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ABSTRACT
Three-dimensional numerical simulations of the response of a Lorentz factor 2.5 relativistic jet to pre-

cession at three di†erent frequencies have been performed. Low-, moderate-, and high-precession fre-
quencies have been chosen relative to the maximally unstable frequency predicted by a Kelvin-Helmholtz
stability analysis. The transverse motion and velocity decreases as the precession frequency increases.
Although the helical displacement of the jet decreases in amplitude as the precession frequency increases,
a helical shock is generated in the medium external to the jet at all precession frequencies. Complex
pressure and velocity structure inside the jet are shown to be produced by a combination of the helical
surface and Ðrst-body modes predicted by a normal mode analysis of the relativistic hydrodynamic equa-
tions. The surface and Ðrst-body modes have di†erent wave speeds and wavelengths, are launched in
phase by the periodic precession, and exhibit beat patterns in synthetic emission images. Wave (pattern)
speeds range from 0.41c to 0.86c, but the beat patterns remain stationary. Thus, we Ðnd a mechanism
that can produce di†erentially moving and stationary features in the jet.
Subject headings : galaxies : jets È hydrodynamics È instabilities È relativity
On-line material : color Ðgures

1. INTRODUCTION

Relativistic jets, particularly in extragalactic sources, can
exhibit time-dependent curved structures with super-
luminally moving components, (e.g., 3C 345 [Zensus,
Cohen, & Unwin 1995]) or with both superluminally
moving and much more slowly moving or stationary com-
ponents (e.g., M87 [Biretta, Zhou, & Owen 1995 ; Biretta,
Sparks, & Macchetto 1999], 4C 39.25 [Alberdi et al. 2000],
and 3C 120 [Walker et al. 2001]). Superluminal motions
along curved trajectories can be explained by helical jet
models (Hardee 1987 ; Ste†an et al. 1995), and helical
patterns are the expected result for Kelvin-Helmholtz
and current-driven jet instabilities in relativistic Ñows
(Birkinshaw 1991 and references therein ; Appl 1996 ;
Istomin & Pariev 1996). It has been proposed that a com-
bination of moving and stationary components can be the
result of enhanced features moving with the jet Ñow through
relatively Ðxed curved helical structures, with Doppler
boosting leading to Ðxed components for which the average
Ñow comes most nearly toward the line of sight (Alberdi et
al. 2000 ; Walker et al. 2001).

Axisymmetric relativistic jet simulations have been
used to investigate component motion by introducing
velocity perturbations at the origin and studying the sub-
sequent evolution. With repeated velocity perturbations
(Gomez et al. 1997 ;Midouszewski,Hughes,&Duncan1997),
the resulting knotty structure moves with the jet Ñow. In a
more recent axisymmetric simulation performed by Agudo
et al. (2001), a single velocity perturbation generates a
superluminal component associated with the velocity
perturbation and the multiple-trailing, subluminally
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moving accelerating components. These simulations
address some of the issues involving components moving at
di†erent speeds but do not address the issue of components
moving through stationary features or curved trajectories.
To this end, several three-dimensional hydrodynamic simu-
lations of relativistic jets have been performed (Aloy et al.
1999, 2000 ; Hughes, Miller, & Duncan 1999, 2001) in which
the e†ect of perturbation-induced asymmetries on jet pro-
pagation was investigated. However, these studies did not
address the issue of the internal jet structure associated with
asymmetric Ñuid motion and the component motions that
might be observed inside the jets.

In this paper we present fully three-dimensional hydrody-
namic simulations along with a detailed analysis of the
time-dependent structures that develop in the jet for three
di†erent jet precession frequencies but with no velocity
variation other than the relatively small transverse velocity
induced by the jet precession. The numerical techniques are
described in ° 2. Results and analysis of the jet structures
seen in the simulations are presented in °° 3 and 4. The
potential observable features resulting from these structures
are shown in ° 5, and in ° 6 we summarize and discuss some
of the implications of our results.

2. COMPUTATIONAL FLUID DYNAMICS SIMULATIONS

2.1. Solution of the Euler Equations
We assume an inviscid and compressible gas and an ideal

equation of state with a constant adiabatic index. We use a
Godunov-type solver, which is a relativistic generalization
of the method of Harten, Lax, & Van Leer (1983, hereafter
HLL) and Einfeldt (1988), in which the full solution to the
Riemann problem is approximated by two waves separated
by a piecewise constant state. We evolve the mass density R,
the three components of the momentum density M

x
, M

yand and the total energy density E relative to the labor-M
z
,

atory frame.
DeÐning the vector

U \ (R, M
x
, M

y
, M

z
, E)T , (1)
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and the three Ñux vectors

Fx\ [Rvx, M
x
vx ] p, M

y
vy, M

z
vz, (E] p)vx]T , (2)

Fy\ [Rvy, M
x
vx, M

y
vy ] p, M

z
vz, (E] p)vy]T , (3)

Fz\ [Rvz, M
x
vx, M

y
vy, M

z
vz ] p, (E] p)vz]T , (4)

the conservative form of the relativistic Euler equation is

LU
Lt

] L
Lx

(Fx)] L
Ly

(Fy)] L
Lz

(Fz)\ 0 . (5)

The pressure is given by the ideal gas equation of state
p \ (![ 1)(e[ n), in which here and in what immediately
follows, we have set c\ 1. The Godunov-type solvers are
well known for their capability as robust, conservative Ñow
solvers with excellent shock-capturing features. In this
family of solvers, one reduces the problem of updating the
components of the vector U, averaged over a cell, to the
computation of Ñuxes at the cell interfaces. In one spatial
dimension, the part of the update due to advection of the
vector U may be written as

U
i
n`1\ U

i
n [ dt

dx
(F

i`1@2 [ F
i~1@2) . (6)

In the scheme originally devised by Godunov (1959), a fun-
damental emphasis is placed on the strategy of decompo-
sing the problem into many local Riemann problems, one
for each pair of values of and to yield values thatU

i
U

i`1,allow the computation of the local interface Ñuxes InF
i`1@2.general, an initial discontinuity at due to andi ] 12 U

i
U

i`1will evolve into four piecewise constant states separated by
three waves. The leftmost and rightmost waves may be
either shocks or rarefaction waves, while the middle wave is
always a contact discontinuity. The determination of these
four piecewise constant states can, in general, be achieved
only by iteratively solving nonlinear equations. Thus, the
computation of the Ñuxes necessitates a step that can be
computationally expensive. For this reason, much attention
has been given to approximate, but sufficiently accurate,
techniques. One notable method is that of HLL, in which
the middle wave and the two constant states that it
separates are replaced by a single piecewise constant state.
One beneÐt to this approximation, which smears the
contact discontinuity somewhat, is to eliminate the iterative
step, thus signiÐcantly improving efficiency. However, the
HLL method requires accurate estimates of the wave speeds
for the left- and right-moving waves. Einfeldt (1988)
analyzed the HLL method and found good estimates for the
wave speeds. The resulting method, combining the original
HLL method with EinfeldtÏs improvements (the HLLE
method), has been taken as a starting point for our
simulations. In our implementation, we use wave speed
estimates based on a simple application of the formula
of the relativistic addition of velocities for the individual
components of the velocities and the relativistic sound
speed a, assuming that the waves can be decomposed into
components moving perpendicular to the three coordinate
directions.

