.0	0 05	- / \	17 20		<0.15<0.15<0.15		39±0.8 ~00	1500 ± 100	⊲3.5
${\rm km/s}^{\rm Vion}$ (12)		-79 -79 -69	1/-		96 76	-66 -57 -83				50			-45			-46	-37	5
tel ion (10) (11)	CIV SiII SIIV SIIV SII	Ef Call Ef CIV SIIV SII	Call Dw Sill Dw Sill	Call Ef Call	Dw Sill Ef Call Ef Call	Ef Call Ef Call Ef Call		Ef Nal Sill (Call	NoI	Sill Sill Call NaI		Ef Call Ef Sill	Ef NaI	Dw Nal Dw Nal Dw Nal	SII SI	Ef Call Ef Call Ef Sill		Ef Call
${ m km/s}^{ m V_{HI}} { m 10^{18} cm^{-2}}$ (8) (9)		15 ±1 72 ±0.7	98 ±1 31 ±2	5.7 ±1.5	8.6 ± 0.5 <3.0 <3.0	<3.0 <3.0 5.2 ±1.1	7, IV20	57 ±2		166 +1	1 - 001	$\begin{array}{c} 154\pm 2\\ 28\pm 4\end{array}$	85 土2			105 ± 2		- 52 124 ±4
^{VHI} (8) (8)		74 71	-71 -58	-72		-66) < -57) < -79	23, IV2	-41		36		—29 —54				-47 37		-52
Cld k		evi evi	6VI	IV15	IVa IVa		25, IV2			1V76	07 4 1	IV26 IV26	IV21	IV21 IV21 IV21		1V19		IV19
type (6)		QSO B1.5V	A0V	1.7 (HB)	2.1 2.6 sd(B2)	1.5 RR Lyr IVa	V19, IV	B2.5IV		2.0 0.4 3.0 R5V		sd(B2) A0V	A5V	A5V A2IV A3V		QSO B15V		sdB
$_{\rm kpc}^{z}$	< 1.6 > 0.2	t 1.6	5p 0.21	s 1.7	8 8	t 1.5	IV21, I	> 0.4 p 0.38		> 0.4 > 0.4		a 2.6 it 0.37	< 0.3)s 0.32)s 0.24 tp 0.19 tp 0.19	< 1.6	-		s 0.25
$\substack{d \ kpc}{(4)}$	< 2.1 > 0.3		0.28±0.06p 0.21 A0V	2 . 4±0.5	4.2 2.7±0.4	1.9 <u>+</u> 0.2	IV18, IV26, IV21, IV19, IV25, IV23, IV27, IV20	> 0.5 > 0.4 0.49±0.19 p 0.38 B2.5IV IV24		> 0.4 3 1	1.0	2.7±0.4 a 2.6 sd(B2) 0.40±0.10t 0.37 A0V	< 0.4 < 0.3 0.40±0.10s 0.32 A5V	0.30±0.10s 0.24 0.24±0.04p 0.19 0.23±0.05p 0.19	< 2.1	_ 2 1⊥03 +	C.0 11 17	0.30±0.10s 0.25 sdB
$b \circ b$	• / 、	52.02 49.76	47.13	90.69 46.46	res) 30.08 77.72	99.41 51.21	_				00.01	77.72 66 . 38		52.78 51.13 55.33	Ť	52.02 49.76		55.25
$^{\circ}$ (2)		111.89 52.02 113.01 49.76	109.43 47.13		(off cores) 114,19 30,08 159,93 77.72	99.41	Arch: IV22, IV24,	211,17 51,48		144 63 75 06		159.93 77.72 171.46 66.38	133.74	135.93 52.78 135.50 51.13 134.74 55.33		111.89 52.02 113 01 40 76	10.011	112.54 55.25
Probe (1)	6VI	PG 1351+640 HD 121800	HD 127557	IV15 BS 16079-0015	Upper IV Arch (off cores) BA 90700003 114 19 30 PG 1212+369 159 93 77	BT Dra	Lower IV Arch	IV24 HD 87015	90/11	HO 41R	d1+1-0-11	PG 1212+369 HD 98152		HD 101714 HD 101075 HD 103718	IV19	PG 1351+640	000171 711	PG 1338+611

ote		112	114	14	114
A _{ref} A/A _☉ D? Ref Note 10 ⁻⁹ (16) (17) (18) (19) (20)	126 126 126 126				56) 107 56 56 56 16) 93) 93)
D?]		ם בכבים	ככככככככ כ		
A/A _©	0.91 0.91 0.33 0.33	0.38 1.1 0.016 U 0.0030 U 0.025 U 0.025 U 0.025 U	0.0071 0.0015 0.16 0.16 0.78 0.032 0.013 0.013 0.0036 0.0036	0.29 0.15 0.34 0.36 0.36 0.36 0.0039 0.26 0.69 0.17 0.17 0.0036 0.011	$\begin{array}{c} 0.12\\ 0.015\\ 0.016\\ 0.18\\ 0.014\\ 0.36\\ 0.74\\ 0.028\\ 0.014\\ 0.022\\ 0.017\\ 0.017\end{array}$
$A_{ref}^{A_{ref}}$, 10–9					
A _{ion} 10 ⁻⁹ (15)		$\begin{array}{c} 1.2E4\pm 5.0E3\\ 2.1E4\pm 3.6E3\\ 3.6\\ 3.6\\ 5.5\\ 4.9\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6$	$\begin{array}{c} 1.12\\ -2.16\\ -2.16\\ -2.16\\ -2.063\\ -1.6\\ -1.6\\ -2.064\\ \pm 3.163\\ -1.6\\ -2.064\\ \pm 3.163\\ -1.6\\ -2.064\\ \pm 3.163\\ -1.6\\ -2.06\\ -2.08\\ -2.02$	$\begin{array}{c} 25\pm5\\ 25\pm5\\ 13\pm2\\ 29\\ 78\pm66\\ 1.2E4\pm1.0E4\\ 300\pm90\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 2.5E4\pm5.5E3\\ 2.1E4\pm4.3E3\\ 2.5E4\pm5.5E3\\ 2.1E4\pm4.3E3\\ 2.78\pm1.8\\ 7.8\pm1.8\\ 24\end{array}$	$\begin{array}{c} 9.8\pm 3.5\\ 1.3\\ 1.3\\ 8.00\pm 120\\ 490\pm 220\\ 4.90\pm 220\\ 1.7E4\pm 7.0E3\\ 1.7E4\pm 7.0E3\\ 1.4E4\pm 5.9E3\\ 1.4E4\pm 5.9E3\\ 1.4E4\pm 5.9E3\\ 3.2\pm 14\\ 49\\ 3.7\pm 15\\ 3.7\pm 15\end{array}$
code			I I I I I I I I I I I I I I I I I I I	ZJJJJJJJJJJJJJ	TTTTTTTTTTT
$\frac{N_{ion}}{10^{11} cm^{-2}}$	1.2E4 ±9.5E3 1.2E4 ±9.5E3 2.0E5 ±1.5E5 480 ±160 5400 ±2700 350 ±270	3600 ± 1500 4800 ± 800 5.5 5.5 0.58 0.58 1.7 1.7 1.7 1.3 3.4 3.4	2.12 -2.13 -2.13 -2.13 -2.13 -2.120 ± 8 -1.20 ± 8 -1.20 ± 8 -1.20 ± 100 -1.17 -1.7 -2.6 -2.6	$\begin{array}{c} 5.4\pm0.7\\ 2.8\pm0.4\\ 6.3\\ 17\pm14\\ 2600\pm2200\\ 48\pm10\\ 0.13\\ 1600\pm600\\ 3400\pm200\\ 3400\pm200\\ 3400\pm200\\ 310\pm80\\ 1.2\pm0.2\\ 3.7\\ 3.7\end{array}$	$\begin{array}{c} 1.5\pm0.5\\ 0.20\\ 0.20\\ 3.7\pm8\\ 1000\pm700\\ 1000\pm700\\ 1000\pm200\\ 1000\pm200\\ 1000\pm200\\ 1000\pm200\\ 1000\pm200\\ 2.4\pm0.4\\ 2.8\pm0.2\end{array}$
$\frac{v_{ion}}{km/s}$			-44 -57.8 -57.4 -57.7 -57.7 -57.7 -57.7 -57.7 -57.7 -57.7 -57.7 -55.2 -55.1 -56.2	-57 -577 -577 -59.1 -577 -577 -512 -512 -512 -512 -512 -512 -512 -512	-51.2 -52.5 -52.5 -51.2 -51.2 -38.8 -38.
2 tel ion 2 (10) (11)	Ef NI OI OVI SIII	Fell Ef SII Ef SII JB Nal Call JB Nal Call JB Nal Ef Nal Ef Nal		(Till (Till (Till Mall Fell Nal Mgll Sill Sill Call Call	(Till Mall Mall GG C1* Mgll Sill Sill Sill Call (Call Call Call
$_{\rm Km/s}^{\rm V_{\rm HI}}$ $_{\rm 10^{18} cm^{-2}}^{\rm N_{\rm HI}}$	30	23±1 15±3 9.5±0.1 34±0.1 22±1		16土3	—38.8 7.6 ±3.0
km/s	- 54	-47 -45 -53a -53b -47a -47a		-51.2	- 38.8
CId	IVa	IVa IVa IVa IVa IVa	IVa IVa		
type (6)	ÓSO ÓSO	QSO B5V B3V B2V	7a 2.7 sdB t 1.7 09.5V		
$_{\rm kpc}^{z}$		a 3.9 a 3.5 s 3.6	a 2.7 t 1.7		
$d_{\rm kpc}^{\rm (4)}$	Ē				
q_{\circ}	res) (8.05 -	51.71 - 51.94 5 62.21 2 79.56 3	2.15 1		
l°	(2) 1 (off co	179.78 51.71 — 199.89 51.94 5.04 182.16 62.21 4.0 182.337 79.56 3.74	141.93 70.44 2.94 183.14 62.15 1.9		
Probe (1)	PG 1259+593 120.56 58.05	PG 0953+414 179.78 51.71 — 050 PG 0955+291 199.89 51.94 5.0±0.6a 3.9 B5V BD+382182 182.16 62.21 4.0 a 3.5 B3V BD+362268 153.37 79.56 3.7±0.7s 3.6 B2V	PG 1213+456 141.93 70.44 2.9±0.7a 2.7 sdB HD 93521 183.14 62.15 1.9 t 1.7 09.5		

Note (20)	S 123	124	S,125 S,126 S	1Z ۲ ۲
D? Ref N (18) (19)	16) 56 56 83 93 93 93	58) 113 86		$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
D? (18	ασαμασα	וממ		
A/A _O (17)	0.12 0.077 0.23 0.25 0.25 >0.0081 0.0082	>0.0056 0.0099 >0 0.0069 0.0099	>0.0056	$\begin{array}{c} 0.55\\ 0.076\\ 1.0\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0022\\ <0.0012\\ 0.32\\ 0.0084\\ 0.0084\\ 0.0084\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.00012\\ 0.00012\\ 0.00012\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.$
$\substack{A_{ref}\\10^{-9}\\(16)}$		[19000] [22] [7800]		[93000] [740000] [16000] [19000] [7800] [7800] [42] [42]
$\substack{\text{Aion}\\10^{-9}\\(15)$	11 ±7 6.6 ±6.3 77 ±35 7900 ±3200 <120 4.5 >18 18	×20 5 15 × 22 6 22 15	~200 ~66 ~110	$\begin{array}{c} 5.2E4\pm2.1E4 & [93000] \\ 7.100\pm3400 \\ 7.100\pm3400 \\ 2.4 \\ 4.4 \\ 2.4 \\ 4.4 \\ 1.4E4\pm4.9E3 & [14000] \\ 280 & [1600] \\ 1.4E4\pm4.9E3 & [19000] \\ 1.4E4\pm4.9E3 & [1200] \\ 700\pm800 & [7800] \\ 700\pm800 & [7800] \\ 700\pm800 & [7800] \\ 700\pm800 & [7800] \\ 2.4 \\ 4.5 \\ 1.1E4 \\ 70\pm21 & [42] \\ 2.4 \\ 4.5 \\ 1.1E4 \\ 70\pm21 & [42] \\ 70\pm21 & [1200] \\ 1200\pm300 \\ 700\pm800 \\ $
code (14)	LLLZLLLZ	ΖIJΖ	zzzz	N N N N N N N N N N N N N N N N N N N
${}^{\rm N_{ion}}_{10^{11}}{}^{\rm cm-2}_{\rm cm}$	0.80 ±0.40 0.50 ±0.43 5.9 ±1.2 600 ±30 <90 1.7 >2.0 4.9	1.1 6.1	<pre></pre>	[1600] [440]
$\underset{(12)}{^{vion}}$	40 38.8 38.8 38.8 38.8 51 51 52	-64 -63 -55		
tel ion (10) (11)	(Till Till MnII Fell Dw Sill Ef Nal Ef Call Ef Call	Sill Call Fell Dw(Call Call Call	Dw Sill Ef Sill Ef Sill Call	CIV NII NII NII NII NII NII NII NII NII N
$\begin{array}{c} {}^{\rm V_{HI}} {}^{\rm N_{HI}} {}^{\rm N_{HI}} {}^{\rm N_{HI}} {}^{\rm 2} {}^$	75 ±0.3 39 ±0.6 11 ±0.6 27 ±0.6	7.3 ±2.0	45 ±3 137 ±4 86 ±1	70±10 35±1
$\substack{ ^{v_{HI}}_{km/s} \\ (8) }$	-51 -50 -50a -50a	-70	-52 -42 -40	LLIVI –50 LLIV –58
Cld (7)	IVa IVa	sp	Sp S1 S1	AFLIV OSQ
type (6)	sdB HB	2.1 0.3 2.6 BIV	2.6 B4V 2.1 sdB .28 B4V	OSO SN
$z \\ (5)$)a 0.71)a 0.40	< 2.1 > 0.3 a 2.6	t 2.6 a 2.1 5t 0.28	> 0.6) > 0.6)
$d_{ m kpc}$	0.80±0.30 a 0.71 sdB 0.48±0.70 a 0.40 HB	< 2.1 > 0.3 > 0.3 3.0	2.9±0.4 t 2.6 B4V 2.1 a 2.1 sdB 0.30±0.05t 0.28 B4V	> 1.8 0.9
$\overset{o}{\circ}$	62.68 56.65		63.62 79.12 69.47	
ار (2)	120.91 154.53	258.85 61.23	245.37 63.62 235.56 79.12 239.18 69.47	142.15 40.92
Probe (1)	PG 1255+546 120.91 62.68 HDE 233791 154.53 56.65	IV Spur HD 100340	00	LLIV Arch SN 1993 J 142.15 40.92 PG 0804+761 138.28 31.03

Note	(20)						128	>	$^{1Z_{\odot}}$				129	s			129	~	4	12						F										
Ref Note	(19)	94 7	6 6 7 6	94	94 24	33 t	61	80 80				87	94	50	4 C	5 2	94	94	08 08	107)	107				125	39	88	× ×	15	88	88	× °	0 00	88	88	62
D;	(18)	D		D	DI	2	-	Ц		_		_														_	D		Π		D			Ŋ		
A/A_{\bigodot}	(17)	0.0062	0.0056	0.0011	0.0062	7000.0			0.0020	>0.040	0.0064	0.11	10.0	>0.021	0.0063	>0.013		0.0079	0.0062		0.0042	0.0098	₹ 07 07	0.041	0.041	$T_s > 80$	0.022		0^	>0.085	0.0069			0.0062		
${\rm A_{ref}}_{10-9}$	(16)									[14000]	[22]	[21]											[14000]	[22]			~									
$^{ m A_{ion}}_{ m 10^{-9}}$	(15)	14 - 750	00/~	2.5	13	<2.6 <2.6	⊴1	≙⇔ ∷⊃	4.2	>1500 \730	14±3	9.5 ~1500	<0.51	>730	9 5	>28	<0.61	17	4.2 14	<0.16	9.1	20 ± 15	<3.7E4	89	⊲3.6E4 89	5	45 ± 23	/2 U	2,9	>190	14±5	ŝ	0.7 20 2	13±5		98
code	(14)	Ч	z _	ГI	ц Ц	≷⊾	M	z₿				z	8	z,	ЧΖ	ц	M	ц 2	zz	; _,	Г		v		z B	τ	л, 8 Г	-	z۲		, L			4 1 1	ц-	ЧЦ
$_{10^{11}cm^{-2}}^{N_{ion}}$	(13)	13	0.4 0.6	1.9	4.6 3.2	₹.2 	<0.93	∆12 ∆1.0				_400	<0.16	>230	4.4	1.4	<0.12	3.5 2 c	4.2 2.1	<0.025	1.4				₹000 2000	\$5.3	7.9 ± 3.5	<0.50 <0.50	0~	11 土3	2.5 ± 0.7	<0.40	20.63	1.3 ± 0.4	< 0.50	< <u>5.0</u>
v _{ion} km/s	(12)	-57	1 - 20	-45	-51 -41	F						40	f	– 4:	1 4 4	-62		-47	 2 - E		-34.2				-80	0	69				-69			-72		
tel ion	(10) (11)	Ef Call	Ef Call	-	Ef Call Ff Call		Dw Call	WE MgII Dw Call	NaI	MgII SiII	Call	WF Moll		Sill	Call	Dw Call			Dw Nal Call	Ef(Nal	Call	Nal	SII		EF SII	Ar HI		JD Nal		-	JD Nal	JD Nal			JD Nal ef Nal	
$_{\rm km/s}^{\rm V_{\rm HI}}$ $_{10^{18}{\rm cm}^{-2}}^{\rm N_{\rm HI}}$	(6)	92 ± 2	24 ± 0.8	77 ± 1	34 ± 0.6	24 ± 0.0 88 ± 2	88 ± 2	110 ± 5 78\pm 1				26 4 3	32 ± 0.7			<5.0	20 ± 0.9		51 ±1	16 ± 0.6					5.6 ± 0.7	10 ± 0.3	18 ± 3	<0.0 10 ± 3	<0.0		18 ± 3	<0.0	10 0 0 0 0 0 0 0 0 0 0 	10 ± 3	< 6.0 15 ± 2	1
v _{HI} km/s	(8)	-55	72 1	-37	-45a			-50 -50				30	-40			-62		00	138	-40				1	-83	-60	69 ((8) - (8)	(-65)	Ì	89 (j	(20)	202	-72	(— 68)	5
Cld	(2)	TLIV			LLIV1	LLIV3	LLIV1	LLIV3 LLIV4				1 I IVe	LLIVe				LLIVe	1 1 14/2	LLIVE	LLIVe					х	К	X	× >	4 X	1	X	X 2	2 2	X	ХX	4
z type kpc	(5) (6)	a	a 2.0		s 1.2 HB	V0A 70.97		0.70±0.20a 0.46 sdB 0.35±0.13 p 0.19 B9V	< 0.6			Sev.	t 3.1 B1.5V				t 1.8 B3V		1 0°80 B21V	0.90±0.20t 0.66 B3V		< 4.5		1	- BLLac				g 4.5 B2n		g 4.5		000 7 7 7	g 4.5 K0lb	6.8 g 4.4 0.000-0.20 a 0.46 edOR	
$d \\ kpc$	(4)	8.1	4.011.0		1.8±0.2	1.5 ± 0.2	0.90±0.1	0.70 ± 0.2 0.35 ± 0.1	< 0.9			l	4.4±0.6				2.4±0.4		1.4±0.3	0.90 ± 0.2		< 6.8				I	6.8	8.9 9.8	0.0 8.9		6.8	0.8 6 0	0.0 9	6.8	6.8 0 90±0 3	
	(2) (3)	147.75 35.01	145 00 34 50		141.27 42.29	156.95 40.28	146.34 40.62	156.22 40.56 154.62 33.45				161 14 47 88	168.17 44.23				158.60 47.06	160 30 41 88	169.30 41.88	167.70 46.93					63.60 38 . 86	44.17 46.20	59.06 40.97	58.96 40.96 50.06 10.01	58.97 40.93		58.99 40.91	50.00.40.01	58 98 40 89	40.8	58.94 40.87 51 71 30 57	
Probe	(1)		PG 0833+698 145.00		PG 1008+689 141.27 42.2	SA 12 391	BD+67 598	PG 0906+597 HD 68164	LLIV Arch extension			Mrk 106	3622				HDE 237844		0//// П H	HD 83206		Complex K			Mrk 501	B21607+26	M 13 II-67	M 13 III-73 M 13 II-34	M 13 III-33	(Barnard 29)	M 13 L 598	M 13 III-56 M 12 I 620	M 13 V-15	M 13 I-48	M 13 IV-25 PG 1777±786	

Note	(20)	$0.5 Z_{\odot}$ 130			131	114					131					114									F						
Ref	(18) (19)		9 0 0 0 0	68	06 06 06	88	68	<u></u> 8	66	888	88	6	90 0	88	6	88	68	<u> </u>	90	16	<u>8</u> 8	68	90 62	58	90 39	39	107	107	10/	107 58	58
D3	(18)	Ŋ	סמ		סכ	D		o D	DI			D			;	סס	D	D	D				n	n	_	_	Π	. :	⊃	D	
A/A _☉	(17)	0.0011	0.11 0.17	0.0059	0.057	0.062	0.17	0.0038	0.072	0.057	0.23	.00020	000001	0.0069		.00079 0.25	0.76	1.2	0.023	0.26	0.37	0.28	0.0079 0.0079	0.0025	T. >350	$T_{s}^{2}>450$	0.0024	10000	0.0044	0.013	
$^{ m A_{ref}}_{10^{-9}}$	(16)															_		60				_									
$^{ m A_{ion}}_{ m 10^{-9}}$	(15)	390 ± 350	3900 ± 1000 3100 + 1200	13 ± 4	1800 ± 500 440 ± 70	2300 ± 500	6200 ± 900	5900 ±400 8.3 ±1.9	35 ± 6	1900 ± 200	10 ± 2 240 + 30	71 ± 29	32 ± 24	2500 ± 400 2500 ± 400		30 ± 14 9500\pm5100	2.7E4 ±5.1E3	2.2E4 ±3.1E3	51 ± 12	22 ± 10	180 ± 40 87 ± 18	8900 ± 1300	45 ± 8 16	5.5	<49		<0.26 5.3	<0.33	9.0 <0.33	29 <220	<74
code	(14)	Г	ц ц	ц,	ц	цЦ	ц.	ц	ц -	ц ц	цЦ	ц	ц,	цц	ц,	цц	Ц	цГ	L	z,		ı	ΝF	z	Z۴		ப ப		ب ب	ЪZ	z
10^{11} cm ⁻²	(13)	11 ± 9	110 ± 8 87 ± 26	0.36 ± 0.05	51 ± 1 340 ± 50	14 ± 8 1800 ± 400	4800 ± 700	4600 ± 300 6.5 ±1.5	27 ± 5	1400 ± 100	C:1±6./ 47+6	14 ± 6	6.3 ± 4.7	480 ± 70 480 + 70	370 ± 40	5.9 ± 2.8 1900 ±1000	5200 ± 1000	60 ± 12 4300 ± 600	10 ± 2	4.3 ± 2.0	35 ±7 17 +4	1700 ± 200	6.1±6.8 18	2.0	11	414	< 0.020 0.41	<0.025	0./4 ⊲0.025	2.2 <5.0	<1.7
v _{ion} km/s	(12)	— 93	- 93 - 93	- 63	-93 -56	-66.0 -56	-56	-56 -56	-56	-56	- 20 - 43	-43	-43 5	- 43 - 43 - 43	-38.9	- 43 - 43 - 43	-43	- 38.9 - 43	-43	-45	- 43 - 43	- 4	-43 -47	-42			-77.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-63.8	
tel ion	(10) (11)	GB CII*	Sill SII	Call	GB CII*	CIV MgII	Sill	SII Call	CrII MnII	Fell	CI CI CI	-	CI**		CIV	MgI MgII	Sill	SII V SII	Call	ПП	CrII MnII	Fell	Ef Nal	Ef Call	et Nal Ar HI		Dw Nal Call	Nal	Call Nal	Call Ef Call	TiII
$^{\rm VHI}_{\rm km/s} \frac{ m N_{HI}}{ m 10^{18}cm^{-2}}$	(6)	2.8±0.7			78 ±0.7						20 + 0.7												$-47 110\pm 10$			40 ± 0.4				2.3 ±0.5	
	(8)	-92			-56						-43	2											-47	-30	- 46 - 43	-53	-82			-64	
CId	(2)	Ъ																					ΡP	ц	_						
type	(9)	0.9 1.6 BIII																					sdB	B2.5IVn	He-sdU Sev	radio	08.5V			B9V	
z m kpc	(2)	< 0.9 s 1.6																					a 0.93		a 1.3	I	t 0.78			p 0.23 B9V	
$d_{\rm kpc}$	(4)	< 1.1 2.7±0.4																					1.1 ± 0.4	0.80±0.10t 0.34	1.7±0.4	l	2.5±0.2 t 0.78 08.5V			0.30	
$\stackrel{\circ}{q}$	(3)	-36.35																					-57.64	-24.92	-49.05	-29.07				-51.41	
$\overset{\circ}{l}$	(2)	85.16 -36.35																						Cs 65.64 -	t 119.54 129.45		140.78			169.69	
Probe	(1)	PP Arch HD 215733																					PG 0039+048 118.59	Southern IVCs HD 203699	PG 0039+134 119.54 3C 33 129.45	3C 41	HD 14633			HD 16581	

Probe	1 1	q $_{\circ}$	p	z type	Cld _{VH}	II 101-2/	VHI NHI NHI	tel ion	Vion	N_{ion}	code	A_{ion}^{-0}	A_{ref}	A/A_{\bigcirc}	D? Ref		Note
(1)	(2)	(3)	(4)	kpc (5) (6)	Km/ (7) (8)	3) 810	- 110 6)	(11) (11)		10 ⁻¹ cm -	(14)	(15)	(16) (16)	(17)	(18) (19)		(20)
Complex gp			< 4.3	< 2.0 > 0.3		ĺ		NaI KI				20 4 9		0.0098			
								IIS IS			-	 ≻0 6F4 +8 2F3 1	[00061]	02.00			
								Call Fell			•	38	[22]	0.018			
Mrk 509	35.97	-29.86	I	— Sey	Ŧ	+60 2	25 ± 1	Ef Nal	+62.9	2.6 ± 0.5	Ц	10 ± 2		0.0051		<i>с</i> с	98
								SIII S	+50 + 4 09+	>0 4000+2000	z z	>0 6F4 +8 7F3				130	132
								Call		18 ± 3	:ц;	74 ± 14		0.034	101	o vo o	133
M 15	65.01	-27.31	10	ہ 4.6 GC	+	+69 4	47 + 0.8	Fell Ef Nal	+59 +68	>0 6.0+0.7	z≥	2 1 2 1 2 7		 0.0063		n œ	>
CT IN		10.17	2	ť	F				$+61^{+0.0}$	0.0 ±0.7 32 ±4	* 3	69 ± 10		0.031	c c	⊳ ∞	•
M 15 IV-38	65.00	-27.33	10	g 4.6 AGB	Ŧ	+69 4	49 ± 1	Ef(Nal	09+	7.5	M	15		0.0075	n n	~	134,V
								Nal	6C+ 79+	11 9.6	≥ ≥	20		0.0096	U 102	20	
;								_	⊽ ¦	<0.40	~ Г	0.82			102		
M 15 K 027 M 15 K 048	64.89 65.01	<u> </u>	10	g 4.6 HB g 4.6 HB	+ +	+70 5 +69 5	54±1 50±1	Ef Call Ff Call	+59 +69	14 ± 9 25 ± 16	88	27 ± 17 51+33		0.012		801	34,V 34 V
M 15 K 064	64.97	-27.27	10		- +		3±1 3±1		+64	28 ± 18	: 3	53 ± 33		0.024	n n		34,V
\mathbf{M}	65.01	-27.31	10	4.6	Ŧ		11年1	-	+57	9.4 ± 9.7	8	20 ± 21		0.0091	D I		34,V
M 15 K 084	65.01	-27.31	10	4.0	Ŧ		47 ± 1	Ef Call	+60	6.4 ± 7.2	A #	14 ± 15		0.0062			34,V
4 14	65.00 65.00	-27.28	10	g 4.0 HB	+ +				+00+ +61	11 ± 0 13 + 9	≥ ≥	25 ± 17		0.011		108	134.V
K 144	= II-75 65.00	-27.27	10	4.6	+		51 ± 1	Ef(NaI	+61	16	M	31		0.015	D		34,V
								(Nal	+58	21	M	40		0.020	14 : 14 :	~	
								Nal	+0/ + 68	20	≥ _	38 1 0		0.019		210	
K 154	= III-9 64.98	-27.29	10	g 4.6 HB	+	+70 5	12 土1		99+		אַ	+.7 79 ±73		0.036			134,V
M 15 K 239	65.02	-27.28	10	4.6	Ŧ		48 ± 1	-	+63	21 ± 11	8	43 ± 24		0.020			34,V
M 15 V 258	10.00 66 00	-21.29	01 0		Ŧ	09+ 09+	1 1 1 1 1 1	Ef Call	08+	14 ±9 0 4 ± 8 0	× 4	29±19 10±16		0.013		108 108	24,<
M 15 K 341	65.05	-27.27	10	g 4.0 HB	+ Ŧ		2+1 2+1		+60++56	9.4 ±0.0 8.6	≥ ≥	20 ± 10		0.0100			134.V
M 15 K 996	65.05	-27.33	10	4.6	Ŧ	+69 4	46±1		+70	12 土4	A	26 ± 9		0.013	D D		34,V
			c.				-	-	69+	20	Ч	44 20		0.020	n n	25 100	
IN CI M	10.00	-21.51	10	0.4°0	Ŧ`+		0 1 1 1 1 1 1 1 1 1	Ef Call Ff Nal	+63 +54	14 ±9 8 1	≥ 3	29±19		0.013			2 2 2 2 2
M 15 S4	65.01	-27.31	10	ນ ແ 9.9	- Ŧ	+69 5	50 ± 1		+57	5.5	: ≥	11		0.0055	0 0 0		134,V
M 15 S7	64.93	-27.37	10		Ŧ		4 十1 1		+59	9.7	≥ i	22		0.011	U 4		34,V
M 15 S8 M 15 NW 2079	65.02 65.01	-27.31	010	9.4.0 7.0	ŦŦ	c 69+	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ef Nal	90+ 89+	1.1 5 0	≥ 2	4 (10		0.0070	U 41	. 4	134,V 34 135
M 15 SE core	65.01	-27.31	10		+ Ŧ		1+0 0 H		+00+	0.r 08<	zz	>160		>0.079			34,135
HD 203664	61.93	-27.46	4 . 3±0.4	t 2.0 B0.5III			2.2 ± 0.4		+70	1.7	z			0.038	Ď		2
								-	+81	9.0	z	410		0.19	U 58		
								(Call	69+	5.0	z,	230		0.10	n n	ଜ	
					+65a	5a 1.1	1) Call JB Nal	+/0 +80.2	$10 \\ 1.4 \pm 0.07$	ЧZ	450 120 ±6		0.059	U 102) U 82	50	
							1	-	+80.0	5.0 ± 0.5	z	440 ± 40		0.20) 20 0 D	10	
					+9;	+65b 0.53	3	JB Nal	-	0.16 ± 0.06	z;	30 ± 11		0.015	8 0 D :	0.0	
					191	650 0 53	5	Call Do Not	+/2•2	2.4 ±0.4 いち	z z	450 ± 80		0.20	∞° ⊃	20	
					.0+	C.V. 30	0		+69.8	2.4 ± 0.6	zz	440 ± 110		0.20	。 8 0	82 82	
HD 203699	65.53	-24.92	0.80 ± 0.1	0.80±0.10t 0.34 B2.5IV		+76 1	10 ± 1	Ef(Call	vì	<1.4 5.5	₿,	<13 2.5			(22)	6	
HD 205556	60.02	-32.62	0.40+0.1	0.40+0.10s 0.22 B9V	+	+57 2.	2.1 ± 0.6	Call JB Call	⊽ ×	<0.40 <1.4	≤∟	<5.8 <67				7 10	
							l		l		l		l	l			I

