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ABSTRACT
Star formation is intimately linked to the dynamical evolution of molecular clouds. Turbulent frag-

mentation determines where and when protostellar cores form, and how they contract and grow in mass
via competitive accretion from the surrounding cloud material. This process is investigated using numeri-
cal models of self-gravitating molecular cloud dynamics, where no turbulent support is included, where
turbulence is allowed to decay freely, and where it is continuously replenished on large, intermediate,
and small scales, respectively. Molecular cloud regions without turbulent driving sources, or where turb-
ulence is driven on large scales, exhibit rapid and efficient star formation in a clustered mode, whereas
interstellar turbulence that carries most energy on small scales results in isolated star formation with low
efficiency.

The clump-mass spectrum of shock-generated density Ñuctuations in nonÈself-gravitating hydrody-
namic supersonic turbulence is not well Ðt by a power law, and it is too steep at the high-mass end to be
in agreement with the observational data. When gravity is included in the turbulence models, local col-
lapse occurs, and the spectrum extends toward larger masses as clumps merge together ; then a power-
law description dN/dM P Ml becomes possible with slope In the case of pure gravitationall[[2.
contraction, i.e., in regions without turbulent support, the clump-mass spectrum is shallower with
lB [3/2.

The mass spectrum of protostellar cores in regions with no turbulent support and where turbulence is
replenished on large scales, however, is well described by a lognormal or by multiple power laws, similar
to the stellar initial mass function (IMF) at low and intermediate masses. The model clusters are not
massive enough to allow for comparison with the high-mass part of the IMF. In the case of small-scale
turbulence, the core mass spectrum is too Ñat compared to the IMF for all masses.
Subject heading : hydrodynamics È ISM: clouds È ISM: kinematics and dynamics È

stars : formation È stars : luminosity function, mass function È turbulence

1. INTRODUCTION

Understanding the processes that lead to the formation
of stars is one of the fundamental challenges in astronomy.
As mass is the dominant parameter determining stellar
evolution, reproducing and explaining the initial mass func-
tion (IMF) of stars is a key requisite for any realistic theory
of star formation.

Stars are born in turbulent interstellar clouds of molecu-
lar hydrogen. The location and the mass growth of young
stars are hereby intimately coupled to the dynamical cloud
environment. Stars form by gravitational collapse of shock-
compressed density Ñuctuations generated from the super-
sonic turbulence ubiquitously observed in molecular clouds
(e.g., Elmegreen 1993 ; Padoan 1995 ; Klessen, Heitsch, &
Mac Low 2000 ; Padoan et al. 2001). Once a gas clump
becomes gravitationally unstable, it begins to collapse and
the central density increases considerably, giving birth to a
protostar. In this dynamic picture, star formation takes
place roughly on a free-fall timescale, as opposed to the
““ standard ÏÏ model of the inside-out collapse of singular iso-
thermal spheres, where core formation is dominated by the
ambipolar di†usion timescale (Shu 1977 ; Shu, Adams, &
Lizano 1987). Altogether, star formation can be seen as a
two-phase process : Ðrst, turbulent fragmentation leads to
transient clumpy molecular cloud structure, with some of
the density Ñuctuation exceeding the critical mass and
density for gravitational contraction. Second, the collapse of

individual Jeans-unstable protostellar clumps builds up the
stars. In this phase, a nascent protostar grows in mass via
accretion from the infalling envelope until the available gas
reservoir is exhausted or stellar feedback e†ects become
important and remove the parental cocoonÈa new star is
born (e.g., Ward-Thompson, & Barsony 2000 ;Andre� ,
Myers, Evans, & Ohashi 2000). The terms ““ shock-
generated density Ñuctuations ÏÏ and ““ gas clumps ÏÏ are used
synonymously, and clumps are identiÐed using a three-
dimensional clump-Ðnding algorithm comparable to the
one described in Williams, De Geus, & Blitz (1994). Proto-
stellar cores in the simulations are deÐned as the
(unresolved) high-density central regions of collapsing
clumps, where individual protostars build up.

Stars form in small aggregates or larger clusters (Lada
1992 ; Mizuno et al. 1995 ; Testi, Palla, & Natta 1999 ; also
Adams & Myers 2001), where the interaction of protostellar
cores and their competition for mass from their surround-
ings may become important for shaping the distribution of
the Ðnal star properties (Bonnell et al. 1997 ; Klessen,
Burkert, & Bate 1998 ; Klessen & Burkert 2000, 2001, here-
after Papers I and II, respectively). This complex evolution-
ary sequence involves a wide variety of di†erent physical
phenomena, and it is not at all well understood which pro-
cesses dominate and determine the stellar mass spectrum.

The current investigation is the fourth in a series that
focuses on the Ðrst phase of the star formation process,
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modeling the turbulent fragmentation of large subvolumes
inside molecular clouds and the dynamical evolution
toward the formation of clusters of protostellar cores.
Numerical simulations (° 2) of self-gravitating isothermal
gas, without turbulent support, with decaying turbulence,
and with supersonic compressible turbulence that is driven
on large, intermediate, and small scales, are used to analyze
the star formation resulting from the interplay between
gravity on the one side and gas pressure and turbulent
motions on the other (° 3). In particular, the relation
between the masses of molecular clumps, protostellar cores,
and the Ðnal stars in the considered models are discussed
(° 4) and the results summarized (° 5).