In order to compute the pressure p and sound speed a, we
need the rest-frame mass density n and energy density e.
However, these quantities are nonlinearly coupled to the
components of the velocity as well as to the laboratory-

frame variables via the Lorentz transformation :

R\ cn , (7)

Mx \ c2(e] p)vx , (8)

My \ c2(e] p)vy , (9)

Mz \ c2(e] p)vz , (10)

E\ c2(e] p) [ p , (11)

where c\ (1[ v2)~1@2 is the Lorentz factor and
v2\ (vx)2] (vy)2] (vz)2. When the adiabatic index is con-
stant, it is possible to reduce the computation of n, e, vx, vy,
and vz to the solution of the following quartic equation :

[!v(E[ Mv) [ M(1[ v2)]2 [ (1[ v2)v2(![ 1)2R2\ 0 ,

(12)

where M2\ (Mx)2] (My)2] (Mz)2. This quartic is solved
at each cell several times during the update of a given mesh
using the Newton-Raphson iteration.

Our scheme is generally of second-order accuracy, which
is achieved by taking the state variables as piecewise linear
in each cell and computing Ñuxes at the half-time step.
However, in estimating the laboratory-frame values on each
cell boundary, it is possible that through discretization, the
lab-frame quantities are unphysicalÈthey correspond to
rest-frame values of v[ 1 or p \ 0. At each point where a
transformation is needed, we check that certain conditions
on M/E and R/E are satisÐed, and if they are not, we recom-
pute the cell interface values in the piecewise constant
approximation. We Ðnd that such ““ fallback to Ðrst order ÏÏ
rarely occurs.

2.2. Adaptive Mesh ReÐnement
The relativistic HLLE (RHLLE) method constitutes the

basic Ñow integration scheme on a single mesh. We use
adaptive mesh reÐnement (AMR) in order to gain spatial
and temporal resolution. The AMR algorithm used is a
general-purpose mesh-reÐnement scheme that is an out-
growth of original work by Berger (1982) and Berger &
Colella (1989). The AMR method uses a hierarchical collec-
tion of grids consisting of embedded meshes to discretize
the Ñow domain. We have used a scheme that subdivides
the domain into logically rectangular meshes with uniform
spacing in the three coordinate directions and a Ðxed reÐne-
ment ratio of 3 to 1. The AMR algorithm orchestrates
(1) the Ñagging of cells that need further reÐnement,
assembling collections of such cells into meshes ; (2) the con-
struction of boundary zones so that a given mesh is a self-
contained entity consisting of the interior cells and the
needed boundary information ; (3) mechanisms for sweeping
over all levels of reÐnement and over each mesh in a given
level to update the physical variables on each such mesh ;
and (4) the transfer of data between various meshes in the
hierarchy with the eventual completed update of all vari-
ables on all meshes to the same Ðnal time level. The adapt-
ion process is dynamic so that the AMR algorithm places
further resolution where and when it is needed as well as
removes resolution when it is no longer required. Adaption
occurs in time as well as in space : the time step on a reÐned
grid is less than that on the coarser grid by the reÐnement
factor for the spatial dimension. More time steps are taken
on Ðner grids, and the advance of the Ñow solution is syn-
chronized by interleaving the integrations at di†erent levels.
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This helps prevent any interlevel mismatches that could
adversely a†ect the accuracy of the simulation.

In order for the AMR method to sense where further
reÐnement is needed, some monitoring function is required.
In general, we Ðnd that recognizing the presence of signiÐ-
cant mass density gradients, contact surfaces, or strong
shear is e†ective. The choice of a function is determined by
the part of the Ñow that has the most signiÐcance in a given
study. For the simulations presented here, the Ðrst two
methods were employed, with the location of the contact
surfaces being found by comparing cell-to-cell pressure dif-
ferences with cell-to-cell laboratory-frame mass density dif-
ferences. Since the tracking of shock waves is of paramount
importance, a bu†er ensures the Ñagging of extra cells at the
edge of meshes, ensuring that important Ñow structures do
not ““ leak ÏÏ out of meshes during the update of the hydrody-
namic solution. The combined e†ect of using the RHLLE
single-mesh solver and the AMR algorithm results in a very
efficient scheme. Where the RHLLE method is unable to
give adequate resolution on a single coarse mesh, the AMR
algorithm places more cells, resulting in an excellent overall
coverage of the computational domain.

2.3. Code Validation and Setup
The code has been validated using a one-dimensional

relativistic shock tube, a three-dimensional relativistic
shock reÑection, and three-dimensional relativistic blast-
wave trials (P. A. Hughes et al. 2001, in preparation). Fur-
thermore, the solver employed in the current code is a direct
extension to three dimensions (with a recast from Fortran
77 to Fortran 90) of the solver described by Duncan &
Hughes (1994). Evidence for the accuracy and robustness of
that code comes from, in addition to its application to test
problems, the general agreement between studies performed
with that code and with independently constructed codes
(e.g., et al. 1997).Mart•�

In the simulations performed here, a ““ preexisting ÏÏ jet
Ñow is established across the computational volume to rep-
resent the case in which a leading Mach disk and bow shock
have passed, leaving a Ñow in pressure balance with a
low-density external (cocoon) mediumÈthe shocked jet
material. For all simulations, we take the ratio of the rest-
frame densities to be where o is the rest-frameo

j
/o

x
\ 10.0,

mass density. The jet Ñow has andv
j
\ 0.9165c

c4 (1[ b2)~1@2\ 2.5. The value of the pressure (and thus
the sound speeds inside and outside the jet) is adjusted to
yield a generalized Mach number for the jet of cb/c

s
b
s
\ 8.