Note (20)	136	137 12,13,W	×	≥>			
D? Ref (18) (19)	58 25 22 25	17 94) 12 94) 107 107	70 50 62	$\begin{array}{c} & 0.2 \\$	25) 113 113 8 25) 25)	22 54 23 20) 25 20)	
D? (18	n n	מ מ	D II	L C C	nn	ΩΩ	
$ \begin{array}{c} A_{ref} & A/A_{\odot} \\ 10^{-9} & (16) & (17) \end{array} $	>0.019 0.043	>0.094 >0.013 >0.0095	0.011	×0.19 ×0.048	>0.046 >0.053	0.0044 0.036 0.023	
$\substack{A_{\rm ion}\\10^{-9}\\(15)}$	93	>3.3E4 >29 >21	<pre><190 <190 23 23 37</pre>	×2000 ×2000 ×2000 ×2000 ×2000 ×2000 ×2000 ×2000 ×2000	<1.0	9.7 79 51	
code (14)	LZZLZ	z≽ררר≰z	zz≽≽	es a e l's	ר≷רצר≰	LZZLZZ	
${}^{\rm N_{ion}}_{10^{11}{\rm cm}^{-2}}$	1.7 6.2 7.0 14 ± 2 10	>1000 <0.24 0.58 0.42	<5.4 <230 1.7 2.6	$^{-10}_{-190\pm 20}$	<pre><0.25 <0.20 1.5 1.7 <5.9 13</pre>	18 ± 2 6.3 ±1.0 10 1.9 6.3 6.3 4.1	
$\frac{v_{ion}}{km/s}$ 1 (12)	-43 -43 -39 -48	-70 > 1000 < 0.24 < 0.025 -80 0.58 -79.8 0.42	+43		+73 +77 +52	+64 +37 +97 +43 +42	
tel ion (10) (11)	GB Call PM Call Nal Call Call Call	Dw CII Ef(Nal Nal (Call Call	Dw Call Dw Sill Dw Nal Call	JB Call Ef Fell Ef Nal JB Call JB Sill	GB Nal GB Call GB(Call Call PM Call (Call (Call	Call PM Call Call Call Dw(Call Call Call	Continued
${ m km/s}^{ m V_{HI}} { m 10^{18} cm^{-2}}$ (8) (9)	≪4.0 6.6±3.0	3.02.0	2.9 ± 0.6 12 ± 4 7.1 ± 0.9	$\begin{array}{c} 3.8\pm\!0.4\\ <3.0\\ <3.0\\ <3.0\\ 2.4\pm\!0.04\\ 3.0\pm\!0.1\end{array}$	4.8±0.3 <1.5 124±1	103 ±0.5 8.0 ±3.0	TABLE 2—Continued
km/s] (8)	(43) - 35	(-70)	+61 +43 +43	+51 (+48) ((+82) (+38 +38	+45 +73 +76	+60	T/
Cld (7)		K			WW339		
$\begin{array}{c}z \\ \mathrm{kpc} \\ (5) \end{array} (6)$	ity IVCs 51.93 0.60±0.30t 0.47 B5IIIp -56.70 — — SN 22.95 — — Sey 22.94 0.40±0.03s 0.16 A0V	78.68 9.7 g 9.5 PAGB 46.93 0.90±0.20t 0.66 B3V	IVCs 31.60 5.5±0.6 s 2.9 RRLyr 35.71 0.72±0.33p 0.42 B3Vn 36.08 0.70±0.30a 0.41 sdB	2.9±0.7 a 2.7 sdB 	a 2.6 B1V g 1.7 GC — Sey	7 t 2.4 B3II 03s 0.16 A0V - SN - SN	
$\mathop{\rm kpc}\limits_{(4)}$	0.60±0. 	9.7 0-90±0	5.5±0.6 s 0.72±0.33p 0.70±0.30a	2.9±0.7 4.0 4.0 1.9	3.0	7.6±1.7 t 0.40±0.03s 	
ь (3)	ty IVCs 51.93 -56.70 22.95 22.94	78.68 46.93	y IVCs 31.60 35.71 36.08	70.44 65.96 48.29 62.21 62.15	61.23 -11.25 22.95	18.11 22.94 19.40 31.95	
<i>ا</i> (2)	Veloc 1.87 0.21 7.46	ums 42.50 167.70	ve-Velocity 64.84 70.99 75.43	141.93 150.75 162.56 182.16 183.14	258.85 61.23 282.19 -11.25 287.46 22.95	264.59 287.47 309.54 314.54	
Probe (1)	Other Negative-Velocity IVCs HD 137569 21.87 51.93 SN 1981 D 240.21 -56.70 NGC 3783 287.46 22.95 HD 101274 287.47 22.94	Mistaken claims M 3 vZl128 4 HD 83206 16	Other Positive-Velocity IVCs V421Her 64.84 31.60 HD 156110 70.99 35.71 PG 1710+490 75.43 36.09	PG 1213+456 141.93 SN 1998 S 150.75 PG 0229+064 162.56 BD+382182 182.16 HD 93521 183.14	HD 100340 NGC 2808 NGC 3783	HD 86248 HD 101274 SN 1986 G SN 1983 N	

NOTE.—Table 2 is available in machine-readable form in the electronic edition of the Astrophysical Journal Supplement.

 TABLE 3
 Solar and Halo Ion Abundances

<u></u>							
		A_{\odot}			A(halo)		IP
Ion	\logA_{\odot}	(ppb)	$\log \delta^{\mathrm{a}}$	δ^{a}	(ppb)	IP ^b (Produce)	(Destroy)
С 1	-3.45	350000	-3.15	0.0007°	$240 - 280^{\circ}$		11.26
Сп	-3.45	350000	-0.41	0.39ª	140000	11.26	24.38
С гу	-3.45	350000			$(N = 1.6 \times 10^{14})^{d}$	47.89	64.49
Νι	-4.03	93000	-0.07	0.85ª	79000		14.53
Ν Π	-4.03	93000	-1.20	0.068°	5500-7100°	14.53	29.60
N v	-4.03	93000			$(N = 3.5 \times 10^{13})^{d}$	77.47	97.89
О і	-3.13	740000	0.00	1.0ª	740000		13.62
О үг	-3.13	740000			$(N = 2.0 \times 10^{14})^{d}$	113.90	138.12
Na 1	- 5.69	2000	-2.30	0.005ª	$1.2 - 240^{\circ}$		5.14
Мд і	-4.42	38000	-2.50	0.003°	6.6-390°		7.65
Мg п	-4.42	38000	-0.42	0.38ª	14000	7.65	15.04
А1 п	-5.52	3000	-0.27	0.53ª	1600	5.99	18.83
А1 ш	-5.52	3000			$(N = 3.3 \times 10^{12})^{d}$	18.83	28.45
Si II	-4.45	35000	-0.27	0.53ª	19000	8.15	16.35
Si III	-4.45	35000	-1.00	0.1ª	3500	16.35	33.49
Si IV	-4.45	35000			$(N = 4.4 \times 10^{13})^{d}$	33.49	45.14
Рп	-6.43	370	0.00	1.0ª	370	10.49	19.73
S II	-4.73	19000	0.00	1.0ª	19000	10.36	23.33
S ш	-4.73	19000	-1.00	0.1°	590-3500°	23.33	34.83
С1 п	-6.73	190				12.97	23.81
Ar 1	-5.44	3600	-0.48	0.33ª	1200		15.76
К і	-6.87	135	-1.40	0.04°	$< 0.8 - > 9.2^{\circ}$		4.34
Са 1	- 5.66	2200	-3.30	0.0005°	$< 0.05 - > 1.7^{\circ}$		6.11
Сап	- 5.66	2200	-2.00	0.01°	2.5-570°	6.11	11.87
Ті п	-7.07	85	-0.45	0.35°	30	6.82	13.58
Сг п	-6.32	480	-0.50	0.32ª	150	6.77	16.50
Mn 11	-6.47	340	-0.59	0.26ª	87	7.44	15.64
Fe п	-4.49	32000	-0.62	0.24ª	7800	7.79	16.18
Fe ш	-4.49	32000	-1.50	0.03°	$270 - > 2900^{\circ}$	16.18	30.65
Zn II	-7.35	45	-0.03	0.93ª	42	9.39	17.96

^a δ is the product of depletion onto dust and ionization fraction typical for halo gas, as derived by Savage & Sembach 1996a.

^b IP stands for ionization potential.

° Value derived in this paper; for nondominant ions a range is given for the abundances, and an average for the value of δ .

^d Average column density toward the galactic pole, from Sembach & Savage (1992 and Savage et al. 2000b.

3. NOTES ON ION ABUNDANCES

3.1. General Remarks

3.1.1. Organization

In this section, some general remarks are given to accompany the discussion of results for most of the observed ions below. The symbol A refers to the abundance of the element, while δ is used to refer the ratio (observed abundance in the gas)/(solar abundance). Savage & Sembach (1996a, § 7) define δ in this way, but call it "depletion," implying that the gaseous abundances appear lower than solar because most of the element's atoms sit in dust grains. However, with this definition δ really refers to the combination of depletion and ionization, as both depletion onto dust grains and the presence of different ionization stages can make the elemental abundance in the gas appear lower than the intrinsic abundance. Here we will use δ to stand for the observed relative abundance in the gas, i.e., the product of depletion onto dust and ionization.

Below, some general remarks are given concerning reference abundances, oscillator strengths, complications due to ionization, and comparisons of different measurements of the same ion in the same cloud. A correlation between ion abundances and H I column density was found, which is summarized. Then, a summary is given of absorption by H I, which yields the kinetic (spin) temperature. Early results on molecular hydrogen are listed. Next, dominant ions of undepleted ions are discussed, which yield intrinsic abundances. This is followed by a discussion of dominant ions of depleted elements, which yield depletion patterns and insight into the presence (and composition) of the dust, Then, results for nondominant ions are summarized. Finally, the highly ionized ions are described. A more detailed discussion of the numerical results for each cloud is presented in § 4.

3.1.2. Reference Abundances

Reference abundances are summarized in Table 3, following Savage & Sembach (1996a). This table lists the Solar System (meteoritic) abundances of the element, as given by Anders & Grevesse (1989) (with photospheric updates for C, N, and O from Grevesse & Noels 1993), the depletion \times ionization (assuming a halo-like pattern, as given by Savage & Sembach 1996a), the resulting expected halo abundance (in parts per billion, ppb), and the ionization potential of the previous and next ionization stage (i.e., the energy required to produce and destroy the ion).

Solar System abundances are used as a reference because these are comparatively well determined. However, as Savage & Sembach (1996a) point out, abundances in nearby B stars tend to be 0.15–0.25 dex lower. Since B stars have formed recently, they may be a better reference for the local ISM. ISM abundances may also show inhomogeneities between individual open clusters. Such differences mostly influence the interpretation of depletion patterns and the composition of dust.

Meyer, Jura, & Cardelli (1998) determined from a set of high-quality measurements that the typical gaseous abundance of oxygen in nearby low-velocity gas is about 320,000 ppb, or 0.4 solar. They also argued that dust contains at most 180,000 ppb of oxygen, so that the total oxygen abundance in the nearby ISM is about 0.66 solar. This is similar to the value derived for nearby B stars. The suggested explanations are that (a) the early solar system was enriched by a supernova, (b) the ISM has recently been diluted by metalpoor gas, or (c) the Sun has moved outward from the Galactic center since it formed. This abundance difference is mostly important when using a depletion pattern to derive the composition of dust particles. Further, if the local ISM indeed has intrinsic abundances below solar, this has some bearing on understanding the origin of relatively nearby intermediate-velocity halo gas, which appears to have solar abundance (as derived from sulfur, see §§ 4.24, 4.26, 4.27, and 4.28).

For nondominant ions, the results listed in Table 2 were used to derive fiducial values for HVCs/IVCs. This pertains to C I, N II, Na I, Mg I, S III, K I, Ca I, Ca II, and Fe III. Table 3 shows the range of abundances found in the HVCs and IVCs for these elements [in the column labeled A(halo)]. An average value is given for δ . These abundances clearly can vary by a large amount, which is not unexpected considering that they depend on the detailed physical conditions in a cloud (temperature, density, radiation field).

Rarely are there complementary data for other ionization stages for clouds where nondominant ions were measured. And in cases where both kinds of ions have been measured, usually no analysis of physical conditions has been done the exceptions being HD 93521 (Spitzer & Fitzpatrick 1993), HD 215733 (Fitzpatrick & Spitzer 1997), SN 1987A (Welty et al. 1999), and PG 0804 + 761 (Richter et al. 2001a).

3.1.3. Oscillator Strength Issues

To convert the observed amount of absorption into a column density, it is necessary to know the oscillator strength or *f*-value of the line. For papers published since 1990, most authors take *f*-values from the list of Morton (1991). No attempt was made to correct column densities in older papers or papers where a different source was used for the *f*-values. In general, differences tend to be relatively small (<20%), although there are exceptions. Still, this is an extra source of systematic uncertainty in the tabulated column densities. If a paper gave the column density, this was used in Table 2, independent of the actual *f*-value and method used to derive this column density.

If a paper gave an equivalent width, this was converted to a column density as described in the Appendix under column (13). The *f*-value was then taken from the compilation of Verner, Barthel, & Tytler (1994), which claims to be a digitized update of the Morton (1991) list. For Si II λ 1260, Si II λ 1304, Si II λ 1526, Ar I $\lambda\lambda$ 1048, 1066, Cr II $\lambda\lambda$ 2056, 2062, 2066, and Zn II $\lambda\lambda$ 2026, 2062 updated values were taken from Savage & Sembach (1996a), while for Mg II $\lambda\lambda$ 1239, 1240 updated values were found by Fitzpatrick & Spitzer (1997). Further, for the Fe II lines between 1121 and 1144 Å, new *f*-values were determined experimentally from *FUSE* spectra by Howk et al. (2000).

However, for some lines the *f*-values that Verner et al. (1994) give are rather different than those given by Morton (1991). In particular, the ratio Verner/Morton is 0.95 for S II $\lambda\lambda$ 1250, 1253, 1259, 2.88 for N I $\lambda\lambda$ 1134.16, 1134.41, 1134.98, and 1.22 for N I $\lambda\lambda$ 1199.54, 1200.22, 1200.71. These differences are unexplained. However, for the case of N I the Morton values appear more reliable. This conclusion is based on comparing the relative equivalents widths predicted for the N I λ 1134 and N I λ 1200 triplets with the high-quality measurements made by Howk, Savage, & Fabian (1999) for the sight line to μ Col.

Morton (2001) present a new compilation of f-values. These may differ from the previously published values, sometimes by as much as a factor 2. However, such differences mostly pertain to far-UV lines in the wavelength range observed by *FUSE*. In the publications using such data, the new f-values have been used.

3.1.4. Ionization Issues

Note that the numbers in the table give the ratio N(ion)/N(H I). That is, they do *not* include a correction for hydrogen ionization. In fact, only for a few sight lines was a study of ionization possible. Toward HD 93521 (Spitzer & Fitzpatrick 1993) and HD 215733 (Fitzpatrick & Spitzer 1997) $N(H^+)/N(H_I)$ does not seem to be high in the IVCs studied. However, toward Mrk 509 Sembach et al. (1999) find that N(C IV) > N(C II), which suggests almost completely ionized gas. Also, toward Mrk 876 (Murphy et al. 2000) $N(H^+)$ appears to dominate in the complex C component. In contrast, toward Mrk 290 (complex C; Wakker et al. 1999a) and PG 0804 + 761 (LLIV Arch; Richter et al. 2001a) $N(H^+)/N(H I) \sim 0.2$, while toward HD 215733 hydrogen ionization appears negligible (Fitzpatrick & Spitzer 1997). Clearly, ionization issues are important in general, but usually they cannot be addressed with the existing data.

3.1.5. Multiple Measurements in One Cloud

For a few ions multiple determinations were made within the same cloud. This is the case for both Na I and Ca II in the IV Arch (§ 4.24), complex gp (§ 4.29) and the +65 km s⁻¹ IVC toward the LMC (§ 4.23). Further, Ca II is seen in several sight lines on complex A (§ 4.1), complex C (§ 4.3), the LLIV Arch (§ 4.26) and the HVCs toward the LMC.

These values are compared later in this section (§§ 3.5 and 3.6). There it is shown that in general Na I can vary by a factor of more than 10 within a single cloud and by a factor up to 100 for any given H I column density. Ca II is more constant, varying by a factor 2–5 within a single cloud, and a factor less than 10 at any given N(H I).

Multiple measurements were also made for S II in complex C, for Mg II in the Magellanic Stream, and for O I, Mg II, S II, and Fe II in the $+120 \text{ km s}^{-1}$ HVC toward the LMC. These are discussed under the subsection pertaining to each cloud (§§ 4.3, 4.14, and 4.23).

Figure 1 presents scatter plots of the H I column density versus the ion column density for the clouds with multiple determinations.

3.2. A Correlation between Ion Abundances and N(H I)

Previous studies of the depletion in the ISM have found that the abundance of elements such as Mg II, P II, Cl II, Mn II, Fe II, Ca II, and Ti II correlates with the average density of H I in the sight line (calculated as N(H I) divided

FIG. 1.—Scatter plots of [N(ion)/N(H I)] vs. N(H I) for the ions for which multiple determinations exist in a single cloud. Circles indicate actual measurements, triangles show lower limits. Closed symbols show measurements where both the H I and the ion column density were carefully measured. Open symbols refer to measurements where only the equivalent width was given, or where the H I data were interpolated (in the case of LMC stars). Note that three Ca II limits in the IV Arch and one in complex gp are off-scale. Most of the scatter at high N(H I) may be due to fine structure in N(H I), or to variations in depletion/ionization fraction. The scatter at low N(H I) is probably due to the ionization of hydrogen in the case of Mg II or to low dust content in the case of Ca II (see Wakker & Mathis 2000).

by the distance to the background star) (e.g., Jenkins, Savage, & Spitzer 1986; Crinklaw, Federman, & Joseph 1994).

In these studies of nearby, low-velocity gas the lowest observed H I column density is $\sim 10^{20}$ cm⁻². As HVC and IVC components stand out in velocity, it is possible to measure abundances in clouds with much lower column density, down to 10^{18} cm⁻². However, it is not possible to derive an average volume density since the cloud's distances and depths are not known. Instead, the gaseous abundances of Mg II, Mn II, Ca II, Ti II, and Fe II in HVCs/IVCs (from this paper) and low-velocity gas (from Jenkins et al. 1986 and Crinklaw et al. 1994) were plotted against H I column density (rather than against average H I volume density).

Unexpectedly, significant correlations were found. The high column density low-velocity gas and the low column density high-velocity gas lie on the same curves. Leastsquares fits yield a rms scatter of 0.3–0.4 dex around the mean, for N(H I) between 10^{18} and 10^{22} cm⁻². These results are presented in detail in a separate paper (Wakker & Mathis 2000) and have implications for the density structure of the ISM and for understanding the formation and destruction of dust. Here the fit results are used to predict abundances at a given N(H I); these predictions are compared to the actual observed values to help understand the observed abundance patterns.

3.3. H I 21 cm Absorption

21 cm H I absorption is seen in only four HVCs/IVCs. The radio continuum source showing absorption in complex H is unidentified but is probably extragalactic (Wakker, Vijfschaft, & Schwarz 1991). The derived spin temperature of 50 K is typical for cold gas. As $N(H I, absorption) \sim N(H I, emission)$, there appears to be no warm H I in the very core of complex H.

Three H I absorption components associated with the Anti-Center shell are seen in the spectrum of 3C 123 (Payne, Salpeter, & Terzian 1980; Kulkarni, Dickey, & Heiles 1985), although only one emission component can be discerned. The column density of the broad (30 km s⁻¹) absorption component is similar to that of the emission column density, suggesting the presence of mostly warm (T > 200 K) gas. One might argue that the feature sampled by 3C 123 is unconnected with the main AC Shell feature that runs at $b \sim 7^{\circ}$ from $l = 170^{\circ}$ to $l = 200^{\circ}$ (see Fig. 8), so a separate measurement of T_s in the main feature would be useful.

Relatively many radio continuum sources lie projected onto the Outer Arm, and H I absorption is seen toward two of those (3C 395 and QSO 2005+403—Payne et al. 1980 and Akeson & Blitz 1999), yielding a spin temperature of ~ 50 and ~ 150 K, respectively, i.e., typical values for Galactic H I. In several other background sources the lack of H I absorption sets lower limits of 300–1000 K, although a few of these may be Galactic sources in front of the Outer Arm. This deserves a more thorough study.

Payne et al. (1980) reported H I absorption associated with cloud R in the spectrum of 4C 33.48, which is probably an extragalactic radio source. The derived spin temperature is 69 K. The ratio of absorption to emission H I column density is only ~ 0.2 , suggesting that most of the H I is warm.

In all other cases where observations have been made, 21 cm H I absorption was not found. This often implies lower limits to the temperature of more than 20 K, which is not a very interesting limit. However, lower limits of 70 K or more have been found for complex C (Akeson & Blitz 1999), the Cohen Stream (Colgan, Salpeter, & Terzian 1990), the Magellanic Stream (Payne et al. 1980; Colgan et al. 1990; Mebold et al. 1991; Akeson & Blitz 1999) and complex K (Colgan et al. 1990).

3.4. Molecular Hydrogen

The study of H_2 in HVCs and IVCs is in its infancy. Attempts to detect molecular gas in HVCs using CO emission have always been unsuccessful (see Wakker et al. 1998). However, H_2 is easy to detect in ultraviolet absorption, as is shown by the recent *ORFEUS* (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer) and *FUSE* instruments. H_2 has now been found in two HVCs and three IVCs.

The first detection was that in the *ORFEUS* spectrum of Sk $-68^{\circ}82$ for the +120 km s⁻¹ cloud projected on the LMC (Richter et al. 1999). This was also measured by Bluhm et al. (2001) and yields a ratio for $N(H_2)/N(H I)$ of $3.0 \pm 0.6 \times 10^{-5}$, with $N(H I) = 12 \times 10^{18}$ cm⁻². However, toward the star Sk $-68^{\circ}80$ (less than an arcmin away) P. Richter (2000, private communication) finds no H₂, showing large variations on small scales in this cloud. The +60 km s⁻¹ cloud toward the LMC also contains H₂, with a fraction of 5×10^{-3} , although N(H I) is only $\sim 10^{18}$ cm⁻².

Murphy et al. (2000) reported a limit of $N(H_2)/N(H_1)$ < 10⁻⁵, for complex C, where $N(H_1) = 19 \times 10^{18}$ cm⁻². H₂ in the IV arch was found in the *ORFEUS* spectrum of HD 93521 (Gringel et al. 2000), where $N(H_1) = 37 \times 10^{18}$ cm⁻² and $N(H_2)/N(H_I) = 0.8 \pm 0.5 \times 10^{-5}$. H₂ in the LLIV arch was detected by Richter et al. (2001a), in the *FUSE* spectrum of PG 0804+761. The $N(H_2)/N(H_I)$ ratio there is 1.5×10^{-5} , with $N(H_I) = 35 \times 10^{18}$ cm⁻². H₂ is also found in the +240 km s⁻¹ HVC seen in the spectrum of NGC 3783 (cloud WW187), where $N(H_I) = 83 \times 10^{18}$ cm⁻² and $N(H_2)/N(H_I) = 0.8 \pm 0.2 \times 10^{-3}$ (Sembach et al. 2001).

Thus, high- and intermediate-velocity molecular hydrogen has been found, with molecular fractions that are not atypical for the amount of hydrogen in the sight line. This requires the presence of dust in the detected IVCs/HVCs, which is also suggested by the depletion pattern of these particular clouds. The only nondetection is toward complex C, where a smaller absolute amount of dust is expected because this cloud has low metallicity. However, it is unclear whether the sensitivity was sufficiently high to detect H₂ at the low H I column density. Further studies with *FUSE* show H₂ in all sight lines with an IVC, but not toward HVCs other than the Magellanic Stream.

3.5. Dominant Ions of lightly Depleted Elements

Intrinsic abundances can be determined or estimated using lines of N I, O I, P II, S II, and Zn II. That these elements are (almost) completely in the gas phase is an expectation based on measurements of low-velocity gas (Savage & Sembach 1996a). Results have been reported for seven clouds, as summarized below.

First, for HVC complex A an abundance of about 0.1 solar is suggested by the O I λ 1302 absorption seen toward I Zw 18 (Kunth et al. 1994). However, this measurement is based on a strong line, the error in the equivalent width is large and the component structure complicates matters further (see also § 4.1).

For complex C abundances were measured in two sight lines with high N(H I) (~90 × 10¹⁸ cm⁻²—Mrk 290 and PG 1259+593), two with intermediate N(H I) (~30 × 10¹⁸ cm⁻²—Mrk 817 and Mrk 279) and one with relatively low N(H I) (~20 × 10¹⁹ cm⁻²—Mrk 876).

A value of 0.09 ± 0.02 solar was measured for sulfur toward Mrk 290 (Wakker et al. 1999a), which was corrected for 20% H ionization (based on a measurement of H α emission) and for H I small-scale structure. Richter et al. (2001b) find O I/H I = $0.11^{+0.13}_{-0.08}$ solar toward PG 1259+593. O I is a particularly useful ion as it has an ionization potential similar to that of H I and its ionization is strongly coupled to that of hydrogen through a chargeexchange reaction (Sofia & Jenkins 1998).

Toward Mrk 876 Murphy et al. (2000) found $N(N I)/N(H I) \sim 0.08$ solar and N(Ar I)/N(H I) < 0.1 solar. N I and H I have similar ionization potential and the nitrogen ionization also tends to couple to that of hydrogen, although not as strongly as that of oxygen. Argon is a noble gas, and therefore probably undepleted. However, Ar I has a larger photoionization cross section than H I and is not coupled to H I. It is therefore more easily ionized than H I and in a situation where neutral and (photo-) ionized gas are mixed, Ar I can appear deficient. In the sight line toward Mrk 876 Murphy et al. (2000) further find that $N(Fe II)/N(H I) \sim 0.5$ solar. To reconcile this with the N I abundance requires a large H⁺/H I ratio.

For two other complex C probes (Mrk 817, Mrk 279) Gibson et al. (2001) found N(S II)/N(H I) = 0.3-0.4 solar. However, in neither of these directions has H I small-scale structure or ionization been taken into account. Ionization probably is important, since if photoionization is responsible for the H⁺, $N(H^+)$ should not vary by more than a factor ~2 across the face of the cloud. Since, in the sight line toward Mrk 290 $N(H^+)$ is ~2 × 10¹⁹ cm⁻², and toward Mrk 817 and Mrk 279 N(H I) is ~3 × 10¹⁹ cm⁻², the ionization correction could easily be a factor 2, bringing the S⁺ abundances in line with those found toward Mrk 290.

Two sulfur abundance measurements exist for the Magellanic Stream: 0.33 solar (Fairall 9, Gibson et al. 2000) and 0.25 solar (NGC 3783, Lu et al. 1998). Ionization corrections have not yet been addressed, but they are expected to be minimal as N(H I) is high and the gas is far from both the Galaxy and the LMC. Note that toward NGC 3783 a 1' resolution map of the H I small-scale structure resulted in a 50% correction of N(H I) (and thus the S⁺ abundance) relative to a measurement with a large beam (Lu et al. 1998).

For three sight lines through the IV Arch S II/H I ratios have been derived, resulting in values of 0.78 solar for IV9/ IV19 (HD 121800, Howk et al. 2001), 0.8 and 1.2 solar for off-core components at -58 and -51 km s⁻¹ (HD 93521, Spitzer & Fitzpatrick 1993), and 1.1 solar toward PG 0953+414 (Fabian et al. 2001). Further, O I/H I is found to be 0.9 \pm 0.7 solar toward PG 1259+593.

PG 0804+761 gives the best estimate of abundances in the LLIV Arch (Richter et al. 2001a). N(O I)/N(H I) is ~1 solar, while N(N I)/N(H I) is ~0.6 solar. The fact that $N(P II)/N(H I) \sim 1.3$ solar is interpreted as evidence that 20% of the H is in the form of H⁺, as P⁺ can coexist with H⁺ as well as with H I, whereas O I becomes ionized when H I gets ionized. This is supported by the value of 1.6 ± 0.4 solar for Zn⁺ (which behaves like P⁺) found from SN 1993J. The lower N I/H I ratio may be interpreted as evidence for partial ionization (following Sofia & Jenkins 1998), which is further supported by the low ratio $N(Ar I)/N(H I) \sim 0.3$.

Toward HD 215733 Fitzpatrick & Spitzer (1997) decomposed the H I spectrum based on the absorption components. This results in components at -92 km s^{-1} with $N(S II)/N(H I) = 0.17 \text{ solar, at} -56 \text{ km s}^{-1}$ with $N(S II)/N(H I) = 0.32 \text{ solar and at} -43 \text{ km s}^{-1}$ with N(S II)/N(H I) = 1.2 solar. The latter two are part of what is defined in this paper as the "PP Arch" (see § 4.28). The combined abundance is 0.5 solar. In both components Zn II absorption is also seen, yielding abundances of 0.23 and 0.95 solar, 0.37 solar when combined. Ionization appears to be unimportant as Fitzpatrick & Spitzer (1997) derive a low electron column density, but the complex component structure hampers the interpretation. Still, the measurements are consistent with an intrinsic abundance of ~0.5 solar for the PP Arch.