2. NUMERICAL METHOD AND DRIVEN TURBULENCE

To adequately describe turbulent fragmentation and the
formation of protostellar cores, it is necessary to resolve the
collapse of shock-compressed regions over several orders of
magnitude in density. Owing to the stochastic nature of
supersonic turbulence, it is not known in advance where
and when local collapse occurs. Hence, smoothed particle
hydrodynamics (SPH) is used to solve the equations of
hydrodynamics. It is a Lagrangian method, where the Ñuid
is represented by an ensemble of particles, and Ñow quan-
tities are obtained by averaging over an appropriate subset
of the SPH particles (Benz 1990). The method is able to
resolve large density contrasts as particles are free to move,
and so naturally the particle concentration increases in
high-density regions. SPH can also be combined with the
special-purpose hardware device GRAPE (Sugimoto et al.
1990 ; Ebisuzaki et al. 1993 ; also Steinmetz 1996), permit-
ting calculations at supercomputer level on a normal work-
station. The simulations presented here concentrate on
subregions within a much larger cloud ; therefore, periodic
boundary conditions are adopted (Klessen 1997). Once the
high-density, protostellar cores in the centers of collapsing
gas clumps exceed a density limit 4 orders of magnitude
above the mean density, they are substituted by ““ sink ÏÏ
particles (Bate, Bonnell, & Price 1995). These particles have
the ability to accrete gas from their envelopes while keeping
track of mass and linear and angular momentum. By ade-
quately replacing high-density core with sink particles, one
is able to follow the dynamical evolution of the system over
many free-fall times.

The large observed line widths in molecular clouds imply
the presence of supersonic velocity Ðelds that carry enough
energy to counterbalance gravity on global scales (Williams,
Blitz, & McKee 2000). However, it is known that turbulent
energy dissipates rapidly, i.e., roughly on the free-fall time-
scale (Mac Low et al. 1998 ; Stone, Ostriker, & Gammie
1998 ; Padoan & Nordlund 1999). To prevent or consider-
ably postpone global collapse, turbulence is required to be
continuously replenished. This is achieved here by applying
a nonlocal driving scheme that inserts energy in a limited
range of wavenumbers such that the total kinetic energy
contained in the system remains constant and compensates
the gravitational contraction on global scales (Mac Low
1999). The models do not include magnetic Ðelds, as their
presence cannot halt the decay of turbulence (Mac Low et
al. 1998 ; Stone et al. 1998 ; Padoan & Nordlund 1999) and
does not signiÐcantly alter the efficiency of local collapse for
driven turbulence (Heitsch, Mac Low, & Klessen 2001).
Furthermore, possible feedback e†ects from the star forma-

tion process itself (like bipolar outÑows, stellar winds, or
ionizing radiation from newborn O or B stars) are
neglected. This necessarily limits the interpretation of the
mass spectra at very late evolutionary stages of the system.
Hence, the current analysis restrains itself to phases when
the mass accumulated by protostellar cores is less than
D70% of the total mass in the considered volume.

Altogether, Ðve di†erent models of molecular cloud
dynamics are considered here : To compare with the case of
driven turbulence, model 1 describes the dynamical evolu-
tion of an initially Gaussian density Ñuctuation Ðeld where
turbulence is assumed to have already decayed in the con-
sidered molecular cloud region. This describes the most
extreme case of clustered star formation, and the simulation
is identical to model I in Paper I. The power spectrum of
the initial density Ñuctuations is P(k) P k~2. Model 2 starts
with a fully established supersonically turbulent velocity
Ðeld, but turbulence is allowed to decay freely. Driven turb-
ulence is represented by model 3 where the energy source
acts at wavenumbers k in the range 1 ¹ k ¹ 2, by model 4,
which has 3¹ k ¹ 4, and model 5 with 7¹ k ¹ 8. The
wavelengths of the corresponding perturbations are
l\ L /k, where L is the total size of the computed volume.
Hence, kinetic energy is continuously added on large, inter-
mediate, and small scales, respectively. The driving strength
is adjusted to yield the same constant turbulent Mach
number for all three models (see Klessen et al.Mrms \ 5.5
2000, models A1h, A2h, and A3h). Turbulence that is
driven on large scales appears to yield the most appropriate
description of molecular cloud dynamics and star forma-
tion, as is suggested by statistical analysis of molecular
cloud structure (e.g., Ossenkopf & Mac Low 2001). The
relevant model parameters are listed in table 1.