Here where and the sound speedc
s
4 (1 [ b

s
2)~1@2, b

s
4 a/c

a is given by

a 4
C !p
o ] (!/![ 1)(p/c2)

D1@2
. (13)

With !\ 5/3 as the adiabatic index, the relevant sound
speeds are anda

x
\ 0.6121c a

j
\ 0.2753c.

The computational domain is with8R
j
] 8R

j
] 41R

j
,

outÑow boundary conditions imposed on all surfaces except
the inÑow plane, z\ constant. The inÑow plane involves
cells cut by the jet boundary for which state variables must
be established through a volume-weighted average of the
internal and external values. To avoid a ““ leakage ÏÏ of jet
momentum into the ambient material, Ðxed, initial values
are used across that entire boundary plane at every time
step. Schlieren-like images of the pressure, in which the gra-
dient is rendered on an exponential map, provide a way of

exploring Ñow structures with a large range of linear scales
and amplitudes ; an inspection of these images at the last
time step of the computations described here reveals that
the computations are free of any e†ects due to reÑection
from the domain boundaries. Three levels of reÐnement
were admitted, and since the entire jet is fully reÐned by the
AMR algorithm initially, there are 27 of the Ðnest level cells
across the jet diameter, outside the jet, courser cells are2R

j
;

employed initially.
A precessional perturbation is applied at the inÑow by

imposing a transverse component of velocity with v
M

\
Simulations were performed with precessional per-0.01v

j
.

turbations (simulation A), 0.93 (simulationuR
j
/v

j
\ 0.40

B), and 2.69 (simulation C). The simulations were halted
after D44 light crossing times of the jet radius, before the
development of structure had reached a quasiÈsteady state
across the entire computational grid, when the AMR algo-
rithm required reÐnement that exceeded the available com-
puter memory.

3. SIMULATION RESULTS

Prior to the data analysis, we reduced data from all of the
reÐned AMR ““ patches ÏÏ in each relativistic simulation into
uniformly spaced data. Each simulation contained roughly
300 patches at termination, with most patches at the Ðnest
grid resolution and occurring closer to the jet than the outer
boundary. Since we wanted to observe the radial and azi-
muthal response within the jet at the Ðnest resolution pos-
sible, our uniform grid along the transverse axes is at the
Ðnest resolution of the AMR simulations (13.5 zones/R

j
).

To reduce the size of the Ðnal data sets, we have used a
moderate scale grid (4.5 along the jet axis in ourzones/R

j
)

uniformly spaced data. The lower resolution along the jet
axis allows about 10 zones across features in the axial2R

jdirection ; this length is similar to the wavelengths seen in
the highest frequency simulation.

We evaluate the simulation (theory) results quantitatively
by taking one-dimensional slices through data cubes paral-
lel to the z-axis at di†erent radial distances along the trans-
verse x-axis (y-axis for the theory), as indicated in Figure 1.
For the simulation results shown in Figure 2, the andv

x
v
yvelocity components correspond to radial and azimuthalv

rvelocity components in cylindrical geometry. AxialvÕvelocities near the jet axis show that the simulations are
fully evolved out to about for the low- and moderate-30R

jfrequency simulations and out to about for the high-20R
jfrequency simulation. Slowing of the jet material resulting

from surface e†ects is readily apparent. Surface e†ects pen-
etrate more deeply into the jet as the precession frequency
decreases ; e.g., large dips in and velocity componentsv

z
vÕare observed closer to the jet axis for a lower precession

frequency. Dominant wavelengths of (simulationj/R
j
D 14

A), 6 (simulation B), and 2 (simulation C) are revealed in the
axial velocity plots in the one-dimensional slices farthest
from the jet axis and in the transverse velocity plots. The
basic helical nature of the structure induced by precession is
graphically illustrated by the out-of-phase oscillation in the
transverse velocity components.

In all simulations, the pressure structure shows oscil-
lation clearly related to helical motion in the one-
dimensional slices farthest from the jet axis, but the
structure near the jet axis can be considerably more
complicatedÈseen mostly in the low- and moderate-
frequency simulations. The maximum pressure Ñuctuations
around the local mean are less than ^15% and are smaller
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FIG. 1.ÈOne-dimensional slices through the simulation data cubes
parallel to the jet axis located at (solid line), 0.33 (dotted line),x/R

j
\ 0.11

0.55 (dashed line), and 0.77 (dash-dotted line). Similar one-dimensional slices
through theoretical data cubes are located at similar points on the y-axis.
[See the electronic edition of the Journal for a color version of this Ðgure.]

near the jet axis and in the high-frequency simulation.
Growth in the transverse velocity components, indicative of
unstable helical wave growth, is seen only in the low-
frequency simulation. In the moderate-frequency simula-
tion, the transverse velocity componentÏs amplitude
remains approximately constant. In the high-frequency
simulation, the transverse velocity components show an

initial rapid decline to a plateau. A subtle change in the
radial velocity structure occurs at in the high-z/R

j
D 10

frequency simulation. The change, seen in theoretical Ðts
(see ° 4), occurs in the amplitude of the one-dimensional
radial velocity slice near the jet center relative to the ampli-
tude of the one-dimensional slice near the jet surface. At a
larger distance, the amplitude near the center is less than
that at the surface, but at a smaller distance, the amplitude
at the center is larger. A relatively long-length scale ampli-
tude modulation of the plateau in the velocity com-vÕponent seen beyond in theoretical Ðts (see ° 4)z/R

j
D 12

may be present to a small degree in the simulation data. As
we shall see in ° 4, subtleties like this are indicative of the
presence of multiple wave modes.

