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ABSTRACT
We have developed a novel computer code designed to follow the evolution of cosmic-ray modiÐed

shocks, including the full momentum dependence of the particles for a realistic di†usion coefficient
model. In this form the problem is technically very difficult because one needs to cover a wide range of
di†usive scales, beginning with those slightly larger than the physical shock thickness. With most Ðnite
di†erence schemes for EulerÏs equations, the numerical shock thickness is at least one zone across, so this
provides a lower bound on the physical scale for di†usive transport computation. Our code uses subzone
shock tracking and multilevel adaptive mesh reÐnement to provide enhanced spatial resolution around
shocks at a modest cost compared to the coarse grid and vastly improved cost e†ectiveness compared to
a uniform, highly reÐned grid. We present and discuss the implications from our initial results.
Subject headings : globular clusters : general È hydrodynamics È methods : numerical È

supernova remnants

1. INTRODUCTION

Di†usive shock acceleration (DSA) is now widely
accepted as the model to explain the production of cosmic
rays (CRs) in a wide range of astrophysical environments
(Drury 1983 ; Blandford & Eichler 1987 ; Berezhko &
Krymskii 1988). The concept behind DSA, Ðrst-order Fermi
acceleration of charged particles trapped between con-
vergent Ñows across a shock, is quite simple. However, the
full DSA problem is actually extremely complex because the
nonlinear interactions between energetic particles, reso-
nantly scattering waves, and the underlying plasma can
become dominant e†ects. Important consequences of non-
linear interactions include such things as generation and
damping of the scattering wave Ðeld and injection of supra-
thermal particles into the CR population, as well as heating
and compression of the plasma Ñow because of the CR
pressure. Because of the complex nonlinear physics in-
volved in the model, numerical simulations have been
quite useful and successful in understanding the details of
the acceleration process and the dynamical feedback of the
CRs to the underlying plasma (Falle & Giddings 1987 ;
DorÐ 1990 ; Ellison, & Paschmann 1990 ; KangMo� bius,
& Jones 1991 ; Berezhko, Yelshin, & Ksenofontov 1994 ;
Berezhko & 2000).Vo� lk

In continuum approaches to numerical simulations of
DSA theory, the CR di†usion-convection equation is solved
at each of a large number of suprathermal momentum
values simultaneously with a set of Ñuid equations describ-
ing the Ñow associated with the bulk, thermal plasma,
including the nonlinear interactions between the plasma,
CRs, and scattering waves. Particle acceleration is e†ected
by di†usion across velocity gradients in the motion of the

scattering centers, which are usually assumed to be tied to
the bulk Ñow. Pressure by the di†using CRs, in turn, decel-
erates and compresses Ñow into the shock, forming a shock
““ precursor.ÏÏ Since that development eliminates the orig-
inal, simple velocity jump encountered by the CRs, the DSA
is then modiÐed according to details of the Ñow within the
precursor, whose scales are characterized by the so-called
di†usion length, where i is the spatial dif-Ddiff(p) \ i(p)/u,
fusion coefficient for CRs of momentum p, and u is the
characteristic Ñow velocity against which the CRs must
swim (see, e.g., Kang & Jones 1991). Accurate solutions to
the CR di†usion-convection equation require a computa-
tional grid spacing signiÐcantly smaller than typicallyDdiff,In a realistic di†usion transport model, it*x D 0.05Ddiff(p).
is thought that the di†usion coefficient should have a steep
momentum dependence, i(p) P ps, with s D 1È2. For the
lowest energy CR particles, the di†usion lengths [Ddiff(p)]
are only slightly greater than the shock thickness, while they
can be many orders of magnitude greater than that for the
highest energy particles. Thus, a wide range of length scales
is required to be resolved in order to solve the di†usion
convection equation correctly for the model with a realistic
di†usion coefficient. Previous numerical simulations that
adopted the traditional Ñux-di†erencing method on a
uniform grid were often forced to assume a weak momen-
tum dependence, for example, s \ 0.25 in Kang & Jones
(1991).