The models presented here are computed in normalized
units. If scaled to mean densities of cm~3, an(H2) \ 105
value typical for star-forming molecular cloud regions (e.g.,
in o Ophiuchus ; see Motte, & Neri 1998) and aAndre� ,
temperature of 11.4 K (i.e., a sound speed km s~1),c

s
\ 0.2

then the total mass contained in the computed volume in
models 1 and 2 is 220 and the size of the cube is 0.34 pc.M

_This corresponds to 220 thermal Jeans masses. Models 3È5
have a mass of 120 within a volume of (0.29 pc)3, equiv-M

_alent to 120 thermal Jeans masses.1 In the adopted scaling,
the mean thermal Jeans mass in all models is thus SMJT \
1 the global free-fall timescale is yr, and theM

_
, qff\ 105

simulations cover a density range from cm~3n(H2) B 100
in the lowest density regions to cm~3 wheren(H2) B 109
collapsing protostellar cores are identiÐed and converted
into ““ sink ÏÏ particles in the code. In this density regime gas
cools very efficiently, and it is possible to use an e†ective
polytropic equation of state in the simulations instead of
solving the detailed radiation transfer equations. The e†ec-
tive polytropic index is typically close to unity, ceff [ 1,
except for densities 105 cm~3, wherecm~3 \ n(H2) \ 107
smaller values of are expected (Spaans & Silk 2000). Forceffsimplicity, a value of (i.e., an isothermal equation ofceff \ 1

1 Throughout this paper the spherical deÐnition of the Jeans mass is
used, with density o and Jeans lengthMJ 4 4/3 nojJ3, jJ4 (nRT /Go)1@2,
where G and R are the gravitational and the gas constant. The mean Jeans
mass is then determined from average density in the system SoT. AnSMJTalternative cubic deÐnition, would yield a value roughlyMJ4 o(2jJ)3,twice as large.
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TABLE 1

PROPERTIES OF THE CONSIDERED MOLECULAR CLOUD MODELS

Model Type ka Mrmsb NJc Particles Further Referenced

1 . . . . . . Gaussian density . . . . . . 220 5 ] 105 Model I in KB
2 . . . . . . Decaying turbulence [1 . . . 8] [5.0] 220 2] 105 . . .
3 . . . . . . Driven turbulence 1 . . . 2 5.5 120 2 ] 105 Model A1H in KHM
4 . . . . . . Driven turbulence 3 . . . 4 5.5 120 2 ] 105 Model A2H in KHM
5 . . . . . . Driven turbulence 7 . . . 8 5.5 120 2 ] 105 Model A3H in KHM

a Driving wavenumber (in model 2, driving stopped when gravity is ““ turned on ÏÏ at the stage of fully
established turbulence).

b Mach number in turbulent equilibrium calculated from the rms velocity dispersion. For model 2 the
value corresponds to time t \ 0 before the driving mechanism was ““ turned o† ÏÏ and turbulence was allowed
to decay.

c Number of (spherical) mean thermal Jeans masses contained in the system; note that this number is
lower by 2 when using a cubic deÐnition of the Jeans mass.

d Corresponding model name in KB (Paper I) and in KHM (Klessen et al. 2000) for further details.

state) is adopted for all densities in the simulations. Con-
cerning the gas temperature, this approximation is certainly
valid because in star-forming clouds the temperature
cannot drop signiÐcantly below the adopted canonical
value of 10 K, even in the regime 105 cm~3\ n(H2) \ 107
cm~3. However, it needs to be noted that the sti†ness of the
equation of state also determines the density contrast in
shock-compressed gas and hence inÑuences the overall
density distribution in supersonic Ñows. For further dis-
cussions see Scalo et al. (1998), Ballesteros-Paredes,

& Scalo (1999), and Spaans & SilkVa� zquez-Semadeni,
(2000). Variations in inÑuence the local Jeans scale inceffshock-compressed density Ñuctuations and may modify the
resulting mass spectrum of collapsing cores. This e†ect
needs to be investigated in more detail.

3. STAR FORMATION FROM TURBULENT

FRAGMENTATION

Stars form from turbulent fragmentation of molecular
cloud material. Supersonic turbulence, even if it is long
enough to counterbalance gravity on global scales, will
usually provoke local collapse. Turbulence establishes a
complex network of interacting shocks, where converging
shock fronts generate clumps of high density. This density
enhancement can be large enough for the Ñuctuations to
become gravitationally unstable and collapse. This happens
when the local Jeans length becomes smaller than the size of
the Ñuctuation. However, the Ñuctuations in turbulent
velocity Ðelds are highly transient. The random Ñow that
creates local density enhancements can disperse them again.
For local collapse to actually result in the formation of
stars, Jeans-unstable shock-generated density Ñuctuations
must collapse to sufficiently high densities on timescales
shorter than the typical time interval between two suc-
cessive shock passages. Only then are they able to
““ decouple ÏÏ from the ambient Ñow and survive subsequent
shock interactions. The shorter the time between shock
passages, the less likely these Ñuctuations are to survive.
Hence, the timescale and efficiency of protostellar core for-
mation depend strongly on the wavelength and strength of
the driving source (Klessen et al. 2000 ; Heitsch et al. 2001),
and accretion histories of individual protostars are strongly
time varying (Klessen 2001, hereafter Paper III).

The velocity Ðeld of long-wavelength turbulence is found

to be dominated by large-scale shocks that are very efficient
in sweeping up molecular cloud material, thus creating
massive coherent structures. When a coherent region
reaches the critical density for gravitational collapse, its
mass typically exceeds the local Jeans limit by far. Inside the
shock-compressed region, the velocity dispersion is much
smaller than in the ambient turbulent Ñow, and the situ-
ation is similar to localized turbulent decay. Quickly a
cluster of protostellar cores forms. Therefore, models 1È3
with zero support, decaying, and large-scale turbulence,
respectively, lead to a clustered mode of star formation. The
efficiency of turbulent fragmentation is reduced if the
driving wavelength decreases. When energy is inserted
mainly on small spatial scales, the network of interacting
shocks is very tightly knit, and protostellar cores form inde-
pendently of each other at random locations throughout
the cloud and at random times. Individual shock-generated
clumps have lower mass, and the time interval between two
shock passages through the same point in space is small.
Hence, collapsing cores are easily destroyed again, and star
formation is inefficient. This scenario corresponds to the
isolated mode of star formation.

