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ABSTRACT
We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary

evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass
mass ratio and period designed to sample the phase-space of Case A binaries in the rangeM10, q0, P0,Each binary is evolved using a standard code with the assumption that both[0.10¹ log M10 ¹ 1.7.

total mass and orbital angular momentum are conserved. This code follows the evolution of both stars
to the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich
variety of behavior that we sort into several subclasses of case A and case B. We present the results of
this classiÐcation, the Ðnal mass ratio, and the fraction of time spent in Roche Lobe overÑow for each
binary system. The conservative assumption under which we created this library is expected to hold for a
broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity
classes III to V. We gather a list of relatively well-determined, observed hot Algol-type binaries meeting
this criterion, as well as a list of cooler Algol-type binaries, for which we expect signiÐcant dynamo-
driven mass loss and angular momentum loss. We Ðt each observed binary to our library of tracks using
a s2-minimizing procedure. We Ðnd that the hot Algols display overall acceptable s2, conÐrming the
conservative assumption, while the cool Algols show much less acceptable s2, suggesting the need for
more free parameters, such as mass and angular momentum loss.
Subject headings : binaries : close È stars : evolution

1. INTRODUCTION

Many binary stars are observed to be undergoing Roche
lobe overÑow (RLOF), which is recognized as being a
natural response to the fact that, for a binary of given
separation, there is a critical maximum radius, the Roche
lobe radius, that a star cannot exceed without losing mass
to its companion. There are many subtypes of stars under-
going RLOF, but we concentrate here on those which, like
the prototype Algol, consist of (1) a lobe-Ðlling, mass-losing
star that is substantially above the main sequence and (2) a
component which underÐlls its Roche lobe and is usually
nearer to, though still larger than, the main sequence. We
concentrate on those (case A) with short initial periods, the
lower and upper period depending on the primary mass.

It is not difficult to evolve theoretically pairs of stars with
a given initial primary mass initial mass ratio andM10, q0,initial orbital period and follow them into, and beyond,P0the stage of RLOF. However, such evolution is certainly
a†ected by assumptions regarding both mass loss and
angular momentum loss from the system as a whole. As a
zero-order model, it is commonly supposed that both total
mass and orbital angular momentum are conserved, and we
have computed conservative evolution for a large number
of binary initial parameters : 37 ] 10 ] 15 models with
various and Most of the periods considered areM10, q0, P0.appropriate to case A, but some correspond to case B.

There is plenty of evidence, both direct and indirect, that
mass loss and/or angular momentum loss takes place in at
least some systems. If mass escapes from the system as
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stellar wind, then it will also carry angular momentum
away. Mass loss is observed fairly directly both in cool
stars, where it appears to be driven by dynamo activity in
their convective envelopes, and in hot stars, where radiation
pressure in spectral lines may be the main driving force.
Mass loss is also clearly evident in many stars of supergiant
luminosity, across the whole range of spectral types, but we
do not consider supergiants here. There is, however, a broad
range of spectra, from about G0 to perhaps B1 and lumi-
nosity classes III to V, in which there is rather little evidence
of signiÐcant mass loss and for which the conservative
assumption may therefore be reasonable. We test this by
comparing a selection of observed ““ hot Algols ÏÏ (having
both spectra in this range) with theoretical conservative
models, using a s2 test. We Ðnd a reasonable agreement,
especially if we exclude one system that is near the extreme
of this temperature range. Comparing the same conserva-
tive models against some observed ““ cool Algols ÏÏ we Ðnd,
as we expect, that the agreement is much poorer.

We have used a massively parallel array, the Compaq
Teracluster 2000 at Lawrence Livermore National Labor-
atory, to evolve our data cube of models. This data cube
covers the following ranges of initial primary mass (inM10solar units), initial mass ratio, deÐned by

q04
M10
M20

[ 1 , (1)

and initial period P0 :

log M10\ [0.10, [ 0.05, . . . , 1.7 , (2a)

log q0\ 0.05, 0.10, . . . , 0.5 , (2b)

log (P0/PZAMS) \ 0.05, 0.1, . . . , 0.75 . (2c)

Here a function of is the period at which thePZAMS, M10,
initially more massive component would just Ðll its Roche

664



CASE A BINARIES 665

lobe on the zero-age main sequence. We used the approx-
imation

PZAMSB
0.19M10 ] 0.47M102.33

1 ] 1.18M102
. (3)

These initial periods cover case A and a small part of case
B. We constructed such a ““ data cube ÏÏ with each of six
metallicities (Z\ 0.03, 0.02, 0.01, 0.004, 0.001, .0003), and
also, for Z\ 0.02 only, with three di†erent assumptions
about mass loss/angular momentum loss (in addition to the
conservative assumption). We present here only the conser-
vative, Z\ 0.02, data cube.

In ° 2, we discuss the numerical modeling and the physi-
cal assumptions that go into our data cube, and in ° 3 we
discuss the results. We attempt to classify the results into a
small number of subcategories of case A (and some ana-
logues in case B), depending for instance on whether the two
components come into contact rapidly, slowly, or not at all
after the start of RLOF, and (in the last case) on whether or
not primary reaches a supernova before the secondary
swells up enough to reach reverse RLOF. In ° 4, we discuss
our attempts to Ðt several observed semidetached systems
(Algols) with the theoretical models. We give our conclu-
sions in ° 5.

We emphasize here that even if a particular Algol can be
reasonably Ðtted by a conservative model, this does not
prove that the evolution was conservative. Some models of
nonconservation might lead to the same current param-
eters, starting from di†erent initial conditions. Even if we
had a mass loss/angular momentum loss model with no free
parameters in it, we might still have ambiguity, partly
because there are only six independent observational pa-
rameters (current P, to be Ðtted by fourM1, M2, R2, T1, T2)theoretical parameters (age, and and partlyP0, M10, q0),because our data cube is still quite coarse even with 5550
models in it.