To overcome this numerical problem, Berezhko et al.
(1994) introduced a ““ change-of-variables technique,ÏÏ in
which the radial coordinate is transformed into a new vari-
able, where is the shockx(p) \ exp [[(r [ R

s
)/Ddiff(p)], R

sradius, deÐned for each particle momentum for the
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upstream region. A uniform grid is used for the downstream
region. This allowed them to solve the coupled system of
gasdynamic equations and the CR transport equation even
when the di†usion coefficient has a strong momentum
dependence [e.g., i(p)P p]. Their code is designed for sim-
ulations of supernova remnants, which are represented
by piston-driven spherical shocks in one-dimensional
geometry. It is di†erent from conventional Eulerian codes
in several ways. Both gasdynamic equations and the CR
transport equation are solved separately on each side of the
gas subshock. Then the gasdynamic solutions at both sides
of the subshock are used to solve the Riemann problem,
which determines how the subshock evolves. Also, an iter-
ation scheme is applied to match the downstream and
upstream solutions for the CR di†usion-convection equa-
tion at the subshock. In any case, this has enabled them to
explore several important issues regarding the particle
acceleration at supernova remnants more fully than was
possible before ; see, e.g., Berezhko, Ksenofontov, & Yelshin
(1995) ; Berezhko, Elshin, & Ksenofontov (1996) ; and
Berezhko & (2000). However, no consistency check forVo� lk
this method has been attempted so far, since no existing
conventional codes can handle such a strongly momentum-
dependent di†usion coefficient.

Fermi shock acceleration a†ects those particles with a
mean free path greater than the shock thickness that can
resonantly scatter with self-generated waves. In theAlfve� n
so-called thermal leakageÈtype injection model, the di†u-
sion and acceleration of these particles out of the supra-
thermal tail of the Maxwellian distribution determines the
CR injection rate (Ellison & Eichler 1984 ; Kang & Jones
1995). A self-consistent, analytic, and nonlinear model for
ion injection based on the interactions of the suprathermal
particles with self-generated magnetohydrodynamic waves
in strong shocks has been presented by Malkov (1998). By
adopting this analytic solution, Gieseler, Jones, & Kang
(2000) have developed a numerical treatment of the injec-
tion model at a strong quasi-parallel shock, which is then
incorporated into the combined gas dynamics and the CR
di†usion-convection code. Since the suprathermal particles
have mean free paths a few times that of thermal particles,
resolving these smallest scales is of critical importance to
estimating the injection and acceleration efficiency in such
numerical simulations of the CR modiÐed shocks. In fact,
Gieseler et al. (2000) were able to run their simulations, with
a conventional Eulerian scheme on a uniform grid, only up
to the time when the maximum accelerated momentum was
of the order of for a Bohm-type di†usionpmax/mp

cD 1
model because of severe requirements for computational
resources needed to evolve the CR distribution to highly
relativistic momenta. This calls for an alternative method
comparable to BerezhkoÏs code, which solves the CR
di†usion-convection equation on a grid whose spacing
scales with the di†usion length at each momentum value
sampled.

In this contribution, we present a new numerical scheme
that follows CR modiÐed shocks in one-dimensional, plane-
parallel geometry. We take advantage of the fact that the
di†usion and acceleration of the low-energy particles are
important only close to the shock, owing to their small
di†usion lengths. They are simply advected along with the
underlying gas Ñow far upstream and downstream of the
shock. Thus, it is necessary to resolve numerically the di†u-
sion length of the particles only around the shock. So we

Ðrst implement a shock-tracking scheme to locate the shock
position exactly and then increase the grid resolution only
around the shock by applying multilevels of reÐned grids.
To this end, we have adopted the shock-tracking method of
LeVeque & Shyue (1995) and the adaptive mesh reÐnement
(AMR) technique of Berger & LeVeque (1998) and modiÐed
the code to use multiple levels of grid reÐnement only
around the shock.

In the following section we outline our numerical
methods, while in ° 3 we present and discuss our test results.
Section 4 provides a summary.