This is visualized in Figure 1, showing the density struc-
ture of all Ðve models at t \ 0 and at a time when the Ðrst
protostellar cores have formed by turbulent fragmentation
and have accreted roughly 30% of the total mass. For
model 1 (Gaussian), without turbulent support, the Ðgure
indicates at t \ 0 the initial density distribution. For the
other models, t \ 0 corresponds to the phase of fully devel-
oped turbulence just before gravity is ““ switched on ÏÏ (in
model 2 the driving mechanism is ““ switched o† ÏÏ at the
same time). Time is measured in units of the global free-fall
timescale SoT~1@2, with SoT being theqff \ (3n/32G)~1@2
mean density and G the gravitational constant. Dark dots
indicate the location of dense collapsed cores. In the non-
supported model 1, all spatial modes are unstable initially,
and in model 2 of decaying turbulence, they become
unstable after roughly one crossing time. Therefore, these
systems evolve into a Ðlamentary structure, and protostellar
cores form predominantly at the intersections of the Ðla-
ments. Similarly, large-scale turbulence also builds up a
network of Ðlaments ; this time, however, the large coherent
structures are not caused by gravity but instead are due to
shock compression. Once gravity is included, it quickly
dominates the evolution inside the shock-compressed



FIG. 1.ÈComparison of the gas distribution in the Ðve models at two di†erent phases of the dynamical evolution, at t \ 0 indicating the initial density
structure, just before gravity is ““ switched on,ÏÏ and after the Ðrst cores have formed and accumulated roughly of the total mass. The high-densityM

*
B 30%

(protostellar) cores are indicated by black dots. Note the di†erent time interval needed to reach the same dynamical stage. Time is normalized to the global
free-fall timescale of the system, which is yr for T \ 11.4 K and cm~3. The cubes contain masses of 220 (models 1 and 2) and 120qff \ 105 n(H2)\ 105 SMJT(models 3È5), respectively, where the average thermal Jeans mass is with the above scaling. The considered volumes are (0.32 pc)3 andSMJT SMJT \ 1 M

_(0.29 pc)3, respectively. Note, however, that the isothermal models are freely scalable, as discussed in ° 2.
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regions. The random velocity component is quickly damped
by dissipation, and again a cluster of protostellar cores
builds up. In the case of intermediate-wavelength turbu-
lence, cores form in small aggregates, and small-scale turbu-
lence predominantly results in the formation of isolated
cores. Note the di†erent times needed for 30% of the mass
to be accumulated in dense cores.

4. MASS SPECTRA FROM TURBULENT FRAGMENTATION

4.1. T he Mass Spectra
Mass is the dominant parameter that determines stellar

evolution. It is therefore important to investigate the rela-
tion between the mass of molecular clumps and protostellar
cores, and the stars resulting from the collapse of the
former. For the Ðve models considered here, Figure 2 plots
the mass distribution of gas clumps (thin lines), of the subset
of Jeans-critical clumps (thin lines, hatched distribution), and
of collapsed cores (thick lines, hatched area). It depicts four
di†erent evolutionary phases, the initial distribution just
when gravity is ““ switched on ÏÏ (at t \ 0, left column), and
then after (turbulent) fragmentation has led to protostellar
core formation, i.e., when the fraction of the totalM

*mass accumulated in dense cores has reached values of
and (columns 2È4,M

*
B 5%, M

*
B 30%, M

*
B 60%

respectively). The clump-mass spectra are obtained by
applying a clump-Ðnding algorithm similar to the one
described by Williams et al. (1994) but working on all three
spatial coordinates and adapted to make use of the SPH
kernel smoothing procedure (for details see Appendix 1 in
Paper I). To guide your eye, two dotted lines indicate a
slope l\ [1.5 typical for the observed power-law clump-
mass spectrum dN/dM \ Ml, as well as the Salpeter (1955)
approximation l\ [2.33 to the stellar IMF appropriate
for intermediate and high masses (e.g., Scalo 1998 ; Kroupa
2001).

4.2. T ime Evolution of Clump-Mass Spectra in the Interplay
between Turbulence and Self-Gravity

In the initial phase, i.e., before gravity is ““ turned on ÏÏ and
local collapse begins to set in, the clump-mass spectrum
(thin line) is not well described by a single power law. The
distribution has small width and falls o† steeply at larger
masses. Below masses M B 0.3 the distributionSMJT,
becomes shallow and strongly declines at and beyond the
resolution limit (vertical line). Clumps are, on average, con-
siderably smaller than the mean Jeans mass in the system

For masses M [ 0.1 and for models 1È4, thisSMJT. SMJTbehavior resembles the spectrum of prestellar conden-
sations found in o Ophiuchus (Motte et al. 1998 ; Johnstone
et al. 2000 ; see also Testi & Sargent 1998 for Serpens).
Recall that for densities of cm~3 and tem-n(H2)\ 105
peratures T \ 11.4 K, the mean Jeans mass in the system is
SMJT \ 1 M

_
.

