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ABSTRACT
Since gamma-ray burst afterglows were Ðrst detected in 1997, the relativistic Ðreball model has

emerged as the leading theoretical explanation of the afterglows. In this paper, we present a very general,
Bayesian inference formalism with which this, or any other, afterglow model can be tested, and with
which the parameter values of acceptable models can be constrained, given the available photometry.
However, before model comparison or parameter estimation can be attempted, one must also consider
the physical processes that a†ect the afterglow as it propagates along the line of sight from the burst
source to the observer. Namely, how does extinction by dust, both in the host galaxy and in our galaxy,
and absorption by the Lya forest and by H I in the host galaxy, change the intrinsic spectrum of the
afterglow? Consequently, we also present in this paper a very general, eight-parameter dust extinction
curve model and a two-parameter model of the Lya forest Ñux deÐcit versus redshift distribution. Using
Ðtted extinction curves from Milky Way and Magellanic Cloud lines of sight, and measurements of Lya
forest Ñux deÐcits from quasar absorption line systems, we construct a Bayesian prior probability dis-
tribution that weights this additional, but necessary, parameter space such that the volume of the solu-
tion space is reduced signiÐcantly, a priori. Finally, we discuss the broad applicability of these results to
the modeling of light from all other extragalactic point sources, such as Type Ia supernovae.
Subject headings : dust, extinction È galaxies : ISM È gamma rays : bursts È

quasars : absorption lines È stars : formation È ultraviolet : ISM

1. INTRODUCTION

Optical afterglows have been detected for at least 12 gamma-ray bursts (GRBs) ; underlying galaxies have been detected for
at least seven of these. Underlying galaxies have been detected by high-resolution imaging with Hubble Space Telescope (HST )
(Sahu et al. 1997 ; Fruchter et al. 1999a, 1999b, 2000 [GRB 970228, GRB 990123, and GRB 970508, respectively] ; Kulkarni et
al. 1998 [GRB 971214] ; A. S. Fruchter 1999, private communications [GRB 980329 and GRB 990712] ; Bloom et al. 1999a),
by medium-resolution, ground-based imaging (e.g., Djorgovski et al. 1998a, 1998b [GRB 980613]), by detecting emission lines
at afterglow locations (e.g., Djorgovski et al. 1998c, 1998d [GRB 980613 and GRB 980703, respectively]), and by sampling
afterglow light curves until an asymptotic value is approached (e.g., Bloom et al. 1998 [GRB 98703]). However, this last
method is not always reliable, as Bloom et al. (1999b) have shown that a brightening supernova component to an afterglow
light curve can be misinterpreted as being due to an underlying galaxy if the light curve is not sufficiently well-sampled at late
times (see also Hjorth et al. 1999). Lamb (1999) has shown that underlying galaxies that have been conÐrmed to be coincident
with their afterglows by high-resolution HST imaging are host galaxies to a high degree of certainty ; however, B10%È15% of
the remaining underlying galaxies are probably chance coincidences. Consequently, at least six of these underlying galaxies
are host galaxies, and the remaining one or two underlying galaxies are very likely to be host galaxies as well.

Since many, if not all, of the long bursts with detected optical afterglows are associated with host galaxies, these afterglows
are likely to be extinguished by dust in their host galaxies (Reichart 1997), as well as by dust in our galaxy, and absorbed by
H I in their host galaxies, as well as by the Lya forest (Fruchter 1999). These physical processes a†ectÈin some cases, probably
signiÐcantlyÈthe observed spectra of afterglows from the infrared (IR) through the ultraviolet (UV). For example, Lamb &
Reichart (2000) suggest that some of the B13 bursts with securely detected X-ray afterglows, but without securely detected
optical afterglows, might be explained by large amounts of extinction by dust in their host galaxies, probably from the
immediate vicinities of these bursts if they are indeed associated with star-forming regions (see Lamb & Reichart 2000 for a
discussion of the evidence in favor of this association), or by absorption by the Lya forest if these bursts occur at very high
redshifts (zZ 5).

Since the majority of afterglow observations are made at optical and near-infrared wavelengths, the e†ects of these physical
processes on the observed spectra cannot be ignored, particularly since these spectra have been redshifted. Indeed, these
e†ects must be carefully modeled if intrinsic spectra are to be recovered. This is the primary purpose of this paper. The
secondary purpose of this paper is to present a very general, Bayesian inference formalism with which afterglow models can be
tested, and with which the parameter values of acceptable models can be constrained, given the available photometry. We
begin with this in ° 2. Also in ° 2 we develop and present a formalism for the construction of Bayesian prior probability
distributions from multidimensional data sets, which we draw on extensively in ° 4 and ° 5. In ° 3 we present an eight-
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parameter dust extinction curve model, based on the work of Fitzpatrick & Massa (1988) and Cardelli, Clayton, & Mathis
(1989). In ° 4 we construct a prior that weights this additional parameter space such that the volume of the solution space is
reduced signiÐcantly, a priori, using Ðtted extinction curves from Milky Way and Magellanic Cloud lines of sight. In ° 5 we
present a two-parameter model of the Lya forest Ñux deÐcit versus redshift distribution and construct an analogous prior
using Lya forest Ñux deÐcit measurements from quasar absorption line systems. In ° 6 we present a wide variety of
extinguished and absorbed spectral Ñux distributions, using these models. In ° 7 we draw conclusions, including a discussion
of the broad applicability of these results to the modeling of light from all other extragalactic point sources.

2. STATISTICAL METHODOLOGY

In ° 2.1 we present a very general, Bayesian inference formalism with which afterglow models (and any other model for that
matter) can be tested, and with which the parameter values of acceptable models can be constrained, given the available
photometry. In ° 2.2 we develop and present a formalism for the construction of Bayesian prior probability distributions from
multidimensional data sets, which we draw on extensively in ° 4 and ° 5. For a deeper discussion of Bayesian inference, we
refer the reader to an excellent review by Loredo (1992).

2.1. Bayesian Inference
2.1.1. BayesÏ T heorem

BayesÏ theorem states :

p(H oDI) \ p(H o I)p(D oHI)
p(D o I)

, (1)

where H is the hypothesis, or model, being considered, D is the data, and I is any available prior information. Hence, BayesÏ
theorem states that the probability of a given hypothesis, p(H oDI), given the data and any available prior information, is
proportional to the product of the probability of the hypothesis, p(H o I), given the prior information, and the probability of
the data, p(D oHI), given the hypothesis and the prior information. The quantity p(H oDI) is called the posterior probability
distribution, the quantity p(H o I) is called the prior probability distribution, and the quantity p(D oHI)Èsometimes denoted
L(H)Èis called the likelihood function.

The quantity p(D o I) normalizes the posterior. Let the hypothesis, or model, H, be described by a set of parameters h. Then
BayesÏ theorem reads :

p(h oDI) \ p(h o I)p(D o hI)
p(D o I)

. (2)

Normalization demands that

P
h
p(h oDI)dh \ 1 ; (3)

hence, p(D o I) is given by

p(D o I) \
P
h
p(h o I)p(D o hI)dh . (4)

Consequently, given a prior (see ° 2.1.2) and a likelihood function (see ° 2.1.3), a normalized posterior may be computed.

2.1.2. T he Prior

Let MhN denote the region over which the parameters h are integrated in equations (3) and (4). The prior, p(h o I), describes
how any available preexisting information constrains the values of the parameters h, or equivalently, how any available
preexisting information weights the parameter space MhN, and consequently, reduces the volume of the solution space, a priori.

If no prior information is available, one usually takes the prior to be Ñat within a region where the values ofMhphysN\ MhN
the parameters h are considered to be physically plausible ; the prior is taken to be zero everywhere else :

p(h o I)\ 4
5
6
0
0
(/hphysdh)~1 (h ½ MhphysN)
0 (h ¾ MhphysN) ;

(5)

here the volume integral normalizes the prior.4 The Ñat prior weights, a priori, all physically plausible solutions equally, and
gives no weight to physically implausible solutions.