We also emphasize that throughout this paper we use
suffixes 1 and 2 consistently to refer to the components with
the greater and smaller initial mass, respectively. This may
seem unfortunate since observers normally call the cur-
rently hotter (and normally more massive) component the
““ primary,ÏÏ at least in Algol systems. This component is the
descendant of the originally less massive star. We do not
think it would be helpful to interchange the suffices at the
points in evolution where the ordering of the temperatures
changes. However to avoid the most obvious possibility of
confusion, we do not use the terms ““ primary ÏÏ and
““ secondary ÏÏ : Instead we refer to the components as *1
(pronounced ““ star one ÏÏ) and *2 and keep these designa-
tions throughout their entire evolution. The mass ratio q as
deÐned in equation (1) always starts o† with Afterq0[ 1.
some RLOF, it is commonly less than 1.

2. THE THEORETICAL DATA CUBE

We used the stellar evolution code most recently
described by Pols, Eggleton, & Han (1995), based on the
code of Eggleton (1971, 1972) and Eggleton, Faulkner, &
Flannery (1973). This code is fully implicit in the composi-
tion equations as well as in the structure and the mesh-
spacing equations. The implicit adaptive mesh is
particularly useful for mass-transfer situations. In fact, it
means that in a Ðrst approximation we do not have to do
anything to the code to account for mass transfer, except
replace a boundary condition, M(t)\ constant, by a condi-

tion that gives the mass-loss rate as a function of stellarM0
radius R and Roche lobe radius (Tout & Eggleton 1988).R

LWe will not repeat here a description of the physical input
(Pols et al. 1995). We have included, however, a simplistic
model of convective overshooting Pols, & Egg-(Schro� der,
leton 1997 ; Pols et al. 1997) based on a comparison of
theoretical and observed noninteracting binaries. Other
assumptions in the code are standard and include the fol-
lowing : (1) the convective mixing of composition is treated
as a di†usion equation, with di†usion coefficient a function
of (Eggleton 1972), and (2) because the mesh is fully+

r
[ +

aadaptive, i.e., non-Lagrangian, an upstream advection term
is needed in all time derivatives (Eggleton 1971). The former
ensures that any convection zones satisfy the K. Schwarzs-
child convection criterion and simultaneously(+

r
B +

a
)

that any semiconvection zones that may arise satisfy the M.
Schwarzschild condition (Schwarzschild & 1958) andHa� rm
are dealt with automatically, without extra code ; the latter
ensures that any evolutionary stage involving thin burning
shells is computed very efficiently.

Regarding situations speciÐc to binaries, we make the
following assumptions :

1. The star is still treated as spherically symmetric, the
radial coordinate r being the volume-radius of an equipo-
tential surface. The gravity at e†ective radius r is reduced by
a factor dependent on angular velocity

g \ Gm
r2
A
1 [ 2)2r3

3Gm
B

, (4)

where m is the mass within an equipotential of volume-
radius r, and ) is the angular velocity of the star, assumed
to be corotating with the binary.

2. Mass transfer from a star that overÐlls its Roche lobe
is treated as spherically symmetric, and governed by the
boundary condition

M0 \ [CMlog (R/R
L
)3N, R[ R

L
,

\ 0, R\ R
L

,
(5)

where C\ 500 yr~1. Thus a transfer rate of 5 ] 10~7M
_yr~1 corresponds to an overÐll of 0.1%. We only doM

_this for *1. There inevitably comes a point in evolution
when *2 Ðlls its own Roche lobe, but this is usually either (1)
while *1 already Ðlls its own lobe, so that the binary comes
into contactÈfor the present, we stop evolution at this
point ; or (2) when *1 has evolved to a late and relatively
compact state of low mass, and *2 has grown to a very large
radius. In the latter case, the mass ratio is very small (q [

Therefore the mass transfer can be expected to be rapid0.2).
and unstable on a short (hydrodynamical) timescale. We
expect common-envelope evolution beyond this point

1976), so we stop evolution at this point also.(Paczyn� ski
3. It is assumed that the matter which leaves *1 is acc-

reted in a spherically symmetric manner at the surface of *2,
with entropy and temperature equal to the surface values of
*2. Thus no model is incorporated for the temperature/
entropy budget of the material during transfer. This may
seem potentially serious, but when most of the mass is
transferred on a nuclear timescale, it should not be impor-
tant.

4. The composition of accreting material on *2 is
assumed to be the same as that of material already just
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below the surface of *2 rather than (as it should be) of the
material leaving *1. This is done simply for convenience and
is only signiÐcantly in error at a fairly late stage in mass
transfer. The observed Algols that we make comparisons
with are probably not at such late stages.

5. On a somewhat technical level, the implementation of
equations (4) and (5) numerically within the framework of a
fully implicit and adaptive code means that it is desirable,
though possibly not essential, to introduce an extra equa-
tion into the usual set of di†erence equationsÈfor the struc-
ture, composition, and mesh-distribution variablesÈthat
are solved for by Newton-Raphson iteration. This is
because equation (4), while depending primarily on the local
variables r and m(r), also depends on the surface mass M(t)
through )(t). ) depends not only on the orbital angular
momentum (which, being assumed constant in a conserva-
tive model, is no problem) but also on the masses of the two
components via Newtonian gravitation. Because of equa-
tion (5), M(t) is not known a priori, but only after the iter-
ation is Ðnished. We found it convenient to add M@(t, r) as a
new but somewhat artiÐcial variable satisfying the trivial
equation

LM@
Lr

\ 0 , (6)

with the equally trivial boundary condition that, at the
surface,

M@(t, r)\ M(t) . (7)

Although this modiÐcation is barely necessary for the con-
servative models, it is rather more important for noncon-
servative models, where equation (5) may have an extra
term, attributable to stellar wind, and where the angular
momentum is no longer constant.