In the later evolution the e†ects of gravitational attrac-
tion modify the distribution of clump masses. Clumps
merge and grow bigger, and the mass spectrum extends
toward larger masses. At the same time, the number of cores
that exceed the Jeans limit increases. Local collapse sets in
and results in the formation of dense cores. This happens
fastest and is most evident in model 1, which lacks turbulent
support. The velocity Ðeld is entirely determined by gravita-
tional contraction on all scales and at all times. The clump-
mass spectrum is very well Ðt by a single power law and

exhibits a slope lB [1.5, as long as protostellar cores are
forming and the overall gravitational potential is domi-
nated by nonaccreted gas.

The inÑuence of gravity on the clump-mass distribution is
weaker where turbulence dominates over gravitational con-
traction on the global scales, i.e., in model 2 during the early
stages and in models 3È5 during all phases. The more the
turbulent energy dominates over gravity, the more the spec-
trum resembles the initial case of pure hydrodynamic turbu-
lence. This is most extreme in model 5 of small-wavelength
turbulence, where the short interval between shock passages
prohibits efficient clump merging and the buildup of a large
number of massive clumps. Only a few clumps exceed the
Jeans limit, become gravitationally unstable, and collapse
to form cores. The bulk of the mass distribution remains
unchanged by gravity and is never well Ðt by a single power
law. The mass spectrum retains the initial shape with only a
few collapsed clumps added at the high-mass end.

When the scale length of the dominant turbulent mode is
increased, the density structure becomes more coherent and
clump mergers are more frequent. The number of high-mass
Jeans-unstable clumps increases, yielding a wider clump-
mass distribution that exhibits a power-law behavior for all
masses larger than the resolution limit. In models 2È4, the
slope lies in the interval For individual[2.5\l[ [2.
models in Figure 2, the slope l increases with time as the
statistical properties of the system become more and more
inÑuenced by clump merging and gravitational contraction
onto high-density cores. When comparing similar evolu-
tionary phases for di†erent models, again the clump spec-
trum falls o† less steeply if gravity dominates the evolution
over larger spatial scales, i.e., l decreases from model 1 to
model 5. When lB [1.5 for model 1,M

*
B 60%, l[ [2

for models 2 and 3, while for models 4 and 5 a power-law
description is no longer sensible. In summary, the clump-
mass spectrum gets shallower when gravity becomes more
important. This could explain the observed range of slopes

for the clumps mass spectra in di†erent[1.9[ l[[1.3
molecular cloud regions (e.g., Stutzki & 1990 ; Wil-Gu� sten
liams et al. 1994 ; Heithausen et al. 1998 ; Kramer et al. 1998 ;
Onishi et al. 1998). The importance of self-gravity for
shaping the velocity and density structure may di†er from
cloud to cloud. In the case of strong gravity, their statistical
properties furthermore depend sensitively on the viewing
angle (e.g., Klessen 2000).

In the late evolutionary stages, similar behavior holds for
the subset of Jeans-unstable clumps. For the three models of
driven turbulence, the distribution of the gravitationally
supercritical clumps (as indicated by hatched thin lines) is
largest and widest for model 3 and decreases in width and
size toward model 5. The clump spectra of models 2 and 3
are similar, indicating that the conditions for local collapse
within the coherent shock-compressed regions that result
from large-scale driving turbulence are comparable to turb-
ulent decay. Within these coherent structures, turbulence is
strongly reduced and star formation is efficient. In the early
stages of the evolution, however, the mass spectrum of
Jeans-unstable clumps is not well described by a power law
for all models ; instead it is more compatible with a lognor-
mal distribution. For the Gaussian model the peak is
roughly at the average thermal Jeans mass andSMJTdecreases toward smaller masses when including turbulence
and decreasing the driving wavelength. The distribution of
Jeans-unstable clumps in model 5 peaks roughly at 14 SMJT.



FIG. 2.ÈMass spectra of gas clumps (thin lines) and of the subset of Jeans unstable clumps (thin lines, hatched distribution), and of dense collapsed cores
(hatched thick-lined histograms). Masses are binned logarithmically and normalized to the average thermal Jeans mass The left column gives the initialSMJT.
state of the system, just when gravity is ““ switched on,ÏÏ the second column shows the mass spectra when of the mass is accreted onto dense cores,M

*
B 5%

the third column describes and the last column For comparison with power-law spectra (dN/dM P Ml), a slope l\ [1.5 typical forM
*

B 30%, M
*

B 60%.
the observed clump-mass distribution, and the Salpeter slope l\ [2.33 for the IMF at intermediate and large masses, are indicated by the dotted lines in
each plot. Note that with the adopted logarithmic mass binning these slopes appear shallower by ]1 in the plot. The vertical line shows the SPH resolution
limit. In columns 3 and 4, the long-dashed curve shows the best lognormal Ðt to the core mass spectrum. To compare the distribution of core masses with the
stellar IMF, an efficiency factor of roughly to for the conversion of protostellar core material into single stars needs to be taken into account, as discussed13 12in the text. For T \ 11.4 K and cm~3, the average Jeans mass in the system is Note, however, that the considered models can ben(H2)\ 105 SMJT \ 1 M

_
.

scaled to di†erent as well.SMJT
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TABLE 2

PROPERTIES OF LOGNORMAL FIT

MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5

PARAMETER D30% D60% D30% D60% D30% D60% D30% D60% D30% D60%

log k (peak) . . . . . . . 0.13 0.26 [0.10 0.21 [0.34 [0.03 . . . . . . . . . . . .

log p (width) . . . . . . 0.52 0.47 0.36 0.47 0.36 0.40 . . . . . . . . . . . .