2. NUMERICAL METHOD

The di†usive transport model for CR acceleration
separates the plasma into two components distinguished by
scattering length. The bulk plasma consists of thermal par-
ticles whose scattering lengths are small enough to Ðt within
a dissipative shock. They are described by the standard
gasdynamic equations with CR pressure terms added
(McKenzie & 1982). The di†usion-convection equa-Vo� lk
tion, which describes the time evolution of the CR distribu-
tion function f (p, x, t) (see, e.g., Skilling 1975), is given by

df
dt

\ 1
3

($ Æ u)p
Lf
Lp

] $[i(x, p)$f ] , (1)

where d/dt is the total time derivative in the Ñuid frame, and
the di†usion coefficient i(x, p) is assumed to be a scalar. As
in our previous studies, the function g(p) \ p4f (p) is solved
instead of f (p). Except for the special shock-tracking and
AMR features, our treatments of the underlying gas
dynamics and the CR transport are relatively standard
(Kang & Jones 1991 ; Gieseler et al. 2000), so we do not
repeat them here.

The spatial di†usion coefficient can be expressed in terms
of a mean scattering length, j, as i(x, p) where v is\ 13jv,
the particle speed. The scattering length, j, and thus i(x, p),
should be in principle determined by the intensity of reso-
nantly interacting waves. For example, the BohmAlfve� n
di†usion model represents a saturated wave spectrum and
gives the minimum di†usion coefficient as wheniB\ 13r

g
v

the particles scatter within 1 gyration radius because of(r
g
)

completely random scatterings o† the self-generated waves.
This gives Hereafter we will expressiBP p2/(p2] 1)1@2.
particle momenta in units of We consider here only them

p
c.

proton CR component. For our test runs, we will also adopt
a power-law form as i(p) P ps for low momenta (p \ 1) in
some models, in addition to We note that the BohmiB.di†usion coefficient becomes i(p) P p2 in the limit of p > 1
and i(p) P p in the limit of p ? 1. In order to model ampliÐ-
cation of self-generated turbulent waves due to compression
of the perpendicular component of the magnetic Ðeld, the
spatial dependence of the di†usion is modeled as

i(x, p) \ i(p)[o1/o(x)] , (2)

where is the upstream gas density. This form is alsoo1required to prevent the acoustic instability of the precursor
(Drury & Falle 1986 ; Kang, Jones, & Ryu 1992).

We also adopt the thermal leakageÈtype injection model
introduced in Kang & Jones (1995). In this model, below a
certain momentum, with a value chosen to be highp1,
enough to include most of the postshock thermal popu-
lation, the distribution is forced to maintain a Maxwellian
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form consistent with the local gas temperature and density
determined from the gasdynamical equations. Above p1particles are allowed to evolve according to the di†usion-
convection equation, so the form will deviate from Maxwel-
lian. However, only for are they included inp º p2[ p1calculations of CR pressure and energy. We relate andp1 p2to the peak of the postshock Maxwellian distribution, pth,as and and we assume andp1\ c1 pth p2\ c2 pth, c1 \ 2.5

for all test runs here. Here corresponds to thec2\ 3.0 pthpeak in the partial pressure of thermal particles. The choice
of inÑuences the injection rate directly, since it deter-p1mines the fraction of suprathermal particles in the Maxwel-
lian tail that can be injected into the CRs.

2.1. Shock-Tracking Method
The hydrodynamic conservation equations are solved in

the one-dimensional, plane-parallel geometry by the wave
propagation algorithm described in LeVeque (1997). In this
method a nonlinear Riemann problem is solved at each
interface between grid cells, and the wave solutions (i.e.,
speeds of waves and jumps associated with three wave
modes) are used directly to update the dynamic variables at
each cell. Within this method a subzone shock-tracking
algorithm of LeVeque & Shyue (1995) can be incorporated
easily, since the Riemann solutions tell us exactly how the
waves propagate. The underlying Eulerian grid, which is
called the ““ base ÏÏ grid throughout this paper, has uniform
cells. An additional cell boundary is introduced at the loca-
tion of the shock, subdividing a uniform cell into two sub-
cells. In the next time step, this cell boundary (shock front)
is moved to a new location using the Riemann solutions at
the current shock location (i.e., and thex

s
n`1\ x

s
n ] v

s
*t),

waves are propagated onto the new set of grid zones. Since
the new grid is chosen so that the shock wave coincides
exactly with an irregular cell boundary, the shock remains as
an exact discontinuity without smearing. One advantage of
using the wave-propagation method for the shock-tracking
scheme is that the large time step satisfying the Courant
condition for the uniform grid can be used even if the shock
is very close to the boundary of the uniform cell, and so the
subcell is much smaller than the uniform cell.