Figure 3 shows a spatial Fourier analysis of the one-
dimensional pressure, axial velocity, and radial velocity
slices shown in Figure 2 but windowed from 1.888¹

All velocity power amplitudes are similarlyz/R
j
¹ 30.111.

normalized with the exception of those o† the scale
(included so that power peaks can be seen). Pressure power
amplitudes are also similarly normalized. The relatively
short length of our window results in coarse wavelength
coverage, and the power is computed at 14.0,j/R

j
D 28.2,

9.3, 6.9, 5.5, 4.5, 3.8, 3.3, 2.9, 2.6, 2.4, 2.1, 2.0, 1.8, 1.7, etc. We
expect power peaks to fall at the wavelength closest to the
true wavelength. However, various tests indicated that the
shift in the location of power peaks to an adjacent wave-
length bin could be caused by amplitude changes in the
pressure and velocity oscillations and also that the location
of power peaks and their amplitudes are somewhat sensitive
to the window location. Still, it is apparent that the power
distribution depends on the radial location within the jet. In
general, power peaks in the radial velocity most nearly indi-
cate the true wavelength. To a certain extent, these power
peaks in the radial velocity are accompanied by similar
power peaks in the pressure and the axial velocity at radial

FIG. 2.ÈPressure, axial velocity radial velocity and azimuthal velocity along the one-dimensional slices indicated in Fig. 1 for the three(v
z
), (v

x
), (v

y
)

simulations. Line types are identical to Fig. 1. [See the electronic edition of the Journal for a color version of this Ðgure.]
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FIG. 3.ÈSpatial fast Fourier transform of the pressure (p), axial velocity and radial velocity along the one-dimensional slices shown in Fig. 2 for(v
z
), (v

r
)

the three simulations. Line types are identical to Fig. 2. Power associated with velocities has been normalized relative to the maximum radial velocity power,
and power associated with pressure has been normalized relative to the maximum in the pressure. O†-the-scale power is not to scale. [See the electronic
edition of the Journal for a color version of this Ðgure.]

locations and 0.77. At radial locations,r/R
j
\ 0.55 r/R

j
\

0.11 and 0.33 power peaks in the pressure can be identiÐed
with similar peaks found in the axial velocity, but there are
signiÐcant di†erences. The study of one-dimensional cuts
through the data cubes and the comparison with theoretical
predictions (see ° 4) lead to the following general
conclusions :

1. A small amount of power in the radial velocity at
wavelengths below the power peak suggests the presence of
a second transverse oscillation. The e†ect is most evident at
radial locations and 0.33. Power at these shorterr/R

j
\ 0.11

wavelengths increases from about 1% to about 10% of the
peak power as one goes from low- to high-frequency simu-
lations. Power can also be seen to be enhanced at shorter
wavelengths in the pressure and the axial velocity.

2. In all simulations, a signiÐcant power peak in the pres-
sure and axial velocity, particularly apparent at radial loca-
tion occurs at This feature can ber/R

j
\ 0.11, j/R

j
D 9.

unambiguously identiÐed with a conical pressure wave at
the inlet. This conical pressure wave appears in the one-
dimensional pressure slices at in Figure 2 as ther/R

j
\ 0.11

pressure dip at axial distance followed by a pres-z/R
j
D 7È8

sure rise at z/R
j
D 9È10.

The pressure and transverse velocity vectors in planes
transverse to the z-axis at locations of and 15 arez/R

j
\ 10

shown in Figure 4. In these cross sections, the jet Ñow is into
the page. These locations were chosen as being far enough

outward to be relatively una†ected by inlet e†ects (beyond
about not so far outward as to be beyond the quasi-5R

j
),

steady region (beyond [simulations A and B] or30R
j

20R
j[simulation C]) or where the jet surface layers are strongly

slowed (beyond and to be far enough separated to see20R
j
),

signiÐcant changes in the internal structure of the jet. The
counterclockwise precession of the jet is revealed by spiral
shock waves outside the jet with footpoints on the low- and
high-pressure regions on opposite sides of the jet. In the
medium just outside the jet, Ñuid Ñows from the high- to
low-pressure region around the jet circumference with less
Ñow at higher precession frequency. The highest and lowest
pressures and the largest transverse velocities lie at and
outside the jet surface, but in general Ñuid motions in the
external medium remain less than the sound speed. The
existence of the spiral shocks suggests the potential for sig-
niÐcant energy loss from the jet surface layers, and the
development of a signiÐcant axial velocity shear layer and
azimuthal velocity e†ects appears consistent with such an
energy loss.

In order to see more subtle pressure and transverse veloc-
ity structure inside the jet, we have applied an axial velocity
mask with a value of 1 if and of 0 otherwise to thev

z
º 0.90c

cross sections. The internal pressure structure shows high-
and low-pressure regions near the jet surface corresponding
to the high- and low-pressure regions beyond the jet surface
in the unmasked images but with an additional complicated
structure that changes dramatically between the two loca-
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FIG. 4.ÈTransverse cross sections of the pressure structure with transverse velocity vectors superposed at axial distances (top six panels) and 15z/R
j
\ 10

(bottom six panels). The pairs of panels show transverse structure across the entire computational grid and transverse structure masked by axial velocity to
show only the jet. The low- to high-frequency simulation results are shown from left to right, respectively. The pressure gray scale and velocity vector length
have been adjusted to show structure and cannot be intercompared quantitatively. [See the electronic edition of the Journal for a color version of this Ðgure.]

tions. Within the jet, transverse velocities are less than in the
higher sound speed external medium. In general, the trans-
verse velocity shows jet Ñuid moving toward the azimuthal
location of the maximum jet displacement at a location
farther down the jetÈnote that spatial rotation outward is

in the clockwise sense. This direction of transverse Ñow
basically proceeds from the leading edge of the high-
pressure region to leading edge of the low-pressure region
within the jet cross sectionsÈrecall that patterns at a Ðxed
distance rotate counterclockwise in a temporal sense. Flow
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patterns inside the jet show some response to the internal
pressure structure in the high-frequency simulation but are
essentially straight across the jet at the lower precession
frequencies.

The complexities in internal jet structure seen in the one-
dimensional slices, as suggested by the power spectrum and
by transverse cuts through the jet, indicate that more is
going on than can be described by a simple helical twist of
the jet at one wavelength. In the next section we use all of
the Ðndings above along with a theoretical description
of the normal mode structures of a cylindrical jet to
identify the modes leading to the structures observed in the
simulations.