NOTE.ÈThe lognormal Ðts are obtained for models 1È3 only for two di†erent evolutionary stages, when andM
*

B 30% M
*

B 60%.
The applied functional form is dN/d log M P exp [[0.5(log M [ log k)2/(log p)2], with mass M, mean k, and width p scaled to the
average Jeans mass in the system No Ðt has been obtained for models 4 and 5 ; the core mass spectrum is too Ñat and featureless.SMJT.
When scaling the current models to physical units, the width of the core mass distribution lies between the IMF estimates by Miller &
Scalo 1979 and by Scalo 1986 and Kroupa et al. 1990, who derive log p \ 0.67 (their estimate with constant star formation rate over
12 ] 109 yr) and log p \ 0.38 (their model MS), respectively. Recall that for cm~3 and T \ 11.4 K. As theSMJT \ 1 M

_
n(H2)\ 105

number of protostars in the simulated cluster is limited to 50È100, the comparison with the stellar IMF applies to low- to intermediate-
mass stars only. The statistics are not good enough for an investigation of the very low mass and the high-mass end of the IMF where the
lognormal parametrization fails.

Thus, small-scale turbulence produces, on average, clumps
of smaller mass scale than does large-scale turbulence.

4.3. Protostellar Mass Spectra from
Turbulent Fragmentation

Like the distribution of Jeans-unstable clumps, the mass
spectrum of dense protostellar cores (thick hatched line) also
resembles a lognormal in the model without turbulent
support, and in the ones with turbulent decay or long-
wavelength turbulent driving. A lognormal Ðt is obtained at
times and and is indicated by long-M

*
B 30% M

*
B 60%

dashed lines in columns 3 and 4. The corresponding mean
values and widths are given in Table 2. As for the Jeans-
critical cores, the peak is roughly at the average thermal
Jeans mass of the system. The width of the distribu-SMJTtion spans 2 orders of magnitude for the cluster size con-
sidered here and is approximately the same for all Ðve
models. However, a lognormal Ðt is only appropriate for
models 1È3. The core mass spectrum for models 4 and 5 is
too Ñat, and a Ðt is not attempted. Here the accretion his-
tories of individual protostellar cores are not well corre-
lated ; i.e., gas clumps typically do not contain multiple
protostellar cores. In this isolated mode of star formation,
mutual interaction and competition for gas accretion are
not important.

A lognormal shape of the mass distribution may be
explained by invoking the central limit theorem (e.g.,
Larson 1973 ; Zinnecker 1984 ; also Adams & Fatuzzo
1996), as protostellar cores form and evolve through a
sequence of highly stochastic events, resulting from the sta-
tistical nature of supersonic turbulence, stochastic clump
merging, and/or competitive accretion within merged
clumps containing multiple cores. The fact that the quality
of the lognormal description becomes bad for the case of
isolated star formation (model 5) indicates that clump
merging and competitive accretion are dominant factors
leading to a lognormal mass spectrum. Isolated star forma-
tion in supersonic turbulence exhibits a featureless Ñat mass
spectrum. It appears that the collective e†ects of gravita-
tional collapse and the synchronization of individual accre-
tion histories (i.e., the mutual interaction of protostellar
cores and their competition for accretion from a common
gas reservoir) are necessary to obtain mass spectra with
features similar to the IMF (° 4.4). The fact that the distribu-

tion peaks roughly at the average Jeans massÈdespite
strong variations of the local Jeans mass for individual
clumps that span a wide range of densitiesÈindicates that
the system retains, in a statistical sense, knowledge of its
mean properties, even in the case of supersonic turbulence.
The same behavior is seen in Papers I and II for a wide
variety of Gaussian initial conditions. It is the average
thermal Jeans mass that introduces a scale into the mass
function (e.g., Larson 1998 ; Elmegreen 2000).

4.4. Comparison with the Stellar Mass Function
For direct comparison between the core mass spectrum

and the IMF one needs to adopt a physical scaling for the
numerical model (° 2). This is done here by taking the
average thermal Jeans mass to be Further-SMJT \ 1 M

_
.