As an example, consider the case of a two-parameter model, where the parameters, x and y, are physically unrelated. In this
case, the prior factorizes :

p(x, y o I) \ p(x o I)p(y o I) . (6)

4 Here, we consider only linearly Ñat priors ; however, logarithmically Ñat priors are also used, particularly when spans orders of magnitude.MhphysN
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Furthermore, suppose that prior information states that the possible values of x are normally distributed with a mean of a and
a standard deviation of b, but that no prior information is available on the value of y, other than that values of andy \ y

lare considered physically implausible. Then the prior for the parameter x, given the prior information a and b, is giveny [ y
uby

p(x o a, b) \ G(x, a, b) , (7)

where G(x, a, b) is a normalized Gaussian distribution, given by

G(x, a, b) \ 1

J2nb
exp

C
[ 1

2
Ax [ a

b
B2D

, (8)

and the prior for the parameter y, given the prior information and is given byy
l

y
u
,

p(y o y
l
, y

u
) \ F(y, y

l
, y

u
) , (9)

where F(y, is a Ñat prior, given byy
l
, y

u
)

F(y, y
l
, y

u
) \ 4

5
6
0
0
(y

u
[ y

l
)~1 (y

l
\ y \ y

u
)

0 (otherwise) .
(10)

We make extensive use of Gaussian and Ñat priors in this paper, particularly in ° 2.2. We present speciÐc priors for
parameters that describe the e†ects of extinction and absorption along the lines of sight to bursts in °° 4 and 5, respectively.

2.1.3. T he L ikelihood Function

The likelihood function, p(D o hI), describes how any available data constrain the values of the parameters h, or equivalently,
how any available data weight the parameter space MhN, and consequently, reduce the volume of the solution space. Conse-
quently, the posterior, p(h oDI), which is proportional to the product of the prior and the likelihood function, describes how
prior information and data jointly constrain the values of the parameters h, or equivalently, how prior information and data
jointly weight the parameter space MhN, and consequently, jointly reduce the volume of the solution space.

We now consider the form of the likelihood function for an unspeciÐed afterglow model (and for any other spectral and
temporal model for that matter). Let be the modelÏs prediction for the spectral Ñux of an afterglow; is aFl(l, t ; h) Fl(l, t ; h)
function of frequency of observation, l, time of observation, t, and the model parameters, h, which should include parameters
that describe the e†ects of extinction and absorption along the line of sight. Given N measured spectral Ñuxes, the likelihood
function is given by

p(D o hI)\ <
n/1

N
G

n
[Fl(ln, t

n
; h), Fl,n, p

Fl,n] , (11)

where is the nth measured spectral Ñux, is the measured 1 p uncertainty associated with this spectral Ñux, andFl,n p
Fl,nis a normalized Gaussian distribution, given by equation (8).G

n
[Fl(ln, t

n
; h), Fl,n, p

Fl,n]

2.1.4. Model Comparison

Model comparison allows one to asses the relative probability of two or more models ; consequently, this procedure may be
used to reject nonviable models. Here we consider the case of only two models ; however, one can easily generalize the
following procedure to the case of multiple models.

Consider two models, and that are described by two sets of parameters, h and /, respectively. The relativeHh HÕ,probability of model to model is called the odds ratio, and is given byHh HÕ

OhÕ \ /h p(h oDI)dh
/Õ p(/ oDI)d/

(12)

\ /h p(h o I)p(D o hI)dh
/Õ p(/ o I)p(D o/I)d/

. (13)

Normalization demands that

P
h
p(h oDI)dh ]

P
Õ
p(/ oDI)d/\ 1 ; (14)

hence, given only models and the probability in favor of model isHh HÕ, Hh
P
h
p(h oDI)dh \ OhÕ

1 ] OhÕ
, (15)

and the probability in favor of model isHÕ
P
Õ
p(/ oDI)d/\ 1

1 ] OhÕ
. (16)
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2.1.5. Parameter Estimation

Parameter estimation allows one to constrain parameter values of acceptable models. This procedure has two parts :
marginalization and the determination of credible regions.

Consider a single model, H, that is described by two sets of parameters : interesting parameters, h, whose values one wishes
to constrain, and uninteresting parameters, /, whose values one does not need to constrain. Then BayesÏ theorem reads :

p(h/ oDI) \ p(h/ o I)p(D o h/I)
p(D o I)

. (17)

The posterior of the interesting parameters, p(h oDI), is given by integrating the full posterior, p(h/ oDI), over the uninteresting
parameters, /, and by then normalizing the resulting distribution :

p(h oDI)\ /Õ p(h/ o I)p(D o h/I)d/
/hÕ p(h/ o I)p(D o h/I)dh d/

. (18)

This procedure is called marginalization.
Credible regions are determined by integrating the posterior from the most probable region of MhN to the least probable

region of MhN until p% of the distribution has been integrated :

P
hp
p(h oDI)dh \ p

100
, (19)

where such that for any and for any The region is called theMh
p
N\ MhN p(h1 oDI)[ p(h2 oDI) h1 ½ Mh

p
N h2 ½ MhN [ Mh

p
N. Mh

p
N

p% credible region of the parameters h, or the solution space. Of course, one can imagine many regionsÈactually an inÐnite
number of regionsÈthat integration over yields p% of the distribution ; however, by integrating over the most probable
region of MhN, one guarantees that the volume of is minimal and that is uniquely deÐned.Mh

p
N Mh

p
N

2.2. Constructing Priors from Multidimensional Data Sets
In ° 3 we present an eight-parameter model that describes the e†ects of extinction by dust along the lines of sight to bursts

(and along the lines of sight to all extragalactic point sources for that matter). However, without a prior that weights this
parameter space such that the volume of the solution space is reduced signiÐcantly, a priori, this model has very little
predictive power. Fortunately, a considerable amount of prior informationÈin the form of Ðtted values for six of these eight
parameters from 166 measured Milky Way and Magellanic Cloud extinction curves, and Ðtted values for one of the two
remaining parameters from 79 of these extinction curvesÈexists ; we describe this multidimensional data set in ° 4. In this
section, we develop and present a formalism by which priors can be extracted from multidimensional data sets ; we draw on
this formalism extensively in °° 4 and 5. The extraction of a simply formulated prior from, for example, the above, large,
multidimensional data set greatly facilitates the incorporation of this prior information in future afterglow analyses. We begin
with a sequence of four illustrative examples in ° 2.2.1, the last three of which are particularly relevant to our construction of
the dust extinction curve prior in ° 4.

2.2.1. Examples in T hree Dimensions and their Generalization

With the Ðrst example, we describe the form that the prior should take in the ideal case of one (or more) of the quantities in
the data set being fully determined by other quantities in the data set, and of this relation between these quantities being either
known or easily determined from the data set. With the second example, we describe the form that the prior should take in the
less ideal case of this relation between these quantities existing, but of its existence not being known or easily determined from
the data set, although correlations between subsets of these quantities are determinable from the data set. With the third
example, we describe the form that the prior should take in the related case of this relation not being determinable from the
data set because it involves quantities that are not in the data set, although correlations between the quantities that are in the
data set, or subsets of these quantities, are determinable from the data set. This last example is particularly realistic in that one
often deals with physical processes, like dust extinction, that, although understood in general, many of the details of which
depend on quantities whose relevance has not even been postulated yet, let alone whose values have been measured. With the
Ðnal example, we describe the form that the prior should take in the event that data selection e†ects, either due to instrumen-
tal limitations or due to how the sample was selected at a more human level, artiÐcially constrain the values of quantities in
the data set. We then discuss our generalization of these examples into a procedure.

2.2.1.1. Example 1

Consider a three-dimensional data set that consists of measured values of the parameters w, x, and y. Furthermore, suppose
that these parameters are related by y \ x ] w, and that w and x are physically unrelated parameters whose measured values
are distributed as the Gaussians G(w, 0, 0.1) and G(x, 0, 1), i.e., as w\ 0 ^ 0.1 and x \ 0 ^ 1. Consequently, the measured
values of the parameter y should also be distributed as a Gaussian, namely, G(y, 0, 1.005). In this case, the prior that best
represents this data set is given by

p(w, x, y o I)\ G(w, 0, 0.1)G(x, 0, 1)d(y [ x [ w) . (20)

This prior weights the three-dimensional parameter space, consequently reducing the volume of the solution space to a
localized region of a two-dimensional plane, a priori.
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2.2.1.2. Example 2