Penton, Stocke, & Shull (2000) fitted three components to the S II $\lambda\lambda 1250$, 1253, and 1259 lines in a GHRS spectrum of Mrk 509. One of these is at $+60 \text{ km s}^{-1}$ and is associated with complex gp. This spectrum is also shown (but not measured) by Sembach et al. (1999). Penton et al. (2000) give equivalent widths of 58, 85, and 30 mÅ for the three sulfur lines. The S II $\lambda 1259$ line is strongly blended with Si II $\lambda 1260$, and thus unreliable. The better view of the spectrum presented by Sembach et al. (1999) shows that the equivalent width must be about half the value given by Penton et al. (2000). Therefore, to calculate the S II column density, values of 29 and 42 mÅ were used. Using the H I line width of 29 km s⁻¹ seen in this direction, these equivalent widths imply an average S II/H I ratio of 0.8 solar. Since N(H I) is small (24.5 × 10¹⁸ cm⁻²), a large correction for H⁺ is quite possible, and the intrinsic abundance of complex gp remains unknown. However, this result strongly suggests that the abundance of complex gp is within a factor 2 of solar.

3.6. Dominant Ions of Depleted Elements

C II, Mg II, Si II.—Several depleted ions have very strong lines, reaching an optical depth of 3 for clouds with standard depletion patterns and solar abundances at quite low column densities ($\sim 2 \times 10^{18}$ cm⁻² for C II $\lambda 1334$, $\sim 10^{18}$ cm⁻² for Mg II $\lambda 2796$ and Si II $\lambda 1260$). These lines are therefore very useful for determining distance limits, but in general they are less useful for determining depletion patterns.

C II λ 1334 is clearly detected in many clouds and has been used to derive a lower distance limit for complex H. Unresolved Mg II $\lambda\lambda$ 2796, 2803 absorption has been seen in many AGNs observed with the FOS, as described by Savage et al. (2000a). Mg II λ 2796 is the main line used to derive lower distance limits for complexes A (Wakker et al. 1996a), C (de Boer et al. 1994), H (Wakker et al. 1998), the Cohen Stream and WW507 (Kemp et al. 1994), and the LLIV Arch (Wakker et al. 1996a), while Si II is the main ion used to derive limits for IV4, IV6, IV9, IV11, IV17, IV19, IV24, IV26, and the IV spur (Kuntz & Danly 1996).

For a few sight lines with low N(H I), Mg II $\lambda 2796$ has been used to derive the Mg II abundance: for complex C and cloud WW84 using Mrk 205 (Bowen, Blades, & Pettini 1995b), and for 11 sight lines through the Magellanic Stream (see § 4.14). Mg II $\lambda\lambda 1239$, 1240 has been measured toward SN 1987A (Welty et al. 1999), HD 93521 (Spitzer & Fitzpatrick 1993) and HD 215733 (Fitzpatrick & Spitzer 1997).

Al II, Al III, Cl I.—These ions are difficult to observe, and thus data exist only for three sight lines: 4 Lac (Bates, Catney, & Keenan 1990), SN 1993J (de Boer et al. 1993) and SN 1987A (Welty et al. 1999).

Ti II, Cr II, Mn II, Ni II.—These elements have weak lines and are rarely seen. In fact, Cr II and Ni II have only been found toward the IVC toward the LMC and in the PP Arch (Welty et al. 1999; Fitzpatrick & Spitzer 1997), while Ti II and Mn II are also seen in the IVC toward the LMC (Caulet & Newell 1996) and several IV Arch cores (Albert 1983; Albert et al. 1993; Spitzer & Fitzpatrick 1993; Lipman & Pettini 1995; Fitzpatrick & Spitzer 1997; Lehner et al. 1999a, Bowen et al. 2000).

Fe II.—This is the most useful ion for obtaining an indication of the presence and amount of dust in HVCs/IVCs, as it has many strong lines in the UV, with a large range of oscillator strengths. Sembach & Savage (1996) found that the depletion of Fe is maximal in cold disk gas (typically $\delta \sim 0.01$), less in warm disk gas ($\delta \sim 0.1$), and least in halo gas ($\delta \sim 0.2$). Higher gaseous abundances were not observed in the sight lines studied, which was interpreted by Sembach & Savage (1996) as evidence for a hard-to-destroy iron core of the dust particles.

High- and intermediate-velocity Fe II absorption has been seen in many clouds: complex C (Murphy et al. 2000; Richter et al. 2001b), the Magellanic Stream (Jannuzi et al. 1998; Savage et al. 2000a), WW187 (Lu et al. 1998), HVC 100-7+100 (Bates et al. 1990), the HVCs/IVCs toward the LMC (Savage & de Boer 1979, 1981; Welty et al. 1999; Richter et al. 1999), IV4 (Bowen et al. 2000), IV6 (Spitzer & Fitzpatrick 1993), the LLIV Arch (de Boer et al. 1993; Richter et al. 2001a), and the PP Arch (Fitzpatrick & Spitzer 1997).

For clouds where an undepleted element was also measured the ratio with Fe II can be derived and the depletion of Fe can be derived. This results in (Fe/N) > 5 solar for complex C (Mrk 876-Murphy et al. 2000; ionization corrections are likely to be large in this sight line, however); (Fe/N) < 1 solar and $(Fe/O) = 0.37 \pm 0.26$ solar in complex C (PG 1259+593—Richter et al. 2001b); (Fe/ $S = 0.19 \pm 0.07$ solar in the Magellanic Stream proper (PKS 0637-75 combined with Fairall 9-Jannuzi et al. 1998 and Gibson et al. 2000). (Fe/S) = 0.13 ± 0.05 solar in the leading arm (NGC 3783—Lu et al. 1998); (Fe/O) ~ 0.4 solar in the IV Arch (PG 1259+593—Richter et al. 2001b); $(Fe/S) \sim 0.2$ solar in the IV Arch (HD 93521—Spitzer & Fitzpatrick 1993); (Fe/O) ~ 0.27 solar and (Fe/P) ~ 0.2 solar in the LLIV Arch (PG 0804+762-Richter et al. 2001a), and $(Fe/S) \sim 0.2$ solar in the PP Arch (HD 215733—Fitzpatrick & Spitzer 1997).

Thus, the Magellanic Stream and three of the major IVCs appear to have Fe depletions of about a factor 5, which is similar to the typical halo value derived by Savage & Sembach (1996a). Note, however, that the IVC results for HD 93521 and HD 215733 were used to arrive at this typical value. Note also that Wakker & Mathis (2000) show that the apparent depletion of Fe II depends on N(H I). It is thus unclear whether the high Fe/S ratios in HVCs/IVCs are due to environmental conditions or to the fact that the HVC/IVC H I column densities are relatively low.

3.7. Nondominant Ions

Several nondominant ions have been seen. These are discussed individually below, in order to derive a reference value for incorporation in Table 3.

C I.—For this ion an abundance has been found for clouds WW187 (NGC 3783, 280 \pm 180 ppb—Lu, Savage, & Sembach 1994a) and the PP Arch (HD 215733, 240 \pm 30 ppb—Fitzpatrick & Spitzer 1997). Both values are about 0.2% of the reference C II abundance. C I was also seen in the +65 km s⁻¹ IVC in the SN 1987A sight line (Welty et al. 1999), with an abundance of 340 \pm 130 ppb [however, N(H I) is comparatively uncertain].

N II.—The *FUSE* bandpass contains the N II $\lambda 1083$ line, which is a good complement to the N I triplets at 1134 and 1199 Å. An analysis of the PG 0804 + 761 sight line yields an N II/N I ratio ~0.15 (Richter et al. 2001a). Only a lower limit to N II is found for complex C toward Mrk 876 (Murphy et al. 2000).

Mg I.—This ion has been measured toward HVC 100-7+110 (4 Lac, 100 ± 20 ppb—Bates et al. 1990), IV4 (SN 1998S, 6.6 ± 1.4 ppb—Bowen et al. 2000), the +120 and +60 km s⁻¹ clouds toward the LMC (Bluhm et al. 2001, with large errors but showing large variations), IV17 (SN 1998S, 36 ppb—Bowen et al. 2000), LLIV1 (SN 1993J, 44 ppb—de Boer et al. 1993), and the PP Arch (HD 215733, 30 ± 14 ppb—Fitzpatrick & Spitzer 1997). These values are 0.04%-0.7% of the reference for A(Mg II). The approximate values for the clouds in the SN 1987A sight line are slightly higher (110, 110, and 390 ppb, Welty et al. 1999). Since each of the listed clouds has near-solar abundance (see §§ 4.23)

and 4.24), there clearly are large variations in the relative Mg I abundance.

Only for the +165 and +122 km s⁻¹ LMC clouds and the PP Arch has an Mg II abundance also been measured directly. The resulting Mg I/Mg II ratios are 0.5%, 0.5%, and 0.3%, respectively.

Si III.—The 1206 Å line of Si III is very strong, so that all six detections only give lower limits to the Si⁺² abundance: in complex C (Mrk 876—Gibson et al. 2001), WW487 (NGC 1705—Sahu & Blades 1997), complex GCN (Mrk 509—Sembach et al. 1995b, 1999), complex WE (HD 156359—Sembach, Savage, & Massa 1991), the -150 km s⁻¹ and +130 km s⁻¹ clouds against PG 0953+414 (Fabian et al. 2001), and the +65 km s⁻¹ IVC toward the LMC (Sk $-67^{\circ}104$ —Savage & Jeske 1981).

S III.—This ion has only been seen in the three IVCs toward HD 93521, where the S III/S II ratios are 0.11, 0.04, and 0.15 (Spitzer & Fitzpatrick 1993).

K I.—This ion has weak optical lines. It was detected toward SN 1993J at +122 and +140 km s⁻¹ with abundances of >9.2 and >5.8 ppb (Vladilo et al. 1993, 1994). It was also detected in complex gp in the spectrum of M15 K144, with an abundance of 4.9 ppb (Kennedy et al. 1998), which is about 5% of the solar K abundance. However, Kennedy et al. (1998) did not detect K I toward the star M15 IV-38, with a limit of 0.82 ppb, suggesting large variations in the K I abundance on small scales.

Ca I.—Like K I, Ca I has weak optical lines and was found toward SN 1993J at +122 and +140 km s⁻¹ (Vladilo et al. 1993, 1994). The abundance is more than 1.7 ppb for both clouds. For the +165 and +65 km s⁻¹ clouds toward SN 1987A approximate abundances of 0.87 and 0.31 ppb were found, whereas for the +120 km s⁻¹ cloud an upper limit of 0.05 ppb was set (Magain 1987; Vidal-Madjar 1987; Welty et al. 1999).

Fe III.—The FUSE bandpass contains the Fe III $\lambda 1122$ line, which is a good complement to the many Fe II lines. The analysis of the PG 0804+761 sight line gives an Fe III/Fe II ratio ~0.03 for the LLIV Arch.

3.8. Na i

3.8.1. Na I Detections

In low-velocity gas, an average Na I abundance of ~ 5 ppb is seen, although the range is large (more than a factor 10 either way). Only one cataloged HVC has been detected in Na 1 absorption: cloud WW219 toward SN 1986G (d'Odorico et al. 1989) yields $A(\text{Na I}) = 50 \pm 10$ ppb. Highvelocity Na I has been searched for in only two stars known to be sufficiently distant. Yet, it was not detected toward BD +38°2182 (MIII-Keenan et al. 1995) and HD 83206 (WW63—Lehner et al. 1999a). Four extragalactic probes give upper limits: <4 ppb (Mrk 595, Cohen Stream-Kemp & Bates 1998), <55 ppb (Mrk 205, WW84—Bowen, Blades, & Pettini 1995a), <2.5 ppb (Fairall 9, Magellanic Stream—Songaila & York 1981), and <3.7 ppb (NGC 3783, cloud WW187-West et al. 1985). Considering the large observed range for N(Na I) in low-velocity gas, these limits clearly are not very significant.

Detections of Na I at high velocity have been reported for some extreme-positive velocity gas, in all but one case for directions where no H I was detected: SN 1993J (Vladilo et al. 1993, 1994), SN 1994D and SN 1994I (Ho & Filippenko 1995, 1996) give A(Na I) > 20 to > 800 ppb. In all these cases the rather large abundances and low value of N(H I) suggest that the gas is mostly ionized.

For the +65 km s⁻¹ IVC toward the LMC, Na I abundances in directions with $N(\text{H I}) > 5 \times 10^{18} \text{ cm}^{-2}$ vary by a factor of more than 10 (<7–70 ppb; see Fig. 1f). The highest abundances (>70 ppb) occur for two directions with low N(H I) (Sk -68°82 and Sk -71°03—Songaila & York 1981 and Songaila, Cowie, & York 1981).

In the IV Arch Na I detections exist for cores IV6, IV21, and IV26, as well as in some off-core probes (Benjamin et al. 1996; Ryans et al. 1997a; Lehner et al. 1999a). Abundances range from 0.57 ppb to 6.1 ppb, i.e., inside the range typical for low-velocity gas (Fig. 1*h*). One higher value (> 50 ppb for BD + 38°2182, Ryans et al. 1997a) is associated with a low value for N(H I), in which case ionization issues may be important.

The two measurements in the LLIV Arch yield normal abundances of 2.4 and 4.2 ppb (SN 1993J—Vladilo et al. 1993, 1994, HD 77770—Welsh, Craig, & Roberts 1996).

Toward several stars in M13 that probe complex K, Shaw et al. (1996) determined N(H I) at 1' resolution and found that Na I was not always detected toward stars with similar N(H I), giving limits A < 5 ppb, while the detections range from 13 ppb to 45 ppb.

Detections associated with complex gp toward eight stars in M15 yield abundances between 10 and 40 ppb (Morton & Blades 1986; Langer, Prosser, & Sneden 1990; Kennedy et al. 1998; Fig. 1*j*). Meyer & Lauroesch (1999) found a change from 10 to more than 160 ppb over several arcminutes in M15. These values were derived using N(H I)as measured at 9'.1 resolution and interpolated between nine beams placed at 5' intervals. When probed in the sight line toward HD 203664, this IVC shows three absorption components with an average abundance of 77 ppb (Ryans, Sembach, & Keenan 1996). Finally, toward Mrk 509 A(Na I) = 10 ppb (York et al. 1982).

Thus, for the IV and LLIV Arch, A(Na I) tends to be similar to that in low-velocity gas, whereas for the IVC toward the LMC and complex gp it is higher. Further, within a single cloud the measured abundance can vary by a factor of more than 10.

3.8.2. Correlation between A(Na I) and N(H I)

Figure 2a shows the correlation between A(Na I) and N(H I) for the high- and intermediate-velocity detections. The mostly horizontal straight line is the relation claimed by Ferlet, Vidal-Madjar, & Gry (1985b) for low-velocity H I (log $N(\text{Na I}) = 1.04 \log N(\text{H I}) - 9.09$), while the dotted lines show the 1 σ spread in that relation (0.5 in the log). Note that this relation is supposed to correlate N(Na I) with the combined atomic and molecular column density, not just the neutral hydrogen column density. For HVCs and IVCs, $N(\text{H}_2)$ is relatively low, so $N(\text{H}) \sim N(\text{H I})$. This correlation is often used to infer N(H I) from a measurement of N(Na I). For instance, Ho & Filippenko (1995) stated that the Na I column density for the +243 km s⁻¹ component seen in the spectrum of SN 1994D implies that N(H I) should be $\sim 6 \times 10^{19} \text{ cm}^{-2}$.

However, the N(Na I) versus N(H I) relation is not as well defined as it has been made out to be, and here it is shown to be invalid for the HVC/IVC gas. Also, Welty, Hobbs, & Kulkarni (1994, § 4.3) pointed out that below $N(\text{H I}) = 10^{19}$ cm⁻² the relation was defined from five points, three of which they showed to be inaccurate. Welty et al. (1994) also

point out that Ferlet et al. 1985b) mixed Na I/H I ratios derived for individual components with velocity-integrated values, which is invalid if the abundance versus N(H) relation is not linear. Finally, the spread in the nominal relation is large: for any given value of N(Na I), the predicted value of N(H I) has a range of at least a factor 100.

In the case of the HVCs/IVCs, a direct observation of N(H I) toward SN 1994D shows that $N(\text{H I}) < 2.5 \times 10^{18}$ cm⁻² (Paper II), a factor 25 lower than would be inferred from N(Na I). For the HVC/IVC points in Figure 2*a* the formal fit shows a nonlinear correlation, but the 1 σ range of log N(Na I) at any given value of log N(H I) is ± 1 , even larger than the ± 0.5 shown by Ferlet et al. (1985b) for low-velocity gas. Thus, for any given N(H I) there is a range of about a factor 100 in the Na I column density, rather than the factor 10 for low-velocity gas. In conclusion, for high-and intermediate-velocity gas N(Na I) is an even worse predictor of N(H I) than it is for low-velocity gas.

3.9. Са п

3.9.1. Ca II Abundances in HVCs

The most important nondominant ion is Ca II. HVCs and IVCs have H I column densities in the range a few 10^{18} to 10^{20} cm⁻², and the Ca II abundance then tends to be 10-100 ppb, which corresponds to a logarithmic value for the product depletion × ionization (log δ) of -1.3 to -2.3. Ca II has been detected in many different clouds, HVCs as well as IVCs, often in multiple sight lines through the same cloud. It is therefore possible to check the constancy of its abundance across a cloud. So far, assuming constant Ca II abundance appears to be reasonable, although it may be even better to calculate a predicted value for A(Ca II) using the observed correlation between A(Ca II) and N(H I) (see Wakker & Mathis 2000). This correlation can also be seen in Figure 2b, which shows N(Ca II) versus N(H I).

Ca II is detected in the following HVCs: complex A (Mrk 106-Schwarz, Wakker, & van Woerden 1995; AD UMa-van Woerden et al. 1999a), complex C (Mrk 290 and PG 1351+640-Wakker et al. 1996a), cloud MIII (BD +38°2182-Ryans et al. 1997a), cloud IV4 (SN 1998S-Bowen et al. 2000), complex WB (PKS 0837-12-Robertson et al. 1991), the Magellanic Stream (Fairall -Songaila 1981, NGC 3783-West et al. 1985), and cloud 9 WW219 (SN 1986G-d'Odorico et al. 1989). For eight components with $N(\text{H I}) = 30-90 \times 10^{18} \text{ cm}^{-2} \text{ six Ca II abun-}$ dances are in the range 12-27 ppb, while a high value of 69 ppb is found toward NGC 3783 and a low value of 3.3 ± 0.9 ppb is found toward SN 1998S in IV4. The latter may be low because IV4 shows a disklike (i.e., more depleted) pattern, rather than the halo-like pattern seen in other HVCs (see § 4.2). The A(Ca II) - N(H I) correlation (Wakker & Mathis 2000) predicts a range of 8–18 ppb for the H I column densities in these components.

In five lower column density components (N(H I) < 8×10^{18} cm⁻²) the values are higher, 110–290 pbb, where the A(Ca II)-N(H I) correlation predicts a range of 53–440 ppb for the observed H I column densities.

Within a single complex multiple determinations are within a factor 2.5 of each other (18/21 ppb in complex A, 21/12/18 ppb in complex C, 27/69 ppb in the Magellanic Stream). However, the H I column densities in these directions are also within a factor 2 of each other, so that the abundances are expected to be similar.

FIG. 2.—Correlations for Na I and Ca II. (a, b): log N(Na I) and log N(Ca II) vs. log N(H I). The straight line in panel (a) shows the relation claimed by Ferlet et al. (1985a, 1985b). The dotted line indicates the 1 σ spread in that relation. $(c, d) \log A(\text{Na I})$ and log A(Ca II) vs. v_{LSR} ; A(Ca II) appears to be higher in positive-velocity clouds, but this may be biased by the fact that many of these directions have low N(H I). (e, f) ratio of A(Ca II) and A(Na I) vs. v_{LSR} , showing that above $|v_{\text{LSR}}| = 50 \text{ km s}^{-1}$ there is no obvious Routly-Spitzer effect.

Ca II absorption without associated high-velocity H I was seen toward four extragalactic supernovae (SN 1983N d'Odorico, Pettini, & Ponz 1985; SN 1991T—Meyer & Roth 1991; SN 1993J—Vladilo et al. 1993, 1994; SN 1994D—King et al. 1995) and two stars (BD + 38°2182— Keenan et al. 1995 and HD 83206—Lehner et al. 1999a). Note that Lehner et al. (2001) conclude that the absorptions toward HD 83206 actually are stellar S I lines This sets lower limits to A(Ca II) of >27 to >500 ppb. In all cases, the H I column density must be very low (<few 10¹⁸ cm⁻²), so the limit on the abundance is below (and thus consistent with) the value predicted from the A(Ca II)-N(H I) relation that is discussed by Wakker & Mathis (2000).

3.9.2. Ca II Abundances in HVCs/IVCs toward the LMC

Many detections exist toward the HVCs/IVC toward the LMC. If the H I column densities toward the background stars were more reliable, this cloud would provide an ideal

testing ground to look for abundance variations. However, many H I column densities are interpolated between three directions (see item PI in the description of col. [10]), or based on using a ruler on the plots of Wayte (1990) (item PR). Still, some patterns do emerge, see Figs. 1g, 1h, and 1i). Excluding two discrepant values from Songaila et al. (1981), in the two HVCs (at +165, and +120 km s⁻¹) the abundance range is about a factor 5 (26-110 ppb and 20-100 ppb, respectively), when $N(\text{H I}) > 4.5 \times 10^{18} \text{ cm}^{-2}$, while for sight lines with lower N(H I) the typical abundances are higher (180-370 ppb and 160-1300 ppb, respectively). The pattern in the IVC is similar, but with higher values. A(Ca II)ranges from 31 to 230 ppb for $N(\text{H I}) > 4.5 \times 10^{18} \text{ cm}^$ with two outliers at 400 and 480 ppb [both have interpolated N(H I)], and from 80 to 430 ppb at lower N(H I). This cloud shows an unusual depletion pattern for all the other elements (see Welty et al. 1999), which may indicate that unusual processes are going on.

3.9.3. Ca II Abundances in IVCs

Many detections exist in the IV Arch (Fig. 1c) (Wesselius & Fejes 1973; Albert 1983; Songaila et al. 1985, 1988; Spitzer & Fitzpatrick 1993; Albert et al. 1993; Schwarz et al. 1995; Wakker et al. 1996b; Ryans et al. 1997a; Lehner et al. 1999a; Ryans et al. 1999; van Woerden et al. 1999b; Bowen et al. 2000).

Within a single core some variations exist: 16/26 ppb in IV17, 13/37 ppb in IV19, 4.6/11 ppb in IV26. Between cores the variations are larger: 30 ppb in IV6, 23 ppb in IV7, 7.5 ppb in IV9. Outside cores the range is 8-55 ppb. Clearly, variations are about a factor 5. However, this relatively small range may be an artifact of the small range in N(H I), as for 15 out of 19 cases the observed value is within a factor 3 of the value predicted by the A(Ca II)-N(H I) relation discussed by Wakker & Mathis (2000). One of the exceptions is BD $+49^{\circ}2137$ where two Ca II components are seen, but only one H I component can be measured.

Abundances in the LLIV Arch have been measured toward eight different background probes (Fig. 1b) (Vladilo et al. 1993, 1994; Welsh et al. 1996; Ryans et al. 1997b; Lehner et al. 1999a), and tend to lie in the narrow range of 12–17 ppb (with two outliers at 9 and 2.5 ppb; for the latter the derived H I column density is probably affected by the spectral decomposition). Thus, variations appear to be very small, and on average the value is lower than in other clouds. This is consistent with the warm-disk-like depletion pattern for this object (§ 4.26). The values predicted from the A(Ca II)-N(H I) relation discussed in § 3.6 lie in the range 9–26 ppb, i.e., the low Ca II abundance may also be due to the relatively high H I column densities seen in the LLIV Arch.

A cloud where future work will allow a study of smallscale variations in A(Ca II) is complex gp (see § 4.29), which is probed by the globular cluster M15 (Fig. 1e). Meyer & Lauroesch (1999) found that toward M15 the Na I abundance varies from 10 to 160 ppb (i.e., a factor 16) on a scale of a few arcsec. Lehner et al. (1999b) measured N(Ca II)toward 12 stars but did not provide a detailed H I map. N(H I) was measured at nine positions with Effelsberg and interpolated to the stellar positions. This results in abundances of 20-55 ppb. The same IVC is also seen toward Mrk 509 [A(Ca II) = 74 ppb; York et al. 1982] and toward HD 203664, where N(H i) is very low $(2.2 \times 10^{18} \text{ cm}^{-2})$, and the Ca II abundance is correspondingly high (440 ppb; Ryans et al. 1996). The A(Ca II)-N(H I) relation (Wakker & Mathis 2000) predicts values that are a factor \sim 3 lower, i.e., the Ca II abundance in complex gp is relatively high compared to expectations.

3.9.4. Correlations between N(Na I), N(Ca II) and Velocity

For the IVCs and HVCs no evidence exists for a correlation between velocity and Na I (or Ca II) column density (Figs. 2c and 2d). For low-velocity gas, Routly & Spitzer (1952) found that the column density ratio N(Ca II)/N(Na I)increases with LSR velocity. Vallerga et al. (1993) show that the effect occurs when studying nearby (<100 pc), lowvelocity (<20 km s⁻¹) gas, while Sembach & Danks (1994) find a correlation of this ratio with the deviation velocity (the difference between the observed LSR velocity and the maximum velocity that is expected from a simple model of galactic rotation), but only for gas with LSR velocities below 50 km s⁻¹. This effect is usually interpreted as showing that Ca is less depleted at higher peculiar velocities. Figures 2e and 2f show that the Ca II/Na I column density ratio does not depend on velocity for sight lines through IVCs and HVCs. This is not entirely unexpected since for the HVCs/IVCs the LSR velocity is not a good measure of the peculiar velocity relative to their surroundings. Further, it should be noted that components at higher velocity tend to have lower column density. Wakker & Mathis (2000) showed that on average the abundance of Na I is independent of N(H I), whereas A(Ca II) is larger at lower N(H I). Thus, the Ca II/Na I ratio depends on N(H I), which tends to be lower at higher velocity.

3.9.5. Implications of the Na I and Ca II Results

Na I varies by a factor of more than 10 within clouds and by an even larger factor between clouds. Ca II also shows a large range (a factor >100), although at any given H I column density the range is more like a factor 10), and within any given cloud the range is a factor up to ~ 5 .

These results can be used to derive a safety factor for interpreting the significance of a nondetection of Na I or Ca II. This is discussed in more detail in the Appendix, under the description of column (18). In summary, H I small-scale structure requires a safety factor ~ 2 . For both Na I and Ca II the depletion is uncertain by a factor ~ 2.5 . The ionization is uncertain by a factor ~ 2 for Ca II, ~ 5 for Na I. Finally, if the ion abundance in the cloud has to be assumed (rather than being measured toward another probe), a final factor ~ 2 is needed.

Thus, in practice nondetections of Na I never result in a lower limit to a cloud distance, as the combined safety factor needs to be 25–50. Since at an abundance of 4.6 ppb τ (Na I D2) is 0.022 (N(H I)/10¹⁹), a significant nondetection requires a spectrum with S/N > 1000–2000 [10¹⁹/N(H I)]. Thus, although Na I tends to be the easiest interstellar line to observe, it is hard to determine upper limits to HVC/IVC distances and not useful for determining lower limits. None of the published nondetections can be considered to give a significant lower distance limit.

Ca II gives much stronger absorption than Na I (τ (Ca II K) is 0.13 (N(H I)/10¹⁹) for a standard abundance of 22 ppb). Thus, a spectrum with S/N > 75–100 [10¹⁹/N(H I)] can yield a lower distance limit. However, it remains necessary to derive A(Ca II) for any given cloud. Also, such S/N ratios are difficult to achieve for the more distant, fainter stars that will be needed to derive distances to HVCs.

3.10. Highly Ionized Species

For the high-ionization ions (C IV, N v, Si IV), the results of Sembach & Savage (1992) were used to provide fiducial values for the column density. They found that, on average, $N(C IV) = 1.6 \times 10^{14} \text{ cm}^{-2}$ toward the Galactic pole. Averages for the other ions follow from the average ratios they give, yielding $3.5 \times 10^{13} \text{ cm}^{-2}$ for N v, and $4.4 \times 10^{13} \text{ cm}^{-2}$ for Si IV.

Preliminary results for halo O vI were presented by Savage et al. (2000b), showing column densities in the range $1-7 \times 10^{14}$ cm⁻². The polar value (the average of N sin *b*) is about 2×10^{14} cm⁻².

C IV.—High-velocity C IV is observed in the Outer Arm (H 1821+643—Savage, Sembach, & Lu 1995), complex GCN (Mrk 509 and PKS 2155-304—Bruhweiler et al. 1993; Sembach et al. 1999), in the +65 and +120 km s⁻¹ IVCs toward the LMC (Savage & Jeske 1981; Savage et

al. 1989; Bomans et al. 1996), IV6 (HD 93521—Spitzer & Fitzpatrick 1992), IV9/IV19 (HD 121800—Howk et al. 2001), LLIV1 (SN 1993J—de Boer et al. 1993), and the PP Arch (HD 215733—Fitzpatrick & Spitzer 1997). The more reliable determinations have column densities in the range $2.4-6.0 \times 10^{13}$ cm⁻², i.e., a factor 3–6 below the typical value though the Galactic halo. Higher values exist toward Mrk 509 (>1.6 × 10¹⁴ cm⁻²) and SN 1993J (>2 × 10¹⁴ cm⁻²).

N v.—N v was observed but not detected toward five AGNs with high-velocity gas in the sight line (H 1821+643—Savage et al. 1995; Fairall 9—Lu et al. 1994b; NGC 3783—Lu et al. 1994a; Mrk 509 and PKS 2155-304—Sembach et al. 1999), although the upper limits are only $1-5 \times 10^{13}$ cm⁻², i.e., comparable to the total amount through the Galactic halo. A small amount of high-velocity N v was found in complex WE, toward HD 156359, with a column density of 5.8×10^{12} cm⁻² (Sembach, Savage, & Lu 1995a).

O vI.—Sembach et al. (2000) found high-velocity O vI absorption associated with complex C (Mrk 876), complex GCN (toward Mrk 509 and PKS 2155–304), the Magellanic Stream (three sight lines) and the Outer Arm (H 1821+643), with column densities that are a significant fraction of the total O vI column density in these directions. Note: Further study with *FUSE* shows high-velocity O vI in ~50 out of 100 observed sight lines, associated with both complex C and the Magellanic Stream, as well as away from directions with high-velocity H I.

Si IV.—High-velocity Si IV was found toward Mrk 509 (Sembach et al. 1999) and SN 1993J (de Boer et al. 1993) with column densities of ~ 2.5×10^{13} cm⁻². Intermediatevelocity Si IV has been detected toward IV6 (HD 93521— Spitzer & Fitzpatrick 1992), LLIV1 (SN 1993J—de Boer et al. 1993), the PP Arch (HD 215733—Fitzpatrick & Spitzer 1997), and the +65 and +120 km s⁻¹ HVC toward the LMC (Savage & Jeske 1981; Savage et al. 1989). The measured column densities range from 5.9 to 82×10^{12} cm⁻², where for low-velocity gas values between 50 and 100×10^{12} cm⁻² are typical for the galactic latitude range of the probes.