The CR di†usion-convection equation is solved in two
steps : (1) The di†usion term is solved by the Crank-
Nicholson scheme as described in Kang & Jones (1991). (2)
The advection term is solved by the wave-propagation
method as for the gasdynamic variables.

2.2. Adaptive Mesh ReÐnement
Ideal gasdynamic equations in one-dimensional planar

geometry do not contain any intrinsic length scales to be
resolved, but once the precursor due to the CR pressure
modiÐcation becomes signiÐcant, the grid spacing should
be Ðne enough to resolve the precursor structure. According
to previous numerical studies (e.g., Jones & Kang 1990 ;
Kang & Jones 1991), convergence of numerical solutions to
CR modiÐed shocks, especially the subshock transition,
requires that the precursor be resolved with sufficient accu-
racy. While the full extent of the precursor increases with
the CR pressure and is related to the di†usion length of the
maximum accelerated momentum the dominant scalepmax,length of the precursor is similar to an averaged di†usion
length of the particle populations with the greatest contri-
bution to the CR pressure. Typically a strong shock

becomes signiÐcantly modiÐed because of nonlinear feed-
back from the CR pressure when the maximum acceleration
momentum becomes mildly relativistic (i.e., Thus,pmax D 1).
in order to follow the development of the precursor and the
time evolution of the CR modiÐed shock, the gasdynamic
equations should be solved on a base underlying grid whose
spacing is smaller than the di†usion length of mildly rela-
tivistic particles. As discussed earlier, it would be most
natural to solve the CR transport equation on a grid whose
spacing scales with the particleÏs momentum, as in
Berezhko et al. (1994). In that case, the CR distribution f (x,
p) should be mapped onto the base hydrodynamic grid in
order to calculate the CR pressure and its dynamical feed-
back on the dynamics of the underlying Ñow.

2.2.1. L aying Down Multilevel Grids

Here we take a di†erent approach in which the imme-
diate upstream and downstream regions around the shock
are reÐned by applying multilevel grids with increasingly
Ðner resolution by an integer factor of 2, so that the trans-
port of low-energy particles adjacent to the shock is at the
most reÐned grid. Here we refer to each level grid with the
grid level index which runs from 0 to correspondingl

g
, lmax,to the base grid and the Ðnest grid, respectively. Since the

grid spacing decreases by an integer factor, we can lay down
the reÐned grid in such a way that cell boundaries align
between two adjacent levels. This feature allows us to use a
much simpler mapping scheme between two adjacent levels,
compared to the case where noninteger reÐnement factors
are used. We adopt the adaptive mesh reÐnement technique
developed by Berger & LeVeque (1998). In the general
version of the AMR code of Berger & LeVeque (1998), the
code identiÐes the reÐnement regions where the desired
level of numerical accuracy is not achieved and the multi-
level grids are generated within the reÐnement regions.
Compared to that general version, a much simpler scheme
is sufficient for our needs, since we only need to reÐne the
region around the shock whose location is exactly known in
our shock-tracking code. In fact, it is crucial to have the
shock tracking in order to lay down the multilevel grids
around the shock, so that the shock remains near the
middle of the computational domain at all levels.

A Ðxed number of cells around the shock are identi-(Nrf)Ðed as the ““ reÐnement region ÏÏ on the base grid (i.e., l
g
\ 0

grid). The Ðrst-level grid is generated by placing cells2Nrfwithin the reÐnement region, so each cell is reÐned by a
factor of 2. We use the reÐnement factor of 2, since it is
relatively simpler in terms of programming and it improves
robustness and stability of the code. Then cells aroundNrfthe shock out of cells on the Ðrst-level grid are chosen2Nrfto be reÐned further to the second-level grid, making the
length of the reÐnement region half that of the Ðrst-level
grid. Here the reÐnement region is chosen so that the shock
is always in its middle. The same reÐnement procedure is
applied to higher level grids. So at all levels, there are 2Nrfcells around the shock, but the length of the computation
domain is shrunk by a factor of 2 from the previous level. At
each level the grid spacing is given by *x(l

g
)\*x(0)/2lg,

where *x(0) is the grid spacing at the base grid. Figure 1
shows an example of reÐned grid levels up to withlmax \ 2

The value of should be chosen so that theNrf \ 4. NrfreÐned region at the base grid includes most of the precur-
sor during the early stages when particles get accelerated to
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FIG. 1.ÈLayout of the base grid and two reÐned grids. Here the Nrf \4 cells around the shock are reÐned by a factor of 2. The shock is indicated
by the dotted lines.

mildly relativistic energies. In real test simulations present-
ed here, typical values of The spatial extentNrf\ 100È200.
of the highest reÐned grid can be much smaller than the
length scale of the precursor, since it needs only resolve
structures ““ seen ÏÏ by the lowest energy CRs immediately
next to the shock.