With the above assumptions and modiÐcations, the code
works reasonably satisfactorily in an automatic way. We set
up a grid of starting models with and givenM10, log q0, P0by equations (2a)È(2c). For most masses in the range 1.5

we found that we obtained case A evol-M
_

¹ M ¹ 16 M
_

,
ution with and case B for but the1 \ P0/PZAMS [ 4, Z4,
critical value for case B decreased rapidly below D1.5 M

_and increased slowly above D16 M
_

.
Given and we started by evolving *1 untilM10, q0, P0,one or other of the following conditions occurred :

1. 2000 time steps were taken ;
2. Carbon-burning luminosity exceeded 1 indicatingL

_
,

that a supernova explosion was imminent ;
3. The age exceeded 20 Gyr ;
4. The code failed to converge ; or
5. The stellar radius exceeded the Roche lobe radius by

more than 10%.

For *1, condition 5 indicated that hydrodynamically
unstable RLOF was taking place, usually caused by a large
initial mass ratio or to a deep convective envelope(q0Z 3)
on the loser.

We then ran *2, giving it a rate of mass gain that was the
negative of the stored mass loss rate of *1. This run was also
terminated at the Ðrst point when one of the Ðrst four condi-
tions above occurred, but it could also terminate itself if

6. The age of *2 went beyond the age at which *1 termin-
ated ; or

7. The radius of *2 reached its Roche lobe radius.

The latter normally meant either that the system had
evolved into contact, *2 Ðlling its lobe while *1 still was, or
else that it had evolved into a reverse RLOF situation, with
q \ 0.2, that would presumably lead to mass transfer on a
hydrodynamic timescale, probably implying common-
envelope evolution. In either case, the implicit assumption
that *1Ïs evolution is independent of whatever happens to
*2 breaks down, so we consider here only the evolution that
takes place prior to the point where *2 Ðlled its Roche lobe.

Convergence failureÈcondition 4 aboveÈwas not very
common, though more common than we would have
wished. For *1, it was usually because either (1) equation (3)
apparently gives slightly too small a value, for some ranges
of so that at the lowest value of for those masses *1M10, P0already Ðlled its Roche lobe while still making a rapid
adjustment from the approximate ZAMS from which it
started ; or (2) for the most massive stars, a break-Z25 M

_
,

down often occurred when *1 approached a sloping line
across the Hertzsprung-Russell diagram (HRD), starting
just before the terminal main sequence at D50 (ourM

_highest initial value) and reaching to the red supergiant
region at D25 It may not be just coincidence that thisM

_
.

is also approximately the observational ““ Humphreys-
Davidson Limit,ÏÏ which appears to be an upper limit for
stars in the HRD. Stars close to this limit are typically P
Cyg stars, Hubble-Sandage variables, or luminous blue
variables (LBVs). Such stars have internal luminosities that
are close to or even above the Eddington limit in zones
where the opacity has a local maximum. Thus it may be
that the numerical convergence difficulties have their origin
in the physical difficulty of maintaining hydrostatic equi-
librium in such stars.

For *2 convergence failure occurs because

1. In binaries with extreme initial mass ratios *2q0Z 4,
often fails to converge while gaining mass at the thermal
timescale of *1. This may occur because the large mass ratio
means that the thermal timescale of *1 is closer to the
dynamic timescale of *2.

2. In our lowest mass binaries, the massM20 [ 0.80 M
_

,
gaining star (*2) ““ ignores ÏÏ the fact that *1 is losing mass for
a handful of time steps and maintains a constant mass.
Then *2 attempts to gain all the mass that *1 has lost in of
order 10 time steps in a single time step and fails to con-
verge.

3. The mass gaining star has a mass D1.5 TheseM
_

.
stars are in the transition region between lower MS stars
with convective envelopes and upper MS stars with convec-
tive cores, and they possess very shallow surface convection
zones which may only be a few mesh points wide. We
suspect that this barely resolved surface convection zone
contributes to their numerical instability.

4. Or, Ðnally, we also see a theoretical Humphreys-
Davidson limit in *2 at high mass.

3. CLASSIFICATION OF TYPES OF EVOLUTION

We deÐne here the six major subtypes of case A evolution
identiÐed by Eggleton (2000), cases AD, AR, AS, AE, AL,
AN. In addition, we deÐne two rather more rare cases, AG
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and AB. Three of these subtypes (AD, AR, AS) lead to
contact while both components are on the main sequence
(MS). Two cases (AE, AG) reach contact with one or both
components evolved past the terminal MS. After the initial
episode of mass transfer from *1 to *2, the remaining three
cases experience a period of separation followed either by
reverse mass transfer at very small q (AB, AL) or the super-
nova of *1 (AN). SpeciÐcally, the six cases, are :

ADÈdynamic RL OF. This occurs in binaries with large q0and in binaries where the star losing mass (*1) has a deep
convective envelope. Once RLOF begins, mass transfer
quickly accelerates to the dynamic timescale of *1, tdyn,which we assume to be less than one-tenth of the thermal
timescale, The thermal (or Kelvin-Helmholtz) timescaletKH.
is determined in the code as the integrated total energy,
thermal plus gravitational, divided by the total luminosity
at the surface. Thus the mass transfer is determined to be
dynamic when

M0 [ 10.0]
M
tKH

. (8)

The calculation is terminated by condition 5 above but
seems likely to lead either to contact or to a common-
envelope situation and probably then to a complete merger
of the two components. We illustrate the behavior in the
HRD and the mass-transfer rate of case AD in Figure 1.