Suppose now that the relation y \ x ] w exists, but that its existence has not yet been determined. One way to learn of this
relation is to plot the data in three dimensions (or to plot the data in two dimensions and use perspective, or di†erent symbols,
or di†erent colors, etc., to represent the third dimension). However, this approach is increasingly difficult to implement in
increasingly higher dimensions. Another approach is to probe the data set mathematically. However, without prior know-
ledge of the form of the relation, let alone knowledge of its existence, this approach also can fail, particularly if the relation is
nonlinear in form. Consequently, we now consider the form that the prior should take in the event that the relation y \ x ] w
is not known. In this case, one approach is to plot the data two parameters at a time. Having done this, one would
immediately notice that the parameters x and y are strongly correlated, though it is unlikely that one would notice the weaker
correlation between the parameters w and y, since the values of the parameter w span a much smaller range than do the values
of the parameter x. Finally, the parameters w and x also should appear to be uncorrelated, since we stated above that they are
physically unrelated. From this information, one can construct the following prior :

p(w, x, y o I) \ G(w, 0, 0.1)G(x, 0, 1)G(y, x, 0.1) , (21)

where the last two factors describe the distribution of the data in the x-y plane. Although this prior does not reduce the
volume of the solution space as signiÐcantly as the above prior does, it certainly reduces it more than would the prior that one
would construct if no correlations were noticed,

p(w, x, y o I)\ G(w, 0, 0.1)G(x, 0, 1)G(y, 0, 1.005) , (22)

and it certainly reduces the volume of the solution space signiÐcantly more than would the prior one would construct if the
prior information were altogether ignored, i.e., if a Ñat prior were adopted (° 2.1.2) :

p(w, x, y o I) \ F(w, w
l
, w

u
)F(x, x

l
, x

u
)F(y, y

l
, y

u
) . (23)

Here and deÐne the ranges over which the values of these parameters are considered tow
l
\ w\ w

u
, x

l
\x \ x

u
, y

l
\ y \ y

ube physically plausible.
2.2.1.3. Example 3

Consider now the related case in which the parameter w either is not or cannot be measured, and in fact, the very relevance
of the parameter to the physical process at hand might not even be known. In this case, the prior described by equation (21)
should be replaced by

p(w, x, y o I)\ F(w, w
l
, w

u
)G(x, 0, 1)G(y, x, 0.1) , (24)

if w is one of the model parameters, or by

p(x, y o I) \ G(x, 0, 1)G(y, x, 0.1) , (25)

if w is not one of the model parameters.
2.2.1.4. Example 4

Finally, when constructing priors from data sets, one must be very careful that data selection e†ects do not bias the priors.
For example, suppose that the measured distribution of the parameter values of x merely reÑects how the data were sampled,
and not how the parameter values of x are intrinsically distributed. In this case, the above prior should be replaced by

p(x, y o I) \ F(x, x
l
, x

u
)G(y, x, 0.1) . (26)

However, in this case, the factor G(y, x, 0.1) is an extrapolation beyond the range of the measured values of the parameter x,
and must be treated as such.

When constructing a prior from a multidimensional data set in general, we adopt the following procedure : (1) we plot two-
and sometimes three-dimensional subsets of the data to facilitate the identiÐcation of correlations between parameters ; (2) if
correlations are found, say between pairs of parameters, we determine the two-dimensional distributions that describe these
subsets of the data ; we also determine the one-dimensional distributions of the values of all of the parameters ; and (3) we use
this information to construct a prior for the full parameter space, as in the above examples, while being mindful of data
selection e†ects. How to go about steps (1) and (3) should be clear ; how to go about step (2)Èthe construction of two-
dimensional priors, as well as one- and three-dimensional priorsÈwe explain in °° 2.2.2 and 2.2.3.

2.2.2. Constructing Priors from Two-dimensional Data Sets

Suppose that two parameters, x and y, are correlated, i.e., that the measured values of these parameters are scattered about
a curve, where are M parameters that describe this curve. The scatter of these points about this curve can bey \ y

c
(x ; h

m
), h

mboth due to measurement errors, in which case the scatter is referred to as intrinsic scatter, and due to weaker dependences of
either of the parameters x or y on other, yet-unmeasured, and even yet-unknown parameters (e.g., the parameter w in example
3 of ° 2.2.1), in which case the scatter is referred to as extrinsic scatter. Below we take all of these scatters to be normally
distributed and uncorrelated. Finally, let g(x, y) be the intrinsic density of points along the curve andd(y [ y

c
) y \ y

c
(x ; h

m
),

let f (x, y) be the selection function, i.e., the efficiency at which given values of the parameters x and y are observed. We now
construct a prior that describes the correlation between the parameters x and y.

We model the intrinsic density of points in the x@-y@ plane by convolving the intrinsic density of points along the curve
i.e., g(x, y) with the two-dimensional Gaussian smearing function G(x@, x, the scale ofy \ y

c
(x ; h

m
), d(y [ y

c
), p

x
)G(y@, y, p

y
),
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which is parameterized by 1 p extrinsic scatters andp
x

p
y
:

pint(x@, y@ o h
m
, p

x
, p

y
)\
P
x

P
y
g(x, y)d(y [ y

c
)G(x@, x, p

x
)G(y@, y, p

y
)dx dy (27)

\
P
s
g(x, y

c
)G(x@, x, p

x
)G(y@, y

c
, p

y
)ds , (28)

where is an element of path length along the length of the curve. The observed density of points in the x@-y@ds \ (dx2] dy
c
2)1@2

plane is then given by

pobs(x@, y@ o h
m
, p

x
, p

y
) \ f (x@, y@)pint(x@, y@ o h

m
, p

x
, p

y
) (29)

\
P
s
f (x@, y@)g(x, y

c
)G(x@, x, p

x
)G(y@, y

c
, p

y
)ds . (30)

The probability distribution of the nth data point, given 1 p intrinsic scatters and is given by(x
n
, y

n
), p

x,n p
y,n,

p
n
(x@, y@ o x

n
, y

n
, p

x,npy,n) \ G
n
(x@, x

n
, p

x,n)Gn
(y@, y

n
, p

y,n) . (31)

Hence, the joint probability distribution of a given model and the nth data point is given by

p
n
(x@, y@ o h

m
, p

x
, p

y
, x

n
, y

n
, p

x,n p
y,n) \ pobs(x@, y@ o h

m
, p

x
, p

y
)p

n
(x@, y@ o x

n
, y

n
, p

x,npy,n) (32)

\
P
s
f (x@, y@)g(x, y

c
)G(x@, x, p

x
)G(y@, y

c
, p

y
)G

n
(x@, x

n
, p

x,n)Gn
(y@, y

n
, p

y,n)ds . (33)

The joint probability of a given model, i.e., given values of the parameters and and the nth data point is given byh
m
, p

x
, p

y
,

integrating over x@ and y@ :p
n
(x@, y@ o h

m
, p

x
, p

y
, x

n
, y

n
, p

x,n p
y,n)

p
n
(h

m
, p

x
, p

y
o x

n
, y

n
, p

x,npy,n)

\
P
x@

P
y@

P
s
f (x@, y@)g(x, y

c
)G(x@, x, p

x
)G(y@, y

c
, p

y
)G

n
(x@, x

n
, p

x,n)Gn
(y@, y

n
, p

y,n)dx@ dy@ ds . (34)

Finally, the joint probability of a given model and all of the data points is given by taking the product of the N probabilities
p
n
(h

m
, p

x
, p

y
o x

n
, y

n
, p

x,n p
y,n) :

p(h
m
, p

x
, p

y
o x

n
, y

n
, p

x,n, p
y,n)

\ <
n/1

N P
x@

P
y@

P
s
f (x@, y@)g(x, y

c
)G(x@, x, p

x
)G(y@, y

c
, p

y
)G

n
(x@, x

n
, p

x,n)Gn
(y@, y

n
, p

y,n)dx@ dy@ ds . (35)

This is the prior. In this form, it is a function of M ] 2 parameters : andh
m
, p

x
, p

y
.

If the scale over which the selection function f (x@, y@) varies from constancy is larger than (1) the scale of the two-
dimensional Gaussian G(x@, x, as measured by and and (2) the scale of the two-dimensional Gaussianp

x
)G(y@, y

c
, p

y
), p

x
p
y
,

as measured by and then the Ðrst two integrations of equation (35) can be doneG
n
(x@, x

n
, p

x,n)Gn
(y@, y

n
, p

y,n), p
x,n p
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The Ðnal integration, however, is nontrivial. It consists of a path integration through the product of two distributions :
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By repeatedly setting the slope of this tangential ellipse equal to the slope of the curve, the tangent point, can be(x
t,n, y

t,n),found iteratively ; if is indeed slowly varying, only a few iterations are required. Now, using of the Ðrsty
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can replace in equation (37) with the following approximation :y
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Normalization of the prior removes the need to determine the value of the constant hence,<
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2.2.3. Constructing Practical Priors from Two-dimensional Data Sets and its Generalization

From the point of view of practicality, equation (43) has a number of drawbacks. First of all, by formulating the prior in this
way, we have replaced the two parameters x and y with M ] 2, intermediate parameters : and Second, potentialh

m
, p

x
, p

y
.

users of this prior must have access to the 4N pieces of prior information, and where N can be a very largex
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n
, p

x,n, p
y,n,number, that are required for its computation. Finally, the computation of this prior, although completely feasible, is

nontrivial : the iterative procedure of Ðnding the tangent point (° 2.2.2) must be performed N times at every grid point in the
(M ] 2)-dimensional space that the prior spans.