more, one needs to estimate which fraction of a typical
protostellar core in the model will accrete onto the star(s) in
its interior, and which fraction may be expelled during the
main accretion phase by protostellar outÑows or be
removed by tidal e†ects in a clustered environment. For
isolated cores forming single stars, the mass loss owing to
radiation or outÑows is expected to be small, and most of
the core material will indeed end up in stars (Wuchterl &
Tscharnuter 2000). In this case the core mass spectrum can
be compared directly to the single-star IMF. If cores
contain a large amount of angular momentum, they are
likely to form binary stars. Indeed, an initial binary fraction
of almost 100% is consistent with observations of star clus-
ters (Kroupa 1995). Assuming a more or less uniform dis-
tribution of mass ratios (Duquennoy & Mayor 1991) leads
to a shift of a factor of 2 in the characteristic mass of the
distribution compared to the single-star IMF. If the number
of triple systems is high, this shift could be even larger. To
some degree this e†ect can be taken into account by com-
paring the core mass spectrum with IMF estimates that do
not contain binary corrections (see Kroupa 2001 for a
further discussion). In addition, a fraction of the accreting
matter may settle into a protobinary disk and may not
accrete onto the stars owing to angular momentum conser-
vation (e.g., Bate 2000). In a cluster environment, this disk
may be truncated and leak out matter because of tidal inter-
actions (e.g., Clarke, Bonnell, & Hillenbrand 2000). These
e†ects depend strongly on the stellar density of the cluster
and its dynamical evolution. Altogether, the peak in the
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mass spectrum of protostellar cores is expected to exceed
the characteristic mass in the single-star IMF by a factor of
2È3 (i.e., shifted by 0.3[* log M [ 0.5).

Additional uncertainty stems from the possible formation
of O or B stars in the stellar cluster. These would trigger the
complete gas removal due to ionizing radiation, therefore
limiting the core formation efficiency As it is notM

*
.

known in advance whether at all and when high-mass stars
form during the protostellar cluster evolution, the current
models should be considered with caution at very late
phases M

*
[ 70%.

If one assumes a close correspondence between core
masses and stellar masses, then for models 1È3 the core
mass distribution compares well with the observed IMF at
low to intermediate masses. The width of the distribution
falls right in between the lognormal IMF estimates by
Miller & Scalo (1979) on one side and by Kroupa, Tout, &
Gilmore (1990) and Scalo (1986) on the other. The same
holds when using the more common multiple power-law
description of the IMF (Scalo 1998 or Kroupa 2001, see,
e.g., his Fig. 14). Also the characteristic masses in the dis-
tribution become comparable if one adopts values of a few
tenths for the accretion efficiency from cores to the central
stars taking into account unresolved binaries and possible
tidal truncation of protobinary disks in a dense cluster
environment as mentioned before. However, more work
needs to be done to obtain better estimates for this effi-
ciency factor.

The protostellar clusters discussed here contain between
50 and 100 cores. This allows for comparison with the IMF
only around the characteristic mass scale, i.e., at low to
intermediate masses. The numbers are too small to study
the very low and high-mass end of the distribution. For
high-mass stars the lognormal and the multi-(M Z 5 M

_
)

ple power-law descriptions of the IMF begin to di†er sig-
niÐcantly. The lognormal models predict too few high-mass
stars, and the same may also be true at the very low mass
end of the IMF, in the brown dwarf regime (especially when
taking binary corrections into account). Because of insuffi-
cient statistics at the extreme ends of the distribution, the
current set of simulations cannot be used to distinguish
between lognormal and power-law IMF models. The log-
normal Ðt at low to intermediate mass in Figure 2 is there-
fore mainly attempted for the sake of simplicity, because
only two parameters, the peak value and the width, are
sufficient to characterize the distribution. Both can be con-
veniently compared with the corresponding Ðt parameters
for the stellar mass function in the considered mass range.

The comparison reveals a striking contrast between the
models of turbulent decay or large-scale driving on the one
side, and models of short- to intermediate-wavelength turb-
ulence on the other. Models 1È3 lead to protostellar mass
spectra that agree well with the observations, whereas the
mass spectra derived from models 4 and 5 compare only
very poorly with the stellar IMF. They are too Ñat or equiv-
alently too wide. As small- to intermediate-scale turbulence
describe an isolated mode of star formation, this Ðnding is
consistent with the hypothesis that most stars form in
aggregates or clusters (e.g., Adams & Myers 2001). To
further constrain the numerical models discussed here, it
will be necessary to compute the dynamical evolution of
star-forming regions with 1000 protostellar cores or more.
Besides the width and characteristic mass of the core dis-
tribution, also the detailed slope at very low and very high

masses and the apparent symmetry around the peak can
then be included into the analysis.

Finally, it needs to be noted that the current Ðndings
raise doubts about attempts to explain the stellar IMF from
the turbulence-induced clump-mass spectrum only (e.g.,
Elmegreen 1993 ; Padoan 1995 ; Padoan et al. 2001 ; Padoan
& Nordlund 2000). Quite typically for star-forming turbu-
lence, the collapse timescale of shock-compressed gas
clumps is often comparable to their lifetime (molecular
cloud clumps appear to be very transient ; e.g., Bergin et al.
1997). This not only has important consequences for the
overall star formation efficiency in turbulent clouds
(Klessen et al. 2000) but more so for the collapse behavior of
individual Jeans-unstable shock-generated gas clumps.
While collapsing to form or feed protostars, clumps may
lose or gain matter from interaction with the ambient turb-
ulent Ñow. In a dense cluster environment, collapsing
clumps may merge to form larger clumps containing multi-
ple protostellar cores, which subsequently compete with
each other for accretion from the common gas environment
(Bonnell et al. 1997 ; Papers I and II). The resulting distribu-
tion of clump masses in star-forming regions strongly
evolves in time (Fig. 2). In dense clusters, furthermore, close
encounters between accreting protostars may become
important, leading to the expulsion of protostars from the
gas-rich environment (as illustrated in Fig. 11 of Paper I).
This terminates mass growth and, if occurring frequently
enough, modiÐes the resulting IMF. The mass accretion
rates onto individual protostars are highly stochastic and
strongly depend on the cluster environment (Paper III). For
all these reasons, it is not possible to infer a one-to-one
relation between the clump masses resulting from turbulent
molecular cloud fragmentation and the stellar IMF. Given
our limited understanding of interstellar turbulence and
protostellar mass growth processes in dense clusters, the
current investigation (which attempts to include some of the
above processes) leads to the conclusion thatÈalthough
tempting in some casesÈit is not appropriate to take a
snapshot of the turbulent clump-mass spectrum as describ-
ing the IMF.