4. JET STRUCTURE

Suppose we analyze the structures arising in the simula-
tions by modeling the jet as a cylinder of radius having aR

juniform density and a uniform velocity v. The externalo
jmedium (cocoon) is assumed to have a uniform density o

xand to be at rest. The jet is assumed to be in static pressure
balance with the external medium A generalp

j
\ p

x
.

approach to analyzing the time-dependent structures is to
linearize the Ñuid equations along with an equation of state
in which the density, velocity, and pressure are written as

and where the sub-o \o0] o1, ¿\¿0 ] ¿1, p \ p0] p1,script ““ 1 ÏÏ refers to a perturbation to the equilibrium quan-
tity. In cylindrical geometry, a random perturbation of o1,and can be considered to consist of Fourier com-¿1, p1ponents of the form

f
n
(r,/, z)\ f

n
(r) exp [i(kz^ n/[ ut)] , (14)

where Ñow is along the z-axis and r is in the radial direction
with the Ñow bounded by In cylindrical geometry, kr \R

j
.

is the longitudinal wavenumber, n is an integer azimuthal
wavenumber (for n [ 0, the wave fronts propagate at an
angle to the Ñow direction), the angle of the wavevector
relative to the Ñow direction is h \ tan (n/kR), and ]n and
[n refer to wave propagation in the clockwise and counter-
clockwise senses, respectively, when viewed outward along
the Ñow direction. The dispersion relation describing the
propagation and growth of the ““ normal ÏÏ modes n along
with the expressions giving the density, pressure, and veloc-
ity structure associated with the normal modes can be
found in Hardee et al. (1998) and Hardee (2000).

The dispersion relation has been solved for k(u) using
root-Ðnding techniques for parameters appropriate to the
numerical simulations. Numerical solutions to the disper-
sion relation for the Ðrst two pinch body modes and for the
surface and the Ðrst two helical body modes appropriate to
the simulations are shown in Figure 5. In general, the body
modes are weakly damped in a frequency range just below
where they are not growing (damping rates not shown in
the Ðgure). The solutions have comparable maximum
growth rates for these surface and body modes in which the

FIG. 5.ÈNumerical solution of the dispersion relation for parameters
appropriate to the simulations for the surface (S) wave mode and/or the
Ðrst two body wave modes as a function of the angular frequency.(B1, B2)The dotted lines give the real part of the wavenumber and the dashedkRelines give the absolute value of the imaginary part of the wavenumber

The vertical lines indicate the precession frequency in the threeo kIm o .
numerical simulations. [See the electronic edition of the Journal for a color
version of this Ðgure.]

spatial growth rate is given by the imaginary part of the
wavenumber Wavelengths, wave speeds, and growthkIm.
(damping) lengths for the helical modes at thel 4o kIm o~1
precession frequencies used in the simulations are given in
Table 1. The wave speed is deÐned by the real part of the
phase velocity as and the wavelength isv

w
\ (u/k) oRe,deÐned by We note that nonrelativistic jetj \ 2nv

w
/u.

simulations have shown wavelength and wave propagation
to be given most accurately by the phase velocity and
driving frequency and not, for example, by using the real
part of the complex wavenumber or the group velocity to
determine the wavelength. The wavelengths given in Table
1 along with the mode structure and amplitudes deduced

TABLE 1

COMPUTED WAVELENGTHS, GROWTH (DAMPING) LENGTHS, AND WAVE SPEEDS

Simulation uR
j
/v

j
j
s
/R

j
l
s
/R

j
v
s
w/c j1/Rj

l1/Rj
v1w/c j2/Rj

l2/Rj
v2w/c

A . . . . . . . . . . 0.40 14.6 12.8 0.86 7.1 (119) 0.41 4.9 . . . 0.29
B . . . . . . . . . . 0.93 6.0 6.2 0.82 4.6 101 0.62 3.5 . . . 0.47
C . . . . . . . . . . 2.69 2.1 9.0 0.82 1.9 3.8 0.74 1.6 16.8 0.63
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from the simulations are used to produce theoretical data
cubes.

Producing theoretical data cubes that yield pressure and
velocity structures similar to the pressure and velocity
structures in the numerical simulations was an iterative
process. We concentrated on reproducing the general fea-
tures seen in the simulationÏs one-dimensional pressure and
velocity slices (Fig. 2) and then on the jetÏs transverse pres-
sure structure as shown in Figure 4. These features and
structures along with the simulationÏs power spectra shown
in Figure 3 suggested the need for a pinch mode in addition
to the helical surface and helical body modes. This pinch
contribution has been modeled by the Ðrst pinch body
mode at the wavelength This wavelength isj

p
/R

j
\ 8.

approximately the length of the conical inlet pressure wave,
is equal to the generalized Mach number, and is consistent
with the power spectra shown in Figure 3. We note that the
second pinch body mode exists but is not growing at this
wavelength and that higher order pinch body modes do not
exist at this long wavelength. The one-dimensional radial
velocity slices, which in the simulations are clearly the least
a†ected by surface e†ects, proved a good indicator of the
helical mode amplitudes. Features in the one-dimensional
pressure slices near the jet axis provided an indication of the
relative phasing between helical surface and body modes,
and, primarily in the case of the low- and moderate-
frequency simulations, indicated the presence of pinching
triggered by the conical inlet pressure wave. Fine-tuning of
the relative phasing between modes was provided by com-
paring the pressure structure between the simulation and
theoretical cross sections.

Results of a combination of helical surface and Ðrst-body

modes along with (simulations A and B only) the Ðrst pinch
body mode are shown as one-dimensional pressure and
velocity slices in Figure 6. Qualitatively, the pinch mode
amplitude grows rapidly to a maximum at (alsoz/R

j
\ 10

the approximate location of the tip of the conical pressure
wave on the jet axis) and declines rapidly at a larger dis-
tance, the helical surface mode amplitude grows slowly with
distance (simulation A), is constant (simulation B), and
rapidly declines to a constant value (simulation C), and the
helical Ðrst-body mode amplitude declines slowly with dis-
tance (simulation A), is constant (simulation B), and grows
rapidly to a constant value (simulation C). Quantitatively,
amplitudes are inputed as a maximum jet surface displace-
ment as a function of z, the inlet phase of the helical surface
mode is chosen to match the major radial velocity oscil-/

slations seen in the simulations, and the inlet phase of the
helical body mode is speciÐed relative to the helical/1surface mode to produce interference e†ects and the cross
section structure at the appropriate locations. The inlet
phase of the pinch mode is set to produce a maximum on
the jet axis at The expressions used for thez/R

j
\ 10.

individual modes are as follows :

Simulation A:

A
p
\ 4

5
6
0
0
0.00075z , z\ 10 ,
0.0075] 2~(z@10~1) , zº 10 ,

A
s
\ 0.130] 0.005z ,

A1\ 4
5
6
0
0
0.004e~z@120 ,
/1\ /

s
] 0.26n .