These problems can be overcome by instead taking equation (43) to be a likelihood function and by then applying the
statistical methodology of ° 2.1.5 to constrain the values of the intermediate parameters and i.e., to reduce the 4Nh

m
, p

x
, p

y
,

pieces of prior information to what we show below to be 2M ] 2 representative values, where M is typically a few. Given
these Ðtted values, it is a simple matter to construct an approximation to equation (43) (1) that is solely a function of the
parameters x and y, (2) that requires only these 2M ] 2 values as prior information, and (3) that is computationally
nontaxing. We do this now; we then generalize these results to other dimensions.
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Equation (44) can be improved upon if the selection function, f (x, y), is well understood. In this case, the intrinsic density of
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However, selection functions often are not well understood, as is the case with the data sets that we present in °° 4 and 5 ;
consequently, we do not develop this case further in this paper.

One-dimensional priors are trivially derived by setting in equation (43). In this case, equation (44) reduces tos
t,n \ 0

p(y o hü , pü h, pü
y
) \ G(y, hü , Jpü h2] pü

y
2) . (47)



242 REICHART Vol. 553

Furthermore, it is not difficult to generalize equations (43) and (44) to more than two dimensions. Let wherey \ y
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3. THE DUST EXTINCTION CURVE MODEL

We now present an eight-parameter model that describes the e†ects of extinction by dust along lines of sight through our
galaxy, and by redshifting this model, along lines of sight through burst host galaxies (and along lines of sight through the
host galaxies of all extragalactic point sources for that matter). This model is a combination of the two-parameter, IR and
optical extinction curve model of Cardelli et al. (1989) and the eight-parameter, UV extinction curve model of Fitzpatrick &
Massa (1988). We present the IR and optical extinction curve model in ° 3.1 ; we present the UV extinction curve model in
° 3.2. In ° 3.3 we modify these models to include the e†ect at far-UV (FUV) wavelengths of absorption by H I in galaxies.

3.1. j [ 3000
Using UBV RIJHKL photometry of 29 reddened Milky Way OB stars (Clayton & Mathis 1988 ; Clayton & Cardelli 1988),

and UV extinction curves that had been Ðtted to International Ultraviolet Explorer (IUE) spectra of 45 Milky Way OB stars
(Fitzpatrick & Massa 1988 ; see ° 3.2), Cardelli et al. (1988, 1989) constructed an empirical, two-parameter, IR through FUV
extinction curve model. The two parameters are and The former parameter normalizes the extinction curve at the VA

V
R

V
.

band ; the latter parameter, deÐned by

R
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(52)
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is a measure of the amount of extinction at the B-band relative to that at the V band. The standard di†use interstellar medium
(ISM) value of is 3.1 ; however, the value of is known to vary with the type of interstellar environment. For example,R

V
R

Vis typical of dense clouds.R
V

D 4È5
The Cardelli et al. (1989) extinction curve is given by
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where x \ (j/1 km)~1, and a(x) and b(x) are empirical expressions given by
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and

b(x)\
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0
0
[0.527x1.61 (0.3\ x \ 1.1)
1.41338y ] 2.28305y2] 1.07233y3 [ 5.38434y4

[0.62251y5] 5.30260y6 [ 2.09002y7 (1.1\ x \ 3.3) ,
(56)

where y \ x [ 1.82. Cardelli et al. (1989) also determined expressions for a(x) and b(x) in the wavelength range 3.3 \ x \ 10
(1000 however, the Fitzpatrick & Massa (1988) parameterization of the extinction curve, on which thisA� \ j \ 3000 A� ) ;
portion of the Cardelli et al. (1989) parameterization of the extinction curve is largely based, is a more general description of
the extinction curve in the UV. Consequently, we instead adopt the more general extinction curve model of Fitzpatrick &
Massa (1988) at these UV wavelengths (see ° 3.2).
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The extinction curve at wavelengths is generally attributed to absorption and scattering by classical van dej Z 6000 A�
Hulst grains (van de Hulst 1957). These are relatively large grains, with sizes of 1000È2000 They are thought to be Ñu†y,A� .
nonspherical composites containing carbon, silicates, oxides, and vacuum (Mathis 1996, 1998 ; Dwek 1998). Classical grain
extinction saturates at a wavelength of j D 3000 A� .

3.2. 1000A� \ j \ 3000A�
In a series of four papers, Massa & Fitzpatrick (1986) and Fitzpatrick & Massa (1986, 1988, 1990) measured extinction

curves for two samples of reddened Milky Way OB stars from IUE spectra. Their cluster sample consists of 35 stars from Ðve
clusters ; since these stars were drawn from similar interstellar environments, their extinction curves are relatively similar.
Their program sample consists of 45 stars from a wide variety of interstellar environments ; consequently, the extinction
curves of this sample are more varied. Fitzpatrick & Massa (1988, 1990) found that all 80 extinction curves are well Ðtted by
the following three-component function :

E(j [ V )
E(B[ V )

\ c1] c2 x ] c3D(x ; c, x0) ] c4F(x) , (57)

where

D(x ; c, x0) \
x2

(x2[ x02)2] x2c2 (58)

and

F(x)\ 4
5
6
0
0
0.5392(x [ 5.9)2] 0.05644(x [ 5.9)3 (x [ 5.9)
0 (x \ 5.9) .

(59)

The Ðrst component, is linear and spans the wavelength range of the data : 1000 The secondc1] c2 x, A� \j \ 3000 A� .
component, D(x ; c, is a functional form called the Drude proÐle ; however, in this context, it is often called the 2175x0), A�
bump or the UV bump. The third component, F(x), is an empirical expression called the FUV curvature component, or the
FUV nonlinear component. We depict all three of these components in Figure 1.

Although the Fitzpatrick & Massa (1988) parameterization of the extinction curve is Ðrst and foremost an empirically
driven Ðtting function, it is not devoid of physical signiÐcance. For example, the Drude proÐle is the functional form of the
absorption cross section of a forced-damped harmonic oscillator ; it reduces to a Lorentzian near resonance (Jackson 1962).
Fitzpatrick & Massa (1986) found that the Drude proÐle better Ðts the data than does a pure Lorentzian ; Lorentzian proÐles
had been used previously (Savage 1975 ; Seaton 1979). The Drude proÐle is a function of the bumpÏs center, and c, thex0,
bumpÏs width.

The linear component of the extinction curve is generally attributed to a distribution of grain sizes ; the larger grains, with
sizes perhaps as large as the classical grains, are responsible for extinction in the near-UV, and the smaller grains, with sizes
perhaps as small as 100 or less, are responsible for extinction in the FUV. These grains have been interpreted either as theA�
tail end of the classical grain population (e.g., Mathis, Rumpl, & Nordsieck 1977), or as a separate population altogether (e.g.,
Hong & Greenberg 1980). The parameters and are correlated (see Fig. 2, ° 4.2) ; however, this correlation is merely anc1 c2artifact of the Ðtting procedure by which the values of these parameters are determined (Carnochan 1986 ; see ° 4.2).

The values of these parameters are known to vary with the type of interstellar environment. For example, in the di†use
ISM, the values of are in the range 0.6È1, while in dense clouds, the values of extend to lower values : 0È1 (e.g., Fitzpatrickc2 c2& Massa 1988). This di†erence is generally attributed to the accretion of small grains onto larger grains, or to the coagulation
of small grains into larger grains, both of which occur most readily in dense clouds (Scalo 1977 ; Cardelli et al. 1988, 1989 ;

FIG. 1.ÈExtinction curve that is typical of the di†use ISM of our galaxy. The dotted lines mark the three components of the UV extinction curve of
Fitzpatrick & Massa (1988) (see ° 3.2).
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FIG. 2.ÈCorrelation between the extinction curve parameters and The dotted lines mark approximate 1, 2, and 3 p conÐdence regions (see ° 4.2).c1 c2.The Ðlled squares are from the Fitzpatrick & Massa (1988 ; FM) cluster sample, the Ðlled circles are from the FM program sample, the empty triangles are
from the Jenniskens & Greenberg (1993 ; JG) sample, the empty squares are from both the FM cluster sample and the JG sample, the empty circles are from
both the FM program sample and the JG sample, the solid error bars denote the Misselt et al. (1999) LMC sample, and the dotted error bars denote the
Gordon & Clayton (1998) SMC sample (see ° 4.1). The error bars of the Galactic points are discussed in ° 4.1. The encircled points denote lines of sight
through the Orion Nebula region.