In order to ensure that the shock remains near the middle
of the computational domain at all grid levels during the
time integration of one time step of the base grid, we do the
following procedure : First, the velocity in the reÐned grid is
transformed so that the shock is at rest in the frame of the
numerical simulation at each level except the base grid.
Second, the multilevel grids are redeÐned at each time step
so that they center around the new location of the shock,
and all hydrodynamic variables and the particle distribu-
tion function g(p) are mapped onto the newly deÐned grids.
Thus, the reÐnement region at all levels is moving along
with the shock. Although the original shock-tracking code
of LeVeque & Shyue (1995) can treat multiple shocks, we
modify it in the current version of our code to include only
one shock, in order to keep the code structures as simple as
possible for our initial studies.

2.2.2. T ime Integration

Integration of the gasdynamic variables and advection of
the CR distribution function are done by the wave propaga-
tion method at each level grid. The time step at each level,

is determined by a standard Courant condition, that*t(l
g
),

is, where u and are the*t(l
g
)\ 0.3*x(l

g
)/max (u ] c

s
), c

sÑow velocity and sound speed at each cell, respectively. If
the highest level is speciÐed to be to advance fromlmax\ 1,
tn to tn`1\ tn ] *t(0) at the base grid we need the following
steps : (1) All equations are integrated at the base grid. (2)
The same is done twice with *t(1)\ *t(0)/2 at the l

g
\ 1

level for the reÐned region. The cells immediately outside
the reÐnement region at the level provide the neces-l

g
\ 0

sary boundary conditions for the integrations. Here we need
boundary conditions at two spatial points at both ends of
the reÐned grid, and and also at twoq0, q1, q2Nrf

, q2Nrf`1,points in time, tn and tn`1@2. Some of them are interpolated
in time and space coordinates from the variables deÐned at
the grid one level below. (3) The values at the level arel

g
\ 1

mapped onto the reÐnement region at the base grid. (4)
Finally, the values at the interface just outside the reÐne-
ment region at the base grid should be corrected to preserve
global conservation. The basic idea and also the detailed
procedure applied for one level of reÐnement can be found
in Berger & LeVeque (1998). When is greater than 1, thelmaxsame procedures should be repeated recursively at each
time step at each level. The variables within the reÐnement

region at the level grid are replaced with the more accu-l
grate values at the level grid after the correspondingl

g
] 1

pair of time steps at the level are completed. In onel
g
] 1

time step in the base grid, we carry out time steps at the2lg l
glevel grid, so the total number of time steps in all level grids

required to advance one time step in the base grid becomes
the sum of 2 ] 22] , . . . ,] 2lmax.

Once the advection of the CR distribution is done, di†u-
sive transport including the Ðrst-order acceleration is solved
in a separate step. Although an implicit Crank-Nicholson
scheme is used for the di†usion term, the time step is
still restricted by the acceleration term as *tCN(l

g
)\

Within a single hydrodynamic0.5 min [3*(log p)/(Lu/Lx)
i
].

time step, several Crank-Nicholson time steps are per-
formed if The number of this subcycling is*t(l

g
) [*tCN(l

g
).

about 4È5 for the momentum bin size considered here [i.e.,
*(log p) \ 0.026]. As we go up and down on the ladder of
““ time stepping ÏÏ for one time step in the base grid, the base
grid being the lowest, the values at a coarser grid propagate
upward as boundary conditions for a Ðner grid, and more
accurate values at the Ðner grid propagate downward by
being mapped onto the coarser grid.