FIG. 6.ÈPressure, axial velocity radial velocity and azimuthal velocity along one-dimensional slices for theoretical jet models. The(v
z
), (v

y
), ([v

x
)

one-dimensional slice locations are now through points along the y-axis in Fig. 1 but at the same radial locations used for the simulations. Line types are
identical to Fig. 2. [See the electronic edition of the Journal for a color version of this Ðgure.]
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Simulation B:

A
p
\ 4

5
6
0
0
0.0004z , z\ 10 ,
0.004] 2~(z@10~1) , zº 10 ,

A
s
\ 0.090 ,

A1\ 4
5
6
0
0
0.010 ,
/1\ /

s
] 0.5n .

Simulation C:

A
p
\ 0.0 ,

A
s
\ 4

5
6
0
0
0.038(1[ 0.0770z) , z\ 10.8 ,
0.0065 , zº 10.8 ,

A1\
4
5
6

0
0

0.00060] 2z@4 , z\ 13.3 ,
0.0060 , zº 13.3 ,
/1\ /

s
] 1.6n ,

where the A and z values above are normalized to the jet
radius and are the phase angles at z\ 0. At theR

j
, /(s,1)higher frequencies, the jet surface displacement decreases,

and the initial phase di†erence between helical surface and
Ðrst-body mode increases.

In general, the functional forms chosen for the amplitudes
are simply a best Ðt to what is seen in the simulations. While
amplitude growth for the pinch mode is chosen to provide a
reasonable emulation of the conical pressure wave at the
inlet and has no other physical signiÐcance, subsequent
damping may reÑect poor coupling between the conical
inlet perturbation and the required structure of this pinch
body mode. A similar result was found by Hardee et al.
(1998) in axisymmetric relativistic jet simulations. For the
Ðrst helical body mode in the low-frequency precession
simulation, we have used the exponential damping rate pre-
dicted by the theory. Typically, the helical mode wave
growth or damping seen in the simulations is not exponen-
tial, e.g., slow linear growth or rapid linear damping of the
surface mode in the low- and high-precession frequency
simulations, respectively. This fact implies that amplitudes
seen in the simulations are in the nonlinear regime. Inter-
estingly, the initial rapid linear damping of the helical
surface mode transverse velocity components in the high-
frequency simulation is accompanied by rapid, nearly expo-
nential growth of oscillations in the axial velocity
component. In the simulation, the damping of the helical
surface mode ceases when the axial velocity oscillations
reach the level appropriate to the transverse velocity oscil-
lations predicted theoretically to accompany the helical
surface mode at this rapid precession frequency.

While we are able to match the major features in the
one-dimensional slices shown in Figure 2 to the innermost
one-dimensional slices, signiÐcant di†erences between the
theoretical and simulation one-dimensional slices appear in
the outer half of the jet, where velocity shear appears in the
simulations. This velocity shear modiÐes the radial pressure
proÐle, the axial velocity proÐle, and the azimuthal velocity
proÐle relative to the theoretical model. First, the pressure
oscillations in the simulation do not attain the amplitudes
seen in the theoretical proÐles in the outer half of the jet.
Second, the azimuthal velocity component oscillations can
be greatly exaggerated in the simulations in the outer half of
the jet. This second e†ect becomes more pronounced at a

lower precession frequency and at the accompanying larger
sideways jet displacement. Third, a larger indication of
beating between helical surface and Ðrst-body modes
appears in the one-dimensional theoretical slices. Neverthe-
less, results based on the linear theory appear to provide
reasonable estimates of the pressure and velocity Ñuctua-
tions observed in the simulations.

The theoretical transverse velocity and pressure structure
of individual helical surface and Ðrst-body modes at the
wavelengths given in Table 1 are shown in the top six panels
of Figure 7. In these panels, jet Ñow is into the page, and the
spatial rotation of the patterns down the jet is in a clockwise
sense. At a Ðxed position, the temporal rotation of the pat-
terns is in a counterclockwise sense. For the surface mode at
the Ðxed spatial location of the slices, the transverse Ñow is
approximately from the leading edge of the high-pressure
region to the leading edge of the low-pressure region. Flow
patterns for the Ðrst-body mode at the longer wavelengths
are identical and show Ñow toward (away from) the regions
that will become high- (low-) pressure regions farther down
the jet.

Results of the combined modes are shown in the bottom
six panels of Figure 7. These panels show a theoretical Ðt to
the pressure structure seen in the cross sections at z/R

j
\ 10

and 15 in the simulations. Because we matched theoretical
one-dimensional slices at radial positions along the trans-
verse y-axis (see Fig. 1) to simulation one-dimensional slices
along the transverse x-axis, cross sections through the theo-
retical data cubes are rotated by 90¡ relative to the simula-
tion cross sections at comparable positions. The theoreti-
cal cross sections are taken from a theoretically generated
data cube at axial locations of andz/R

j
D 10 z/R

j
D 16

(simulation A), 15 (simulation B), and 14 (simulation C).
Small di†erences in mode wavelengths between the theo-
retical predictions and the simulations lead to the di†er-
ences in the outermost location of the best Ðt. We are able
to reproduce the basic pressure structure seen in the simula-
tion cross sections, and the results prove that simulation
structures are the result of a combination of normal modes,
although there are obvious di†erences. For example, trans-
verse Ñow vectors are rotated relative to the pressure struc-
ture by up to about 45¡ between theoretical cross sections
and simulation cross sections. In part, the di†erences are the
result of the velocity shear layer that occurs in the simula-
tions but is not included in the theoretical model.

The pressure structure in the cross sections is very sensi-
tive to the relative phasing between wave modes. For
example, the theoretical cross section for simulation A at

requires that the pinch mode provide a centralz/R
j
D 10

pressure enhancement, while the high-pressure region
associated with the surface and Ðrst-body modes must be
very close to 180¡ out of phase. Only this phasing, along
with the appropriate amplitudes, provides a pressure cross
section with characteristics similar to that of the simulation.
With the exception of this cross section, only the two helical
modes appear important to other cross section structures.
In general, the body mode becomes stronger relative to the
surface mode at a higher precession frequency. Note that
the transverse velocity structure appears to be inÑuenced
signiÐcantly by the body mode only for the high-frequency
case, as in the corresponding simulation cross section.