ARÈrapid evolution to contact. This occurs in binaries with
moderate to large In these cases, *2 expands so rapidlyq0.in response to the onset of *1Ïs thermal-timescale RLOF

FIG. 1.ÈCase ADÈdynamic contact. In the top panel of this Ðgure,
and in Figs. 2È8, we show the evolution of both stars in an HR diagram.
The track for *1 is always the initially more luminous, *2 the initially less
luminous. Solid lines indicate periods where the binary is separated ;
dashed lines indicate periods where *1 is transferring mass to *2. We mark
any transitions to the Hertzsprung gap as H, and transitions to the giant
branch as G. The bottom panel shows the mass transfer rate in logarithmic
units of for the period in time during which mass transfer occurs.M0 yr~1
The initial parameters of this binary are andlog M10\ 0.15, q0\ 0.50,

The mass transfer rises rapidly to the dynamic time-log P0/PZAMS \ 0.15.
scale and the two stars come into contact.

that it Ðlls its own Roche lobe before much mass is trans-
ferred. We deÐne the mass transfer rate to be thermal when
the magnitude of the thermal luminosity, reachesÂ L therm Â ,
2% of the nuclear burning luminosity, This probablyL nuc.leads to a contact binary of the W UMa type, although it
can happen as easily for massive stars (provided is suit-q0ably large) as for the lower masses of typical W UMa
systems. Case AR behavior is illustrated in Figure 2.

In some binary runs, these two cases are difficult to dis-
tinguish. While evolution of *1 will proceed through several
time steps of dynamic timescale mass transfer before being
terminated by condition 5, the calculation of *2 is often
unable to converge while gaining mass at this rate. The
calculations of case AR and AD binaries at very large q0,therefore, often terminate before contact is reached and we
must guess the maximum rate of mass transfer achieved
before contact occurs.

To do so, we extrapolate the function to thelog (R2/RL 2)time at which the radius of *2 has expanded to Ðll itstcontactRL and We then examine the mass-losslog (R2/RL 2) \ 0.
history of *1 (the calculation of which has proceeded further
in time than that of *2) and determine whether the mass-
transfer rate reaches the thermal or dynamic timescale at

Unfortunately, the function can bet ¹ tcontact. log (R2/RL 2)both nonlinear and slightly noisy, so along with thetcontact,maximum mass-transfer rate, can depend rather sensitively
on the exact point in time at which *2 fails.

ASÈslow evolution to contact. This occurs in binaries with
small and small These binaries experience a shortq0 P0.burst of thermal timescale mass transfer, followed by a long
phase of nuclear timescale mass transfer, during which
much mass is exchanged. The two stars come into contact
slowly but reach contact before either star has left the MS.
The large amount of mass transfer leads to a Ðnal mass

FIG. 2.ÈCase ARÈrapid contact. Initial parameters of this binary are
and The mass transferlog M10 \ 0.45, q0\ 0.15, log P0/PZAMS \ 0.10.

rate rises rapidly to the thermal timescale, and the two stars come into
contact with a Ðnal mass ratio log q \ 0.11, still well above unity.
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ratio substantially below unity (typically q D 0.4È0.6) and
with both stars substantially larger than their ZAMS radii.
Case AS behavior is illustrated in Figure 3. We note that
while *2 always remains near the main-sequence band, *1
evolves to substantially cooler temperatures. This is a
common conÐguration in observed Algol systems.

AEÈearly overtaking. This occurs in binaries with small q0and moderate It occurs only in binaries with initialP0.masses 2 The mass transfer in thisM
_

[ M1[ 10 M
_

.
case is very similar to case AS. In case AE, however, *2
gains so much mass that its evolution is accelerated to the
extent that *2 reaches the Hertzsprung gap, HG, while *1 is
still on the MS; the evolution of the initially less massive
star, *2, has overtaken that of *1. We deÐne the overtaking
as early because it occurs with *1 still on the MS. Most case
AE binaries reach contact shortly thereafter. However, in a
few cases, *1 shrinks very slightly inside its Roche lobe at
the end of the calculation and the run ends with the RLOF
of *2. In these cases, *1 has very nearly exhausted hydrogen
and it is likely that it will soon swell once again to Ðll its
Roche lobe and contact will again occur. Case AE behavior
is illustrated in Figure 4.

In most cases where contact is avoided while *1 is on the
MS, *1 loses so much mass that it eventually shrinks inside
its Roche lobe, leaving only a compact core. A period of
separation ensues, which may then be followed by further
RLOF of *1 or *2. These are the cases AL, AB, and AN,
described in more detail below. However, in our lower mass
binaries we see a few cases where contact(M10 ¹ 1.6 M

_
),

is avoided while *1 is on the MS but reached later on.

AGÈcontact on giant branch. This occurs for M10 [ 1.6
and larger then those of AS/AE but smaller thenM

_
P0AL/AN. Contact is avoided while *1 is on the MS, but

FIG. 3.ÈCase ASÈslow contact. Initial parameters of this binary are
and Contact islog M10 \ 0.45, log q0\ 0.05, log P0/PZAMS \ 0.20.

avoided during the period of thermal scale mass transfer, and a long period
of nuclear timescale mass transfer follows. The run ends in contact with a
Ðnal mass ratio, log q \ [0.27.

FIG. 4.ÈCase AEÈearly overtaking. Initial parameters of this binary
are and *2 gains solog M10\ 0.45, log q0\ 0.05, log P0/PZAMS \ 0.45.
much mass that its evolution overtakes that of *1 and *2 reaches the HG
Ðrst. The run ends in contact with a Ðnal mass ratio of log q \ [0.23.

occurs when *1 reaches the giant branch, GB. At time of
contact, *2 is in the HG or on the GB as well. A typical
example of case AG is shown in Figure 5.

Cases AL and AN are distinguished by whether or not *1
supernovas before *2 reaches RLOF. In practice, we assume

FIG. 5.ÈCase AGÈcontact on giant branch. Initial parameters are
and The stars comelog M10 \ 0.50, log q0\ 0.10, log P0/PZAMS \ 0.55.

into contact at a mass ratio of log q \ [0.83. There is a brief period of
separation at t D 384 Myr with *1 in the HG.
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a supernova explosion to be imminent when *1 begins
burning carbon.

AL Èlate overtaking. This occurs in binaries with M10 [ 13
and moderate to large In these binaries, *2 reachesM

_
P0.RLOF before *1 begins burning carbon. In many of the

lower mass AL cases, *1 has become a low-mass remnant
(white dwarf or neutron star) that will never supernovae
unless the (uncomputed) reverse mass transfer results in sig-
niÐcant mass gain for *1. The evolution of *2 has overtaken
the evolution of *1 in the sense that the initially more
massive star is now shrunk inside its Roche lobe while the
initially less massive star is undergoing RLOF. The over-
taking is late because it occurs with *1 past the MS. Case
AL behavior is illustrated in Figure 6 ; case AB, a subtype of
AL (discussed below), is illustrated in Figure 7.