Mathis & Wi†en 1989). In young star-forming regions, like the Orion Nebula, which are also dense clouds, (e.g.,c2B 0
Fitzpatrick & Massa 1988). This consistent, low value is generally attributed to stellar radiation forces, or to the evaporation
of grains, both of which preferentially remove the smaller grains (McCall 1981 ; Cardelli & Clayton 1988).

Dense clouds also protect grains from supernovae shocks, which preferentially destroy the larger, classical grains or their
mantles, and thus possibly increase the number of grains responsible for the linear component of the extinction curve (Seab &
Shull 1983 ; Jenniskens & Greenberg 1993 ; Jones, Tielens, & Hollenbach 1996). Since extinction curves are normalized at the
V band, the removal of classical grains alone guarantees higher values of (e.g., Jenniskens & Greenberg 1993). Indeed, in thec2Large and Small Magellanic Clouds (LMC and SMC), where old star-forming regions, like 30 Doradus (an extreme example),
are more common than in the Galaxy, the values of extend to higher values : 0.6È2 for the LMC and the SMC wing, andc22È2.5 for the SMC bar (Calzetti, Kinney, & Storchi-Bergmann 1994 ; Gordon & Clayton 1998 ; Misselt, Clayton, & Gordon
1999). In starburst galaxies, the values of are similarly high (Gordon, Calzetti, & Witt 1997).c2There is less consensus about the type of grain that is responsible for the UV bump; however, the fact that for Ðxed values of
the IR and optical extinction curve parameter and of the linear component parameters and the strength of the UVR

V
, c1 c2,bump can vary considerably, strongly suggests that the classical and linear component grains are not responsible for the UV

bump (e.g., Greenberg & Chlewicki 1983). The UV bump is sometimes attributed to small graphitic grains, having diameters
of D200 or less (e.g., Hecht 1986). One property of this model is that the bumpÏs width, c, can vary by a few tens of percent,A�
while its center, can vary by only a few percent ; this is what is observed (e.g., Fitzpatrick & Massa 1986). Another propertyx0,of this model is that and c are correlated, which is also observed (see Fig. 4, ° 4.2) ; however, this correlation appears toc3change with the type of interstellar environment (see ° 4.2).

FIG. 3.ÈCorrelation between the extinction curve parameters and The dotted lines mark approximate 1, 2, and 3 p conÐdence regions (see ° 4.2,R
V

c2.Fig. 2).
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Equations (57) and (58) show that the height, or strength, of the UV bump is proportional to Dense clouds and thec3/c2.di†use ISM tend to favor strong UV bumps ; however, star-forming regions, both young and old, tend to favor weak UV
bumps. In fact, in the SMC bar and starburst galaxies, no UV bump is typically observed. Young star-forming regions tend to
favor weak UV bumps probably because UV radiation destroys or alters the grains that are responsible for the UV bump
(Jenniskens & Greenberg 1993) ; old star-forming regions tend to favor weak UV bumps probably because UV radiation
and/or supernova shocks destroy or alter the grains that are responsible for the UV bump (Gordon et al. 1997). These e†ects
can be seen in Figure 5 (see ° 4.2 ; see also Clayton, Gordon, & Wol† 2000), where is an approximate measure of thec3strength of the UV bump.

Even less is known about the type of grain that is responsible for the FUV nonlinear component of the extinction curve.
According to the model of Hecht (1986), the small graphitic grains that produce the UV bump should have a second plasmon
resonance, resulting in a second and similar bump centered at a wavelength of j D 700È800 Indeed, the shape of the FUVA� .
nonlinear component resembles the red wing of a Drude proÐle (Fitzpatrick & Massa 1988). Furthermore, this model suggests
that the strengths of these two bumps might be correlated (e.g., Fitzpatrick & Massa 1988) ; however, hydrogenation of these
grains should largely decouple these resonances (e.g., Hecht 1986). Fitzpatrick & Massa (1988) and Jenniskens & Greenberg
(1993) have shown that and c are both weakly correlated with however, inclusion of the LMC and SMC lines of sightc3 c4 ;
suggests that these correlations also depend on the type of interstellar environment (see Fig. 6, ° 4.2). As in the case of the UV
bump parameters, does not correlate with or (Jenniskens & Greenberg 1993).c4 R

V
, c1, c2Like the IR and optical extinction curve model of Cardelli et al. (1989 ; eq. [54]), the UV extinction curve model of

Fitzpatrick & Massa (1988 ; eq. [57]) can be written as a function of given the following rearrangement of theAj/AV
,

deÐnition of (eq. [52]) :R
V

Aj
A

V
\ 1 ] 1

R
V

E(j [ V )
E(B[V )

. (60)

FIG. 4.ÈCorrelation between the extinction curve parameters and c as a function of the Orion Nebula region lines of sight have the Galacticc3 c2 : c2D 0,
lines of sight have the LMC and SMC wing lines of sight have and the SMC bar lines of sight have (see ° 4.2, Fig. 2).c2D 2/3, c2D 4/3, c2D 7/3

FIG. 5.ÈHow the strength of the UV bump, as measured by varies with environmental conditions, as measured by (see °° 3.2 and 4.2, Fig. 2)c3, c2
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To smoothly link these two models (see also Fitzpatrick 1999), we recommend the following weighted average of these models
between the V band (j \ 5500 and j \ 3000A� ) A� :

Aj \

4

5

6

0
0

Aj,CCM (x \ 1.82)

Aj,CCM ]
x [ 1.82

1.48
(Aj,FM [ Aj,CCM) (1.82\ x \ 3.3)

Aj,FM (x [ 3.3) .

(61)

To summarize, to the limit of current observations, the IR through FUV extinction curve appears to be most generally
modeled by eight parameters : c, and the UV bump is more naturally parameterized byA

V
, R

V
, c1, c2, c3/c2, c4, x0 ; c3/c2(bump height) and c (bump width) than by and c, since the former pair is orthogonal (Jenniskens & Greenberg 1993).c3In ° 3.3, we modify equation (61) to include the e†ect at FUV wavelengths of absorption by H I in galaxies ; this does not

change the number of parameters. In ° 4 we show that the volume of the solution space of this additional, but necessary,
eight-dimensional parameter space can be reduced signiÐcantly, a priori, with a prior ; without such a prior, equation (61) has
very little predictive power.

3.3. j \ 1000 A�
The column density of H I in a galaxy along a line of sight is given by

NH \ E(B[V )g (62)

\ 1.5] 1021 cm~2
A A

V
1 mag

BAR
V

3.1
B~1A g

gMW

B
, (63)

where g is the gas to dust ratio of the galaxy along the line of sight, and is the standard value of this ratio for the MilkygMWWay. The bound-free photoabsorption cross section of ground state hydrogen as a function of wavelength is given by

aj \
4
5
6

0
0
7.9] 10~18 cm2

A j
912 A�

B3
(j \ 912 A� )

0 cm2 (j [ 912 A� ) .
(64)

Total extinction occurs when i.e., whenajNH ? 1,

A
V

? 8.2] 10~5
AR

V
3.1
BA g

gMW

B~1A j
912 A�

B~3
mag (65)

and j \ 912 Since this condition is always satisÐed along lines of sight through galaxies, at least into the soft X rays, weA� .
replace equation (61) with

Aj \

4

5

6

0
0

Aj,CCM (x \ 1.82)

Aj,CCM ]
x [ 1.82

1.48
(Aj,FM [ Aj,CCM) (1.82\ x \ 3.3)

Aj,FM (3.3\ x \ 10.96)
O (x [ 10.96) .

(66)

Consequently, equation (66) describes how light is extinguished by dust and absorbed by H I along lines of sight through
galaxies, in the rest frame, into the soft X rays.

4. THE DUST EXTINCTION CURVE PRIOR

Using Ðtted extinction curves from Milky Way and Magellanic Cloud lines of sight, and the statistical methodology that we
presented in ° 2, we now construct a prior that weights the eight-dimensional parameter space of the extinction curve model
that we presented in ° 3 such that the volume of the solution space is reduced signiÐcantly, a priori. We describe the data set in
° 4.1. We model correlations between extinction curve parameters, and construct the prior, in ° 4.2.