4. NOTES ON INDIVIDUAL CLOUDS

In this section, some remarks are made concerning the metallicity and distance determinations for each listed cloud. For about half the clouds a map is presented that shows the positions of the probes relative to the H I. Further, for 18 clouds the pattern of abundances is plotted in Figure 3, where it is compared to the standard patterns for cool disk, warm disk and halo gas.

An estimated mass range is given for most of the clouds, using the observed distance range. For the HVCs the mass is based on the integrated flux measured by Hulsbosch & Wakker (1988). The flux, S, is converted to an H I mass $(M_{\rm HI} = 0.236 \ (S/Jy \ {\rm km \ s^{-1}}) \ (D/1 \ {\rm kpc})^2 \ M_{\odot}$. In the case of IVCs, a column density map is made using the LDS survey, and this is summed over an irregular region outlining the cloud. Since each beam represents an area $A = 7.25 \times 10^{38}$ cm² at a distance of 1 kpc, the sum is multiplied by $Am_{\rm H}/M_{\odot}$ to obtain the cloud mass at a distance of 1 kpc. In both cases, a (hopefully typical) factor 1.2 is included to account for ionized hydrogen, and a factor 1.39 is included to account for helium.

4.1. Complex A

This is the only HVC for which a distance bracket is known: 4.0–9.9 kpc, which implies a mass of $0.3-2 \times 10^6$ M_{\odot} . Figure 4 shows the velocity field and probe positions. The bracket is based on the stars AD UMa (van Woerden et al. 1999a) and PG 0859+593 (Wakker et al. 1996a). The nondetection of Ca II in PG 0832+675 (d = 8.1 kpc) is not significant, the limit being only a factor 2 below the value measured toward Mrk 106 and AD UMa. Note: The *FUSE* spectrum of PG 0832+675 yields a significant nondetection for C II, O I, and Fe II.

Welsh et al. (1996) did not detect Ca II and Na I toward three stars (HD 77770, HD 75755, and HD 68164), and claimed to derive a lower limit of 1 kpc from this result. However, this provides a clear example of the difficulties of interpreting nondetections, as all their limits are similar to the values observed in more distant targets. They are thus not significant in terms of setting a lower distance limit.

The metallicity of complex A has not vet been determined, due to a lack of known UV-bright background probes. O I $\lambda 1302$ and Si II $\lambda 1304$ associated with complex A were seen in the spectrum of I Zw 18 by Kunth et al. (1994). The low flux of that galaxy makes the measured equivalent widths of 310 ± 100 mÅ and 110 ± 75 mÅ rather uncertain. The derived abundances of course depend on the assumed line width and component structure. The most likely case is that the absorption width is comparable to the H I line width of 53 km s⁻¹. Then the O I abundance is $0.06^{+0.07}_{-0.03}$ times solar. If a two-component structure is assumed, with two equal lines with the same intrinsic width, the derived O I abundance is $0.09^{+0.3}_{-0.06}$ solar (for widths of 20 km s⁻¹) to $0.05^{+0.05}_{-0.02}$ solar (for widths of 30 km s⁻¹). Thus, for reasonable assumptions, the implied O I abundance of complex A is most likely to be on the order of 0.05–0.1 solar, though the uncertainty is large.

Combined with the Mg II and Ca II abundances, a halolike depletion pattern is suggested for complex A (Fig. 3a). It is clear, however, that better measurements at higher angular and spectral resolution are needed to confirm this.

4.2. Complex M

Complex M consists of several clouds. These have similar velocities but they are not connected. Whether these clouds are spatially close or only close in position on the sky is an open question, though the former seems most likely. The different clouds in the complex are discussed separately below. Figure 5 shows the positions of the probe stars.

Cloud MI has the most negative velocities (< -100 km s⁻¹), and lies at longitudes $l > 150^{\circ}$; it was also classified as IV2 by Kuntz & Danly (1996). The Ca II nondetections in Schwarz et al. (1995) turn out to be not significant, so no distance limits are known. Its mass is $4 \times 10^3 (D/1 \text{ kpc})^2 M_{\odot}$.

Tufte et al. (1998) observed H α and [S II] λ 6716 emission associated with cloud MI (see Wakker & van Woerden 1991), in the direction of the brightest H I emission in cloud MI. So far, this is the only observation of [S II] emission in a HVC or IVC. The observed [S II]/H α ratio is 0.64 \pm 0.14. This can be used to constrain the metallicity of cloud MI. To do this three assumptions are needed: (a) what is the geometry? (b) what is the temperature? and (c) what is the fraction of S⁺²? It is most likely that toward the bright H I core the cloud has a neutral core surrounded by a fully

FIG. 3.—Abundance [i.e., N(ion)/N(H I)] patterns in 18 selected HVCs/IVCs where multiple elements have been measured. The elements are ordered in terms of decreasing reference abundance in halo gas. The dotted lines shows the patterns for cool disk, warm disk, and halo gas (Savage & Sembach 1996a), shifted by the overall metallicity. The latter is given in parentheses after the cloud name and is derived from the results for undepleted elements. Note that the halo pattern was *derived* from the IVCs in the direction of HD 93521 and HD 215733. Error bars are usually smaller than the size of the dots. Closed circles show good measurements. Open circles indicate only the equivalent width was published. Downward-pointing open triangles indicate an upper limit. Upward-pointing closed triangles indicate lower limits.

ionized envelope. A temperature in the range 6000–10,000 K is suggested by the systematic study of H α and [S II] emission at heights up to 1 kpc above the Perseus arm (Haffner et al. 1999). They also find that $N(S^{+2})/N(S^{+})$ lies in the range 0.3–0.7. With this range of parameters, the S⁺ abundance of cloud MI has a most likely value of ~0.8 solar but is only restricted to lie in the range 0.4–1.8 times solar. That is, a metallicity of ~0.1 solar such as that found for complex C (see § 4.3) is excluded, and the most likely value is consistent with the idea that complex M is part of

the IV Arch, for which near solar metallicity has been found (see \S 4.24).

Toward lower longitudes, the velocity of MI changes to $\sim -80 \text{ km s}^{-1}$. This part was classified as IV4 by Kuntz & Danly (1996) and is probably part of the IV Arch (see § 4.24). Behind IV4 lies SN 1998S, which was observed by Bowen et al. (2000). The Ca II, Mn II, and Fe II abundances (3.3, 44, and 1600 ppb) are more like those in warm disk gas (6.9, 42, and 1800 ppb) than like in halo gas (69, 87, and 7800 ppb) (see also Fig. 3e). The same can be said for the

FIG. 4.—Map of HVC complex A, from Hulsbosch & Wakker (1988). Contours indicate brightness temperature levels of 0.05, 0.3, 0.6, and 1 K. The gray scale shows velocities, as identified by the wedge. The core names are shown, as are the positions of probe stars. Closed symbols refer to detections, open symbols to nondetections. The structure in the upper right corner is HVC complex C.

abundance ratios (e.g., Ca II/Mn II = 0.08 in IV4, 0.16 in warm gas, and 0.79 in halo gas). Such abundances are consistent with the small distance of 0.6–0.8 kpc (z = 0.5–0.7 kpc) that can be derived by combining the detection of Si II toward BD +49°2137 with the nondetection of Si II toward HD 106420 (Kuntz & Danly 1996). Ryans et al. (1997a) did not detect Ca II toward BD +49°2137 nor toward PG 1213+456 (at 2.9 kpc), but the limits of <2.1 and <50 ppb are not inconsistent with the value of 3.3 ± 0.9 ppb found toward SN 1998S. Note also that the distance of BD +49°2137 was revised from 1.8 kpc (Kuntz & Danly 1996) to 0.8 kpc by Ryans et al. (1997a). It remains to be seen whether this distance bracket applies to the higher velocity part of cloud MI. The mass of IV4 is constrained to the range $1.5-2.5 \times 10^3 M_{\odot}$.

In the gap between clouds MII and MIII lie BD $+38^{\circ}2182$ and HD 93521, which are just 3' apart, C II, O I, Si II, and Ca II absorption at the velocity of MIII are clearly seen toward BD $+38^{\circ}2182$, and clearly absent toward HD

93521 (Danly, Albert, & Kuntz 1993). Taking the distance to BD $+38^{\circ}2182$ from Ryans et al. (1997a), this sets an upper limit on the distance of MII/MIII of 4.0 kpc and an upper limit on the mass of $6 \times 10^4 M_{\odot}$. However, no strong lower limit can be derived from HD 93521, as a 12' beam H I spectrum shows no emission at the velocity of the absorption toward either star, down to a 5 σ limit of 0.5 \times 10¹⁸ cm^{-2} (Ryans et al. 1997a). If H⁺ were present, no O I absorption is expected, but C II and Si II should still be seen. It remains unclear whether the high-velocity absorption toward HD 93521 is absent because the cloud is behind the star or because there is no high-velocity material in the sight line. The position in the sky of MII/MIII and their velocity strongly suggest that these clouds are part of the IV Arch. A lower distance limit of 1.9 kpc would then be at odds with the other distance brackets derived for the IV Arch (see § 4.24).

Ryans et al. (1997b) and Lehner et al. (1999a) reported Ca II absorption at a velocity of -108 km s^{-1} in the spec-

FIG. 5.—Map of HVC complex M, from Hulsbosch & Wakker (1988). Contours indicate brightness temperature levels of 0.05, 0.3, 0.8, and 2.5 K. The gray scale shows velocities, as identified by the wedge. The core names are shown, as defined by Wakker & van Woerden (1991) and Kuntz & Danly (1996). Closed symbols refer to detections, open symbols to nondetections.

trum of HD 83206. No H I is seen at this velocity down to a limit of 2×10^{18} cm⁻². The nearest H I cloud with similar velocity in the HVC survey of Hulsbosch & Wakker (1988) is 1°.5 away (cloud WW63; $v_{LSR} = -112$ km s⁻¹; $l = 166^{\circ}$, $b = 46^{\circ}$), although this faint cloud cannot be discerned in the Leiden-Dwingeloo Survey. Just north of this position are the southernmost clouds of complex M (specifically WW51 and WW39, as well as some uncataloged clouds, all with velocities ~ -120 to ~ -100 km s⁻¹). Lehner et al. (2001) revisit these lines and conclude that they are stellar S II.

4.3. Complex C

Since complex C covers a large area of the sky (1600 square degrees), and since it contains a number of well-defined cores, it was split into five parts in Table 2. CI-A,B, C and CIII-A,B,C were defined by Giovanelli, Verschuur, & Cram (1973). "C-south" refers to the lower latitude part of C at longitudes greater than 80° (for a precise specification see Note 30). The core at $l = 68^\circ$, $b = 38^\circ$ ("CeI") was previously named "C-extension" by Giovanelli et al. (1973). Here cores CeI through CeV are defined by analogy. Complex D was defined by Wakker & van Woerden (1991); core "CD" within complex C is defined here as the core at $l = 90^\circ$, $b = 34^\circ$, $v_{LSR} < -150$ km s⁻¹, which is close to

complex D and has similarly high-negative velocities. Finally, core C/K is defined as the core at $l = 75^{\circ}$, $b = 37^{\circ}$, $v_{\rm LSR} \sim -90 \,\rm km \, s^{-1}$, which lies close in angle and velocity to IVC complex K and may be part of that complex, rather than a core of complex C. A detailed analysis of the spectra in this region is called for.

The distance to HVC complex C is not well known. Ca II absorption was measured toward Mrk 290 and PG 1351+640, so that good abundance comparisons can be made for distance-determination purposes. However, toward both of these the component structure is slightly complicated. A best-guess fit yields two components toward Mrk 290 with Ca II abundances of 12 ± 3 and 22 ± 1 ppb, while toward PG 1351+640 abundances of 18 ± 2 and 110 ± 50 ppb are found. The last value is for a low-column density component with uncertain N(H I), and thus the fact that it differs from the other three is probably not significant.

Figure 6 shows the positions of the probes. Most observations of stellar probes lead to a nondetection but do not give significant distance information, usually because N(H I) is small. Most of the few significant nondetections are toward rather nearby stars, giving a strong lower distance limit of 1.2 kpc. Limits were set on A(Ca II) for seven distant (>3 kpc) stars. However, only one of these is significant (BS

FIG. 6.—Map of HVC complex C, from Hulsbosch & Wakker (1988). Contours indicate brightness temperature levels of 0.05, 0.4, and 1.0 K. Colors indicate velocities, as identified by the wedge. At many positions along the central ridge emission is seen at two velocities. In these directions a half-circle is shown for the second component. Core names are also given, as are the positions of probe stars. CI-A, B and CIII-A, B were defined by Giovanelli et al. (1973), as was Cel, which they named C-extension. Cell-V are defined here by analogy. Giovanelli et al. (1973) also define a core CIIIC, which is named CIC here, while CIIIC is used for a core not observed by Giovanelli et al. (1973). Complex D was defined by Wakker & van Woerden (1991), core "CD" is defined here, as is core "C/K" (see text). Closed symbols refer to detections, open symbols to nondetections.

16034-0114 at 6.1 kpc), although a better analysis of these spectra is still needed. For BS 16034-0114 the ratio (expected)/(observed) is ~10, which thus yields a (weak) lower limit of 6.1 kpc to the distance of core CIA. The strong lower distance limit gives a mass for complex C of more than $10^5 M_{\odot}$, but the probable lower limit of 6.1 kpc yields $M > 3 \times 10^6 M_{\odot}$.

Complex C is the only cloud for which several different metallicity measurements have been made, although in all cases there are some special considerations or special problems to be solved. S II λ 1250 and/or 1253 and/or 1259 have been measured toward three AGNs projected onto complex C: Mrk 290 (Wakker et al. 1999b) and Mrk 817, Mrk 279 (Gibson et al. 2001). N I was measured toward Mrk 876 (Gibson et al. 2001; Murphy et al. 2000) and PG 1259 + 593 (Richter et al. 2001b), while O I/H I has been measured toward PG 1259 + 593 (Richter et al. 2001b).

The best determination is the one using Mrk 290, where N(H I) is measured at 2' resolution and H α was detected. The result is $N(\text{S})/N(\text{H}) = 0.09 \pm 0.02$ times solar, with a small dependence on the assumed distance and geometry. The measurement toward Mrk 817 yields $N(\text{S II})/N(\text{H I}) = 0.33 \pm 0.02$ solar, while that toward Mrk 279 gives 0.43 ± 0.10 solar. In both cases the (unknown) ionization correction may be high, as N(H I) in these directions is much lower than toward Mrk 290, whereas $N(\text{H}^+)$ is expected to be more or less constant if the hydrogen is photoionized. High-resolution H I maps are also imperative to understand the difference between the Mrk 290 and Mrk 817/279 sight lines.

One other sight line with high N(H I) has been studied: PG 1259+593 (Richter et al. 2001b). Here O I/H I = $0.11^{+0.13}_{-0.08}$ solar. Richter et al. (2001b) also find that N I/ H I = < 0.046 solar, as well as Si II/O I ~ 1, but Fe II/ O I ~ 0.4. No H₂ was detected (fraction <10⁻⁵), but this is not unexpected considering the relatively low total hydrogen column density and the relatively small amount of dust expected to go with the low metallicity. If there is no or little dust, the N I, O I, Si II, and Fe II abundances are consistent with an enhancement in the α elements (Si/O > 1), combined with a relatively low amount in the iron peak elements (Fe/O < 1) and no secondary nitrogen (N/O < 0.5). This is consistent with the idea that the heavy elements in complex C were created in Type II supernovae and that there has been no subsequent star formation.

The sight line toward Mrk 876 was analyzed by Murphy et al. (2000). It shows unusual abundances. Nominally undepleted elements have low abundances relative to H I $[A(N I) \sim 0.08 \text{ solar}, A(P II) < 0.8, A(Ar I) < 0.1 \text{ solar}]$, consistent with the values found using the other probes. However, the usually depleted Fe II has a high abundance [A(Fe II) = 0.5]. The probable interpretation in this case is that in the region around the sight line toward Mrk 876 the gas is partially photoionized throughout by a soft radiation field, so that H I is a ~25% contaminant. Then Ar and N can become overionized relative to H, unlike Fe, which remains in the form of Fe II (Sofia & Jenkins 1998).

Nevertheless, the maximum ionization correction consistent with the absorption line and H α data in the direction of Mrk 876 seems to be on the order of a factor 3–5. Since S/H = 0.1, this implies Fe/S ~ 1–2. Such a ratio is very unlike the typical ratio of 0.2 seen in halo gas (Sembach & Savage 1996) or in other HVCs and IVCs (this paper). The implication is that complex C appears to have low dust content. This is further supported by the Si II/O I and Fe II/O I ratio toward PG 1259 + 593 (Richter et al. 2001b).

From the results described above, it has become clear that in order to derive reliable abundances and abundance ratios, it will be necessary to observe H α emission for every probe, to pay close attention to ionization corrections and unusual circumstances, and to combine the absorption and emission data with modeling.

4.4.Complex G

This HVC has velocities that deviate only slightly from those allowed by differential galactic rotation, especially at the lowest latitudes. A better definition is needed. The non-detections of several elements with strong lines in the spectrum of 4 Lac are not commented upon by Bates et al. (1990), but they do set a (not unsurprising) lower limit of 1.3 kpc, and thus a mass limit of more than $5 \times 10^4 M_{\odot}$.

4.5. Complex H

This HVC complex lies in the Galactic plane, which allows the use of luminous O and B stars as probes. So far, only a lower distance limit has been set, using the nondetection of Mg II, C II, and O I in *IUE* spectra (Wakker et al. 1998). Centurión et al. (1994) did not see Ca II absorption in seven stars projected onto complex H, but only one of the nondetections can be considered significant (assuming complex H has a Ca II abundance similar to that seen in other HVCs).

Figure 7 shows the positions of the probes. The HVC can be subdivided into several parts, although these are probably all spatially connected, as there are no clear boundaries. The distance limit for the brightest, central, core is d > 5 kpc, which implies a mass for the whole complex of more than $10^6 M_{\odot}$.

4.6. Anti-Center Shell

The Anti-Center Shell (Fig. 8) was first delineated by Heiles (1984). Tamanaha (1997) made a detailed study of the region and argued that the Shell as such does not exist but is an artifact of the data display being based on channels at constant $v_{\rm LSR}$. He rather sees it as the point of impact of a stream of HVCs falling toward the plane—the Anti-Center HVCs (§§ 4.8 and 4.9) being the rest of that stream.

Kulkarni & Mathieu (1986) failed to find Ca II absorption toward 6 OB stars in the direction of the Shell. They put the most distant star (HDE 248894) at 2.7 kpc (recalculated here as 3.0 kpc). The abundance of Ca II has not yet been measured, so although A(Ca II) is less than 15% of the "normal" value, the nondetection is not considered significant.

Kulkarni & Mathieu (1986) also observed HDE 256725, classified as an O star at d < 2.5 kpc. The nondetection of Ca II is not significant (a factor 5 below the expected value, rather than a factor greater than 20). According to SIMBAD, this is a B star, but Garmany, Conti, & Massey (1987) classified it as O5 V and gave a distance of 8.0 kpc. If confirmed and reobserved with higher S/N, this star might set an upper/lower distance limit of 8.0 kpc.

4.7. Cloud AC0

Cloud AC0 was defined by Tamanaha (1997), by analogy with the chain of cores ACIII, ACII, ACI (see Fig. 9). It is

509

FIG. 7.—Map of HVC complex H, from Hulsbosch & Wakker (1988). Contours indicate brightness temperature levels of 0.05, 0.3, 0.6, and 1 K. The gray scale shows velocities, as identified by the wedge. The core names are shown, as are the positions of probe stars.

embedded in the Anti-Center Shell, but it stands out in velocity space. Tamanaha (1996) failed to find Ca II and Na I absorption toward four stars. None of the Na I nondetections are significant, however (the best being only a factor 9 below the average expected value), but the Ca II nondetection sets a weak lower limit of just 0.3 kpc. Note that Tamanaha (1996) includes LS V + 30°31 as a probe of AC0, but the Effelsberg H I spectrum shows that this star lies just off the core.

4.8. Clouds ACI and ACII

Two studies of Na I and Ca II absorption were made for these two clouds, using bright (V < 10) B and A stars (Songaila et al. 1988; Tamanaha 1996). See Figure 9 for the positions of the probes. Again, none of the Na I nondetections contains distance information, whereas the Ca II nondetections toward ACI are mostly significant, setting a lower limit of 0.4 kpc to the distance. This is a not very interesting limit, as the expected distance is on the order of several to tens of kpc, if indeed the AC clouds are infalling intergalactic clouds, as proposed by Mirabel (1982) and Tamanaha (1995, 1997).

The same set of stars probes H I components assigned to ACII, which partly overlaps with ACI. However, since the column densities associated with ACII are lower, most nondetections are not considered significant.

4.9. Cohen Stream and HVC 168-43+280 (Cloud WW507)

Two studies of absorption were made for these two clouds, using bright (V < 10) B and A stars (Kemp et al. 1994; Tamanaha 1996, see Fig. 9). None of the Na I nondetections and only one of the Ca II nondetections are significant. However, from Mg II nondetections a lower distance limit of 0.3 kpc is set. Weiner, Vogel, & Williams (2001) detect H α emission from three directions in cloud WW507,

WAKKER

FIG. 8.—Map of the Anti-Center shell, from Hartmann & Burton (1997). Contours indicate column densities of 10, 40, 80, and 160×10^{18} cm⁻² for gas in the velocity range -130 to -60 km s⁻¹. The open symbols show the positions of the probes with nondetections. The structure at $l = 180^{\circ}$, $b = +6^{\circ}$ is cloud AC0.

with intensities of 50–250 mR (1 rayleigh is $10/4\pi$ photons cm⁻² s⁻¹ sr⁻¹). Applying a model for the distribution of ionizing radiation (Bland-Hawthorn & Maloney 1999) then suggests distances on the order of 10–20 kpc.

Kemp & Bates (1998) searched for but did not detect Na I absorption toward the Seyfert galaxy Mrk 595. They calculated an expected value for EW(Na I) of ~30 mÅ $(1.3 \times 10^{11} \text{ cm}^{-2})$, assuming that the Na I abundance is similar to that seen in low-velocity gas. Since their detection limit is 21 mÅ, and considering the large observed variations in A(Na I) (see § 3), this nondetection contains no information about the conditions in the Anti-Center clouds.

4.10. Complex GCN

These widely scattered, faint clouds have high negative velocities. High-ionization C IV and Si IV absorption was

seen in the spectra of Mrk 509 and PKS 2155-304 by Sembach et al. (1995b, 1999), as was O vI (Sembach et al. 2001). Sembach et al. (1999) proposed that (a) the gas is photoionized by the extragalactic background radiation, (b) the thermal pressure in the sight lines is $\sim 1-5$ K cm⁻³, and (c) the distance of the gas is 10–100 kpc (depending on the metallicity, which was assumed to lie between 0.1 and 1 times solar). If it is assumed that the H I clouds in complex GCN are the denser and cooler tips of the iceberg of a large, coherent, mostly ionized cloud, then the implied cloud size is 8–80 kpc. These parameters are consistent with this (group of) clouds being a low-metallicity, tenuous, extragalactic cloud.

If the metallicity is eventually found to be ~ 0.1 solar, complex GCN may represent an early stage in the process proposed by Oort (1970), in which hot gas at the outskirts

ION ABUNDANCES IN HVCs AND IVCs

Anti-Center

FIG. 9.—Map of the Anti-Center HVCs, from Hulsbosch & Wakker (1988). Contours indicate brightness temperature levels of 0.05, 0.3, 0.8, and 1.5 K. Colors indicate velocities, as identified by the wedge. At many positions along the central ridge emission is seen at two velocities. In these directions two half-circles are shown, with separate colors for each component. Core names are also shown, as are the positions of probe stars.

of the sphere of influence of the Milky Way condenses and then accretes. Complex C may be a late stage.

4.11. Complex GCP

Although there are many bright stars as well as distant RR Lyrae stars projected on this cloud, the only published data are from the first-ever paper concerning HVC absorption lines (Prata & Wallerstein 1967). The nondetection toward HD 187350 sets a lower distance limit of 0.3 kpc (and thus a lower mass limit of $10^3 M_{\odot}$). Bland-Hawthorn et al. (1998) detected H α emission associated with complex GCP and argued that it is related to the Sagittarius dwarf, at a distance of ~25 kpc. However, if this cloud is related to lower velocity gas that seems connected to it, its distance can be no more than a few kpc (see § 4.29 for further discussion).

4.12. Outer Arm

The Outer Arm was first recognized as a separate, distant spiral arm by Habing (1966). It was further analyzed by Kepner (1970) and Haud (1992). The velocities are only 20–30 km s⁻¹ higher than expected from a flat rotation curve for gas at galactocentric radii of 15–25 kpc. Toward $l \sim 90^{\circ}$ a large kinematical leverage is provided, allowing one to study the outer Galaxy. In the direction to H 1821+643, high-ionization C IV absorption was found by Savage et al. (1995), while O VI was reported by Oegerle et al. (2000) and Sembach et al. (2000).

4.13. Cloud R

This feature was defined by Kepner (1970) and may be associated with the Outer Arm, or it may be a separate, distant HVC.

4.14. Magellanic Stream

The Magellanic Stream is most likely a tidal tail torn out of the SMC during the tidal interaction between the Milky Way, LMC and SMC one orbit (2 Gyr) ago (Gardiner & Noguchi 1996). Some of the gas has been decelerated, forming the well-known Stream, and some of it has been accelerated ahead of the SMC system. Most of the latter fell on the LMC, but some has gotten past, forming a scattered leading arm. Lu et al. (1998) identified the extreme-positivevelocity clouds of Wakker & van Woerden (1991) as part of this leading arm. Figure 10 shows the Stream and these clouds in a projection that has galactic longitude 270° along the equator. Overlaid is the model of Gardiner & Noguchi (1996).

This projection was chosen as the simplest way to make the Magellanic Stream lie as near the equator as possible. This is basically done by turning the great circle $l = 90^{\circ}$ and $l = 270^{\circ}$ into the equator. Formally, the pole lies at galactic longitude $l = 180^{\circ}$, galactic latitude $b = 0^{\circ}$, and it is further rotated by 33°.42779 so that the current position of the LMC has new longitude L = 0.

The distances to the trailing and leading parts of the stream are not well known. If 50 kpc is assumed, the mass of the trailing part of the stream is about $1.5 \times 10^8 M_{\odot}$ (not counting the gas in the Magellanic Bridge, at galactic latitudes greater than -45°). For the leading part, all clouds in complex EP of Wakker & van Woerden (1991) add up to about $5 \times 10^7 M_{\odot}$ at an assumed distance of 50 kpc. The model predicts distances ranging from 50 to 100 kpc for this gas.

Also added in Figure 10 are some small positive-velocity clouds in the northern Galactic hemisphere that were not considered part of HVC complexes WA and WB by Wakker & van Woerden (1991). These appear to line up ahead of the curve defined by the SMC orbit and the EP clouds near $l = 290^{\circ}$, $b = +20^{\circ}$ (60° , -20° in Fig. 10), although they are not in the orbital plane of the Magellanic Clouds. For further discussion of these small clouds, see § 4.22.

The tidal model predicts a metallicity similar to that of the SMC. For sulfur that means $S/H \sim 0.2-0.3$ solar (Russel & Dopita 1992). Indeed, such values are found toward Fairall 9 in the tail (0.33 ± 0.05 solar, Gibson et al. 2000) and NGC 3783 in the leading arm (0.25 ± 0.08 solar, Lu et al. 1998). For NGC 3783 N(H I) was measured at 1' resolution by combining ATCA and Parkes data. No highresolution H I map has yet been made for the field around Fairall 9; a 25% correction is easily possible. In both directions a measurement of H α will be needed to account for H⁺, although N(H I) is high enough and the radiation field is expected to be low enough that only a small correction is expected.

Although the distance to different parts of the Stream is expected to be 30-80 kpc, no formal limit can be set, as only

FIG. 10.—Map of the Magellanic Stream, using data from Hulsbosch & Wakker (1988) and Morras et al. (2000). Added are the clouds in populations EN and EP of Wakker & van Woerden (1991), as well as scattered small positive-velocity clouds in the northern Galactic hemisphere. Contour levels are at brightness temperatures of 0.05 and 1 K. Colors indicate velocities as identified by the wedge. The projection has galactic longitude 270° along the middle and the LMC near the center. The thick solid line crossing the poles represents the Galactic equator. The curved lines are the orbits of the LMC and SMC in the model of Gardiner & Noguchi (1996); the small dots are the present-day positions of the particles in that model. Labeled probes are those of the Magellanic Stream, clouds WW187, WW211, and WW487, as well as the extragalactic objects in which Na I or Ca II absorption is seen without associated H I (see § 4.22). Filled symbols indicate detections, open symbols nondetections.

nonsignificant nondetections have been found toward a few nearby stars. Considering the large sky area covered by the Magellanic Stream, it is possible that more nondetections lie hidden in the literature, in papers not aimed at studying the ISM, and therefore not noted.

Several AGNs behind the Magellanic Stream were observed with the FOS. Savage et al. (2000a) report equivalent widths for detections of Mg II; Jannuzi et al. (1998) give the wavelength offsets, from which velocities are calculated. Although the velocity resolution is only 220 km s⁻¹, this is sufficient to separate absorption by the Magellanic Stream from that by disk gas. As the H I profiles are broad (30-50 km s⁻¹; see Paper II), the estimated Mg II optical depths are 0.2-3, allowing to convert the equivalent widths to column densities. Figure 1a shows the resulting correlation between N(H I) and A(Mg II). For $N(\text{H I}) > 2 \times 10^{18} \text{ cm}^{-2}$, A(Mg II)is nearly constant (average 3600 ppb, or 0.10 times solar). At lower N(H I) much higher values and lower limits are found. The most likely explanation for this change is that the hydrogen becomes mostly ionized, as the ionization potential of Mg II is higher than that of hydrogen, while its depletion seems to be independent of N(H I) (Wakker & Mathis 2000). The average abundance of 0.10 times solar implies an Mg II depletion of 0.3–0.4 for the Magellanic Stream, i.e., similar to the value in halo gas.

Abundances in the Stream can also be derived for Ca II, Fe II, and Si II, see Figure 3c. The table in Jannuzi et al. (1998) gives Fe II toward PKS 0637-75 near the SMC, which yields $A(Fe II) = 0.062 \pm 0.025$ times solar. In the leading arm, NGC 3783 gives $A(Fe II) = 0.033 \pm 0.006$ times solar. The implied ratios of Fe/S = 0.18 ± 0.06 and 0.13 ± 0.05 times solar are similar to the typical ratio in halo-like gas (0.23). The Mg II and Fe II abundances both imply that there is dust in the Magellanic Stream and that it has properties similar to the dust in the Galactic Halo.