ANÈno overtaking. This occurs in higher mass binaries
with moderate to large In these binaries, *1 reachesP0.carbon burning, indicating an imminent supernova, before
*2 has reached RLOF. Case AN behavior is illustrated in
Figure 8.

As discussed in ° 2, the evolution of our most massive
stars, often breaks down. This leads us againM10 Z 25 M

_to the situation where we must make a best guess as to what
happens after the run stops. To distinguish case AL from
AN we must determine whether *2 reaches RLOF before *1

FIG. 6.ÈCase ALÈlate overtaking. Initial parameters of this binary
are and In this run *1log M10 \ 0.75, log q0\ 0.05, log P0/PZAMS\ 0.60.
loses so much mass in two periods of mass transfer that it eventually
shrinks inside its Roche lobe and becomes a low-mass helium burning core,

The run ends as *2 crosses the HG and Ðlls its Rochelog M1\[0.07.
lobe at a very low mass ratio, log q \ [1.07. The brief period of separa-
tion between the two bursts of mass transfer is a feature common to all of
our higher mass case AL/AN binaries. This feature occurs as *1 exhausts
hydrogen in the core, convection in the core shuts o† and *1 shrinks
slightly inside its RL. At this point *1 behaves as a ““ normal ÏÏ massive
terminal MS star, executing the classic hook at the end of the MS. When
hydrogen is completely exhausted in the core and hydrogen shell burning
begins, *1 starts to cross the HG. During this rapid phase of envelope
expansion, *1 quickly Ðlls its Roche lobe again and mass transfer begins
again.

FIG. 7.ÈCase ABÈ(subtype of AL). Initial parameters are log M10 \
0.90, and After igniting helium towardlog q0\ 0.10, log P0/PZAMS \ 0.65.
the end of the second burst of mass transfer, *1 shrinks inside its Roche
lobe for awhile but eventually reexpands and undergoes a third period of
mass transfer.

ignites carbon. This procedure is somewhat uncertain and
leads to the great majority of our unclassiÐed runs at very
high mass. We also suspect that several of the highest mass
runs, which were classiÐed as AL are uncer-M10Z 40 M

_
,

tain, and may more probably be case AN (see Fig. 8).
We note that the deÐnitions of case AL and AN given

here do not correspond exactly to those of Eggleton (2000).
In this previous work, case AN also included those binaries
where *1 had become a white dwarf or neutron star before
*2 Ðlled its Roche lobe. In this work, those binaries are
included in case AL.

Pols (1994) noted that, occasionally, in what we call case
AL here, *2 could get to carbon ignition before *1 and thus
be the Ðrst component to explode as a supernova. Pols
(1994) modeled, in a simple way, the e†ect of the presumed
common-envelope phase in ejecting *2Ïs envelope, and then
continued the evolution of the core. Although it would
always have started He burning later than *1, it might be
sufficiently more massive to overtake and ignite carbon
Ðrst. However, in our work we did not attempt to model the
common-envelope phase at all, so we cannot be deÐnitive
about this possibility.

In addition, we include one more class : the classic case
AB. In our context, this is a subclass of case AL, where *1,
after becoming a compact helium core with a mass of D1È2

expands again and experiences a further period ofM
_

,
RLOF.

ABÈsubclass of AL . This occurs in binaries with 6 M
_

[
at small mass ratios and in a narrow rangeM10[ 11 M

_
,

of periods between cases AL and AN. During the second
burst of mass transfer, *1 ignites helium. It shrinks inside its
Roche lobe for awhile, becoming a compact helium star. It
then expands again and experiences a third period of mass
transfer. Although these binaries often fail to converge at
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FIG. 8.ÈCase ANÈno overtaking. Initial parameters of this binary are
and After two periodslog M10 \ 1.15, log q0\ 0.05, log P0/PZAMS \ 0.45.

of mass transfer, *1 becomes a helium star of mass As *2log M1\ 0.48.
evolves toward the terminal MS, *1 ignites carbon in the core. Ignition of
carbon suggests an imminent supernovae explosion, and we conclude that
*1 will supernovae before *2 Ðlls its Roche lobe.

some point during this third period of mass transfer, we
suspect that it is followed by a period of separation and
then reverse mass transfer, making this a subclass of AL
rather then AN. An example of case AB evolution is shown
in Figure 7.

In Table 1 we summarize the seven major subcases
(excluding case AB), providing the deÐning equations as
well the evolutionary state and geometrical conÐguration of
the binary components at the end of the calculation. In this
table, we denote the main sequence as M, the Hertzsprung
gap as H, the giant branch as G, and low- and high-mass
remnants as R and C, respectively. In addition, we deÐne
the time of Ðrst RLOF, the approximate MS lifetimetRLOF,
of a single star, the time at which the star enters thetMS,Hertzprung gap, and the time at which carbon is ignitedtH,

We emphasize that we execute the classiÐcation oftCburn.each binary in our library automatically, and while the
various clauses we deÐne work for the great majority of
systems, we inevitably make a few misclassiÐcations.

As mentioned above, Figures 1È8 illustrate the behavior
in the HRD of the subtypes of case A. We also show the
mass-transfer rate for times when Figure 9 showsM0 [ 0.
which elements of our data cube reached which outcome.
Some of the systems of longer are case B rather than caseP0A. These are usually analogous to either AD, AR, AL, or
AN. Case BD is e†ectively the classical late case B, where *1
reaches the giant branch and acquires a deep convective
envelope before RLOF begins ; however, it can also be an
extreme initial mass ratio rather than a convective envelope
that triggers dynamic mass transfer. Case B systems, or at
least those we have computed here, normally have fewer
options than case A because it is difficult for *2 to catch up
with *1 when *1 has already reached the terminal main
sequence before RLOF. However, as emphasized by De
Greve & Packet (1990), it is possible for early case B systems
to show what we call here case BL for late overtaking, with
*2 evolving to Ðll its own Roche lobe while *1 has shrunk
inside its own. This kind of behavior is particularly preva-
lent in the mass range M10[ 8 M

_
.