4.1. T he Data Set
From the literature, we have collected the results of Ðts to 166 extinction curves : we know the values of the UV extinction

curve parameters c, and for all of these lines of sight from Ðts to IUE spectra ; we know the values of the IRc1, c2, c3, c4, x0and optical extinction curve parameter for 79 of these lines of sight from IR and optical photometry. These lines of sightR
Vsample a wide variety of interstellar environments in the Milky Way, the LMC, and the SMC. We describe the breakdown of

the data set in detail below; we summarize this information in Table 1.
Ideally, we would Ðt the models of correlations between extinction curve parameters that we present in ° 4.2 directly to the

IUE spectra and IR and optical photometry, instead of to the Ðtted values of the extinction curve parameters, which represent
a compression of the information contained in the actual data. However, to do so would not be practicable. Consequently, we
instead adopt the best-Ðt values of the extinction curve parameters, c, and and the Ðtted uncertainties inc1, c2, c3, c4, x0, R

V
,

these parameters, when available, as the data set, at the expense of a minor loss of information.
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TABLE 1

BREAKDOWN OF THE EXTINCTION CURVE DATA SET

Galaxy Extinction Curve Samplea Number of Extinction Curves Number of Values of R
V

R
V

Referencea

MW . . . . . . . . . . . . FM Cluster 35 0
FM Program 45 25 CCM

JG 115 49 Aea
Combinedb 143 66

LMC . . . . . . . . . . . MCG 19 10 MCG
SMC . . . . . . . . . . . GC 4 3 GC
Combined . . . . . . Combined 166 79

a FM: Fitzpatrick & Massa 1990 ; JG: Jenniskens & Greenberg 1993 ; MCG: Misselt et al. 1999 ; GC: Gordon & Clayton 1998 ;
CCM: Cardelli et al. 1989 ; Aea : Aiello et al. 1988.

b Overlap between the samples, and low quality data have been removed (see ° 4.1 for details).

We have drawn the results of Ðts to Galactic extinction curves from two sources : the cluster and program samples of
Fitzpatrick & Massa (1990) and the sample of Jenniskens & Greenberg (1993). The Fitzpatrick & Massa (FM) cluster sample
consists of 35 Ðtted extinction curves, the FM program sample consists of 45 Ðtted extinction curves, and the Jenniskens &
Greenberg (JG) sample consists of 115 Ðtted extinction curves. For information about how these samples were selected, and
about how the selected, IUE spectra were Ðtted, we refer the reader to these papers. There is some overlap between these
samples : three of the FM cluster sample extinction curves and 24 of the FM program sample extinction curves are also in the
JG sample. This lowers the number of Galactic extinction curves in our sample from 195 to 168. Of these extinction curves,
Jenniskens & Greenberg (1993) deemed 25 to be of low quality (see Jenniskens & Greenberg 1993 for details). This lowers the
number of Galactic extinction curves in our sample to 143.

Of the 39 FM program sample lines of sight with high-quality extinction curves, Cardelli et al. (1989) found values of forR
V25 of these lines of sight from BV RIJHKL photometry. Of the 90 JG sample lines of sight with high-quality extinction curves,

Aiello et al. (1988) found values of for 49 of these lines of sight from BV K photometry. Eight of these lines of sight are inR
Vcommon. This lowers the number of Galactic values of from 74 to 66.R

VFrom the Ðtted parameter values of the 21 high-quality extinction curves that the FM and JG samples have in common,
Jenniskens & Greenberg (1993) measured systematic and random errors between the two groupÏs Ðtted values for each
extinction curve parameter ; we list these errors in Table 2. Furthermore, these systematic and random errors are comparable
in size. In the interest of creating a uniform data set, primarily to facilitate identiÐcation and modeling of the correlations
between these parameters, we have shifted each groupÏs Ðtted parameter values by one-half of the systematic di†erence
between the two groupÏs results ; this brings both groupÏs results into general agreement. We reinject these systematic errors
into the analysis in ° 4.2.

Second, unlike the Ðtted parameter values of the LMC and SMC extinction curves, which we introduce below, uncertainties
were not determined for each, or any, of the Ðtted parameter values of the Galactic extinction curves. Consequently, we adopt
the above measured random errors as indicative of the uncertainties in the Ðtted parameter values of each of the Galactic
extinction curves in our sample. Technically, since both groups Ðtted to the same IUE spectra, these random errors are lower
limits. However, Massa & Fitzpatrick (1986) measured nearly identical upper limits from variations in the Ðtted parameter
values of extinction curves measured along di†erent lines of sight in the same OB associations ; we list these errors in Table 2
also. We adopt the lower limits because this forces us to conservatively overestimate the extrinsic scatters in the Ðts of ° 4.2.

To our Galactic sample, we have added the results of Ðts to 19 extinction curves, and 10 corresponding values of fromR
V
,

the LMC (Misselt et al. 1999), and the results of Ðts to four extinction curves, and three corresponding values of from theR
V
,

SMC (Gordon & Clayton 1998). This raises the number of extinction curves in our sample to 166 and the number of
corresponding values of to 79. Uncertainties have been determined for each of the Ðtted parameter values of the LMC andR

VSMC extinction curves.

TABLE 2

SYSTEMATIC AND RANDOM ERRORS BETWEEN THE FM AND JG SAMPLES

Parameter Systematic Errora,b Random Error Lower Limitb Random Error Upper Limitc

c1 . . . . . . . . . 0.304 0.259
c2 . . . . . . . . . [0.073 0.050 0.08
c3 . . . . . . . . . 0.316 0.252 0.27
c4 . . . . . . . . . 0.082 0.063 0.08
c . . . . . . . . . . 0.036 0.039 0.04
x0 . . . . . . . . . [0.013 0.010 0.01
R

V
. . . . . . . . [0.224 0.205

a JG[ FM.
b Based on the 20 nonÈOrion Nebula, high-quality extinction curves that the FM and JG samples have

in common (see ° 4.1 for details).
c Based on variations along di†erent lines of sight in the same OB associations (see ° 4.1 for details).

From Table 2 of Jenniskens & Greenberg 1993.
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4.2. Correlations between Dust Extinction Curve Parameters
We now model known correlations between the pairs of extinction curve parameters and and and We alsoc1 c2, R

V
c2.present possible correlations between the triplets of extinction curve parameters c, and and and c, andc3, c2 ; c4, c3, c2 ; c4, c2 ;

however, we consider these three-parameter correlations to be too speculative to incorporate into our extinction curve prior.
We also constrain the values of the extinction curve parameters c and which do not vary signiÐcantly across all 166 of thex0,lines of sight in our data set (° 4.1). Finally, we use this information to construct the extinction curve prior.

We begin with a discussion of the extinction curve parameter upon which all of the above correlations depend. In ° 3.2c2,we pointed out that di†erent values of are measured from di†erent interstellar environments : low values of are measuredc2 c2from young star-forming regions, low to moderate values of are measured from dense clouds, moderate values of arec2 c2measured from the di†use ISM, and moderate to high values of are measured from old star-forming regions. This is not toc2say that is a good measure of an interstellar environmentÏs type : e.g., 30 Doradus is roughly 10 times as active of ac2star-forming region as any region in the SMC (Caplan et al. 1996), yet signiÐcantly higher values of are measured from thec2SMC bar than from 30 Doradus ; this is probably due to the SMC having lower density clouds, which are less able to protect
the classical grains from UV radiation and supernovae shocks, than does the LMC (Misselt et al. 1999). However, might bec2a reasonable, approximate measure of the net ability of an interstellar environment to a†ect extinguishing grains. Hence, the
above correlations might be viewed as how the values of other extinction curve parameters, or the correlations between other
extinction curve parameters, vary as a function of a single-parameter measure of net environmental conditions.

To apply the statistical methodology that we presented in ° 2.2, (1) the models that we adopt to describe the above
correlations must be slowly varying, i.e., the curve from °° 2.2.2 and 2.2.3 must be varying from linearity only ony \ y

c
(x ; h

m
)

scales that are larger than the scales given by the scatter of the data that we presented in ° 4.1 about this curve ; and (2) the
density of these data along this curve also must be slowly varying ; i.e., the intrinsic density along this curve, g(x, and they

c
),

selection function, f (x, y), must be varying from constancy only on scales that are larger than the scales given by this scatter of
the data (° 2.2.2). As we adopt only constant, linear, and slowly varying quadratic models below, the Ðrst condition is met. As
for the second condition, the density of the data varies most obviously with the value of This is probably due to thec2.selection function ; e.g., di†use ISM lines of sight, and consequently, values of have been selected more often thanc2D 0.8,
lines of sight through any other type of interstellar environment, or value of These density variations, however, also occurc2.on scales that are larger than the scales given by the scatter of the data ; consequently, the second condition also appears to be
met. Hence, we appear to be within the realm of the formalism that we presented in ° 2.2, with but one caveat. The intrinsic
scatters of some of the extinction parameters, namely and are probably somewhat correlated (Fitzpatrick & Massac1 c2,1988). This causes us to somewhat underestimate the extrinsic scatters of these correlations below, but not signiÐcantly.