4.15. Population EP

Several of the extreme-positive velocity clouds have been studied. Cloud WW187 was discussed above, in the context of it being part of the leading arm of the Magellanic Stream.

Sahu & Blades (1997) and Sahu (1998) observed NGC 1705 with a velocity resolution of 140 km s⁻¹ and found absorption at $v_{\rm LSR} \sim +260 \, {\rm km \, s^{-1}}$ in several Si II lines. This was interpreted as being associated with HVC WW487, which has $v_{LSR} = +240$ km s⁻¹ and is 2 degrees away from NGC 1705; it is probably a shred of the Magellanic Stream (see Fig. 10). A map of this area was made by M. E. Putman (2000, private communication) using HIPASS data, after reprocessing in order to extract extended structure. This clearly shows WW487, but no other HVCs in the area. Faint $(1.7 \times 10^{18} \text{ cm}^{-2})$ high-velocity H I is detected directly in the sight line toward NGC 1705 (Paper II). Si II λ 1190, Si II λ 1304, and Si II λ 1526 absorption are clearly seen, but the listed equivalent widths are inconsistent. The derived abundances are 0.48 ± 0.14 , 2.9 ± 1.5 , and 2.9 ± 1.5 , respectively. This poses an unsolved problem. However, the result does suggest that most of the gas in this direction is in the form of H^+ .

Sahu (1998) also lists an equivalent width for N I λ 1199, but at 140 km s⁻¹ resolution this absorption is a hopeless blend of λ 1199.55 and λ 1200.22 absorption due to the Galaxy, the HVC and NGC 1705.

The only cloud in population EP for which a formal distance limit exists is cloud WW187. HD 101274 is a few

arcmin from NGC 3783 and sets a lower limit of 0.4 kpc. Wakker & van Woerden (1997) listed a lower limit of 6.2 kpc to the distance of the extreme-positive velocity cloud WW211, based on the nondetection of Si II toward HD 86248 by Danly et al. (1993). The revised distance of this star is 7.6 ± 3.0 kpc. Since WW211 is part of the leading arm of the Magellanic Stream, the expected Si II abundance is a factor 4 below the standard halo value of 19,000 ppb, i.e., ~ 5000 ppb. The observed limit of 3300 ppb may therefore not be significant, and the nondetection does not set a lower limit to the distance of cloud WW211 after all.

4.16. Very High-velocity Clouds

The sight line to Mrk 205 passes through HVC WW84, which has $v_{\rm LSR} = -202 \,\rm km \, s^{-1}$. Bowen et al. (1991a, 1991b) detected weak Mg II absorption from this cloud. The H I column density has not yet been properly measured toward this object. In the 9.'1 Effelsberg beam it appears to be $15 \times 10^{18} \,\rm cm^{-2}$. However, as the high-resolution (1') WSRT map presented by Braun & Burton (2000) shows, such a beam picks up some of the very bright small-scale structure that lies nearby. A proper correction requires to combine the WSRT map with a grid of single-dish data to produce a fully sampled interferometer map. This has not yet been done. In the meantime, the best guess for $N({\rm H ~ I})$ is $8 \pm 5 \times 10^{18} \,\rm cm^{-2}$. This yields an Mg II abundance of 0.020 ± 0.014 times solar.

This value is much lower than usual in halo gas (0.4 solar is typical for gas with intrinsically solar abundance), and even lower than is found in cool disk gas with large amounts of dust (0.03 times solar). A value near 0.02 solar can also be found in a low-metallicity cloud. If there is some dust, the intrinsic metallicity could be $\sim 0.05-0.1$ solar. Confirmation using other absorption lines is needed, as well as an improved value for the H I column density and an assessment of the ionization correction.

Combes & Charmandaris (2000) report a possible detection of HCO⁺ at -198 km s^{-1} in the spectrum of the radio continuum source 1923 + 210 in a direction lying between the VHVCs WW274 ($v_{LSR} = -200 \text{ km s}^{-1}$) and WW283 ($v_{LSR} = -198 \text{ km s}^{-1}$). If the ratio of HCO⁺ to H₂ were similar to that found in low-velocity gas (6×10^{-9} , Lucas & Liszt 1996), this would imply $N(H_2) = 7 \times 10^{19} \text{ cm}^{-2}$, whereas the observed limit to $N(H_I)$ is less than 2×10^{18} cm⁻². Clearly, this cloud is unusual in that it either has large molecular content, or relatively high HCO⁺ abundance. These VHVCs may be outliers of the GCN complex, outliers of the Magellanic Stream, or genuine isolated VHVCs; their position in the sky does not allow an unambiguous identification.

4.17. Complex L

Albert et al. (1993) reported Ca II absorption components at -98 and -127 km s⁻¹ in the spectrum of HD 135485, thought to be a B5 IIp star at a distance of 2.5 kpc. Van Woerden (1993) suggested that this absorption is due to complex L, but Danly, Lee, & Albert (1995) showed that interstellar C II, O I, and Si II absorption are absent at these velocities, implying that the Ca II components are circumstellar. They also reclassified HD 135485 and revised the distance down to 0.8 kpc. According to *Hipparcos*, the parallax is 5.52 ± 1.13 mas, which gives an even lower distance of 0.18 ± 0.04 kpc. Thus, in spite of earlier suggestions, all that is known for complex L through HD 135485 is a lower limit to its distance of 0.2 kpc.

Weiner et al. (2001) find that complex L shines brightly in H α emission, with detections of 0.3–1.7 rayleigh (=10⁶/4 π photons cm⁻² s⁻¹ sr⁻¹). [N II] λ 6583 emission is similarly strong, with [N II]/H α = 1.1. Applying a model for the distribution of ionizing radiation (Bland-Hawthorn & Maloney 1999) then suggests that complex L lies at a distance of 8–15 kpc, and 2–10 kpc above the galactic plane, either near the Galactic center or at the other side of the center. Of course, because of individual features such as spiral arms, the radiation model is least accurate close to the Galactic plane and close to the Galactic center. Nevertheless, the bright H α emission associated with complex L shows that this HVC must lie in the lower Galactic Halo.

4.18. Complex WB

Only one resolved detection is known for a previously cataloged HVC complex with positive velocities: Ca II absorption associated with cloud WW225 is seen in the spectrum of PKS 0837-12 (Robertson et al. 1991). This gives the highest measured Ca II abundance for any HVC (280 ppb). The published value of 160 ppb was based on $N(\text{H I}) = 14 \times 10^{18} \text{ cm}^{-2}$ as measured with the Parkes telescope (15' beam) whereas with the 9'.1 Effelsberg beam $N(\text{H I}) = 7.9 \times 10^{18} \text{ cm}^{-2}$. Since N(H I) is low, and no other measurements exist for cloud WW225, it is unclear whether

the high A(Ca II) is due to hydrogen ionization, to anomalously low calcium depletion, or to low H I column density (the latter effect is discussed by Wakker & Mathis 2000).

4.19. Complex WE

In the sight line to HD 156359 Sembach et al. (1991) found C II, Mg II, Si II, and Fe II absorption at a velocity of $+110 \text{ km s}^{-1}$, while Sembach & Savage (1996) reported N v at $+128 \text{ km s}^{-1}$. Differential galactic rotation predicts velocities between 0 and -100 km s^{-1} in this direction.

At the position of HD 156359 no H I is found in the list of Morras et al. (2000), but many small, faint HVCs with similar velocities exist nearby (Fig. 11). These include some clouds previously cataloged on a $2^{\circ} \times 2^{\circ}$ grid (WW356, WW364, WW373, WW412). With the better view provided by the Morras et al. (2000) list, these clouds were swept together into "complex WE," by analogy with the positivevelocity complexes WA through WD defined by Wakker & van Woerden (1991).

It is now clear that HD 156359 lies less than 1° away from one of the brighter cores of this complex, which has a velocity of +110 km s⁻¹. The star thus sets an upper limit to the distance of the HVC of 12.8 kpc (z < 3.2 kpc). Most likely, the star samples the faint outer envelope of this cloud. Assuming solar abundance and halo-like depletion, the implied value of N(H) is about 10¹⁷ cm⁻². The mass of the

FIG. 11.—Map of complex WE, based on the data of Morras et al. (2000). The gray scale indicates velocities as identified by the wedge. Contours are at brightness temperatures of 0.05 and 0.3 K. The position of HD 156359 is indicated.

collection of clouds forming complex WE is limited to be less than $2.5 \times 10^5 M_{\odot}$.

4.20. Small Positive-velocity Clouds

The sight line to the star BD $+10^{\circ}2179$ crosses a small (1 square degree) cloud, WW29. Danly et al. (1993) give a distance for this star of 4.0 kpc, with spectral type "Bp." SIMBAD does not provide a better type, so this distance is rather uncertain. The nondetection of Si II is only a factor 3 below the expected value, so it may not be significant.

The presence of heavy elements in some of the small positive-velocity clouds is suggested by wide Mg II lines toward 4C 06.41 and PKS 1136 - 13 (Savage et al. 2000a).

4.21. *HVC* 100-7+110

In HVC 100-7+110 (probed by 4 Lac) several elements were detected, giving an abundance pattern. Its velocity of +106 km s⁻¹ is opposite to that expected from differential galactic rotation at a longitude of 100° . The cloud appears to be small and is within 200 pc of the Galactic plane. It is not seen in the Leiden-Dwingeloo Survey, but it is clearly detected in spectra taken with the Jodrell Bank telescope (12' beam) and in a high-angular resolution map made at Westerbork (Stoppelenburg, Schwarz, & van Woerden 1998). The upper limit on its mass is $1 M_{\odot}$, making it a very unusual low-z solar-metallicity blob moving away from the plane.

Bates et al. (1990) measured equivalent widths for several elements and converted these to column densities. For this step they quoted a b-value of 6.5 ± 0.5 km s⁻¹, as derived from the Fe II lines. This b-value is then used to convert the equivalent widths of the strongly saturated O I, Mg II, and Al II lines to a column density. For a range of 1 km s⁻¹ in b, and using the listed equivalent width errors, this implies optical depths of more than 10 for the O I and Mg II lines and more than 3 for Al II. Thus, all one can say is that A(O I)lies in the range 0.2–2.2 times solar, A(Mg II) in the range 0.6-8.4 times solar, and A(AI II) in the range 0.3-0.8 times solar, with a most likely value for Al II of 0.42 solar (1300 ppb). The Fe π abundance is slightly more reliable and is 0.25 ± 0.06 times solar (8000 ppb). The Al II and Fe II abundances are comparable to the expected values for a cloud with intrinsically solar abundance and halo-like depletion (1600 and 7800 ppb, respectively).

4.22. HVCs with Weak H I

In eight extragalactic probes absorption is detected at high velocities but without corresponding H I emission, even though the upper limits on N(H I) can be quite good $(3 \times 10^{17} \text{ cm}^{-2} \text{ in the case of SN 1991T})$. Only toward SN 1986G is such high-velocity absorption accompanied by a weak H I component. Below, possible explanations are provided for all but two or three of these absorption components.

An absorption that remains unexplained is the +250 km s⁻¹ Na I component toward SN 1994I (Ho & Filippenko 1995). No other positive-velocity IVCs are known in the neighborhood ($l = 104^{\circ}$, $b = 68^{\circ}$). Also mysterious are the components at +125, +140, and +230 km s⁻¹ seen toward SN 1993J ($l = 142^{\circ}$, $b = 41^{\circ}$), if they are indeed unrelated to the galaxy M81, as de Boer et al. (1993) argued. Finally, the +275 km s⁻¹ Mg II absorption seen toward PKS 0232-04 (Savage et al. 2000a, $l = 174^{\circ}$, $b = -56^{\circ}$) is strange. No high-positive velocity gas is known in this part

of the sky (a few degrees from the edge of the Anti-Center HVCs, which have high-negative velocity). As PKS 0232-94 has a redshift of 1.434, it is possible that two Ly α absorbers at z = 1.3 mimic the Mg II doublet.

The C II, Si II, Si III, and Al II absorption at -150 km s⁻¹ seen toward PG 0953+414 (Fabian et al. 2001) may be related to an extended low-column density tail of either HVC complex A or IV1. Both of these have velocities of -120 to -150 km s⁻¹. However, IV1 is about 8° distant, while the H I edge of complex A is about 10° away. The ionic column densities imply $N(H) \sim 10^{18} \text{ cm}^{-2}$ for gas with 0.1 solar abundance. However, considering that $N(\text{Si II}) \sim N(\text{Si III})$, most of the hydrogen should be ionized, so that N(H I) is much lower. A possible counterargument is that toward PG 0804+761 absorption associated with complex A is not seen in any line (Richter et al. 2001a), even though that probe lies just 0.5 off the H I edge of complex A. That would suggest a rather sharp edge. However, PG 0804+761 lies near the more constrained low-latitude part of complex A, rather than near the flaredout high-latitude end. This problem requires further observations of AGNs in the region between PG 0953+414 and the edge of complex A.

Three of the remaining H I-less absorptions are seen at a velocity greater than $+200 \text{ km s}^{-1}$ in Na I and Ca II (SN 1994D; King et al. 1995; Ho & Filippenko 1995) SN 1991T (Meyer & Roth 1991) and SN 1983N (d'Odorico et al. 1985). H I-less absorption is also seen at $v_{LSR} = +130$ km s⁻¹ toward PG 0953+414 (Fabian et al. 2001). Weak H I is detected at $v_{LSR} > +200$ km s⁻¹ toward SN 1986G (d'Odorico et al. 1989). Finally, +200 km s⁻¹ C II and Si II absorption is seen toward PG 1116+215 (Tripp, Lu, & Savage 1998). In these directions the Na I/H I ratios are >57, >59, >20, 46 ± 20 , and 60 ± 18 ppb. All of these are much higher than the average value in neutral gas (4.6 ppb). Ca II/H I ratios are >140, >500, >140, >250, >370, 150 ± 70 , 150 ± 50 , and > 27 ppb, again much higher than the reference value of 22 ppb. These high values are consistent with the relation found between A(Ca II) and N(H I), which is discussed by Wakker & Mathis (2000), who show that high apparent abundances are correlated with low H I column density.

These six sight lines all lie in the region $l = 180^{\circ}-320^{\circ}$, $b = 20^{\circ}-70^{\circ}$. Many small positive-velocity clouds are also present in this region. Figure 10 shows that this region further lies in the extension of the curve defined by the SMC orbit and the EP clouds near $l = 290^{\circ}$, $b = +20^{\circ}$ (at 60° , -20° in Fig. 10). Thus, it is suggested that these highpositive velocity absorptions and small positive-velocity clouds are associated with the tenuous leading edge of the leading arm of the Magellanic Stream.

A possible problem with this model is that it requires that the leading-arm gas no longer follows the SMC's orbit, deviating more as it gets farther ahead. However, since the gas had to pass the LMC first, it seems reasonable to suggest that it was given an additional nudge at that time. A more complete model is required to test this hypothesis.

In the Gardiner & Noguchi (1996) model, the tip of the leading arm gas is supposed to be at a distance of 30–80 kpc. As the clouds in the leading arm's tip cover about 20° on the sky, this corresponds to path lengths of more than 10 kpc. Then column densities of ~ 10^{18} cm⁻² correspond to a volume density of ~ 5×10^{-5} cm⁻³, which implies H α emission intensities less than 0.01 R, which is below the

current detection limit (Reynolds et al. 1998). Not detecting $H\alpha$ emission from the small positive-velocity HVCs would therefore not conclusively favor a Local Group over a Magellanic origin.

A further check would be to determine whether highvelocity absorption is not seen toward extragalactic supernovae that lie away from the orbits of the Magellanic Clouds.

4.23. HVCs/IVC toward the LMC

In the spectrum of many stars in the LMC absorption is seen at velocities of +165, +120, and +65 km s⁻¹. Ca II and Na I are the most-observed elements (Blades 1980; Songaila & York 1981; Songaila et al. 1981; Blades, Elliot, & Meaburn 1982; Songaila et al. 1986; Magain 1987; Vidal-Madjar et al. 1987; Molaro et al. 1989; Wayte 1990; Molaro et al. 1993; Caulet & Newell 1996; Welty et al. 1999). Other studies concentrate on dominant elements (Welty et al. 1999; Bluhm et al. 2001). In principle these results could be used to study abundance variations in the HVCs and IVC. However, in practice there are many problems: (a) the earlier spectra suffer from low signal-to-noise ratios and the measured equivalent widths are not very reliable; (b) in almost all cases only equivalent widths were published and line widths need to be assumed to convert to column densities; (c) toward all but a few stars N(H I) must be based on an interpolation between nearby observations, often with barely sufficient sensitivity; (d) the clouds have not been mapped in H I, as they have rather low column density (the Parkes Narrow Band Survey should make this possible, eventually). Section 3.6 presents a summary of the conclusions achievable with these caveats in mind.

From the spectrum of SN 1987A in the LMC, a large set of accurate ion column densities was derived by Welty et al. (1999) for all three H I components. However, a good, directly measured, value for N(H I) was not obtained, and instead N(H I) was inferred from the abundance patterns (see item "AB" in description of col. [10]). The absolute abundance therefore remains uncertain. However, for the two HVCs the abundance pattern is similar to the halo pattern (Sembach & Savage 1996). The pattern for the IVC would suggest zero depletion. These matters are discussed in more detail by Welty et al. (1999).

For the +120 km s⁻¹ HVC a notable detection is that of H₂ toward Sk -68°82 by Richter et al. (1999), showing the presence of molecular hydrogen. Bluhm et al. (2001) also find H₂ toward Sk -68°82 in the IVC with $v_{LSR} = +60$ km s⁻¹.

Fe II absorption in the $+120 \text{ km s}^{-1} \text{ HVC}$ has been seen in five probes, but with uncertain results. A(Fe II) = 0.28 ± 0.07 solar toward SN 1987A (Welty et al. 1999), 0.8 ± 0.6 solar toward Sk $-67^{\circ}104$ (Bluhm et al. 2001), 1.3 ± 0.9 solar toward Sk $-67^{\circ}166$ (Bluhm et al. 2001), 0.6 ± 0.4 solar Sk $-68^{\circ}82$ (Bluhm et al. 2001), and 0.16 solar toward Sk $-69^{\circ}246$ (Savage & de Boer 1981). N(H I) is uncertain toward SN 1987A (based on the depletion pattern), Sk $-67^{\circ}104$, Sk $-67^{\circ}166$, and Sk $-69^{\circ}246$ (based on an interpolation), and better measurements are needed to reconcile the factor 8 range. On the other hand, Bluhm et al. (2001) argue that the high S II, Si II, and Fe II abundances in this cloud combined with the low O I abundance (~ 0.5 solar) argues in favor of substantial ionization, possibly as high as 90%. In this case variations in N(Fe II)/N(H I) are due to variations in the ionized fraction.

4.24. Intermediate-velocity Arch

This structure was first studied by Wesselius & Fejes (1973). Kuntz & Danly (1996) presented a catalog of cores. These designations were used here to sort the many observed probes. At many positions, a higher- $(<-60 \text{ km s}^{-1})$ and a lower- $(>-60 \text{ km s}^{-1})$ velocity component overlap, so the IV Arch is further divided into two parts, one consisting of cores IV5 through IV17, the other containing cores IV18 through IV26 (IV1–4 are identical with HVC complex M). Within each part the cores are sorted along the Arch by decreasing galactic longitude. Figures 12 and 13 show the structure, with the probe positions overlaid.

Kuntz & Danly (1996) derived a z-height of 0.8-1.5 kpc for the IV Arch, and brackets for IV17 and IV26. The distance limits derived here are consistent with their results, and they are graphically shown in Figure 14. The horizontal axis in this figures shows an approximate "angle along the Arch," with 0 degrees at the highest-longitude core. As the IV Arch lies at high galactic latitudes, it is more useful to discuss z-heights than distances. A fuller discussion now follows.

For the higher velocity part of the IV Arch, z-height brackets can be set for three cores: z = 0.4-1.7 kpc for IV6, z = 0.5-0.7 kpc for IV17, and z = 0.2-1.6 kpc for IV9. These are consistent with the upper limit of 3.9 kpc for IV7 and the lower limit of 0.7 kpc for IV11. The upper limit for IV17 is based on the horizontal branch (HB) star BD $+49^{\circ}2137$, for which Kuntz & Danly (1996) gave a z-height of 1.7 kpc, which is correct for the spectral type given in SIMBAD (B7 V). Ryans et al. (1997a) did a more detailed spectroscopic analysis and argue that it is a HB star at z = 0.7 kpc, although the final number is somewhat model dependent. The distance bracket for IV17 is set by the same stars as those that bracket IV4, suggesting that these two clouds are close together in space, even though they differ in velocity by 30 km s⁻¹.

For the lower velocity part of the IV Arch, at angles along the Arch less than 50° ($l > 150^{\circ}$), a z-height bracket of 0.4–2.6 kpc can be set for IV26, as well as a lower limit for IV24 of 0.4 kpc. Off cores HD 93521 is the only star with z < 2.6 kpc, and it reduces the upper limit to 1.7 kpc.

For the lower velocity part of the IV Arch, at angles along the Arch greater than 50° IV19 sets an upper limit to the z-height of 1.6 kpc. The limits toward HDE 233791 and PG 1255 + 546 are in apparent conflict. However, the classification of HDE 233791 is uncertain (Ryans et al. 1997a) and instead of an HB star at 0.5 kpc distance it could be a B9 V star at 0.9 kpc distance (z = 0.8 kpc). For PG 1255 + 546 the 1 σ uncertainty in the distance is 0.3 kpc, so that this star could be at z = 0.4 kpc, rather than z = 0.7kpc. If these uncertainties are taken into account, combining the lower limit for PG 1255 + 456 with the upper limit for HDE 233791 yields a possible z-height bracket for this part of the Arch of 0.4–0.8 kpc. HDE 233791 may even reduce the upper limit to 0.4 kpc.

A final complication is the low upper limit of 0.3 kpc derived from *core IV21*. This core is slightly off the main axis of the IV Arch and is further unusual in that CO and 100 μ m emission have been detected in it (Weiss et al. 1999). These authors study the cloud as an example of a high-z molecular cloud. Benjamin et al. (1996) claimed a distance bracket of 0.3–0.4 kpc. However, the lower limit is based on

FIG. 12.—(a) Map of the intermediate-velocity arch at velocities between -90 and -60 km s^{-1} , from Hartmann & Burton (1997). The gray scale and contours indicate the column density in this velocity range, with contour levels at 10, 40, and $80 \times 10^{18} \text{ cm}^{-2}$. The names of the cores defined by Kuntz & Danly (1996) are indicated. The positions of the probes are shown, with closed circles representing detections; open circles are nondetections. Map of the intermediate-velocity arch at velocities between $-60 \text{ and } -30 \text{ km s}^{-1}$, from Hartmann & Burton (1997). (b) Same as (a), except that there is an additional contour at $160 \times 10^{18} \text{ cm}^{-2}$.

FIG. 13.—Summary of upper and lower distance limits for the IV Arch. The x-axis shows an approximate "angle along the Arch," with the origin at $l = 210^{\circ}$, $b = 30^{\circ}$. The top two panels show the distances, the bottom two the z-heights. Core names are indicated, as are the stars outside cores, for which just the beginning part of the name is shown. Three stars in the second and fourth panel are plotted at y-max, but they are more distant than that. Downward-pointing triangles are upper limits, upward-pointing triangles are lower limits. The open triangle for MIII refers to the possible lower limit from HD 93521. Diamond shapes are for the possible alternative distance for three stars with uncertain distances (BD + 49°2137 toward IV4 and IV17, HDE 233791, and PG 1255 + 546).

Na I nondetections that are not significant, as they are only a factor ~ 6 below the measured Na I abundance. Therefore, the distance may be less than 0.3 kpc (z < 0.2 kpc). More observations, preferably using Ca II are required to settle this question.

In summary, for the higher velocity part of the IV Arch a strong bracket of z = 0.7-1.7 kpc can be derived. The upper limit depends mostly on the z-height of BD +49°2137, which may be as low as 0.7 kpc. For the lower velocity IV Arch the strong bracket is z = 0.4-1.6 kpc for the part with $l > 150^{\circ}$. At lower longitudes the situation is slightly confusing, but a possible z-height is 0.4 kpc, although the strong bracket is 0.4-1.6 kpc.

Using these distance brackets, the mass of the IV Arch was estimated from the Leiden-Dwingeloo Survey to be $1-4.5 \times 10^5 M_{\odot}$ for velocities less than -60 km s^{-1} , and $1-8 \times 10^5 M_{\odot}$ for lower velocities. If the lower distances are used for BD +49°2137 and HDE 233791, the implied total mass of the IV Arch is about $2 \times 10^5 M_{\odot}$.

The metallicity of the IV Arch has not yet been well determined. Sulfur was observed to have near solar abundance toward HD 93521 (Fitzpatrick & Spitzer 1997); PG 0953+414 (Fabian et al. 2001) and HD 121800 (IV9/IV19—Howk et al. 2001). Similarly, oxygen is found to have an abundance of ~ 1 solar toward PG 1259+593 (Richter et al. 2001b).

Toward HD 93521 absorption components are seen at several velocities $(-65, -57, -51, \text{ and } -36 \text{ km s}^{-1})$, even though the H I profile just shows a 20.8 km s⁻¹ wide component centered at -56 km s^{-1} . The component at -65

FIG. 14.—Map of the IV spur, from Hartmann & Burton (1997). Contours are at 10, 40, and 80×10^{18} cm⁻². The core names are shown, as are the positions of probe stars. Closed symbols refer to detections, open symbols to nondetections.

km s⁻¹ is probably related to IV6. Applying a component analysis to the H I spectrum observed at Green Bank (21' beam), Fitzpatrick & Spitzer (1997) derived S II/H I ratios of $2.1 \pm 2, 0.78 \pm 0.12, 1.2 \pm 0.25$ and 0.74 ± 0.31 times solar (0.97 \pm 0.06 when summing all components). They further determine n_e and use the result to argue that hydrogen ionization is unimportant. Toward HD 121800 two H I and two S II components occur, which are not well separated. The average S II/H I ratio is 0.8 solar. In the sight line to PG 0953+414 Fabian et al. (2001) find S II/H I = 1.1 ± 0.2 times solar, but N(H I) is low (23 × 10¹⁸ cm⁻²), so the ionization correction is potentially large. In general, these results suggest near-solar abundance for the IV Arch, although more work is needed on component structure, H I small-scale structure, and ionization corrections.

The abundance patterns toward HD 93521 were used by Savage & Sembach (1996a) to *define* the reference for halo gas. These patterns are shown in Figures 3f and 3k.

4.25. Intermediate-velocity Spur

These cores form an extension to the IV Arch, at somewhat lower velocities and higher longitudes and latitudes, and were defined by Kuntz & Danly (1996). These authors also derived the distance bracket of 0.3–2.1 kpc based on the Si II lines in *IUE* spectra. The implied mass bracket is $0.2-8 \times 10^5 M_{\odot}$. The positions of the probes are shown in Figure 15.

4.26. Low-Latitude Intermediate-Velocity Arch

This structure was named by Kuntz & Danly (1996). It crosses over complex A, resulting in a relatively large number of observed probes (see Fig. 16). The distance can be constrained to lie in the range 0.9–1.8 kpc (z = 0.6-1.2 kpc). The implied mass is $1.5-6 \times 10^5 M_{\odot}$. In the Galactic plane at these longitudes lies the Perseus Arm, a spiral arm that is 2.5 kpc distant (Reynolds et al. 1995). The LLIV Arch thus appears to be high-z interarm gas.

Several probes lie off the main structure and are collected under the heading "LLIV Arch extension." This gas has velocities similar to that in the LLIV Arch proper, and most likely is spatially close to it. If so, an upper distance limit of 0.9 kpc is set by HD 83206, equal to the lower distance limit for the main part of the LLIV Arch.

The metallicity and depletion pattern can be determined from the spectra of SN 1993J (de Boer et al. 1993), PG 0804+761 (Richter et al. 2001a) and HDE 233622 (Ryans et al. 1997b). The metallicity follows from N(O I)/N(H I) = 1.0 ± 0.5 solar and $N(N I)/N(H I) = 0.55 \pm 0.14$ solar, as O and N are undepleted, and (especially O I) tied to H I. If hydrogen ionization were ignored, this would be inconsistent with the apparently supersolar abundance of P II $(1.3 \pm 0.6 \text{ solar})$ and Zn II ($1.6 \pm 0.4 \text{ solar})$. However, both these elements can coexist with both H I and H⁺. The degree of ionization can be estimated by assuming that O I and H I go together. Then $N(P II)/N(O I) \sim$ $[N(H I) + N(H^+)]/N(H I)$. This yields an ionization fraction of ~20%.

The depletions of some refractory elements are typical for warm disk gas: $\delta(\text{Si II}) \sim 0.3$ (typical is 0.15), $\delta(\text{Al II}) = 0.09$ (typical is 0.15), $\delta(\text{Ti II}) = 0.11$ (typical is 0.05), and $\delta(\text{Fe II}) = 0.1-0.3$ (typical is 0.1). See Figure 3*d* for a graphical representation.

Ca II abundances in the LLIV Arch are remarkable for their constancy. Out of 10 determinations 7 are in the range

WAKKER

FIG. 15.—Map of the low-latitude intermediate-velocity arch, from Hartmann & Burton (1997). Contours are at 10, 40, and 80×10^{18} cm⁻². The core names are shown, as are the positions of probe stars. Closed symbols refer to detections, open symbols to nondetections. Note that HVC complex A lies between the probes Mrk 106 and PG 0804 + 761.

12–14 ppb, while "outliers" are 17 and 9.1 ppb. The only really deviating value is 2.5 ppb for the weaker component in the spectrum of PG 0833+698. However, for this probe the decomposition of the H I spectrum is somewhat suspect.

Intermediate-velocity O vI and C IV are also found toward PG 0804+762 and SN 1993J, respectively (Richter et al. 2001a; de Boer et al. 1993). Thus, the LLIV Arch appears to be a near-solar metallicity cloud, with a substantial H⁺ fraction, disklike dust, embedded in hot gas, and located in the interarm region between the Local and Perseus spiral arms. Its velocity is 20–30 km s⁻¹ more negative than expected from differential galactic rotation.

All these characteristics are typically those expected for a cloud that is part of the return flow of the Galactic Fountain. That is, gas that was ejected into the Galactic Halo from inside the solar radius is expected to have a metallicity slightly above that in the local ISM, the dust is expected to survive in the hot phase, the rotational velocity is expected to decrease as the gas rises and moves outward (because of conservation of angular momentum; Bregman 1980), and after condensations grow they will remain embedded in the as-yet uncooled part of the gas.