In Figures 10 and 11, we show, also in color-coded form,
the following two properties of systems in our data cube : (1)
the Ðnal mass ratio of each system and (2) the fraction of
time spent as a semidetached system. We deÐne the state of
the binary to be Ðnal when (a) contact is reached, (b) reverse
mass transfer begins, (c) *1 has ignited carbon, or (d) the
binary is detached and we believe reverse mass transfer to
be imminent [i.e., the function will soon reachlog (R2/RL 2)zero]. The time spent as a semidetached system has implica-
tions for the frequency of Algols in the Ðeld. We Ðnd that,
for a given primary mass, the longest lived Algols originate
from systems where mass transfer begins near the transition
to the HG (late case A to early case B or cases AL, AN, BL,
BN) and with small to moderate initial mass ratios.

4. COMPARISON WITH OBSERVED SYSTEMS

Many observed binaries are semidetached (Algols), and
one might hope that they could be matched by some of the
above theoretical models during their stage of RLOF.
However, it has been clear for some time (Refsdal, Roth, &
Weigert 1974) that at least some systems (speciÐcally, AS
Eri) have such low angular momentum that they could
hardly have started as detached systems of two zero-age
main sequence stars of comparable mass. Furthermore,
there are some Algols of such low total mass (e.g., R CMa)
that they also could hardly have started in such a conÐgu-
ration.

In an important paper, Maxted & Hilditch (1996) identi-
Ðed nine Algol systems for which they thought the obser-

TABLE 1

SUMMARY OF BINARY CLASSIFICATION SCHEME

Case DeÐning Equations End State *1 End State *2 End Geometry

AD . . . . . . M0 [ M/tdyn M M Contact
AR . . . . . . M0 [ M/tKH, tcontact [ tRLOF(\1)\ 0.10] tMS(\1) M M Contact
AS . . . . . . tcontact [ tRLOF(\1)[ 0.10] tMS(\1) M M Contact
AE . . . . . . tH(\2)\ tH(\1) M H Contact
AG . . . . . . tH(\1)\ tH(\2) G H, G Contact
AL . . . . . . tRLOF(\2)\ tCburn(\1) R, C H, G RLOF *2
AN . . . . . . tCburn(\1)\ tRLOF(\2) SNe M, H, G Detached



No. 2, 2001 CASE A BINARIES 671

FIG. 9.ÈClassiÐcation of each of our individual binary runs into cases AD, AR, AS, AE, AG, AL, AB, AN, BD, BR, BL, and BN, as described in ° 3. Each
square represents a slice through the data cube at constant The upper left-hand block is a slice at The squares increase in the orderM10. log M10\[0.05.
one reads the pages of a book, increasing in units of 0.05 and ending in the bottom right-hand corner with We do not show our results forlog M10\ 1.70.

as very few of these binaries reached RLOF at an age younger then 20 Gyr. Within each square, the x-axis represents increasing mass ratiolog M10\[0.10
in logarithmic units of 0.05 from log q \ 0.05 to 0.50. The y-axis represents increasing period in units of 0.05 from to 0.75, where islog P0/PZAMS \ 0.05 PZAMSthe critical period at which RLOF would occur on the ZAMS. The color of each dot represents the classiÐcation of the binary run according to the legend to
the right of the plot. A white dot represents a case A binary for which we could not determine a subclass ; a white dot outlined in black indicates a case B
binary for which we could not determine a subclass.

vational data was of an unusually high quality. They
compared these with models computed by De Greve (1993).
The comparison was not at all satisfactory, the theoretical
models having luminosities at least 20 times greater than
the observed models. They also had substantially longer
periods. These discrepancies appear to be caused by the
following two features.

1. The theoretical models were all case B.
2. They were nonconservative, the assumption being

made that 50% of the mass lost by *1 escaped to inÐnity,
and 50% was accreted by *2. The escaping mass was
assumed to remove the same speciÐc angular momentum as
resided in the orbit of *1.

We feel that although the kind of nonconservation
modeled by De Greve (1993) may perhaps be appropriate
for massive stars (O, and even early B), where radiation
pressure may be an important agent in mass loss, it is not
appropriate for midÈmain-sequence stars where, at least in
single stars, very little mass loss is normally observed. At the
other end of the main sequence, stellar winds are rather
commonly observed, particularly in rapidly rotating
G/K/M dwarfs (and even more so in giants). These winds
probably do not carry o† much mass, but they may be rich
in angular momentum because of magnetic linkage to the
parent star. We therefore think that conservative models
may be reasonable for systems that are in the middle of the
main sequence initially (say, B1 to G0) and where the loser
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FIG. 10.ÈFinal mass ratio of each binary system. Ordinates are deÐned as in Fig. 9. We deÐne the Ðnal state to be the point where either (1) contact is
reached or seems imminent, (2) reverse mass transfer begins, (3) *1 has ignited carbon, or (4) the binary is in a detached phase and reverse mass transfer is
imminent. Binaries for which the Ðnal state could not be determined appear as white squares. Higher mass white squares are generally caused by binaries that
break down during thermal timescale mass transfer. The color-coded Ðnal mass ratios are in logarithmic units. The legend is to be interpreted as follows :
binaries with log q \ [1.0 are shown as yellow squares, those with [1.0¹ log q \ [0.8 as orange squares, and so forth.

has not yet evolved to the red giant region at spectra type
DG or later. Following Popper (1980), we refer to these
systems as ““ hot Algols.ÏÏ Unfortunately, rather few of the
Maxted & Hilditch (1996) selection qualify as hot Algols in
this sense, although two (U CrB and AF Gem) are on the
border, with the cooler component having spectral type
DG0. We have therefore included a few more from the
literature. Our selection of hot Algols is listed in Table 2,
with references.