FIG. 6.ÈCorrelation between the extinction curve parameters and (top panel), and and c (bottom panel) as a function of (see ° 4.2, Figs. 2 and 4)c4 c3 c4 c2
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We begin with the two-parameter correlations : and (Fig. 2), and and (Fig. 3). In both cases, the parameters arec1 c2 R
V

c2well correlated ; however, both of these correlations are more mathematical than physical in nature. In the case of the former
correlation, the linear component of equation (57) is observed to pivot about a point at a wavelength of j B 3000 as theA�
slope, of this component changes from one line of sight to another. If were measured at this wavelength, instead of atc2, c1j \ O, this correlation would disappear ; consequently, this correlation is merely an artifact of the Ðtting procedure by which
the values of these parameters were determined (Carnochan 1986), and not due to any intrinsic physical property. However,
the small size of the extrinsic scatter that we measure below for this correlation testiÐes to the constancy of the extinction
curve at this pivot point. This is a physical property, since the wavelength of this pivot point di†ers from the V -band
wavelength, j B 5500 at which the extinction curve is normalized.A� ,

To the degree that the IR and optical extinction curve is really a one-parameter function of and to the degree that theR
V
,

linear component of the UV extinction curve is really a one-parameter function of (since and are strongly correlated),c2 c1 c2and must be correlated if the extinction curve is to be continuous and di†erentiable between optical and UVR
V

c2wavelengths ; consequently, this relation is also mathematical in nature. However, physical information can be gleamed from
the value of which by equation (53) is a measure of the relative numbers and/or absorptivities of grains extinguishing inR

V
,

the B band to grains extinguishing in the V band. How this value changes as the value of is changed provides physicalc2information, perhaps as a function of environmental conditions, as we have discussed above.
We now model these two correlations, and construct the prior, as described in °° 2.2.2 and 2.2.3. We do not include the

Orion Nebula lines of sight in either of these Ðts, because nebular background contamination artiÐcially lowers the measured
values of along these lines of sight (Panek 1983), and similarly may a†ect the measured values of (Fitzpatrick & Massac1 c21988) ; this e†ect has not been corrected for in these data (Fitzpatrick & Massa 1988).

Given how the values of and were determined, we model the Ðrst of these correlations with a function that is linear inc1 c2c2 :

c1(c2) \ b ] m(c2[ c6 2 ) , (67)

where is the sampleÏs median value of The 1 p uncertainty in as a function of is approximately given byc6 2 c2. c1 c2

p
c1

(c2)\
CA

p
b
Lc1
Lb
B2]

A
p
m

Lc1
Lm
B2] (p

c1
)2]

A
p
c2

Lc1
Lc2

B2D1@2
, (68)

where and are the Ðtted 1 p uncertainties in the parameters b and m, and and are the Ðtted 1 p extrinsic scatters inp
b

p
m

p
c1

p
c2the and dimensions (° 2.2.3). Assuming a Ñat prior, we Ðnd : b \ [0.064, m\ [3.275,c1 c2 c6 2 \ 0.711, p

b
\ 0.026, p

m
\

and Using equation (68) and these Ðtted values, we plot approximate 1, 2, and 3 p conÐdence0.083, p
c1

\ 0.088, p
c2

\ 0.008.
regions in Figure 2. Reinjection of the systematic errors between the FM and JG samples that we removed in ° 4.1 (Table 2)
increases to 0.176 and to 0.037.p

c1
p
c2The correlation clearly is nonlinear ; however, it is slowly varying, so we model it with a function that is quadratic inR

V
-c2c2 :

R
V
(c2)\ b ] m(c2[ c6 2) ] n(c2[ c6 2)2 . (69)

The 1 p uncertainty in as a function of is approximately given byR
V

c2

p
RV

(c2)\
CA

p
b
LR

V
Lb
B2 ]

A
p
m

LR
V

Lm
B2]

A
p
n
LR

V
Ln
B2] (p

RV
)2]

A
p
c2

LR
V

Lc2

B2D1@2
, (70)

where is the Ðtted 1 p uncertainty in the parameter n, and is the Ðtted 1 p extrinsic scatter in the dimension.p
n

p
RV

R
VAssuming a Ñat prior, we Ðnd : b \ 3.228, m\ [2.685, n \ 1.806,c6 2 \ 0.721, p

b
\ 0.053, p

m
\ 0.159, p

n
\ 0.129, p

RV
\ 0.000,

and Using equation (70) and these Ðtted values, we plot approximate 1, 2, and 3 p conÐdence regions in Figure 3.p
c2

\ 0.142.
Reinjection of the systematic errors between the FM and JG samples increases to 0.112 and to 0.147.p

RV
p
c2We now consider the three-parameter correlation c, and (Fig. 4). A strong correlation exists between and c forc3, c2 c3Galactic lines of sight (Fitzpatrick & Massa 1988 ; Jenniskens & Greenberg 1993) ; however, inclusion of the Orion(c2D 2/3)

NebulaÈlike lines of sight and the LMC and SMC wing lines of sight ruins this previously determined(c2D 0), (c2D 4/3)
correlation ; the SMC bar lines of sight are not constraining since c cannot be well determined when These(c2D 7/3) c3D 0.
lines of sight request a shallower relation. Physically, this probably corresponds to the destruction or alteration of the UV
bump grains by UV radiation and/or supernovae shocks (° 3.2, Fig. 5 ; see also Clayton et al. 2000).

Weak correlations exist between and and and c for Galactic lines of sight (Fitzpatrick & Massa 1988 ; Jenniskens &c4 c3, c4Greenberg 1993) ; indeed, weak positive correlations can be seen in Figure 6, if only the Galactic lines of sight are considered.
However, inclusion of the LMC and SMC lines of sight also ruins these previously determined correlations. The destruction
or alteration of UV bump grains by the environment probably accounts for the shift to lower values of in the top panel ofc3Figure 6. Hydrogenation might account for the greater scatter in the bottom panel of Figure 6 (° 3.2).

In any case, we do not attempt to model and constrain the possible correlations in Figures 4, 5, and 6. First of all, in distant
galaxies, these grain species might occur in di†erent relative abundances, perhaps due to di†erent relative metallicities.
Second, even if this is not the case, if the extinction is due primarily to dust that is local to the burst, the relative abundances of
these grain species may be altered by the burst itself, as well as by the afterglow. Consequently, no constraint can be placed
between the extinction curve parameters andc2, c3/c2, c4.The values of c and are approximately constant across all 166 lines of sight. We Ðnd their values to be c\ 0.958^ 0.088x0and Since the width of the UV bump is approximately equal to the widths of the photometric bandsx0\ 4.593^ 0.020.
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FIG. 7.ÈCorrelation between Lya forest Ñux deÐcit, and redshift, z. The dotted lines mark approximate 1, 2, an 3 p conÐdence regions (see ° 5). TheD
A
,

circles denote sample 2 of Zuo & Lu (1993), and the squares denote the high-redshift sample of Schneider et al. (1989a, 1989b, 1991).

(*l/lB 0.2), and since the uncertainty in the center of the UV bump is signiÐcantly smaller than the widths of the photometric
bands (*l/lB 0.004> 0.2), when Ðtting to afterglow photometry, precise values of these parameters cannot be extractable
from the data ; i.e., the Ðtted solutions should largely resemble the adopted prior, particularly in the case of the bump center
parameter, x0.We now construct from these results an extinction curve prior, in accordance with the examples of ° 2.2.1. For the
extinction curve parameters c, and we recommend that the following prior be used :R

V
, c1, c2, x0,

p(R
V
, c1, c2, c, x0 o I)\ G[R

V
, R

V
(c2), 3p

RV
(c2)]G[c1, c1(c2), 3p

c1
(c2)]G(c, 0.958, 0.264)G(x0, 4.593, 0.060) . (71)

Here we have conservatively tripled the 1 p uncertainties of the component priors, simply because these priors are determined
solely from information that is local to our galaxy. For the extinction curve parameters and we conservativelyA

V
, c3/c2, c4,recommend that a Ñat prior be used. Altogether, this prior weights the eight-dimensional parameter space of the extinction

curve model that we presented in ° 3 such that the volume of the solution space is reduced signiÐcantly, a priori.
Finally, we comment on the possibility of an evolving extinction curve. As mentioned above, if an afterglow is extinguished

by dust that is local to a burst, energetic photons, both from the burst and from the afterglow, may alter the extinction curve
with time. However, since all afterglows observed to date have faded more rapidly than at optical through X-rayFl D t~1
wavelengths, the majority of these energetic photons are probably emitted during the Ðrst few seconds or minutes of the
afterglow, if not during the burst itself. Hence, any dust destruction or alteration that may occur, should occur on such
timescales. By restricting oneself to photometry taken hours or longer after a burst, one should be able to safely ignore the
possibility of an evolving extinction curve.