4.27. Complex K

This object was first seen in 21 cm emission by Kerr & Knapp (1972) in the direction of M13. De Boer & Savage (1983) detected Mg II toward the star Barnard 29 in M13. Figure 17 shows the gas between velocities of -95 and -60 km s⁻¹ in this region of the sky, based on the Leiden-Dwingeloo Survey (Hartmann & Burton 1997). Below latitudes of 45°, the velocity of the peak is less than -70 km s⁻¹, and those components were included in the survey of Hulsbosch & Wakker (1988), and considered part of

complex C. However, they stand out from the main body of C, although near $l \sim 80^{\circ}$ the components merge and it is difficult to assign them to either C or K. Here complex K is defined as the intermediate-velocity gas with $-95 < v_{\rm LSR} < -60$ km s⁻¹ in this region of the sky. A better definition requires detailed component fitting.

From differential galactic rotation, velocities in the range from 0 to + 30 km s⁻¹ are expected, whereas complex K has $v_{\rm LSR} \sim -80$ km s⁻¹. Thus, it rotates too slowly by about 100 km s⁻¹. A metallicity measurement is required to determine whether this is an infalling cloud, such as complex C, or whether it is a Galactic Fountain-type cloud.

Haffner, Reynolds, & Tufte (2001) detect faint H α emission (0.1–0.2 R) associated with complex K. The H α emission map correlates very well with the H I column density map for the fainter extended part and for the minor cores. However, in the brightest core (near $l = 55^{\circ}$, $b = 38^{\circ}$) the H α peaks east of the H I.

Shaw et al. (1996) mapped the H I at high angular resolution $(3' \times 2')$ in the direction of the globular cluster M13, using a combination of Jodrell Bank and DRAO data. They found variations of a factor 2 on arcminute scales. They also observed Na I toward several stars, giving three detections (at 45, 14, and 13 ppb) and six upper limits (<5 ppb). Clearly, there are large variations in the Na I abundance on arcminute scales.

The Mg II and Na I, detections toward stars in M13 set an upper limit to the distance of K of 6.8 kpc, and a mass limit of less than $7.5 \times 10^5 M_{\odot}$.

Toward Mrk 501 the abundance of Ca II is found to be 89 ppb, although with large errors. There are 31 PG stars with a range of distances that lie projected onto the main core of complex K at $l = 55^{\circ}$, $b = 35^{\circ}$, but for none of these has a

FIG. 16.—Map of complex K, from Hartmann & Burton (1997). Contours indicate column densities of 5, 10, and 20×10^{18} cm⁻² for gas in the velocity range -95 to -60 km s⁻¹. The open symbols show the positions of the probes with nondetections, closed symbols refer to detections.

Ca II spectrum yet been taken. Clearly, a good distance determination is possible. However, since N(H I) is low, spectra with high signal-to-noise ratio will be necessary.

For the star M3 vz1128 ($l = 42^{\circ}$, $b = 79^{\circ}$, shown on Fig. 17) de Boer & Savage (1984) claimed strong C II absorption at a velocity of -70 km s^{-1} , although no associated H I is seen. Recent data from *FUSE* do not show this absorption in the C II $\lambda 1036$ and other strong lines (J. C. Howk 2000, private communication). Thus, the claim by de Boer & Savage (1984) turns out to have been spurious.

4.28. Southern Intermediate-Velocity Clouds

At velocities between -85 and -45 km s^{-1} the southern Galactic sky contains a number of IVCs in the region between galactic longitudes 60° and 150° , as shown in Figure 18. Note that by placing the gas in the outer Galaxy, velocities up to -40 km s^{-1} can still be understood within the framework of differential galactic rotation for latitudes greater than -40° , and longitudes $90^{\circ}-150^{\circ}$. High-velocity gas with $v_{\rm LSR} < -100$ km s⁻¹ also occurs in this area, as shown by the thick solid outlines (see figure caption for details).

These southern IVCs have not been studied, with the exception of the HD 215733 sight line, which was analyzed in great detail by Fitzpatrick & Spitzer (1997). This sight line shows intermediate-velocity absorption at -92, -56, and -43 km s^{-1} . The first of these is very weak in H I. The H I spectrum shows a single component centered at -44 km s^{-1} . Fitzpatrick & Spitzer (1997) decomposed it based on the UV absorption lines. The components can be associated with an Arch running through the constellations Pegasus and Pisces ($l = 90^{\circ}$, $b = -40^{\circ}$ to $l = 130^{\circ}$, $b = -60^{\circ}$). Here and elsewhere in the paper this structure is referred to as the Pegasus-Pisces Arch, or the PP Arch. Although much weaker, this is the closest southern counterpart to the IV Arch in the north.

FIG. 17.—Map of southern IVCs, from Hartmann & Burton (1997). Contour levels are at 10, 40, and 80×10^{18} cm⁻² for the gas with velocities relative to the LSR between -85 and -45 km s⁻¹. Closed symbols refer to detections, open symbols to nondetections. Thick solid lines outline the gas with $v_{LSR} < -85$ km s⁻¹ and are contour levels at 15 and 40×10^{18} cm⁻². The following HVCs can be seen: the Cohen Stream and WW507 at $l = 160^{\circ}$, $b = -45^{\circ}$, the Magellanic Stream ($l \sim 80^{\circ}$, $b < -50^{\circ}$), the VHVC near M33 ($l = 125^{\circ}$, $b = -30^{\circ}$), and complex G ($l = 90^{\circ}$, $b = -15^{\circ}$). The features at $l = 120^{\circ}$, $b = -20^{\circ}$ and $l = 134^{\circ}$, $b = -31^{\circ}$ are M31 and M33.

Individually, the absorption components toward HD 215733 have S II/H I ratios of 0.17, 0.32, and 1.2 times solar, but when combined this is 0.54 ± 0.04 times solar. As Fitzpatrick & Spitzer exclude a large ionization correction, this is clearly subsolar. Together with HD 93521, the depletion pattern in these two components (see Figs. 3n, 3p, and 3r) defines the halo pattern.

From HD 215733 an upper distance limit of 2.7 kpc can be set to the northern knot of the Pegasus-Pisces Arch, or z < 1.6 kpc. For the southern part, PG 0039+048 seems to set an upper limit of 1.1 kpc, as Na I absorption is seen in its spectrum (Centurión et al. 1994). However, this component is only seen in the line wing and a more accurate measurement is needed.

Using the distance limit implied by PG 0039+048 and integrating the LDS data in the velocity range between -85 and -45 km s⁻¹ sets an upper mass limit of about $0.5 \times 10^5 M_{\odot}$.

4.29. Complex gp

The IVC centered on $l = 65^{\circ}$, $b = -27^{\circ}$ was the first IVC detected in absorption, against the globular cluster M15

(Cohen 1979). A Leiden-Dwingeloo Survey map of the intermediate-velocity gas in this area shows a large number of scattered, faint IVCs (see Table 2). These seem to be an extension toward lower velocities of HVC 40-15+100, which is also known as the Smith cloud (Smith 1963), or as the main cloud in complex GP (Wakker & van Woerden 1991). This shows up prominently at $l = 35^{\circ}-50^{\circ}$, $b > -25^{\circ}$. The IVCs between +60 and +90 km s⁻¹ seem to extend complex GP toward more negative latitudes and velocities. Hence, these IVCs will be collectively referred to as "complex gp." Here it is worthwhile to note that at velocities between +30 and +60 km s⁻¹ there are no coherent structures in this region of the sky. Differential galactic rotation can account for about 20-40 km s⁻¹ of the observed radial velocity.

The detection of the IVC toward HD 203664 sets an upper distance limit of 4.3 kpc (z < 2.0 kpc), while the nondetection of the IVC toward HD 203699 sets a lower limit of 0.8 kpc (z > 0.3 kpc) (Albert et al. 1993; Little et al. 1994; Ryans et al. 1996; Kennedy et al. 1998). A rough integration of the LDS data in the velocity range between +55 and +100 km s⁻¹ then gives a mass range of $0.1-3 \times 10^5 M_{\odot}$

FIG. 18.—Map of the positive-intermediate-velocity gas in the region near HVC complex GP, from Hartmann & Burton (1997). The gray scale and contours show the gas with velocities between + 50 and + 200 km s⁻¹, with contour levels at 5, 10, 40, and 80×10^{18} cm⁻². The positions of probes are show. Closed symbols refer to detections, open symbols to nondetections. The thick contours show the gas with $v_{LSR} > +90$ km s⁻¹, i.e., HVC 40–15+100 (also known as the "Smith cloud"). The positions of the other WW clouds within complex GP are also shown, with a label of the form "WW # @v," where "WW # " is the catalog number of Wakker & van Woerden (1991) and "v" the velocity in that catalog.

for the intermediate-velocity gas. Compare this to the mass of the higher velocity gas (i.e., complex GP, § 4.11), which for the same distance limits would have a mass of $0.3-8 \times 10^5 \ M_{\odot}$. Thus, if they are related, the high-velocity gas has about twice the mass of the intermediate-velocity gas.

An detailed study of the metallicity of this cloud has not yet been made. However, Penton et al. (2000) list equivalent widths for S II $\lambda\lambda$ 1250, 1253 in the direction toward Mrk 509. These imply an S II/H I ratio of 2.0 solar. Sembach et al. (1999) show the spectrum in more detail, and from this it is clear that the numbers given by Penton et al. (2000) are a factor 2 too high and that a better abundance estimate is 0.8 solar. Since N(H I) for the +60 km s⁻¹ component toward Mrk 509 is only about 24.5 × 10¹⁸ cm⁻², it seems likely that a substantial ionization correction is needed. However, even if that is a factor 2, a near-solar metallicity is implied. As Mrk 509 is one of the brightest AGNs in the UV, a good study of abundances and ionization will be possible with FUSE. Na I, Si II, and Ca II toward Mrk 509 were already measured by York et al. (1982), Blades & Morton (1983), and Morton & Blades (1986).

Bland-Hawthorn et al. (1998) detected H α emission from two positions within the Smith cloud, and they proposed that complex GP is a tidal stream related to the Sagittarius dwarf galaxy, at a distance on the order of 25 kpc. This is difficult to reconcile with the upper distance limit of 4.3 kpc for the IVC, unless the apparent spatial relation between complex GP and the IVCs is accidental.

The intermediate-velocity gas is seen in the spectrum of many stars in the globular cluster M15, the sight line to which intersects one of the four cores of complex gp. Lehner et al. (1999b) measure Ca II toward 12 stars (see § 3.6), finding values in the range 14–79 ppb. Na I was measured by Langer et al. (1990) toward seven stars and was found to be in the range 6–21 ppb. However, Meyer & Lauroesch

(1999) find that Na I varies by a factor 15 across the face of M15. Toward HD 203664 (a few degrees from M15), the Ca II/H I ratio is much higher (440 ppb). However, at the very low N(H I) seen in that direction $(2.2 \times 10^{18} \text{ cm}^{-2})$ high Ca II/H I ratios are to be expected (see Wakker & Mathis 2000).

4.30. Other IVCs

In 23 sight lines, observations of a probe of an identified HVC or IVC also show absorption and/or H I emission associated with another IVC, usually small and/or faint clouds. These are collected under the heading "Other Negative- (Positive-) velocity IVCs." The data are usually too sparse to learn useful things about these IVCs, except that the abundances tend to be normal.

5. SUMMARY

Table 4 summarizes the distances, masses, metallicities, and depletion patterns discussed in the previous section.

The main new conclusions that can be drawn from this table are the following.

1. HVC complex A is the only HVC for which a distance bracket is known, which is 4.0–9.9 kpc (z = 2.6-6.8 kpc). It may have a metallicity of about 0.1 solar.

2. Complex M is a grab-bag collection of clouds, which may or may not be physically related. The most likely metallicity of cloud MI is near-solar. Cloud IV4 (or MI-extension) lies at z = 0.5-0.7 kpc and has a warm-disk-like depletion pattern. Cloud MII/MIII lies at z < 3.5 kpc; a possible lower limit of 1.7 kpc remains controversial.

3. Complex C appears to have a metallicity of ~0.1 solar, based on S II absorption toward Mrk 290 and N I toward Mrk 876. Richter et al. (2001b) report O I/H I = 0.1 solar toward PG 1259+593. S II/H I ratios of 0.3-0.4 solar that have been reported toward two other probes are uncorrected for ionization and H I small-scale structure. The Mrk 876 sight line gives some anomalous abundances, which are most likely due to high partial ionization.

SUMMARY OF DISTANCES AND ABUNDANCES						
Cloud	Distance (kpc)	z-Height (kpc)	Mass (M_{\odot})	Abundance (Relative to Solar)	А(Са п) (ppb)	Depletion Pattern
			HVCs			
Complex A	4.0–9.9	2.6-6.8	$0.3 - 2 \times 10^{6}$	0.02-0.4	19 ± 5	Halo??
Core IV4	$0.6 - 0.8(1.8)^{a}$	$0.5 - 0.7(1.7)^{a}$	$1.5-2.5(13) \times 10^3$	~1	3.3 ± 0.9	Warm disk
Cloud MII/MIII	<4.0	< 3.5	$< 6 \times 10^{4}$			
Complex C	$> 1.2 (> 6.1)^{b}$	$> 0.8(> 4.3)^{b}$	$> 10^{5} (> 3 \times 10^{6})$	$0.089 \pm 0.024^{+0.020}_{-0.005}$	$17 \pm 5^{\circ}$	Halo?
G	>1.3		$5 > \times 10^{4}$			
Н	> 5.0		$> 10^{6}$			
AC Shell	$(> 1.5)^{d}$		$> 2 \times 10^{5}$			
Cloud ACI	(>0.4)		$> 1 \times 10^{3}$			
Cloud ACII	(>0.3)		$> 5 \times 10^{2}$			
Cohen Stream	>0.3	>0.2	$> 3 \times 10^{2}$			
Cloud WW507	>0.3	>0.2	$>4 \times 10^2$			
Complex GP	>0.3	>0.1	$> 10^{3}$			
Mag. Str. (tail)			$> 1.5 \times 10^{8e}$	0.33 ± 0.05	27 ± 2	Warm-disk-halo
Mag. Str. (leading arm)			$>$ 5 \times 10 ^{7f}	0.25 ± 0.08	69 ± 10	Warm-disk-halo
Complex L	>0.2	> 0.1	>20			
Complex WB (WW225)					$(280 \pm 120)^{g}$	
Complex WE	<12.8	< 3.2	$< 2.5 \times 10^{5}$			
HVC 100–7+110	<1.3	< 0.2	<1	~1?		Halo?
			IVCs			
Upper IV Arch	0.8-1.8(0.8) ^h	0.7–1.7(0.7) ^h	$1-4.5(1) \times 10^{5}$	~1	20 ± 9^{i}	
Lower IV Arch $l > 150$	0.4–1.9	0.4–1.7	$0.4-7.0 \times 10^{5}$	~1	22 ± 16	Halo
Lower IV Arch $l < 150^{j}$	(0.5–0.9)	(0.4–0.8)	$0.4-1.2 \times 10^{5}$		23 ± 13	
IV spur	0.3-2.1	0.3-2.1	$0.2-8 \times 10^{5}$		22	
LLIV Arch	0.9-1.8(0.9) ^k	0.6-1.2(0.6) ^k	$1.5-6(1.5) \times 10^{5}$	1.0 ± 0.5	13 ± 1	Warm disk
Complex K	< 6.8	<4.5	$< 7.5 \times 10^{5}$	<2.0	(89) ¹	
Pegasus-Pisces Arch	<1.1	< 0.9	$< 0.5 \times 10^{5}$	0.54 ± 0.04	24 ± 10	Halo
Complex gp	0.8–4.3	0.3–2.0	$0.1 - 3 \times 10^{5}$	1-2	38 ± 17	

TABLE 4

^a The value in parentheses is valid if the distance to BD $+49^{\circ}2137$ is 1.8 kpc, rather than 0.8 kpc (see text).

^b The value in parentheses is from the weak limit toward BS 16034-0114.

^c Average of components seen toward Mrk 290 and PG 1351+640.

^d This limit requires that the Ca II abundance is greater than 20 ppb.

* Mass excludes the bridge region ($b > -45^{\circ}$) near the Magellanic Clouds, and assumes a distance of 50 kpc.

^f Mass of population EP clouds, assuming a distance of 50 kpc.

^g From PKS 0837 – 12, where N(H I) is low, so that A(Ca II) tends to be high.

^h The upper limit (1.8 or 0.8 kpc) depends on the distance to BD $+49^{\circ}2137$.

ⁱ Average does not include 4.3 ppb toward BD $+ 49^{\circ}2137$ and 150 ppb toward BT Dra.

¹ Excluding IV21, using the lower distance for PG 1255 + 546 and the higher distance for HDE 233791.

^k The upper limit depends on whether the gas probed by HD 77770 (d = 1.2 kpc) and HD 83206 (d = 0.9 kpc) is part of the LLIV Arch or not.

¹ From Mrk 501, where N(H I) is low, so that A(Ca II) tends to be high.

However, N I/H I is consistent with S II/H I. There seems to be little dust in complex C. In that case, the N I, O I, Si II, and Fe II abundance pattern toward PG 1259 + 593 is consistent with the idea that the heavy elements were produced in Type II supernovae, with no subsequent star formation. Finally, complex C shows the importance and necessity of corrections for ionization and H I fine structure.

4. The strong limit to the distance to complex C is greater than 1.2 kpc, but the distance is probably more than 6 kpc.

5. For the trailing and leading part of the Magellanic Stream S II abundances of 0.33 ± 0.05 and 0.25 ± 0.08 solar are found toward Fairall 9 (Gibson et al. 2000) and NGC 3783 (Lu et al. 1998), consistent with the idea that the Stream is a tidal feature extracted from the SMC (Gardiner & Noguchi 1996).

6. Using the FOS, Savage et al. (2000a) found Mg II absorptions associated with the Magellanic Stream, showing a nearly constant abundance of 0.1 solar when $N(\text{H I}) > 2 \times 10^{18} \text{ cm}^{-2}$, but showing larger Mg II/H I ratios at lower N(H I), suggesting increasing ionization.

7. Fe/S was determined for the trailing and leading parts of the Stream, giving values of 0.18 ± 0.06 and 0.13 ± 0.05 times solar. This is comparable to the value in SMC gas and indicates the presence of dust in the Stream.

8. Mg II absorption due to cloud WW84 is seen in the spectrum of Mrk 205. The Mg II abundance remains uncertain, however, due to H I small-scale structure. A(Mg II) could possibly be as low as 0.02 solar.

9. A second upper limit was set to the distance of a HVC: complex WE (which is identified and named in this paper) has d < 12.8 kpc, z < 3.2 kpc, based on the detection of absorption in the star HD 156359.

10. It is suggested that many small positive-velocity HVCs and the high-positive velocity absorptions without associated H I in the region $l = 180^{\circ}-320^{\circ}$, $b = 20^{\circ}-70^{\circ}$ are due to a spread-out leading edge to the leading arm of the Magellanic Stream. These occur in the extension of the curve defined by the SMC orbit and the EP clouds (Fig. 10).

11. For the higher velocity part of the IV Arch a strong bracket of z = 0.7-1.7 kpc can be derived. The upper limit depends mostly on the distance to BD +49°2137, which may be as low as 0.7 kpc. For the lower velocity IV Arch the strong bracket is z = 0.4-1.7 kpc for the part with $l > 150^{\circ}$. At lower longitudes the situation is confusing, but a possible z-height is 0.4 kpc.

12. The IV Arch appears to have near solar abundances, based on S II/H I ratios of 0.97 ± 0.06 , 0.8 ± 0.1 , and 1.1 ± 0.2 found toward HD 93521, HD 121800, and PG 0953+414, respectively.

13. A metallicity of ~0.7 solar and a distance of 0.9 kpc (z = 0.6 kpc) are known for the LLIV Arch. This object appears to be a prime example of the return flow of a Galactic Fountain: it lies at high z in an interarm region, it is rotating somewhat slower than expected from differential galactic rotation, it has a metallicity similar to that in the local ISM, the depletion pattern is similar to that in warm disk gas, and it is embedded in hot gas.

14. IVC complex K is newly defined in this paper, as IVC components with $v_{LSR} \sim -80 \text{ km s}^{-1}$ near $l = 50^{\circ}$. It has a distance less than 6.8 kpc (z < 4.5 kpc), and many potentially useful targets exist. It is notable for a strong correlation between H α emission and H I column density (Haffner et al. 2001).

15. The PP Arch is the best southern counterpart to the IV Arch in the northern Galactic hemisphere. An upper distance limit of 2.7 kpc (z < 1.6 kpc) can be set for the northern part, and of 1.1 kpc (z < 0.9 kpc) for the southern part. A metallicity of 0.5 solar is derived. This object deserves further study.

16. Positive-velocity IVCs near $l = 50^{\circ}$, $b = -25^{\circ}$ may be related to HVC complex GP (also known as HVC 40-15+100 or as the "Smith cloud"). Some of the IVCs lie in the distance range 0.8-4.3 kpc (z = 0.3-2.0 kpc) If the IVCs and complex GP are related, this excludes the suggestion by Bland-Hawthorn et al. (1998) that complex GP is a tidal stream connected to the Sagittarius dwarf. Complex gp is probed by the bright UV probe Mrk 509, toward which S II absorption suggests an abundance of 1-2 times solar.

17. The metallicity of HVCs and IVCs ranges from 0.1 to 1 solar. The most accurate value (0.089 times solar) is for complex C. For complex A ~ 0.1 solar is suggested. The Magellanic Stream (both the trailing and the leading arms) has Magellanic-like abundances (0.25 solar for sulfur). IVCs tend to have higher metallicities: the PP Arch has $Z \sim 0.5$ solar, the LLIV Arch has $Z \sim 0.8$ solar, while the IV Arch has $Z \sim 1$ solar. Thus, the classical HVCs A and C most likely represent material that has never before been part of the Milky Way and is now being accreted (see Wakker et al. 1999a, 1999b for more discussion). The IVCs, on the other hand, consist of Galactic gas. It is an open question which clouds are previously hot halo gas compressed by infalling material, and which are part of the return flow of a Galactic Fountain. For the LLIV Arch the second possibility is preferred.

18. Very little information exists on dust in HVCs. The Magellanic Stream shows the pattern typical for halo gas. In complex C there are indications for a lack of dust, based on the ratio Fe II/H I = 0.5 solar toward Mrk 876. Since S/H = 0.1, a halo-like ratio of Fe/S = 0.25 would require $N(H^+)/N(H I) > 20$, which is incompatible with the other absorption lines and the nondetection of H α emission (Murphy et al. 2000).

19. The IVC depletion pattern varies from that typical for warm disk gas (IV4, LLIV Arch) to that typical of halo gas (IV Arch, PP Arch).

20. Only one HVC distance bracket is known (4–10 kpc for complex A). An upper limit of <12.8 kpc was set for complex WE, and lower limits of >6 and >5 kpc exist for complexes C and H. In contrast, several IVC distance brackets were set. Expressed as z-heights, these tend to be about 0.5–1.5 kpc. Thus, the major IVCs appear to be a rather local phenomenon, whereas the major HVCs appear to be large clouds away from the Galactic plane.

21. For the large IVCs (IV Arch, LLIV Arch, PP Arch), mass limits typically are $0.1-8 \times 10^5 M_{\odot}$, whereas for the larger HVCs mass limits typically are greater than $10^6 M_{\odot}$ (with an upper limit of $2 \times 10^6 M_{\odot}$ for complex A). The Magellanic Stream is the most massive HVC, having $M > 10^8 M_{\odot}$. Thus, the major HVCs (A, C, H, MS) appear to be more massive than the major IVCs.

22. The abundance of Ca II tends to vary by a factor 2–5 within clouds and by a factor 5–10 between clouds. At any given value of N(H I), N(Ca II) can vary by a factor 10. Nevertheless, a strong correlation is found between the Ca II abundance and N(H I), which is discussed in more detail by Wakker & Mathis (2000).

Vol. 136

23. The abundance of Na I varies by a factor 100 for a given N(H I), and by a factor of more than 10 within a single cloud. No correlation is seen between log N(Na I) and log N(H I), showing that for HVCs and IVCs N(Na I) is an even worse predictor of N(H I) than it is for low-velocity gas.

24. It is possible to use Ca II to set lower limits to cloud distances, but this requires (a) knowledge of the Ca II abundance in the cloud, (b) sight lines with sufficiently high N(H I) (>5 × 10¹⁸ cm⁻²), and (c) sufficiently sensitive observations of the Ca II lines. For Na I the safety factor

required to interpret a nondetection as a lower limit is prohibitively large and in practice nondetection of Na I should not be considered significant.

This research has made extensive use of the SIMBAD database, operated at CDS, Strasbourg, France.

APPENDIX

DESCRIPTION OF THE COLUMNS

A1. COLUMN (1)

Column (1) gives the name of the stellar or extragalactic probe. In most cases this is the name given in the publication (see col. [19]). In a few cases the HD, BD, or PG number is substituted, most notably for the SAO stars in Lilienthal, Meyerdierks, & de Boer (1990) and Tamanaha (1997), for HZ 22 (=PG 1212+369), HZ 25 (=BD + $36^{\circ}2268$), and AG + 53783 (=HDE 233791) in Ryans et al. (1997a), and for H.O. + 23B (=PG 1205+228) in Kuntz & Danly (1996) (a revised distance was also determined for the latter star by Quinn et al. 1991). In the case of extragalactic objects, an effort was made to use the names in the Véron-Cetty & Véron (1996) catalog of QSOs and Seyfert galaxies, even if a different name was used in the absorption-line publication.

A2. COLUMNS (2) AND (3)

Columns (2) and (3) give the galactic longitude and latitude of the probe, rounded to 1/100th of a degree. For more accurate values, see SIMBAD or the original publication.

A3. COLUMNS (4) AND (5)

Column (4) gives the distance to the star and the distance error, in kiloparsec. This is followed by a flag that indicates the method used to make the estimate. Column (5) shows the z-height in kiloparsec, derived as $d \sin(b)$. The following flags are used.

"p".—Distance is 1/parallax, as measured by *Hipparcos*, and as given in SIMBAD. This is used if the parallax is known to better than about 30%. The distance error is calculated from the given parallax error, using $\Delta d/d = \Delta p/p$. Usually, the resulting distance is consistent with the spectroscopic distance (see below, under flag "t") to within 0.1 kpc. The most notable exception is HD 135485 (type B5 IIp), which was estimated to be at 2.5 kpc by Albert et al. (1993) and at 0.8 kpc by Danly et al. (1995), but whose parallax puts it at 0.18 kpc.

"a".—Distance determined from a detailed atmospheric analysis based on intermediate-resolution spectroscopy. For 22 PG stars, the distance values are taken from Moehler et al. (1990), Theissen et al. (1995), Wakker et al. (1996a), and Ryans et al. (1997a, 1997b). In the latter paper three non-PG stars were also analyzed (BD $+38^{\circ}2182$, BD $+49^{\circ}2137$, and HDE 233781). The nominal errors (as given in the publications above) are typically 0.3–0.4 kpc. In some cases the spectral analysis is difficult because the star may be either a HB or a post-AGB star. In this case, the actual uncertainty is much larger than the formal uncertainty. In particular, PG 0832+675 was at some point thought to be a main-sequence B1 V star at 31 kpc (Brown et al. 1989), but Hambly et al. (1996) found it to be an evolved star at 8.1 kpc, which is what is used here.

"g".—For stars in globular clusters and in the LMC, the distance is the distance to the cluster or to the LMC. Globular cluster distances are taken from Harris (1996). The LMC is assumed to be at a distance of 50 kpc.

"s".—Distance determined from the spectral type, which yields the absolute magnitude of the star. An extinction correction is applied, using the map of Lucke (1978), which gives the average A_V out to 2 kpc in mag kpc⁻¹ for 5° × 5° regions on the sky. Except for stars on complex H and clouds ACO and ACI, the extinction estimates always are below 0.2 mag. A distance calculation is done even if the original reference gives a spectroscopic distance, so that all distances are calculated on the same absolute-magnitude system. The differences between published and recalculated values are usually less than 10%.

For RR Lyrae stars, $M_V = 0.58$ is assumed, based on recent calibrations of their absolute magnitude (Fernley et al. 1998). A 10% error is assumed, which corresponds to 0.2 mag.

For confirmed horizontal branch stars that have not been subjected to a detailed analysis (PG 1126+468, PG 1510+635, PG 1008+689, and PG 1343+577) it is assumed that M_V is in the range 0.55–1.15 (Preston, Shectman, & Beers 1991). The average of these two values gives the most likely distance. The distance error is found as half of the range implied by the range in M_V . Five probes of complex C are probably also horizontal branch stars, and the M_V -values above are also used; better classifications are needed to confirm their status.

For stars with an MK classification the table of Straizys & Kurilene (1981) is used to convert from spectral type to M_V . The resulting distances are normally within 0.2 kpc of estimates made for the same star by other authors. The (1 σ) distance error is estimated by also calculating the distance using a classification that differs by one subtype and one luminosity class. This gives a maximum range for the distance, which is assumed to be equivalent to $\pm 3 \sigma$. For main-sequence stars, as well as for all

O-type stars, the typical error is less than 10%. Large relative errors (10%-100%) occur for (super)giant A and B stars, where a difference of one luminosity class can make a difference of 2 mag in the estimated absolute magnitude.

"t".—The spectroscopic distance is given, even though the parallax was measured by *Hipparcos*. However, the measured parallax is more uncertain than the spectroscopic distance.

"r".—Distance given is value quoted in reference, as the spectral type is not well specified in SIMBAD or the reference, and thus the distance cannot be recalculated on the same system as for other stars. This is the case for BD $+10^{\circ}2179$ and H.O. +41B.

A4. COLUMN (6)

Column (6) gives the classification of the probe. This can be an MK spectral type, "sd" for subdwarfs (sometimes with subtype), "HB" for confirmed horizontal branch stars, "(HB)" for suspected horizontal branch stars, "PAGB" for post-asymptotic giant branch, "SN" for extragalactic supernovae, as well as the obvious "RR Lyr," "QSO," "BL Lac," "Sey," or "Gal." "radio" is used for 21 cm or 3 mm continuum sources where high-velocity H I absorption has been searched for.

A5. COLUMN (7)

Column (7) gives the name or number of the HVC/IVC on which the probe is projected. For IVCs in the IV and LLIV Arch, the core numbers in the catalog of Kuntz & Danly (1996) are used. For stars that probe the IV Arch away from its cores "IVa" is given. The HVC names and numbers are from the catalog of Wakker & Woerden (1991). For clouds outside complexes the catalog number is preceded by the acronym "WW." One new HVC complex and three new IVC complexes are introduced in this paper: "WE," "K," the "PP Arch," and "gp"—see §§ 4.19, 4.27, 4.28, and 4.29.