The observed parameters we attempt to Ðt with our theo-
retical models are the six independent quantities log P,

log q, and is not inde-log M1, log R2, log T1, log T2. R1pendent of these, since it is obtained from the assumption
that *1 Ðlls its Roche lobe, the radius of which is determined
by the Ðrst three parameters. and are similarly notL 1 L 2independent of these six parameters. Our theoretical models
have four independent parameters, log P0, log M10, log q0,
and age.

For each system in Tables 2 and 3, we give three rows.
The Ðrst line gives the observational data from the liter-

ature, and the next line the theoretical values from our data
cube which minimize s2. The second row also includes the
best-Ðt age, in units of Myr. The third row gives the zero-
age values for the system, which we infer from our best Ðt.
We use mass-ratio q because this is usually obtained more
directly from the observational data, whether spectroscopic
or photometric, than either or We list obser-M1 M2.vational errors (when available) in the Ðrst row for all quan-
tities, but we list total errors (described below) in the second
row only for those quantities that we actually Ðt.

In Ðtting observed stars to theoretical models, a s2 test
seems appropriate. However, we have to modify the stan-
dard test in order to incorporate the fact that our theoreti-
cal models have an intrinsic ““ graininess ÏÏ because they have
not been computed for a continuous range of input parame-
ters but only at the grid points in our data cube. We there-
fore use a total error, p, which is the sum in quadrature of
the observational error, and a ““ theoretical error,ÏÏpobs, pth,representing the intrinsic graininess. For log P, log M1,and log q, we take the initial spacing of our grid.pth\ 0.05,
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FIG. 11.ÈFraction of a given binaryÏs lifetime time spent transferring mass from *1 to *2, Ordinates are deÐned as in Fig. 9. Blank squares are thosefRLOF.binaries that failed to converge for more then a few time steps. Color-coded fractions are in logarithmic units. The legend is to be interpreted as follows :
binaries with are shown as yellow squares, those with as orange squares, and so forth.log fRLOF\[3.5 [3.5¹ fRLOF\[3.0

For log R and log T , we take the graininess to be the di†er-
ence in these parameters between adjacent ZAMS models
from the grid, centered on the mass of the observed binary.
For example, for an observed star of mass log M \ 1.02, we
take the theoretical error in the radius to be

pth,R (log M \ 1.02)\ RZAMS(log M \ 1.05)

[RZAMS(log M \ 1.00) . (9)

We can then look in our data cube for the minimum value
of

s2\ ;
(obs [ th)2
pobs2 ] pth2

. (10)

We Ðnd that the best-Ðt point picked by minimizing this
s2 is insensitive to the exact deÐnition of However,pth.the magnitude of depends directly on p, so wesmin2
have attempted a reasonable deÐnition. In Figure 12, we
present the residuals to the Ðt for all Algols from both
Tables 2 and 3.

The hot Algols of Table 2 have a mean s2 of D3. Since
there are 2 degrees of freedom (six observed parameters less
four theoretical parameters), this value is rather more, but
not enormously more, than is expected for a normal dis-
tribution of errors. The number of systems we use is too
small to provide a really convincing conÐrmation or refu-
tation. The worst case, AF Gem, is very close to the lower
temperature limit, where we suppose a priori that conserva-
tion might break down. If we reject AF Gem, we have a
mean s2 of just 2.

After AF Gem, the next worse cases are DM Per and j
Tau. Interestingly, both of these systems possess a close
third bodyÈextraordinarily close in the case of j Tau. The
latter system can be seen to be problematic even without a
detailed attempt at Ðtting. The angular momentum of this
system is seen to be quite low compared with a system of
stars of comparable mass at the same total mass, so that
something like case AS is to be expected. But case AS nor-
mally evolves into contact at a mass ratio that is moderately
small, roughly (Fig. 10), whereas j Tau has quite aZ0.4
small present mass ratio of 0.27. This suggests that j Tau
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FIG. 12.ÈResiduals of observed binary Ðts. The hot Algols of Table 2 are shown in red, the cool Algols of Table 3 are shown in blue. Residuals of *1 are
shown as circles, residuals of *2 as squares. The residuals are deÐned in the sense *\ Ðt [ obs .

has lost some angular momentum, necessarily, during its
slow, nuclear timescale, RLOF rather than the comparable
interval of detached evolution before RLOF. DM PerÏs
problem is similar, though not so obvious without a
detailed attempt at Ðtting.

But for j Tau and DM Per, unlike most other hot Algols,
there does in fact exist a mechanism that should do just
that. The third star in the j Tau system (Fekel & Tomkin
1982) is in such a close orbit (33 days) that it must inÑuence
the orbit of the eclipsing pair to a small but signiÐcant
extent, making its eccentricity Ñuctuate by D0.7% on a
timescale of days (Kiseleva, Eggleton, & Mikkola 1998).
Tidal friction will tend to oppose this but can only do so by
draining energy and angular momentum from the short-
period orbit. Conservation laws require the angular
momentum lost by the inner orbit to go to the outer orbit,
but the energy loss leads to a net secular evolution, the inner
orbit shrinking while the outer widens. This process was

probably negligible in the pre-RLOF state because the orbit
would have been substantially smaller than at present, at
least if were not unusually large. But it can now beq0signiÐcant as the stars are larger and the inner orbit wider.
Tidal friction should be capable of setting up a transient
equilibrium between nuclear evolution, leading to expan-
sion of the inner orbit, and tidal friction, leading to contrac-
tion (Kiseleva et al. 1998).

DM Per also has a third body in orbit. The outer orbit is
longer (D100 days) while the inner orbit is shorter, so the
process might be thought less likely to be signiÐcant. On the
other hand, the third body is relatively much more massive,
which may compensate to some extent.