5. SUMMARY

Stars form from turbulent fragmentation of molecular
cloud material. It is the relation between turbulent fragmen-
tation, (localized) gravitational collapse, and star formation
that is the focus of this paper. As mass is the most important
stellar parameter, particular interest lies in the mass spectra
of gas clumps, of the subset of gravitationally unstable gas
clumps, and of protostellar cores, the latter being the direct
progenitors of stars. For this purpose Ðve numerical models
of the evolution of self-gravitating isothermal molecular gas
have been analyzed, spanning the parameter range relevant
for molecular cloud dynamics. In model 1 turbulent support
is not included, and gravity is the dominant force shaping
the velocity and density structure. In model 2, initially
supersonic compressible turbulence is allowed to decay
freely, and in models 3È5 supersonic turbulence is contin-
uously replenished on large, intermediate, and small scales,
respectively, such that gravitational attraction is compen-
sated on global scales. In these models gravity is considered
only after turbulent equilibrium is established.

It has been shown in a previous study (Papers I and II)
that molecular cloud regions without turbulent support
form dense clusters of stars, regardless of the initial density
structure, within roughly one global free-fall timescale.
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When gravitational contraction has sufficient time to act,
the clump-mass spectrum is well approximated by a power
law dN/dM P Ml. The mass distribution of protostellar
cores, however, is better described by a lognormal with
properties similar to the observed IMF of multiple stellar
systems for low- and intermediate-mass stars.

This analysis is extended here by more realistically con-
sidering molecular cloud regions where turbulence is
allowed to decay and where it is continuously driven.
Decaying turbulence leads to clustered star formation much
like in the case of pure gravitational contraction. Super-
sonic turbulence, even if it is strong enough to compensate
for gravity on large scales, will provoke local collapse in
shock-compressed regions. As efficiency and timescale of
star formation depend sensitively on the strength and the
spatial scale of energy input into the system, large-scale
turbulence leads to clustered star formation on short time-
scales, whereas for small-scale turbulence stars form in iso-
lation and with low efficiency.

This is reÑected in the overall clump-mass spectrum. The
clump-mass spectrum of pure hydrodynamic turbulence is
not well described by a single power law; its width is too
small compared to the observed data, and it is too steep at
the high-mass end. This changes when gravity is taken into
account. Clumps merging and accumulation of matter
through local collapse lead to a clump-mass spectrum that
extends to larger masses and exhibits power-law behavior.
The more strongly the overall dynamical evolution is inÑu-
enced by gravity and synchronized, coherent collapse
behavior, the Ñatter the power spectrum becomes. In the
extreme case of pure gravitational contraction the clump-
mass distribution exhibits a slope lB [1.5. For the case of
turbulence decay and large-scale injected turbulence, the
slope is during the intermediate phases of thel[ [2
dynamical evolution. In the case of small-scale turbulence,
the inÑuence of gravity is weak, and the clump-mass dis-
tribution remains steep, close to the spectrum of purely
hydrodynamic turbulence (i.e., before gravity was ““ switched
on ÏÏ in the model). The dependence of the slope of the
clump-mass spectrum on the relative importance of gravity
may explain the range of observed power-law indices in

di†erent molecular clouds regions, as one expects the ratio
between self-gravity and turbulent kinetic energy to vary
from cloud to cloud.

Molecular cloud properties that result in clustered star
formation lead to a stellar mass spectrum that is well Ðt by a
lognormal at low and intermediate masses. The distribution
exhibits a maximum close to the average Jeans mass in the
system. This indicates that the system somehow retains
““ knowledge ÏÏ of its mean properties, even in the case of
supersonic compressible turbulence. The mean thermal
Jeans mass in a cloud indeed introduces a characteristic
mass scale to clustered star formation. For regions where
turbulence is decaying or driven on large scales only, it
appears that the collective e†ects of gravitational collapse
and the correlation between individual accretion histories
are necessary to obtain mass spectra with features similar to
the IMF. Isolated star formation, on the contrary, as
implied by turbulence that is driven on small scales, yields a
featureless Ñat spectrum. This is in agreement with the
hypothesis that most stars form in aggregates and clusters.

Shock-generated clumps in interstellar turbulence are
highly transient. Their average lifetime in the turbulent Ñow
is on the same order of their collapse timescale. Further-
more, in a dense cluster environment, competitive accretion
and mutual protostellar interactions are important e†ects.
The current investigation shows that it is therefore not pos-
sible to infer a one-to-one relation between turbulent
clump-mass spectra and the stellar IMF.
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