A6. COLUMNS (8) AND (9)

Columns (8) and (9) show the best value for the H I velocity and column density in the direction of the probe. The velocity is given in km s⁻¹, relative to the LSR. The column density and its error are given in units of 10^{18} cm⁻². Upper limits are 5 σ . If there is absorption, but no corresponding H I component was detected, the value within parentheses refers to the velocity at which an upper limit to the H I column density is set. For all probes, the H I spectrum and Gaussian fits to the components are shown in Paper II.

For a few probes the Ca II and/or Na I absorption spectra show multiple components, although only one H I component can be discerned, When these are closer together than half the FWHM of the H I spectrum, the H I column density is split in two, assuming that the ion abundance in both components is the same. This results in two H I components listed at the same velocity, suffixed by "a" and "b" for BD $+49^{\circ}2137$ (IV17), BD $+38^{\circ}2182$ and BD $+36^{\circ}2268$ (Lower IV Arch), PG 1008 + 689 (LLIV Arch), HD 203664 (complex gp), as well as for seven stars in the LMC.

A7. COLUMN (10)

Column (10) shows a code that shows the telescope used to measure the H I column density. In general, the value determined at the highest available resolution is used, as (especially in cores) H I fine structure can produce variations of a factor of a few at arcminute scales (Wakker & Schwarz 1991; Wakker et al. 1996a). The following codes are used.

We.—N(H I) from a combination of Westerbork and Effelsberg data (1' or 2' beam), derived as described by Wakker et al. (1996a). This was done for 5 probes (Mrk 106, PG 0832+675, PG 0859+593, PG 0906+597, Mrk 290).

Ws.—N(H I) from a Westerbork map only (0159 + 625 in complex H).

AP.—N(H I) from a combination of ATCA and Parkes data (1' beam). This was done for NGC 3783 and HD 101274 (Lu et al. 1998).

WJ.—N(H I) from a combination of Westerbork and Jodrell Bank data (2' beam). This was done for HD 135485 and 4 Lac by Stoppelenburg et al. (1998).

JD.—N(H I) from a combination of Jodrell Bank and DRAO (2') data. This was done for the stars in M13 (Shaw et al. 1996). Ar.—N(H I) from a spectrum taken at Arecibo (3' beam). This is the case for 20 probes in the H I absorption studies of Payne et al. (1980), Colgan et al. (1990), and Akeson & Blitz (1999).

Ef, ef.—N(H I) derived from a spectrum taken at Effelsberg (9.1 beam). For 9 probes in complexes A, C, H, and K this is a published value (code "ef") (Lilienthal et al. 1990; de Boer et al. 1994; Centurión et al. 1994). For 113 other probes new spectra were taken with Effelsberg (code "Ef"; see Paper II).

JB.—N(H I) derived from a published spectrum taken with the Jodrell Bank Mark III telescope (12' beam). New Gaussian fits were made to six of the probes in Ryans et al. (1997a, 1997b), for which no Effelsberg spectrum was obtained (see Paper II). These usually agree with the published values, except when the intermediate-velocity H I component is in the line wing.

Pk.—N(H I) based on an observation at Parkes (15' beam). This is the case for 112 stars.

PN.—N(H I) from a fit to a spectrum extracted from the Parkes Narrow Band Survey (Haynes et al. 1999, 10 sight lines). These spectra are presented in Paper II.

PK.—N(H I) from a fit to a spectrum extracted from the Parkes Multibeam Survey (HIPASS) (Staveley-Smith 1997). These four spectra are presented in Paper II.

GB.—N(H I) derived from an observation with the Green Bank 140 foot telescope (21' beam). For 14 extragalactic sources this is a deep observation done by Murphy (detection limit ~3 × 10¹⁷ cm⁻²), see summary in Savage et al. (2000a). For three stars (HD 86248, HD 137569, and HD 100340) values were taken from Danly et al. (1992) and Albert et al. (1993). Finally, for HD 93521 and HD 215733 the component fits of Spitzer & Fitzpatrick (1993) and Fitzpatrick & Spitzer (1997) were used.

WAKKER

PI.—For some LMC stars, N(H I) is found from an interpolation between the value toward SN 1987A (see code "AB" below) and Parkes observations toward Sk $-69^{\circ}246$ and position JM43 in McGee & Newton (1986).

PR.—For some LMC stars, $N(H_{I})$ in the +165, +120, and +65 km s⁻¹ clouds was found by using a ruler on the plot of Wayte (1990). These numbers are therefore not very reliable.

HC.—For SN 1991T a special 24 hour integration was done at Hat Creek (see Paper II), in order to achieve a 5 σ upper limit of 3×10^{17} cm⁻².

Dw.—For 67 sight lines, N(H I) is based on an interpolation between gridpoints in the LDS (Hartmann & Burton 1997) (36' beam). That atlas gives the spectrum on every half degree in galactic longitude and latitude. Therefore, for each velocity channel a weighted average was constructed using the four gridpoints surrounding the direction to the probe; the weights are given by max (0, 0.5 - R), where R is the distance to the nearest gridpoint in degrees. VE.—For HD 156359 the limit of 2×10^{18} cm⁻² is based on the fact that Morras et al. (2000) do not list a component at

this position, as determined from observations with the IAR telescope at Villa Elisa.

AB.—No H I observation directly centered on SN 1987A has been published. Welty et al. (1999) derived the value of N(H I)for each spectral component from the abundance pattern of absorption, combined with the likely abundance of undepleted elements. In particular, if solar abundance (from Anders & Grevesse 1989) and standard halo depletion (from Savage & Sembach 1996a) are assumed, an implied N(H I) can be derived from the column densities of Mg II, Al II, Si II, Mn II, and Fe II. This yields column densities of 8.0 ± 2.5 and $5.4 \pm 1.9 \times 10^{18}$ cm⁻² for the components at +120 and +165 km s⁻¹, respectively, which are consistent with the N(H I) measured half a degree away by McGee & Newton (1986) in the directions toward Sk $-69^{\circ}246$ and their position "JM43." Using this method for the IVC yields $N(\text{H I}) = 31 \pm 6 \times 10^{18} \text{ cm}^{-2}$, a factor 5 higher than the H I spectrum would suggest, indicating either no depletion, low abundance or a high ionization fraction in this cloud. The analysis of Welty et al. (1999) does not definitively allow a choice between these three possibilities. Here a column density of 6.5×10^{18} cm⁻² will be used, which is the average of the 6.1 and 7.1×10^{18} cm⁻² observed half a degree away.

ab.—In the H I spectrum of 3C 123 three absorption components are seen, but only one emission component. Except for the main component, the absorption column density is therefore given in column (13).

md.—For Mrk 509 and PKS 2155 - 304, Sembach et al. (1999) use the Green Bank 140 foot telescope and find that $N(H_{I})$ is less than 6×10^{17} cm⁻². A photoionization model is used to convert the observed column densities of several ions (C IV, C II, Si III) to a most likely value for $N(H) = N(H I) + N(H^{+})$. This depends on the assumed metallicity, which may be in the range 0.1-1 times solar. For these two exceptional sight lines, the value in column (9) therefore is the total hydrogen column density, with an "error" expressing the possible range.

A8. COLUMN (11)

Column (11) shows the ion observed in absorption. Some entries between "(" (in col. [11]) and ")" (in col. [19]) refer to measurements superseded by a more recent reference.

A9. COLUMN (12)

Column (12) gives the velocity (relative to the LSR) of the measured absorption line.

A10. COLUMN (13)

Column (13) gives the column density (and error or upper/lower limit) for the observed ion, in units of 10^{11} cm⁻².

A11. COLUMN (14)

Column (14) shows a code showing how the column density was derived.

"N".—Column density quoted in reference. This is sometimes derived from assuming a linear relation between equivalent width and column density, but in many cases from a fit to the apparent optical depth profile or a curve of growth.

"L".—The logarithm of the column density was given in the reference. In this case the errors are usually given as logarithmic errors. These are converted to a linear error by calculating $[dexp (L + \delta) - dexp (L - \delta)]/2$, where L is the logarithmic column density and δ the logarithmic error. For example, log (N) = 11.25 ± 0.15 indicates a range of 1.3– 2.5×10^{11} and becomes $N = 1.8 \pm 0.6 \times 10^{11}$.

"W".—The equivalent width is given in the reference. This is converted to a column density by assuming that the gas temperature is 7000 K and using this to calculate the turbulent width from the observed H I line width $[W(H I)]: v_{turb} =$ temperature is 7000 K and using this to calculate the turbulent width from the observed H I line width [W(H I)]: $v_{turb} = [W(H I)^2 - W(T)^2]^{1/2}$, where W(T) is given by $[8 \ln 2kT/m(H)]^{1/2}$. The width of the absorption line for the ion is then found as $W(\text{ion}) = \{W[T, m(\text{ion})]^2 + v_{turb}^2\}^{1/2}$. Then the formula for the equivalent width $(EW = \int 1 - \exp[-\tau(v)])$ is inverted, assuming $\tau(v)$ is Gaussian. If the H I line width is less than $W(7000) = 17.9 \text{ km s}^{-1}$, $v_{turb} = 0$ and a lower temperature are assumed and a "V" is added to the notes column (this happens in eight directions). If the H I line width was not measured (four directions as well as all LMC sight lines), a value of 30 km s^{-1} is assumed, and a "W" is added to the notes column. Note that the derived column density is not very sensitive to the assumed temperature for weak lines.

"E".—Detection inferred from large equivalent width. This is the case for 21 extragalactic sources observed with the FOS (Burks et al. 1994; Savage et al. 2000a). That is, when expressed as a velocity width, the equivalent width of the Mg II or C II absorption line is as large or larger than the total width of the H I 21 cm line, including the HVC.

"S".—Upper limit to column density derived from a quoted signal-to-noise (S/N) level, which is converted to an equivalent error using the error formula for fitting a Gaussian given by Kaper et al. (1966): $\sigma(W) = (\lambda/c)[3(\pi/8 \ln 2)^{1/2}]^{1/2}(Wh)^{1/2}(1/SN),$ where the observed line width, W, and a grid spacing $h = 8 \text{ km s}^{-1}$ are used.

" τ ".—This happens for observations of 21 cm absorption, and the optical depth of the absorption is given. The ion column density column then contains the column density of the absorbing cool H I (but in units of 10^{18} cm⁻² rather than 10^{11} cm⁻²). Note that for rows giving a summary of cloud parameters, this column may give, within square brackets a reference value for the column density of highly ionized atoms (C IV, N V, O VI, and Si IV).

A12. COLUMN (15)

Column (15) shows the ratio N(ion)/N(H I), in units of 10^{-9} (i.e., parts per billion or ppb). In the case of H I absorption the ratio N(H I, absorption)/N(H I, emission) is given. These values should be compared to the expected abundance of the ion, which is given in column (16) in the cloud overview (see § 3).

A13. COLUMN (16)

For rows giving an overview of abundances for a particular cloud, column (16) shows the expected abundance values (see § 3), in square brackets. In the case of complexes A and C all expected abundances are scaled down by a factor 10, as an abundance of 0.089 times solar was found for sulfur in complex C (Wakker et al. 1999a), and an oxygen abundance of ~ 0.06 times solar was suggested for complex A (Kunth et al. 1994, § 4.1. Both sulfur and oxygen are not or lightly depleted onto dust. For directions toward the Magellanic Stream (both the trailing and leading arms), the expected abundances are scaled down by a factor 4, as indicated by the sulfur abundances found toward NGC 3783 and Fairall 9.

A14. COLUMN (17)

Column (17) gives the derived abundance relative to the solar abundance, given by Anders & Grevesse (1989), with updates for C, N, and O from Grevesse & Noels (1993).

A15. COLUMN (18)

Column (18) shows a flag indicating whether the result gives an upper or lower distance limit. Detections toward stellar probes yield an upper limit (flag "U"). Nondetections may set a lower limit (flags "1" and "L"; see below), but only if it can be shown that the line should have been seen if the probe were behind the cloud. To get to that point, there are several effects to consider.

Fine structure in the H I distribution can lead to variations of up to a factor 5 on arcminute scales in HVC cores (Wakker & Schwarz 1991; Wakker et al. 2001b), although the variations may be less outside cores (Wakker et al. 1996a). For eight probes N(H I) has been observed at 35', 9', and 2' resolution (see Paper II). As the covering factor of the very bright spots is low (~10% of the surface area of the cloud), an observation with a 10'-20' beam will usually give a column density accurate to within 50%, i.e., a factor 2. This factor of less than 2 is supported by the results of Savage et al. (2000a). They compared N(H I) measured using Ly α with the value measured in 21 cm emission toward 12 extragalactic probes. The Ly α values are 60%-90% of those measured at 21 cm. A more detailed discussion of the comparison between values of N(H I) derived with different beams is presented in Paper II.

The gaseous abundance of an ion may also vary within a cloud, as both the depletion and ionization can vary. For dominant ions, variations are expected to be small if the H I column density is high, say above 10^{19} cm⁻², while for nondominant ions (e.g., Ca II and especially Na I), ionization variations are expected to be large. As discussed in § 3, multiple measurements in the same cloud exist for several ions (mainly Na I, Mg II, S II, Ca II, Fe II). As the quality of these measurements is not always the same, and the H I values are usually derived using different telescopes, no systematic study can be made. Yet, it is clear that for $N(H I) > 5 \times 10^{18}$ cm⁻² most ions show variations of at most a factor 3–5 within a single cloud, whereas Na I can vary by a factor 20 for different sight lines through the same cloud (Meyer & Lauroesch 1999; § 3.5).

Thus, to determine whether a nondetection is significant and sets a lower limit to the distance of a cloud, the observed limit is compared with an expected value. This is done in terms of optical depths, since the absorption has to be deep enough to be recognizable. The expected optical depth is calculated by combining the expected column density for the ion in question with the measured H I line width. The expected column density is found as the product of the H I column density and either the measured or the reference abundance (see § 3 and col. [16]).

The expected optical depth is then divided by a safety factor, to account for possible H I small-scale structure and depletion and/or ionization variations. H I small-scale structure introduces a safety factor of 2. For Na I and for strongly depleted elements (atomic numbers > 18, except Zn), the depletion safety factor is 2.5; for other elements it is 1.5. The ionization safety factor is 5 for Na I, 2 for other elements, except for C II, Mg II, and O I, where it is 1. For C II this is because the ionization potential of the next ionization stage is high, and C III will only occur where H is (almost) fully ionized. In the case of O I, ionization is not a problem, as O I and H I are coupled through a strong charge-exchange reaction (Osterbrock 1989). A final safety factor of 2 is introduced if the ion abundance had to be assumed. The combined safety factor ranges from 3 for O I, C II, and Mg II for clouds where their abundance has been measured, to typical factors of 10 for Ca II in clouds with known abundance, 12 for Si II and 20 for Fe II for clouds with assumed abundance, and a factor of 50 for Na I if its abundance has not been measured in the cloud.

If the safety-factor-multiplied expected optical depth is larger than the observed lower limit, the nondetection is considered significant enough to set a lower limit to the cloud's distance (flag "1"). If the expected value is more than 3 times larger than the observed limit, the distance limit is considered strong (flag "L").

For HVC complex H and the Anti-Center clouds, no direct abundance measurement exists, but in the framework of the "Local Group model" (Blitz et al. 1999) an abundance of 0.1 times solar is predicted. Therefore, the safety factor needs to be calculated as if the abundance were 1/10th solar.

WAKKER

A16. COLUMN (19)-REFERENCES

(1) Prata & Wallerstein (1967); (2) Wesselius & Fejes (1973); (3) Savage & de Boer (1979); (4) Cohen (1979); (5) Payne et al. (1978, 1980); (6) Blades (1980), Meaburn & Blades (1980); (7) Meaburn (1980); (8) Songaila & York (1981); (9) Songaila (1981); (10) Savage & de Boer (1981); (11) Savage & Jeske (1981); (12) Songaila et al. (1981); (13) York et al. (1982); (14) Blades et al. (1982); (15) de Boer & Savage (1983); (16) Albert (1983); (17) de Boer & Savage (1984); (18) Ferlet et al. (1985a); (19) Songaila et al. (1985); (20) d'Odorico et al. (1985); (21) Kulkarni et al. (1985); (22) West et al. (1985); (23) Songaila et al. (1986); (24) Kulkarni & Mathieu (1986); (25) Morton & Blades (1986); (26) Magain (1987); (27) Vidal-Madjar et al. (1987), Andreani et al. (1987); (28) de Boer et al. (1987); (29) Dupree et al. (1987); (30) Keenan et al. (1988); (31) d'Odorico et al. (1989); (32) Conlon et al. (1988); (33) Songaila et al. (1988); (34) Blades et al. (1988); (35) Meaburn et al. (1989); (36) Molaro et al. (1989); (37) Savage et al. (1989); (38) Lilienthal et al. (1990); (39) Colgan et al. (1990); (40) Wayte (1990); (41) Langer et al. (1990); (42) Bates et al. (1990, 1991); (43) Wakker et al. (1991); (44) Mebold et al. (1991); (45) Sembach et al. (1991); (46) Quin et al. (1991); (47) Meyer & Roth (1991); (48) Robertson et al. (1991); (49) Bowen et al. (1991a, 1991b); (50) Danly et al. (1992); (51) Spitzer & Fitzpatrick (1992); (52) Molaro et al. (1993); (53) de Boer et al. (1993); (54) Sembach et al. (1993); (55) Bruhweiler et al. (1993); (56) Spitzer & Fitzpatrick (1993); (57) Danly et al. (1993); (58) Albert et al. (1993); (59) Kunth et al. (1994); (60) de Boer et al. (1994); (61) Vladilo et al. (1993, 1994); (62) Centurión et al. (1994); (63) Bowen et al. (1994); (64) Lu et al. (1994a); (65) Little et al. (1994); (66) Lu et al. (1994b); (67) Burks et al. (1994); (68) Kemp et al. (1994); (69) King et al. (1995); (70) Schwarz et al. (1995); (71) Sembach et al. (1995a); (72) Lipman & Pettini (1995); (73) Ho & Filippenko (1995, 1996); (74) Bowen et al. (1995a); (75) Bowen & Blades (1993), Bowen et al. (1995b); (76) Savage et al. (1995); (77) Keenan et al. (1995); (78) Danly et al. (1995); (79) Wakker et al. (1996b); (80) Welsh et al. (1996); (81) Bomans et al. (1996); (82) Ryans et al. (1996); (83) Kuntz & Danly (1996); (84) Benjamin et al. (1996); (85) Caulet & Newell (1996); (86) Savage & Sembach (1996b); (87) Wakker et al. (1996a); (88) Shaw et al. (1996); (89) Lockman & Savage (1995); (90) Fitzpatrick & Spitzer (1997); (91) Sahu & Blades (1997); (92) Tamanaha (1997); (93) Ryans et al. (1997a); (94) Ryans et al. (1997b); (95) Stoppelenburg et al. (1998); (96) Wakker et al. (1998); (97) Tufte et al. (1998); (98) Tripp et al. (1998); (99) Jannuzi et al. (1998); (100) Lu et al. (1998); (101) Sahu (1998); (102) Kennedy et al. (1998); (103) Kemp & Bates (1998); (104) van Woerden et al. (1999a); (105) Richter et al. (1999); (106) Wakker et al. (1999b); (107) Lehner et al. (1999a); (108) Lehner et al. (1999b); (109) Welty et al. (1999); (110) Sembach et al. (1995b, 1999); (111) Meyer & Lauroesch (1999); (112) Akeson & Blitz (1999); (113) Ryans et al. (1999); (114) van Woerden et al. (1999b); (115) Combes & Charmandaris (2000); (116) Gringel et al. (2000); (117) Bowen et al. (2000); (118) Sembach et al. (2000); (119) Murphy et al. (2000); (120) Penton et al. (2000); (121) Savage et al. (1993, 2000a); (122) Gibson et al. (2000); (123) Richter et al. (2001a); (124) Bluhm et al. (2001); (125) Gibson et al. (2001); (126) Richter et al. (2001b); (127) Sembach et al. (2001); (128) Fabian et al. (2001); (129) Howk et al. (2001).

A17. COLUMN (20)-NOTES

 τ .—With the measured FWHM of the H I profile, the column density or equivalent width implies $\tau > 10$.

W.—For the conversion of equivalent width to column density, the H I line width is assumed to be 30 km s^{-1} .

V.—H I line width is less than 17.9 km s⁻¹, implying T < 7000 K; $v_{turb} = 0$ is assumed.

T.—Last two data columns give spin temperature and width of absorption feature; the N(ion) column gives N(H I) of the cold, absorbing gas, in units of 10^{18} cm⁻²; the abundance column is N(abs)/N(em).

s.—Approximate limit for N(Si II), assuming S/N = 10 in the line; also: $N(\text{C II}) < 10^{13} \text{ cm}^{-2}$.

S.—Based on *IUE* spectra in which Si π is the strongest uncontaminated line; spectra for HD 100600, HD 97991, and HD 121800 in Danly et al. (1992), others unpublished.

f.—Low-velocity resolution (220 km s⁻¹) FOS spectrum, HVC absorption implied by large equivalent width; H I spectrum in Lockman & Savage (1995).

1.—Also known as Mrk 116; the measurement has a very large error.

2.—Distance estimate of star has changed a lot. Brown et al. (1989) found it had type B1 V, and z = 18 kpc. Hambly et al. (1996) find z = 4.6 kpc.

3.—Error visually estimated from spectrum and quoted typical S/N.

4.—Parallax is 2.19 \pm 0.92 mas, or d = 0.45 kpc; 1.2 kpc is 1.5 σ off; d = 0.45 kpc would imply type B6 IV or B5 V.

- 5.—Na limit not given, but estimated from S/N = 50.
- 6.—Is SAO 6225 in Lilienthal et al. (1990).

7.—Is SAO 6253 in Lilienthal et al. (1990).

8.—Is SAO 14733 in Songaila et al. (1988).

9.—Definitively shown to be stellar by Lilienthal et al. (1990).

10.—In NGC 3877, which has $v_{LSR} = +910 \text{ km s}^{-1}$.

11.—Kuntz & Danly (1996) give the distance to this star as 1.8 kpc.

12.—The *Hipparcos* parallax is 3.86 ± 1.17 mas, which gives d = 250 pc, with 1.6 kpc at 2.5 σ ; Lehner et al. (1999a) argue for a spectroscopic distance of 1.2 kpc.

13.—Cloud 63 is $\sim 1^{\circ}$ away, while cloud 51, at the southern edge of complex M, is $\sim 2^{\circ}$ away; Ryans et al. (1997a) do not list this component in H I; it could be in the IV Arch.

14.—5 σ upper limits for N(H I) with 12' beam, (Ryans et al. 1997a); with a 20' beam N(H I) = 3.5×10^{18} cm⁻² for BD + $38^{\circ}2182$ and 4.1×10^{18} cm⁻² for HD 93521 (Danly et al. 1993).

15.—Limits for N(Na I) and for N(Ca II) toward HD 93521 are implied but not actually given, the errors for BD + 38°2182 are used as estimate.

16.—Limit to N(C II), N(O I), and N(S II) from assuming S/N = 20 in the continuum.

17.—Complex C in region $\ell = 80^{\circ}-90^{\circ}$, $b = 37^{\circ}-43^{\circ}$, and $v_{LSR} > -140$; distance limit assumes HB classifications are correct for the BS stars.

18.—Corrected for S^{+2} and H^+ (i.e., $[N(S^+) + N(S^{+2})]/[N(H^0) + N(H^+)]$), the S abundance is 0.089 solar.

19.—The NI spectrum is noisy and was fitted by a single component; half of this was assigned to each HI component.

20.—Total O vI column density split evenly between the two H I components.

21.—Limit to N(CO) from nondetection of absorption (3 σ significance), assuming excitation temperature of 10 K.

22.—Danly et al. (1992) classify HD 146813 as B1.5 at d = 2.4 kpc, Diplas & Savage (1994) give 2.6 kpc, I would find 3.3 kpc; the SIMBAD type B8 V is consistent with the *Hipparcos* parallax of 2.41 \pm 0.78 mas, implying d = 0.4 kpc.

23.—A nonexistent Na I detection at -133 km s^{-1} was also claimed.

24.—Disputed, very high probability that the line is stellar; moreover, there is no H I at -136 km s⁻¹, the velocity of the claimed absorption.

25.—Complex C at $\ell > 109^{\circ}$ and $b > 49^{\circ}$.

26.—Detection not mentioned in paper (Burks et al. 1994), but equivalent widths are 280 km s^{-1} for C II and 160 km s^{-1} for Si II.

27.—H I also has component at -118 km s^{-1} (2.7 \pm 0.3 \times 10¹⁸ cm⁻²).

28.—Is HD 100971.

29.—Is Feige 87 in Schwarz et al. (1995).

30.—Complex C at $\ell > 101^\circ$, $b < 48^\circ$, and $\ell = 80^\circ - 100^\circ$, $b < 43^\circ$, plus $v_{LSR} < -140$ in region of overlap with C I.

31.—This is a very doubtful S II component; H I has two components of 19.1 and 11.6×10^{18} cm⁻² at -137 and -102 km

 s^{-1}

- 32.—Revised equivalent widths from Bowen et al. 1995b.
- 33.—Source name is 0959 + 68W1 in FOS Key Project; H I has tail to -175 km s⁻¹.
- 34.—Complex C at $\ell < 80^{\circ}$.
- 35.—Is "1749+096" in Akeson & Blitz (1999).
- 36.—4 Lac sets a distance limit on complex G, although this is not commented upon by Bates et al. (1991).
- 37.—Components with $T_B > 0.5$ K in the region $\ell = 123^{\circ} 133^{\circ}$, $b = -3^{\circ}$ to $+5^{\circ}$.
- 38.—Continuum source in Westerbork map of core of complex H.
- 39.—Centurión et al. (1994) give a distance of 1.1 kpc for HD 10125 and 4.1 kpc for HD 13256.
- 40.—Is Hiltner 198 in Centurión et al. (1994).
- 41.—Is Hiltner 190 in Centurión et al. (1994).
- 42.—Components in the region $\ell = 110^{\circ}$ to 120° .

43.—Components within a few degrees of the core at $\ell = 132^{\circ}, b = -5^{\circ}$.

44.—The spectral type would suggest a distance of 3.4 kpc, if the extinction is assumed to be 1.6 mag, it may be 5 mag.

45.—Complex H components outside the three cores.

46.—Is "0224+671" in Akeson & Blitz (1999).

- 47.—Is "0300+470" in Akeson & Blitz (1999).
- 48.—The spectral type would suggest a distance of 2.1 kpc, if the extinction is indeed 2.4 mag, it may be 5 mag.
- 49.—This star was erroneously called BD $+61^{\circ}2619$ by Centurión et al.

50.—In the H I emission profile only a single, broad component at ~ -60 km s⁻¹ can be discerned, listed on the first line. The -73 and -58 km s⁻¹ components are only clearly seen in absorption; the listed H I column densities are those of the absorption.

51.—Kulkarni & Mathieu (1986) classify this as an O star at 2.5 kpc. According to SIMBAD it is a B star. According to Garmany et al. (1987) it is O5 V at 8.0 kpc.

- 52.—Error assumed from quoted S/N of 100, width 15 km s⁻¹ and grid 6 km s⁻¹.
- 53.—Is SAO 76016 in Songaila et al. (1988).
- 54.—Is SAO 76994 in Songaila et al. (1988).
- 55.—Is SAO 76980 in Songaila et al. (1988).
- 56.—Is SAO 76954 in Songaila et al. (1988).
- 57.—Estimated S/N = 20 for the *IUE* spectra.
- 58.—A general 5 mÅ detection limit is given.
- 59.—Is "0239 + 108" in Akeson & Blitz (1999).
- 60.—Cloud 363 is the "Giovanelli Stream," is "0428 + 20" in Akeson & Blitz (1999).
- 61.—Cloud 525 (v = -231) is 1 degree away in the Dwingeloo survey.
- 62.—Cloud 419 in pop. GCN $\sim 1^{\circ}$ away.
- 63.—N(H,total) based on photoionization models; $N(H I) < 0.6 \times 10^{18} \text{ cm}^{-2}$ from Green Bank data.
- 64.—Total O vI column density split in ratio 1:2 between the two components.
- 65.—About 10° away from nearest GCN cloud; an unclassified H I HVC at -133 km s⁻¹ is detected 15' away.
- 66.—Is "1829+29" in Akeson & Blitz (1999).
- 67.-Is "1901 + 319" in Akeson & Blitz (1999).
- 68.—Is "1828+487" in Akeson & Blitz (1999).
- 69.—Is "2037 + 511" in Akeson & Blitz (1999).
- 70.—A deeper STIS spectrum suggests that the CIV component at -213 km s^{-1} may not be real.
- 71.—Lockman & Savage (1995) give a 72 km s⁻¹ wide component from -150 to -78 km s⁻¹; this was split in two.
- 72.—Is "1928 + 738" in Akeson & Blitz (1999); H I has tail to -161 km s^{-1} .

73.—H I has tail to -128 km s^{-1} .

74.—Is "0538+498" in Akeson & Blitz (1999).

75.—Average of values toward 5 probes with $N(\text{H I}) > 2.5 \times 10^{18} \text{ cm}^{-2}$.

76.—Low-velocity resolution (220 km s⁻¹) FOS spectrum, but HVC component is separately seen; the actual EW values and velocities are from Jannuzi et al. (1998).

77.—Is PG 0007+106.

78.—N(H I) from single-component fit, although there are two H I components: at +194 km s⁻¹, N(H I) = $75.3 \pm 0.8 \times 10^{18}$, width 45.0 km s⁻¹, and +140 km s⁻¹, $N(\text{H I}) = 13.7 \pm 0.6$ km s⁻¹, width 27.7 km s⁻¹; in absorption usually only one component can be discerned.

79.—The Na I and Ca II absorptions toward Fairall 9 found by Songaila & York (1981) were published again by Songaila (1981).

80.—Lu et al. (1994a) give EW(Si II λ 1260) = 368 mÅ, but this is for absorption from +160 to +300 km s⁻¹ and is larger than possible for the observed H I line width of 37 km s⁻¹. Possibly there is an extra component at $v \sim +200$ km s⁻¹. The EW listed here is the maximum possible given the observed W(H I).

81.—Lu et al. (1994a) use a linear conversion from equivalent width.

82.—Parallax measured as 1.84 ± 1.22 mas; distance given as 6.2 kpc by Danly et al. (1992), as 6.6 kpc by Diplas & Savage (1994).

83.—Cloud WW84 is very centrally condensated, and a 10' Effelsberg beam centered on Mrk 205 picks up some of the very bright emission from the cloud center. WSRT observations have not yet been properly combined with single-dish data. The tabulated value is the current best guess.

84.—Parallax measured as 5.52 ± 1.13 mas, revising distance down from 0.8 kpc in Danly et al. (1995), or 2.5 kpc in Albert et al. (1993); N(H I) from Stoppelenburg et al. (1998).