When we turn to a selection of cooler Algols (Table 3), we
Ðnd signiÐcantly larger s2 for many systems. This, we
believe, is consistent with the view that they are less conser-
vative, certainly of angular momentum (which is fairly
readily removed by magnetic braking on something like a
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nuclear timescale), and perhaps also of mass. We do not
normally think of stellar winds from cool dwarfs and sub-
giants as being strong enough to remove signiÐcant mass,
yet certain active (RS CVn) binaries show evidence to the
contrary. Both Z Her (Popper 1988) and to a lesser extent
RW UMa (Popper 1980 ; Scaltriti et al. 1993) exhibit the
phenomenon that the cooler, presumably more evolved,
subgiant is the less massive star, despite the fact that it does
not Ðll its Roche lobe. This suggests that mass loss by wind
from the cooler star is already on the nuclear timescale of
the star.

V1379 Aql (Je†ery & Simon 1997) is an example of a
““ post-Algol ÏÏ binary : the low-mass subdwarf B component
is presumably the remains of *1 after it has retreated within
its Roche lobe, and *2 has already evolved to the giant
branch. We include it in our list of cool Algols as we believe
the components to have been relatively cool during its Algol
phase. The cool ZAMS temperatures we derive support this
assumption. Even without detailed Ðtting, it is clear that the
system is problematic. For a period as short as 21 days the
subdwarf B mass is rather largeÈsuch a core would seem to
imply a period of 50È100 days. More intriguingly, the orbit
is very signiÐcantly eccentric : e\ 0.09^ 0.01. Several radio
pulsars with white dwarf companions are known with com-
parable period and with highly circular orbitsÈe.g.,
1855]09 (Ryba & Taylor 1991)Èas expected following
stable RLOF from a low-mass giant. Probably the least
far-fetched explanation of the eccentricity in V1379 Aql is
the presence of a third body in a substantially inclined
orbit ; and this might also explain some loss of angular
momentum.

5. CONCLUSIONS

Binary evolution is commonly deÐned only in terms of
when RLOF begins (cases A, B, or C) and its late-stage
outcomes (cataclysmic variables, X-ray binaries, etc.). In the
middle stages of binary evolution, no satisfactory grouping
scheme has been agreed upon because of the tremendous
variety of behavior encountered. This work attempts to
deÐne just such a classiÐcation scheme, dividing conserva-
tive case A binaries into seven prototypes and conservative
case B binaries into four prototypes. We hope that with a
general knowledge of each of these evolutionary paths and
the parameter ranges they span, one may gain an intuitive
feeling for the evolution of all conservative case A binaries.
However, we can expect even more subclasses when non-
conservative processes are modeled, as will certainly be
necessary for extremes of high-temperature and low-
temperature systems.

Binaries are often observed in their late stages, after
reverse mass transfer has occurred. Unfortunately, since we
do not yet model reverse mass transfer (from *2 to *1) we
cannot deÐnitively connect all of our various cases to their
late stage outcomes. Five of our seven major cases (AD, AR,
AS, AE, and AG) all end as contact binaries. The remaining
two cases (AL, AN) may form cataclysmic variables, sym-
biotics, X-ray binaries, or X-ray novae. However, it is
impossible to determine the outcome without modeling the
reverse mass transfer and, in the case of AN, the supernovae
explosion of *1. We hope to extend our analysis to include

reverse mass transfer in the future. In particular, our end-
points should be able to be used as starting points for three-
dimensional hydrodynamic investigations of a variety of
problems, which we hope to carry out in the framework of
the DJEHUTY project (see below).

However, some binaries (Algols) are observed in the
middle stages of evolution, which this paper addresses. This
work shows good comparison between these new theoreti-
cal tracks and observed hot Algol systems. For all but one
of our selection of observed hot Algols, we Ðnd an accept-
able s2 when Ðtting the observed parameters to our library
of conservative case A binary tracks. It is encouraging to
note that the worst outlier (AF Gem) lies near the lower
boundary of the temperature range in which we expect the
conservative assumption to hold. The next largest s2Ïs come
from two binaries with known third bodies, which may act
to remove angular momentum from the inner orbit.

Our selection of cool Algols shows signiÐcantly worse
agreement between the observed systems and the conserva-
tive theoretical tracks, suggesting the need for more free
parameters in the modeling, such as mass and angular
momentum loss (Eggleton 2000, 2001).

We hope that this library of computed tracks will con-
tribute signiÐcantly to our understanding of the middle
stages of binary evolution. Recently, many groups have set
out to model the evolution of galactic and globular clusters,
including both dynamical and evolutionary processes. Gen-
erally, the dynamical interactions are calculated in great
detail using sophisticated N-body codes, and the stellar
evolution (of both single and multiple star systems) is
handled by interpolating tables of precomputed stellar evol-
ution tracks. The long-term goal of such projects is to
incorporate a stellar evolution code into the dynamical
simulations ; however, until recently, this was considered to
be too computationally expensive. The present work pro-
vides a possible link between current population synthesis
procedures and future goals. In the immediate term, this
work provides a much denser grid of case A binaries, which
may be used to create better look-up tables. However, this
work also demonstrates a method of using large parallel
arrays of computers to calculate the evolution of many star
systems simultaneously. This method may well become part
of long-term plans for simultaneous stellar evolution and
dynamical modeling.

We hope to make these tracks electronically available in
early 2001 on the Institute of Geophysics and Planetary
Physics web site http ://www.llnl.gov/urp/IGPP.

This work was undertaken as part of the DJEHUTY
project, which is developing a three-dimensional code to
deal with hydrodynamical processes within stars, both
single and binary. Most of the endpoints to which our case
A systems evolved can be expected to have behavior on a
hydrodynamic timescale, and we hope to investigate them
further in the future. We are grateful to our DJEHUTY
colleagues for helpful discussions, and in particular to Don
Dossa for helping with the parallelization of the code. Work
performed at Lawrence Livermore National Laboratory is
supported by the DOE under contract W7405-ENG-48. C.
A. N. is supported in part by a NPSC Graduate Fellowship.
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