5. THE Lya FOREST FLUX DEFICIT MODEL AND PRIOR

At redshifts of the Lya forest will absorb light at optical wavelengths, and consequently cannot be ignored (FruchterzZ 2,
1999 ; Lamb & Reichart 2000). We present a two-parameter model that describes the e†ects of the Lya forest on the spectral
Ñux distributions of afterglows (and on the spectral Ñux distributions of all extragalactic point sources for that matter). Using
Lya forest Ñux deÐcit measurements from quasar absorption line systems, we construct a prior that weights this two-
dimensional space such that the volume of the solution space is reduced signiÐcantly.

In the study of quasar absorption line systems, the quantity called Ñux deÐcit, denoted is deÐned byD
A
,

D
A

\
T

1 [ Fl(observed)
Fl(continuum)

U
, (72)

where this quantity is averaged over the wavelength range between the emission lines Lya and Lyb]O VI that is not a†ected
by emission line wings, and only if the continuum can be reliably extrapolated from the unabsorbed spectrum at longer
wavelengths (Oke & Korycansky 1982). Zuo & Phinney (1993), Zuo (1993), and Lu & Zuo (1994) model this quantity by

D
A
(z)B 1 [ exp

C
[a
A1 ] z
1 ] z6

BbD
, (73)

where a and b are parameters whose values are determined by Ðtting to Ñux deÐcit measurements, z is the redshift correspond-
ing to the central wavelength of the range over which the quantity is averaged, and is the median value of z for the sampleD

A
z6

to which one is Ðtting. The 1 p uncertainty in as a function of z is approximately given byD
A

p
DA

(z)\
CA

p
a
LD

A
La
B2]

A
p
b
LD

A
Lb
B2] (p

DA
)2]

A
p
z
LD

A
Lz
B2D1@2

, (74)

where and are the Ðtted 1 p uncertainties in the parameters a and b, and and are the Ðtted 1 p extrinsic scatters inp
a

p
b

p
DA

p
zthe and z dimensions (° 2.2.3).D

A
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FIG. 8.ÈExample extinguished and absorbed spectral Ñux distributions (see ° 6). The dotted curve in each panel corresponds to an unextinguished,
unabsorbed spectral Ñux distribution, given by The top solid curve in each of the Ðrst Ðve panels is given by TheFlP l~1. (A

V
, c2, c3/c2, c4, z)\ (1,0,0,0,1).

lower two solid curves in each of these Ðve panels is given by increasing, as marked, the value of a single of these Ðve parameters. In the Ðfth (redshift) panel,
we have Ðxed the spectral Ñux at long wavelengths. The solid curves in the sixth panel are typical of extinction by dust in (top to bottom) the Orion Nebula, the
di†use ISM of our galaxy, the LMC and the SMC wing, and the SMC bar, for a variety of redshifts.

Assuming a Ñat prior, and adopting sample 4 of Zuo & Lu (1993), which is a combination of sample 2 of Zuo & Lu (1993)
(see Zuo & Lu 1993 for details) and the high redshift (zD 4) sample of Schneider, Schmidt, & Gunn (1989a,1989b, 1991), we
Ðnd : a \ 0.306, b \ 4.854, and We plot sample 4 of Zuo & Luz6 \ 2.994, p

a
\ 0.010, p

b
\ 0.188, p

DA
\ 0.000, p

z
\ 0.165.

(1993) and, using equation (74) and these Ðtted values, approximate 1, 2, and 3 p conÐdence regions in Figure 7. The extent of
the scatter about the best Ðt in Figure 7 is largely a reÑection of the extent of the wavelength range over which these values of

were averaged. This wavelength range corresponds to *l/lB 0.2, which is typical of the photometric bands. In otherD
Awords, the scatter in Figure 7, very conveniently, is typical of what one would Ðnd if Lya forest Ñux deÐcits were measured
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from afterglows photometrically. Consequently, the Lya forest Ñux deÐcit prior for photometric, as opposed to spectroscopic,
data is given by (° 2.2.1)

p(D
A
, z o I) \ G[D

A
, D

A
(z), p

DA
(z)] . (75)

6. EXAMPLE EXTINGUISHED AND ABSORBED SPECTRAL FLUX DISTRIBUTIONS

We now demonstrate the breath of the models of °° 3 and 5. Using these models, we plot in Figure 8 example spectral Ñux
distributions that have been extinguished by dust in a host galaxy, absorbed by H I in the host galaxy, redshifted, and
absorbed by the Lya forest, for a wide variety of plausible extinction curves and redshifts. We have adopted an intrinsic
spectrum of and we allow the values of and z to vary over observed/reasonable ranges. The valuesFlP l~1, A

V
, c2, c3/c2, c4,of c, and we take from the best Ðts of ° 4.2 and ° 5. Finally, we convolve each extinguished, absorbed, andR

V
, c1, x0, D

A
,

redshifted spectrum with a logarithmically Ñat smearing function of width *l\ 0.2l, converting each spectrum to a spectral
Ñux distribution ; i.e., we model how these spectra would be sampled photometrically, as opposed to spectroscopically (° 5).
Clearly, a single intrinsic spectrum can manifest itself in a multitude of ways, and exhibit a variety of broad spectral features,
including a shoulder in the infrared, the UV bump, the Lya forest, and the Lyman limit.

7. CONCLUSIONS

In this paper, we have presented a very general, Bayesian inference formalism with which afterglow models can be tested,
and with which the parameter values of acceptable models can be constrained. Furthermore, we have developed and
presented a formalism for the construction of Bayesian prior probability distributions from multidimensional data sets, which
we have drawn on extensively. We have presented models that describe how extinction by dust, both in host galaxies and in
our galaxy, and absorption by the Lya forest and by H I in host galaxies, change the intrinsic spectra of afterglows. Then,
applying the above formalism, we constructed a prior that weights the additional, but necessary, parameter space of these
models such that the volume of the solution space is reduced signiÐcantly, a priori. These models and priors will lead to the
more realistic modeling of afterglows, particularly at IR through UV wavelengths, in future papers.

Finally, we emphasize that the phenomena for which we have presented models and priors in this paperÈextinction by
dust and absorption by the Lya forestÈa†ect identically the light from all other extragalactic point sources.5 Consequently,
the work presented in this paper is as applicable to high-redshift Type Ia supernovae and quasars, for example, as it is to the
afterglows of bursts. Since the e†ects of extinction and absorption are most dramatic at UV wavelengths in the source frame,
these models and priors will be particularly useful for the modeling of optical photometry of high-redshift point sources.
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the modeling of the Lya forest Ñux deÐcit measurements, and to A. N. Witt for discussions that we had concerning the
physical nature of the grain species.

5 By point source, we mean either that the host galaxy contributes a negligible fraction of the total light within the point spread function of the point
source, or that this contribution of the host galaxy to the total light can be measured directlyÈwhich can be done in the case of a fading point source after it
fades awayÈand consequently separated from that of the point source. Otherwise, one must model not a single point source in a distribution of dust, but
instead a distribution of point sources in a distribution of dust, which is a signiÐcantly more challenging endeavor, but certainly not impossible (e.g., Witt,
Thronson, & Capuano 1992 ; Gordon et al. 1997). Similarly, light from a point source that is either scattered or absorbed and thermally reemitted into the line
of sight can contribute nonnegligibly to, and even dominate, the direct light of a fading point source at late times, due to the time delay with which the indirect
light is received (e.g., Reichart 2001). Again, one must either use data from early times, when the contribution of the ““ dust echo ÏÏ is negligible, or measure the
contribution of the dust echo at late times, when the contribution of the fading point source is negligible, and use this information to properly interpret the
data at intermediate times, when neither component can be ignored.
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