85.—Probably circumstellar (Danly et al. 1995). Albert et al. (1993) do not actually claim this as a detection.

86.—Is 3C 206.

87.—Nearest HVC (WW364, v = +120) is 6° away, but the region was only sampled on a 2° × 2° grid.

88.—In NGC 4527, which has $v_{LSR} = +1733 \text{ km s}^{-1}$.

89.—HVC 100-7 + 100; N(H I) from Stoppelenburg et al. (1998); parallax is 1.54 ± 0.52 mas, giving d < 1.0 kpc (1 σ).

90.—In NGC 5194, which has $v_{LSR} = +463 \text{ km s}^{-1}$; paper assumes a ratio N(Na I)/N(H I), but the implied N(H I) then is much larger than limit from the Dwingeloo profile.

91.—In M81, which has $v_{LSR} = -130 \text{ km s}^{-1}$, -40 km s^{-1} at position of SN 1993J.

92.—In NGC 4526, which has $v_{LSR} = +625$ km s⁻¹, 880 km s⁻¹ at position of SN 1994D; faint H I found at Arecibo; the erratum corrects the misconception that this originates inside NGC 4526.

93.—In NGC 5128, which has $v_{LSR} \sim +400 \text{ km s}^{-1}$; HVCs 219 and 208 are 1° and 3° away. 94.—In M83, which has $v_{LSR} = 320-620 \text{ km s}^{-1}$.

95.—Average of values toward SN 1987A and Sk $-69^{\circ}243$. These are consistent with the values for other probes, for which N(H I) is uncertain and low.

96.—IUE spectra without measurements are presented by de Boer et al. (1987) and Dupree et al. (1987).

97.—Ca II profile was published, but not the measurements; estimated equivalent widths.

98.—N(H I) from McGee & Newton (1986).

99.—Average of the values found toward Sk $-67^{\circ}104$, Sk $-67^{\circ}166$, and Sk $-68^{\circ}82$.

100.—Average of the values found toward SN 1987A, Sk $-67^{\circ}104$, Sk $-67^{\circ}166$, and Sk $-68^{\circ}82$.

101.—Average of the values found toward Sk $-67^{\circ}104$, Sk $-67^{\circ}166$, and Sk $-68^{\circ}82$.

102.—Average of the best determinations, toward SN 1987A, Sk $-69^{\circ}243$, Sk $-69^{\circ}246$, Sk $-69^{\circ}247$, Sk $-71^{\circ}41$, Sk $-71^{\circ}42$, and Sk $-71^{\circ}45$.

103.—Average of the values found toward SN 1987A, Sk $-67^{\circ}104$, Sk $-67^{\circ}166$, Sk $-68^{\circ}82$, and Sk $-69^{\circ}246$. 104.—Absorption occurs at all velocities between 0 and $+300 \text{ km s}^{-1}$; results given for velocity range 120–190 km s⁻¹; for Al III the 1854 line gives $\log N = 11.64$, the 1862 line has $\log N = 12.08$.

105.—HDE 268605.

106.—N(H i) from McGee & Newton (1986), position JM43; also has component at +182 (5.9 × 10¹⁸).

107.—Value toward SN 1987A, which is the only reliable one; equivalent widths toward Sk $-67^{\circ}05$, Sk $-68^{\circ}82$, and Sk $-71^{\circ}3$ are only rough values; Molaro et al. (1993) find an upper limit of 5.2 ppb toward Sk $-69^{\circ}246$.

108.—Average of the values toward Sk $-67^{\circ}05$ and Sk $-67^{\circ}104$; Blades et al. (1988) imply 2.6 solar toward SN 1987A, but that column density is very uncertain and was not measured by Welty et al. (1999).

109.—The three measurements are very discrepant: 0.08 solar toward Sk $-69^{\circ}246$ (Savage & de Boer 1981), 0.85 solar toward Sk $-67^{\circ}104$ (Savage & Jeske 1981), and 2.1 solar toward SN 1987A (Welty et al. 1999).

110.—Average of values toward SN 1987A, R 139, R 140, Sk $-69^{\circ}243$, Sk $-69^{\circ}246$, Sk $-69^{\circ}248$, Sk $-69^{\circ}255$, Sk $-71^{\circ}41$, Sk $-71^{\circ}42$, and Sk $-71^{\circ}45$. For other measurements N(H I) is based on interpolation or reading off plots.

111.—Value toward SN 1987A; toward Sk $-69^{\circ}246$ Savage & de Boer (1981) found 0.2 solar, but this is uncertain; the

values toward Sk $-67^{\circ}05$ and Sk $-67^{\circ}104$ are for the combined +65 and +120 km s⁻¹ components. 112.—In absorption components are seen at -64, -45, and -30 km s⁻¹, but in the H I spectrum these are blended. The fit was forced to have components at -65 and -45 km s⁻¹.

113.—At the edge of IV6, which is not separately visible in the H I emission spectrum.

114.—Mg II column densities determined from the 1239/1240 lines are corrected downward by 0.67 dex, see Savage & Sembach (1996a).

115.—In the paper, the fits to these components are shown, but no numbers are given—they were provided by Bowen.

116.—Mixture of IV17 and IV26; IVC absorption not listed in Schwarz et al. (1995).

117.—Ca absorption does not resolve IV9 (v = -73, $T_B = 0.56$ K) and IV19 (v = -48, $T_B = 2.36$ K); column densities are combined values.

118.—In the GHRS absorption spectrum IV9 and IV19 are hard to separate, the combined S II column density was proportionally divided between the two H I components.

119.—Spectrum analyzed by Conlon et al. (1988); coordinates differ from those quoted by Kuntz & Danly (1996), who also confuse z and d.

120.—Is HZ 22 in Ryans et al. (1997a).

121.—The discrepancy between the "normal" value for the Ca II of IV15 abundance measured toward Mrk 290 and the unusually high (by a factor 10) value toward BT Dra suggests that the -83 km s⁻¹ absorption toward BT Dra may be stellar (its *b*-value is also unusually low).

122.—Is HZ 25 in ref.

123.—Ryans et al. (1997a) call this star AG + 53°783 and give $\ell = 154$ °.4, b = 56°.6; is this the same star? Possibly it is a B9 V star at 1.1 kpc; the identification of AG $+ 53^{\circ}783$ with HDE 233791 is based on SIMBAD.

124.—O I λ 1304, C II λ 1334, Si II are seen in the line wing.

125.—Is HIP55461.

126.—In reference as H.O. + 23B, to which SIMBAD has 11 references with coordinates differing by up to 5"; z determined by Quin et al. (1991).

127.-N(H I) fitted to a spectrum in which M81 was taken out by means of a third order polynomial fit; the uncertainty reflects the uncertainty in the zero level at $v = -50 \text{ km s}^{-1}$

128.—Assuming S/N = 30.

129.—BD names given in paper: HDE $237844 = BD + 56^{\circ}1411$, HDE $233622 = BD + 50^{\circ}1631$.

130.—Combined component groups 1–2, 3–5, and 6–9 to form -92, -56, and -43 km s^{-1} components.

131.—For the -56 and -43 km s⁻¹ components, the (logarithmic) ionization fraction has been determined to be -3.6 to -1.3 and -3.6 to -1.9, respectively.

132.—Penton et al. (2000) fit a component at $+60 \text{ km s}^{-1}$ to the S II $\lambda\lambda$ 1250, 1253, and 1259 lines, with EWs of 58, 85, and 30 mÅ; S II λ 1259 is blended with Si II λ 1260. The weaker lines are shown by Sembach et al. (1999), and this shows that they are half as strong. The listed column density is based on the lower EWs.

133.—Originally found by York et al. (1982), analyzed by Blades & Morton (1983), and improved by Morton & Blades (1986).

134.—N(H I) determined by interpolating between the values on a 3 \times 3 grid with 9' spacing.

135.—M15 NW/SE core refer to the positions with the highest and lowest Na I abundance measured using a 7×13 $(27'' \times 43'')$ array of 3" fibers.

136.—In NGC 1316, which has $v_{LSR} = +1521 \text{ km s}^{-1}$.

137.—de Boer & Savage (1984) claimed to have found this C II absorption line; however, recent FUSE data (J. C. Howk 2000, private communication) do not show the absorption in the C II λ 1036 and other strong lines.

- REFERENCES
- Akeson, R. L., & Blitz, L. 1999, ApJ, 523, 163
- Albert, C. E. 1983, ApJ, 272, 509 Albert, C. E., Blades, J. C., Morton, D. C., Lockman, F. J., Proulx, M., & Ferrarese, L. 1993, ApJS, 88, 81

- Ferrarese, L. 1993, ApJS, 88, 81
 Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
 Andreani, P., Ferlet, R., & Vidal-Madjar, A. 1987, Nature, 326, 770
 Bajaja, E., Cappa de Nicolau, C. E., Cersosimo, J. C., Martin, M. C., Loiseau, N., Morras, R., Olano, C. A., & Pöppel, W. G. L. 1985, ApJS, 58, 143
- Bajaja, E., Cappa de Nicolau, C. E., Martin, M. C., Morras, R., & Olano, C. A. 1989, A&AS, 78, 345
- Bates, B., Catney, M. G., Gilheany, S., Keenan, F. P., Davies, R. D., & Hummel, E. 1991, MNRAS, 249, 282
- Bates, B., Catney, M. G., & Keenan, F. P. 1990, MNRAS, 242, 267 Benjamin, R. A., Venn, K. A., Hiltgen, D. D., & Sneden, C. 1996, ApJ, 464, 836
- Blades, J. C. 1980, MNRAS, 190, 33
- Blades, J. C., Elliot, K. H., & Meaburn, J. C. 1982, MNRAS, 192, 101 Blades, J. C., & Meaburn, J. 1980, MNRAS, 190, 59P

- Blades, J. C., & Morton, D. C. 1983, MNRAS, 204, 317 Blades, J. C., Wheatley, J. M., Panagia, N., Grewing, M., Pettini, M., & Wamsteker, W. 1988, ApJ, 332, L75
- Bland-Hawthorn, J., & Maloney, P. R. 1999, ApJ, 510, L33
- Bland-Hawthorn, J., Veilleux, S., Cecil, G. N., Putman, M. E., Gibson, B. K., & Maloney, P. R. 1998, MNRAS, 299, 611
- Blitz, L., Spergel, D., Teuben, P., Hartmann, D., & Burton, W. B. 1999, ApJ, 514, 818
- Bluhm, H., de Boer, K. S., Marggraf, O., & Richter, P. 2001, A&A, 367, 299 Bomans, D. J., de Boer, K. S., Koornneef, J., & Grebel, E. K. 1996, A&A,
- 313, 101
- Bowen, D. V., & Blades, J. C. 1993, ApJ, 403, L55 Bowen, D. V., Blades, J. C., & Pettini, M. 1995a, ApJ, 448, 634 ——. 1995b, ApJ, 448, 662

- Bowen, D. V., Pettini, M., Penston, M. V., & Blades, J. C. 1991a, MNRAS, 248, 153
 - . C. 1991b, MNRAS, 249, 145
 - Bowen, D. V., Roth, K. C., Blades, J. C., & Meyer, D. M. 1994, ApJ, 420, L71
 - Bowen, D. V., Roth, K. C., Meyer, D. M., & Blades, J. C. 2000, ApJ, 536, 225
 - Braun, R., & Burton, W. B. 1999, A&A, 351, 437 ______. 2000, A&A, 354, 853 Bregman, J. N. 1980, ApJ, 237, 280

 - Brown, P. J. F., Dufton, P. L., Keenan, F. P., Boksenberg, A., King, D. L., & Pettini, M. 1989, ApJ, 339, 397
 - Bruhweiler, F. C., Boggess, A., Norman, D. J., Grady, C. A., Urry, C. M., & Kondo, Y. 1993, ApJ, 409, 199 Brüns, C., Kerp, J., & Staveley-Smith, L. 2001, in ASP Conf. Ser., Mapping
 - the Hidden Universe, ed. (San Francisco: ASP), in press Burks, G. S., et al. 1994, ApJ, 437, 630 Caulet, A., & Newell, R. 1996, ApJ, 465, 205

 - Centurión, M., Vladilo, G., de Boer, K. S., Herbstmeier, U., & Schwarz, U. J. 1994, A&A, 292, 261

 - Cohen, J. G. 1979, ApJ, 231, 751 Colgan, S. W. J., Salpeter, E. E., & Terzian, Y. 1990, ApJ, 351, 503 Combes, F., & Charmandaris, V. 2000, A&A, 357, 75 Conlon, E. S., Brown, P. J. F., Dufton, P. L., & Keenan, F. P. 1988, A&A, 200.168
 - Crinklaw, G., Federman, S. R., & Joseph, C. L. 1994, ApJ, 440, 241 d'Odorico, S., di Serego Alighieri, S., Pettini, M., Magain, P., Nissen, P. E.,
 - & Panagia, N. 1989, A&A, 215, 21

 - d'Odorico, S., Pettini, M., & Ponz, D. 1985, ApJ, 299, 852 Danly, L., Albert, C. E., & Kuntz, K. D. 1993, ApJ, 416, L29 Danly, L., Lee, Y. P., & Albert, C. E. 1995, BAAS, 27, 860

 - Danly, L., Lockman, F. J., Meade, M. R., & Savage, B. D. 1992, ApJS, 81, 125

- de Boer, K. S., Altan, A., Bomans, D., Lilienthal, D., Moehler, S., van Woerden, H., Wakker, B., & Bregman, J. 1994, A&A, 286, 925
 de Boer, K. S., Grewing, M., Richtler, T., Wamsteker, W., Gry, C., & Panagia, N. 1987, A&A, 177, L37
 de Boer, K. S., Baddinger, Brund, D. W., and D. W. and S. S. Baddinger, S. Badd

534

- Diplas, A., & Savage, B. D. 1994, ApJS, 93, 211
 Dupree, A. K., Kirshner, R. P., Nassiopoulos, G. E., Raymond, J. C., & Sonneborn, G. 1987, ApJ, 320, 597
 Fabian, D., Tripp, T. M., Savage, B. D., & Wakker, B. P. 2001, ApJ, submitted submitted
- Ferlet, R., Dennefeld, M., & Maurice, E. 1985a, A&A, 152, 151
- Ferlet, R., Vidal-Madjar, A., & Gry, C. 1985b, ApJ, 298, 838 Fernley, I., et al. 1998, A&A, 330, 515 Fitzpatrick, E. L., & Spitzer, L. 1997, ApJ, 475, 623 Gardiner, L. T., & Noguchi, M. 1996, MNRAS, 278, 191

- Garmany, C. D., Conti, P. S., & Massey, P. 1987, AJ, 93, 1070
 Gibson, B. K., Giroux, M. L., Penton, S. V., Putman, M. E., Stocke, J. T., & Shull, M. J. 2000, AJ, 120, 1830
 Gibson, B. K., Penton, S. V., Giroux, M. L., Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, L. Leider, M. L., Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, L. Leider, M. E., Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, L. Leider, M. E., Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, L. Leider, M. E., Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, L. Leider, M. E., Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. F. 2001, AL, Stocke, J. T., Shull, M. J., & Dritting, M. J.,

- Putman, M. E. 2001, ApJ, submitted Giovanelli, R., Verschuur, G. L., & Cram, T. R. 1973, A&AS, 12, 209 Grevesse, N., & Noels, A. 1993, in Origin of the Elements, ed. N. Prantzos, E. Vangioni-Flam, & M. Cassé (Cambridge: Cambridge Univ. Press), 15
- Gringel, W., Barnstedt, J., de Boer, K. S., Grewing, M., Kappelmann, N., & Richter, P. 2000, A&A, 358, L37
- Habing, H. J. 1966, Bull. Astron. Inst. Netherlands, 18, 323
- Haffner, L. M., Reynolds, R. J., & Tufte, S. L. 1999, ApJ, 523, 223
- 2001, ApJ, in press
- Hambly, N. C., Keenan, F. P., Dufton, P. L., Brown, P. J. F., Saffer, R. A., & Peterson, R. C. 1996, ApJ, 466, 1018
- Harris, W. E. 1996, AJ, 112, 1487
- Hartmann, D., & Burton, W. B. 1997, Atlas of Galactic Neutral Hydrogen (Cambridge: Cambridge Univ. Press) Haud, U. 1992, MNRAS, 257, 707

- Howk, J. C., Savage, B. D., & Fabian, D. 1999, ApJ, 525, 253 Howk, J. C., Sembach, K. R., Roth, K. C., & Kruk, J. W. 2000, ApJ, 544,
- 867

- ⁸⁰⁷
 Hulsbosch, A. N. M., & Wakker, B. P. 1988, A&AS, 75, 191
 Jannuzi, B. T., et al. 1998, ApJS, 118, 1
 Jenkins, E. B., Savage, B. D., & Spitzer, L. 1986, ApJ, 301, 355 1986
 Kaper, H. G., Smits, D. W., Schwarz, U. J., & Takakubo, K., & van Woerden, H. 1966, Bull. Astron. Inst. Netherlands, 18, 465
 Keenan, F. P., Conlon, E. S., Brown, P. J. F., & Dufton, P. L. 1988, A&A, 102
- 192, 295
- Keenan, F. P., Shaw, C. R., Bates, B., Dufton, P. L., & Kemp, S. N. 1995,
- Keenan, F. P., Snaw, C. R., Dutto, L., MNRAS, 272, 599
 Kemp, S. N., & Bates, B. 1998, MNRAS, 301, 1095
 Kemp, S. N., Bates, B., Dufton, P. L., Keenan, F. P., & Montgomery, A. S. 1994, MNRAS, 270, 597
 Keenan, F. P., Kemp, S. N., Ryans, R. S. I.,
- 1994, MNRAS, 270, 597 Kennedy, D. C., Bates, B., Keenan, F. P., Kemp, S. N., Ryans, R. S. I., Davies, R. D., & Sembach, K. R. 1998, MNRAS, 297, 849 Kepner, M. E. 1970, A&A, 5, 444 Kerr, F. J., & Knapp, G. R. 1972, AJ, 77, 354 King, D. L., Vladilo, G., Lipman, K., de Boer, K. S., Centurión M., Moritz, P., & Walton, N. A. 1995, A&A, 300, 881 Kulkarni, S. R., Dickey, J. M., & Heiles, C. 1985, ApJ, 291, 716 Kulkarni, S. R., & Mathieu, R. 1986, Ap&SS, 118, 531 Kunth, D., Lequeux, J., Sargent, W. L. W., & Viallefond, F. 1994, A&A, 282, 709

- Lunger, G. E., Prosser, C. F., & Sneden, C. 1990, AJ, 100, 216
 Lehner, N., Rolleston, W. R. J., Ryans, R. S. I., Keenan, F. P., Bates, B., Pollacco, D. L., & Sembach, K. R. 1999b, A&AS, 134, 257
- FOIACCO, D. L., & SEMDACH, K. K. 1999b, A&AS, 134, 257
 Lehner, N., Sembach, K. R., Lambert, D. L., Ryans, R. S. I., & Keenan, F. P. 1999a, A&A, 352, 257
 Lehner, N., Trundle, C., Keenan, F. P., Sembach, K. R., & Lambert, D. L. 2001, A&A, 370, 996
 Lilienthal, D., Meyerdierks, H., & de Boer, K. S. 1990, A&A, 240, 487
 Lipman, K., & Pettini, M. 1995, ApJ, 442, 628
 Little, J. E., Dufton, P. L., Keenan, F. P., & Conlon, E. S. 1994, ApJ, 427, 267

- 267
- Lockman, F. J., & Savage, B. D. 1995, ApJS, 97, 1
- Lu, L., Savage, B. D., & Sembach, K. R. 1994a, ApJ, 426, 563 ______. 1994b, ApJ, 437, L119
- Lu, L., Savage, B. D., Sembach, K. R., Wakker, B. P., Sargent, W. L. W., & Oosterloo, T. A. 1998, AJ, 115, 162
- Lucas, R., & Liszt, H. S. 1996, A&A, 282, 237 Lucke, P. B. 1978, A&A, 64, 367

- Magain, P. 1987, Nature, 329, 606

Vol. 136

- Magan, F. 1967, Nature, 529, 000 McGee, R. X., & Newton, L. M. 1986, Proc. Astron. Soc. Australia, 6, 358 Meaburn, J., & Blades, J. C. 1980, MNRAS, 190, 403 Meaburn, J., Solomos, N., Laspias, V., & Goudis, C. 1989, A&A, 225, 497 Mebold, U., Greisen, E. W., Wilson, W., Haynes, R. F., Herbstmeier, U., & Kalberla, P. M. W. 1991, A&A, 251, L1

- Kalberla, P. M. W. 1991, A&A, 251, L1 Meyer, D. M., Jura, M., & Cardelli, J. A. 1998, ApJ, 493, 222 Meyer, D. M., & Lauroesch, J. T. 1999, ApJ, 520, L103 Meyer, D. M., & Roth, K. C. 1991, ApJ, 383, L41 Mirabel, I. F. 1982, ApJ, 256, 112 Moehler, S., Heber, U., & de Boer, K. S. 1990, A&A, 239, 265 Molaro, P., Vladilo, G., Avila, G., & d'Odorico, S. 1989, ApJ, 339, L63 Molaro, P., Vladilo, G., Monai, S., d'Odorico, S., Ferlet, R., Vidal-Madjar, A., & Dennefeld, M. 1993, A&A, 274, 505 Morras, R., Bajaja, E., Arnal F. M. & Pöppel, W. G. L. 2000, A&AS, 142
- Morras, R., Bajaja, E., Arnal, E. M., & Pöppel, W. G. L. 2000, A&AS, 142,
- Morton, D. C. 1991, ApJS, 77, 119 Morton, D. C., & Blades, J. C. 1986, MNRAS, 220, 927 Morton, D. C. 2001, ApJS, 130, 403
- Muller, C. A., Oort, J. H., & Raimond, E. 1963, CR Acad. Sci. Paris, 257, 1661
- Murphy, E. M., et al. 2000, ApJ, 538, L35

- Oegerle, W. R., et al. 2000, ApJ, 538, L23 Oort, J. H. 1970, A&A, 7, 381 Osterbrock, D. P. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley: University Science Books)
- Payne, H. E., Dickey, J. M., Salpeter, E. E., & Terzian, Y. 1978, ApJ, 221, Ĺ95
- Payne, H. E., Salpeter, E. E., & Terzian, Y. 1980, ApJ, 240, 499 Penton, S. V., Stocke, J. T., & Shull, J. M. 2000, ApJS, 130, 121 Prata, S., & Wallerstein, G. 1967, PASP, 79, 202

- Preston, G. W., Shectman, S. A., & Beers, T. C. 1991, ApJS, 76, 1001 Putman, M. E., et al. 1998, Nature, 394, 752 Quin, D. A., Brown, P. J. F., Conlon, E. S., Dufton, P. L., & Keenan, F. P.
- 1991, ApJ, 375, 342 Reynolds, R. J., Tufte, S. L., Haffner, L. M., Jaehnig, K., & Percival, J. W. 1998, Proc. Astron. Soc. Australia, 15, 14
- Reynolds, R. J., Tufte, S. L., Kung, D. T., McCullough, P. R., & Heiles, C. 1995, ApJ, 448, 715 Richter, P., de Boer, K. S., Widmann, H., Kappelmann, N., Gringel, W.,
- Grewing, M., & Barnstedt, J. 1999, Nature, 400, 382 Richter, P., Savage, B. D., Wakker, B. P., & Kalberla, P. M. W. 2001a, ApJ,
- in press
- Richter, P., Sembach, K. R., Savage, B. D., Murphy, E. M., & Wakker,
- Richter, P., Sembach, K. R., Savage, B. D., Murphy, E. M., & Wakker, B. P. 2001b, ApJ, submitted
 Robertson, J. G., Schwarz, U. J., van Woerden, H., Murray, J. D., Morton, D. C., & Hulsbosch, A. N. M. 1991, MNRAS, 248, 508
 Routly, P. M., & Spitzer, L. 1952, ApJ, 115, 227
 Russel, S. C., & Dopita, M. A. 1992, ApJ, 384, 508
 Ryans, R. S. I., Keenan, F. P., Rolleston, W. R. J., Sembach, K. R., & Davies, R. D. 1999, MNRAS, 304, 947
 Ruans, R. S. L. Keenan, F. P. Sembach, K. R. & Davies, R. D. 1997a

992

616

Sembach, K. R., Savage, B. D., & Lu, L. 1995a, ApJ, 439, 672

1999, ApJ, 515, 108

- Ryans, R. S. I., Keenan, F. P., Sembach, K. R., & Davies, R. D. 1997a, MNRAS, 289, 83

Sembach, K. R., & Danks, A. C. 1994, A&A, 289, 539 Sembach, K. R., Danks, A. C., & Savage, B. D. 1993, A&AS, 100, 107 Sembach, K. R., Howk, J. C., Savage, B. D., & Shull, J. M. 2001, AJ, 121,

Sembach, K. R., Savage, B. D., Lu, L., & Murphy, E. M. 1995b, ApJ, 415,

Sembach, K. R., Savage, B. D., & Massa, D. 1991, ApJ, 372, 81
 Sembach, K. R., et al. 2000, ApJ, 538, L31
 Shaw, C. R., Bates, B., Kemp, S. N., Keenan, F. P., Davies, R. D., & Roger, R. S. 1996, ApJ, 473, 849
 Smith, G. P. 1963, Bull. Astron. Inst. Netherlands, 17, 203

Sofia, U. J., & Jenkins, E. B. 1998, ApJ, 499, 951 Songaila, A. 1981, ApJ, 243, L19 Songaila, A., Blades, J. C., Hu E. M., & Cowie, L. L. 1986, ApJ, 303, 198 Songaila, A., Cowie, L. L., & Weaver, H. F. 1988, ApJ, 329, 580

- Songaila, A., Cowie, L. L., & York, D. G. 1981, ApJ, 248, 956
- Songaila, A., & York, D. G. 1981, ApJ, 242, 976 Songaila, A., & York, D. G., Cowie, L. L., & Blades, J. C. 1985, ApJ, 293, L15 Spitzer, L., & Fitzpatrick, E. L. 1992, ApJ, 391, L41
- 1993, ApJ, 409, 299
- Stark, A. A., Gammse, C. F., Wilson, R. W., Bally, J., Linke, R. A., Heiles, C., & Hurwitz, M. 1992, ApJS, 79, 77 Staveley-Smith, L. 1997, Proc. Astron. Soc. Australia, 14, 111 Stoppelenburg, P. S., Schwarz, U. J., & van Woerden, H. 1998, A&A, 338,
- 200
- Straizys, V., & Kurilene, G. 1981, Ap&SS, 80, 353 Tamanaha, C. M. 1995, ApJ, 450, 638 ——. 1996, ApJS, 104, 81
- - -. 1997, ApJS, 109, 139
- Theissen, A., Moehler, S., Heber, U., Schmidt, J. H. K., & de Boer, K. S. 1995, A&A, 298, 577

- Tripp, T. M., Lu, L., & Savage, B. D. 1998, ApJ, 508, 200 Tufte, S. L., Reynolds, R. J., & Haffner, L. M. 1998, ApJ, 504, 773 Vallerga, J. V., Vedder, P. W., Craig, N., & Welsh, B. Y. 1993, ApJ, 411, 729 van Woerden, H. 1993, in ASP Conf. Ser. 45, Luminous High-Latitude
- Stars, ed. D. Sasselov (San Francisco: ASP), 11 van Woerden, H., Peletier, R. F., Schwarz, U. J., Wakker, B. P., & Kalberla, P. M. W. 1999b, in ASP Conf. Ser. 166, Stromlo Workshop on High-Velocity Clouds, ed. B. K. Gibson & M. E. Putman (San Francisco: ASP), 1
- van Woerden, H., Schwarz, U. J., Peletier, R. F., Wakker, B. P., & Kalberla, P. M. W. 1999a, Nature, 400, 138
- Verner, D. A., Barthel, P. D., & Tytler, D. 1994, A&A, 108, 287 Véron-Cetty, M. P., & Véron, P. 1996, ESO Sci. Rep. 17, A Catalogue of Quasars and Active Nuclei (7th ed.; Garching: ESO)
- Vidal-Madjar, A., Andreani, P., Christiani, S., Ferlet, R., Lanz, T., & Vladilo, G. 1987, A&A, 177, L17
- Vladilo, G., Centurión M., de Boer, K. S., King, D. L., Lipman, K., Stegert, J. S. W., Unger, S. W., & Walton, N. A. 1993, A&A, 280, L11
- -. 1994, A&A, 291, 425

- Wakker, B. P. 1991, A&A, 250, 499
- Wakker, B. P., Howk, C., van Woerden, H., Schwarz, U. J., Beers, T. C., Wilhelm, R., Kalberla, P. M. W., & Danly, L. 1996a, ApJ, 473, 834 Wakker, B. P., Kalberla, P. M. W., van Woerden, H., de Boer, K. S. 2001a, ApJS, in press (Paper II) Wakker, B. P., & Mathis, J. S. 2000, ApJ, 544, L107 Wakker, B. P., & Mathis, J. S. 2000, ApJ, 544, L107 Wakker, B. P., & Schwarz, U. J. 1991, A&A, 250, 484 Wakker, B. P., & Schwarz, U. J. 1991, A&A, 250, 484

- Wakker, B. P., et al. 1999a, Nature, 400, 388 Wakker, B. P., van Woerden, H., & Gibson, B. K. 1999b, in ASP Conf. Ser. 166, Stromlo Workshop on High-Velocity Clouds, ed. B. K. Gibson & M. E. Putman (San Francisco: ASP), 311
- Wakker, B. P., van Woerden, H., Schwarz, U. J., Peletier, R. F., & Douglas, N. G. 1996b, A&A, 306, L25

- Wakker, B. P., Vijfschaft, B., & Schwarz, U. J. 1991, A&A, 249, 233
 Wayte, S. R. 1990, ApJ, 355, 473
 Weiner, B. J., Vogel, S. N., Williams, T. B. 2001, in ASP Conf. Ser., Gas and Galaxy Evolution, ed. J. E. Hibbard, M. P. Rupen, & J. H. van Gorkom (San Francisco: ASP), in press
- Weiss, A., Heithausen, A., Herbstmeier, U., & Mebold, U. 1999, A&A, 344, 955
- Welsh, B. Y., Craig, N., & Roberts, B. 1996, A&A, 308, 428
- Welty, D. E., Frisch, P. C., Sonneborn, G., & York, D. G. 1999, ApJ, 512, 636
- Welty, D. E., Hobbs, L. M., & Kulkarni, V. P. 1994, ApJ, 436, 152 Wesselius, P. R., & Fejes, I. 1973, A&A, 24, 15
- West, K. A., Pettini, M., Penston, M. V., Blades, J. C., & Morton, D. C. 1985, MNRAS, 215, 481
- York, D. G., Songaila, A., Blades, J. C., Cowie, L. L., Morton, D. C., & Wu, C. C. 1982, ApJ, 255, 467