Figure 8 shows a spatial Fourier analysis of the theoreti-
cal one-dimensional pressure, axial velocity, and radial
velocity slices shown in Figure 6. A window from z/R

j
D 2
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FIG. 7.ÈTransverse cross sections of the pressure structure with transverse velocity vectors superposed for individual (top row) surface and Ðrst body
(second row) helical wave modes at ( from left to right, respectively) low-, moderate-, and high-precession frequencies. The transverse cross sections of the
combined modes at axial distances (third-row) and D16, 15, and 14 (bottom row) again at the ( from left to right, respectively) low-, moderate-, andz/R

j
D 10

high-precession frequencies. The pressure gray scale and velocity vector length have been adjusted to show structure and cannot be intercompared
quantitatively. [See the electronic edition of the Journal for a color version of this Ðgure.]

to 30 was used for the low- and moderate-precession fre-
quencies, and was used for the high-precessionz/R

j
D 1È29

frequency. The length of our theoretical window and the
point spacing are identical to those used for the simulations,

although the normalization is di†erent. Not surprisingly, a
Fourier analysis of the radial velocity slices shows the best
correspondence between theory and simulation since the
simulation radial velocity slices are the least inÑuenced by
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FIG. 8.ÈSpatial fast Fourier transform of the pressure (p), axial velocity and radial velocity along the one-dimensional slices shown in Fig. 6.(v
z
), (v

r
)

Power associated with velocities and power associated with pressure have been normalized so that the scaling is similar to that shown in Fig. 3. [See the
electronic edition of the Journal for a color version of this Ðgure.]

surface e†ects. Note that relative peak power levels in the
radial velocity in the three simulations are mirrored by the
theoretical results. The Fourier analysis of pressure and
axial velocity slices shows much more variability, although
similar power peaks are evident in theory and simulation
results. We note that normalization, particularly for the
pressure slices, is very di†erent for the theory and the simu-
lation as a result of the large di†erence in the amplitude of
the pressure Ñuctuation near the jet surface. Other di†er-
ences between the theory and the simulation are the result
of a di†erent jet structure both near and far from the inlet in
the simulations. If factors such as these are considered, the
Fourier analysis indicates good agreement between the
theoretical models and the simulations.

5. SYNTHETIC EMISSION IMAGES

The extent to which complexities in jet structure yield
observable consequences is indicated by the plane of the sky
line-of-sight integrations of p2 shown in Figure 9. Simula-
tion images are constructed by integrating over only those
computational zones in which Intensities in thev

z
º 0.90c.

di†erent images can be qualitatively but not quantitatively
compared since the scales are not identical. Flow and pres-
sure patterns take about to develop in the simulations,5R

jso the simulation and theoretical images di†er on this scale.
Beyond this distance, the simulation and theoretical images
are remarkably similar.

The low-frequency simulation shows a long-wavelength
sinusoidal oscillation at the principal wavelength indicated

by the one-dimensional slices in Figure 2. Growth in the
amplitude of the oscillation is apparent in the image. The
decrease in brightness along the jet in the simulation image
is a manifestation of the average 15% pressure drop
between the inlet and (see Fig. 2). There is az/R

j
\ 30

modest enhancement in brightness where peaks appeared in
the one-dimensional pressure slices in Figure 2 and at the
locations of maximum jet displacement in the plane of the
sky. The corresponding theoretical image is shifted by the
expected quarter wavelength relative to the simulation
image but otherwise exhibits similar structure. Modest
brightness enhancement at maximum displacement is a
combination of the location and shape of the high-pressure
region within the jet and line-of-sight e†ects. The e†ect of
pinch overpressure at is more apparent in thez/R

j
\ 10

theoretical image. The primary di†erence between the two
images is a consequence of the jetÏs axial pressure decline in
the simulation. The presence of the helical body mode,
which is at low amplitude, has no apparent inÑuence on the
appearance of the jet in simulation or theoretical images.

The moderate-frequency simulation shows a sinusoidal
oscillation at the principal wavelength indicated by the one-
dimensional slices, but note the lengthening in the apparent
wavelength only between and 21. Some decreasez/R

j
\ 14

in brightness results from an average 10% pressure drop
along the jet in the simulation. In this simulation, signiÐcant
brightness enhancement at locations of the maximum trans-
verse displacement is apparent along much of the jet. As
suggested by the one-dimensional velocity slices, there is
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FIG. 9.ÈLine-of-sight integration of p2 through simulation (masked by the jet velocity to show only the jet) and theoretical data cubes for low- (top two
panels), moderate- (middle two panels) and high- (bottom two panels) precession frequencies. Gray scales have been adjusted to show structure and cannot be
compared quantitatively. [See the electronic edition of the Journal for a color version of this Ðgure.]

little growth in the oscillation amplitude. The correspond-
ing theoretical image shows the same brightness enhance-
ments at maximum displacement. There is more
enhancement than in the low-frequency images. It is readily
apparent that the theoretical image reproduces the simula-
tion image structure between and 21. From thez/R

j
\ 14

theoretical model, we deduce that this structure is the result
of interference between the helical surface and Ðrst-body
modes.

The high-frequency simulation shows two distinct sinus-
oidal oscillation patterns separated by a transition region
centered at although the oscillation wave-z/R

j
\ 12È13,

length is nearly identical on either side of the transition. A
change in the transverse velocity structure occurred just
previous to this transition distance and can be seen in the
one-dimensional slices in Figure 2. A similar structure is
also apparent in the theoretical image and in the one-

dimensional slices shown in Figure 6. From the theoretical
model, we deduce that this transition region and the change
in the apparent structure result from a decline in the helical
surface mode amplitude, growth in the helical body mode
amplitude, and interference between the two modes. If the
theoretical image is extended to a larger distance with con-
stant mode amplitudes, a beat pattern emerges as a result of
the slight di†erence in wavelength between the two wave
modes. Recall that the beat pattern is apparent in the one-
dimensional theoretical pressure and velocity slices shown
in Figure 6 and is also suggested in the one-dimensional
simulation velocity slices shown in Figure 2.

6. SUMMARY AND DISCUSSION

In the simulations, spiral shock waves are driven into the
external medium by jet helicity. While Ñuid motions in
the external medium remain less than the sound speed, the



756 HARDEE ET AL. Vol. 555

waves propagate outward at or slightly above the sound
speed. The footpoints of these waves are tied to helical
““ ripples ÏÏ in the jet surface that move axially with speeds of

The azimuthal motion of0.86c[ v
z
w [ 0.74c[ a

x
\ 0.61c.

the high-pressure footpoint at a Ðxed axial position
increases from low-precession (simulation A) to high-
precession (simulation C) frequencies with vÕw D 0.37c
(simulation A), 0.85c (simulation B), and 2.46c (simulation
C). In the high-frequency simulation, the high-pressure foot-
point moves around the jet circumference superluminally
and would appear to move across the jet diameter at about
1.6c. The existence of these spiral shocks suggests the poten-
tial for signiÐcant energy loss from the jet surface layers. In
fact, the simulations show the development of a signiÐcant
axial velocity shear layer and azimuthal velocity e†ects con-
sistent with such an energy loss. Energy loss appears great-
est (as judged by axial and azimuthal velocity e†ects) at the
low-precession frequency in which physical displacement of
the jet surface is largest and appears least in the high-
precession frequency simulation in which physical displace-
ment of the jet surface is smallest.

Within the jet, Ñuid motions with respect to the helical
pattern speed are less than the jet sound speed, pressure
Ñuctuates less than ^15% around the local mean, and
velocity Ñuctuations in the jet Ñuid are much less than the
jet sound speed. The axial velocity Ñuctuation is a very
small fraction of the relativistic jet speed, and signiÐcant
variation in the Lorentz factor does not occur in these rela-
tivistic jet simulations. The small transverse velocity
induced by jet helicity allows for some angular variation in
the Ñow direction. Angular variation decreases from ^1¡.25
in the low-frequency simulation to about in the high-^0¡.3
frequency simulation. The angular Ñow variations seen in
these simulations are less than 10% of the beaming angle
given by 1/c, and given the relatively small variation in
Lorentz factor, we would not expect signiÐcant Doppler-
boosting Ñuctuations at small angles to the line of sight.
However, we note that larger jet displacements and larger
pressure and velocity Ñuctuations would occur at larger
distances outside the computational grid in the low-
frequency simulation. On the other hand, it is likely that the
jet displacements and pressure and velocity Ñuctuations in
the high-frequency simulation are close to saturation.
Larger jet displacements and larger pressure and velocity
Ñuctuations cannot be ruled out for the moderate-frequency
simulation at spatial scales beyond the length of the compu-
tational grid, although Ñuctuations remain relatively con-
stant across the computational grid.

Details of the internal jet pressure and velocity structure
can be understood as arising from a combination of the
normal modes predicted by the theory. In general, it is pos-
sible to provide good estimates to the velocity and pressure
Ñuctuations in the jet interior but not near the jet surface,
where there is signiÐcant velocity shear in the simulations.
Fitting jet structures requires a combination of helical
surface and Ðrst-body modes with a larger relative ampli-
tude for the Ðrst-body mode as the precession frequency
increases and in which the Ðrst-body mode is more rapidly
growing. Typically, the helical mode wave growth or
damping seen in the simulations is not exponential, and this
fact implies that amplitudes seen in the simulations are in
the nonlinear regime. Comparison with the theory shows
that the initial precession triggers the Ðrst helical body
mode in addition to triggering the surface mode even if the

body mode is not growing or is weakly damped. In the
simulations, some pinching is observed and is associated
with a conical pressure wave at the inlet. The very oblique
pressure wave induced at the inlet cannot couple strongly to
an allowed normal pinch body wave whose structure
includes a much less oblique pressure wave. Thus, we would
expect damping of the initial perturbation beyond the Ðrst
maximum, as is suggested by theoretical Ðts to the simula-
tions. A similar result was previously found by Hardee et al.
(1998) for axisymmetric jets with much higher Lorentz
factors.

In the line-of-sight images, the sinusoidal oscillation
becomes more conÐned to the jet interior as the precession
frequency increases, and the inÑuence of the body mode is
enhanced. The high-pressure region is somewhat ribbon-
like in cross section, and this leads to the enhancement in
line-of-sight images at the maximum transverse displace-
ment of the high-pressure region. We note that the
maximum transverse displacement of the high-pressure
region is shifted axially relative to the maximum surface
displacement. We observe additional structure within the
jet in addition to the basic sinusoidal oscillation. The image
structure can be adequately understood only with the mod-
eling capability a†orded by the theory. In line-of-sight
images, internal structure arises because of the conÐgu-
ration and location of the high-pressure region associated
primarily with the interacting helical surface and body wave
modes. The modes are triggered with some initial phase
di†erence depending on frequency, but the phase di†erence
between the modes at the inlet remains constant. In the
low-frequency simulation, the body mode amplitude is
small relative to the surface mode amplitude, and there are
no observable consequences of wave-wave interaction
between the surface and Ðrst-body mode. In the moderate-
and high-frequency simulations, in which body mode
amplitudes are signiÐcant, wave-wave interaction between
the surface and body modes does have observable conse-
quences. In the moderate-frequency simulation, line-of-
sight integrations reveal the e†ects of constructive and
destructive interference between these wave modes. In the
high-frequency simulation, the surface mode declines and
the body mode grows to a comparable amplitude. The
image reveals interference e†ects similar to those seen in the
moderate-frequency simulation and shows that the body
mode produces e†ects more conÐned to the jet interior than
the surface mode. In any event, we see that wave-wave inter-
action has observable consequences that are frequency-
dependent. Additionally, we Ðnd that the di†erences
between the simulation and theoretical models, particularly
in the pressure Ñuctuations in the outer portion of the jet,
do not result in signiÐcant di†erences in line-of-sight
images.

Both simulations and theory suggest potentially inter-
esting wave-wave interactions resulting from beating
between wave modes. Since the simulations show a Ðxed
phase di†erence between modes at the inlet, the di†erent
mode wavelengths result in distinct wave interaction
regions (regions of constructive and destructive inter-
ference) that will remain stationary over time, although in-
dividual wave patterns will move through these regions at
di†erent wave (pattern) speeds. The present simulations
show that these pattern speeds can be quite di†erent.
Similar wave-wave interactions have also been found in
nonrelativistic numerical simulations (Xu, Hardee, & Stone
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2000) in a totally di†erent parameter regime relevant to
protostellar jets. Thus, this e†ect requires no Ðne-tuning of
parameters and should produce observable consequences
on astrophysical jets in general. In the present context, one
might ask if the presence of moving and Ðxed components
or the quasi-periodic spatial variation in brightness along
jets indicates regions of destructive and constructive inter-
ference between normal modes excited close to the central
engine. In particular, could wave-wave e†ects lead to the
quasi-periodic spacing of brighter regions in the M87 jet ?
For example, wave-wave interference could produce partic-

ularly complicated structures in a Ðxed or slowly moving
knot, say, in knot D in the M87 jet, but with motions within
the knot representative of a combination of pattern and
Ñow speeds with very di†erent apparent velocities. Future
work will be speciÐcally designed to address these issues.
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