3. TEST RESULTS

In this section we present some test simulations with our
CR/AMR code. The dynamics of the CR modiÐed shock
depend on four parameters : the gas adiabatic index, c

g
\

5/3 ; the gas Mach number of the shock, b \M \V
s
/c

s
;

and the di†usion coefficient, where and c are theV
s
/c ; c

supstream sound speed and the speed of light, respectively.
For all simulations we present here, b \ 10~2 and c

g
\ 5/3.

We considered three values for the Mach number, M \ 5,
10, and 20, for the initial shock jump by adjusting the pre-
shock gas pressure. The initial jump conditions in the rest
frame of the shock for all test problems are o1 \ 1, P

g,1\
1.5] 10~3(20/M)2, and in upstream region andu1\ [1

and in downstreamo2\ 4, P
g,2 \ 7.5] 10~1, u2\ [0.25

region. Here the velocities are normalized to the initial
shock speed, km s~1. Normalization of the lengthV

s
\ 3000

and the time variables depends on the di†usion coefficient :
where i(p) is the computational coefficient,i(p) \iphys/i0,is the physical value, and is the normalization con-iphys i0stant. So the corresponding normalization constants are

and These correspond to roughlyt0\ i0/V s
2 r0\ i0/Vs

.
the di†usion length and di†usion timescale for p D 1. For
the Bohm di†usion coefficient with the magnetic Ðeld of 1
kG, for example, withiB\ p2/(p2] 1)1@2, i0\ 3.13 ] 1022
cm 2 s~1, so that s and cm.t0\ 3.5] 105 r0\ 1.05] 1014
The particle number density, is arbitrary, but the gasn0,
density and pressure are normalized to ando0\m

p
n0respectively.P0\ o0 V

s
2,

We use 230 logarithmic momentum zones in
log (p) \ [[3.0, ] 3.0], and the momentum is in units of

The distribution function f (p) is expressed in units ofm
p
c.

so that 4n / fp2 dp \ o.f0\ n0/(mp
c)3,

3.1. Test of ReÐnement
In this section we consider the M \ 20 shock with a di†u-

sion model i(p) \ p. In order to see how the CR/AMR code
performs at di†erent resolutions, we ran the simulations
with di†erent levels of reÐnements, 1 , 2, 3, and 4.lmax\ 0,
The numerical domain is [[25,]75] and the number of
cells, N \ 2000, so the grid spacing is *x(0)\ 0.05, which
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corresponds to 1/20 of the di†usion length of the particles of
p \ 1. The number of reÐned cells around the shock is

on the base grid, and so there are cellsNrf \ 200 2Nrf \ 400
on each reÐned level. Since the di†usion length of p1D 0.01
is the transport of the suprathermal particlesDdiff \ 0.01,
can be resolved at the level.lmax \ 4

With the reÐnement of the level, the CR trans-lmax\ 4
port for the particles at the injection pool should be resolv-
ed, and so the evolution of the CR should be converged.
Figure 2 shows the time evolution of the model shock with

the maximum reÐnement of This shows how thelmax \ 4.
precursor develops and modiÐes the shock structure as the
CR pressure increases in time. The numerical frame is
chosen so that the initial shock moves to the right with

but the simulated shock drifts to the left becauseu
s
\ 0.05,

of the CR pressure. Figure 3 shows the density structure at
each reÐned grid (solid lines) for the 2, 3, and 4 levels,l

g
\ 1,

superposed on the density structure at the base grid (dotted
lines) in the simulation shown in Figure 2. Thislmax\ 4
demonstrates how the size of the reÐnement regions

FIG. 2.ÈTime evolution of the M \ 20 shock with reÐned grid levels at t \ 10, 20, 30, 40, 50, and 60. The shock moves to the left, so thelmax \ 4
right-hand plots correspond to the earliest time t \ 10. The solid lines are for the reÐnement region at the grid, while the dotted lines represent thel

g
\ 1

shock structure on the base grid.
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FIG. 3.ÈTime evolution of the gas density for the M \ 20 shock in the simulation with The solid lines are for the reÐnement region at each gridlmax \ 4.
level, while the dotted lines represent the density proÐle on the base grid.

decreases at higher levels and how the reÐnement regions
move along with the shock. As indicated by two points
downstream and upstream of the subshock in the upper left-
hand panel, the shock is tracked as a perfect discontinuity.

Given the same resolution at the base grid, the simula-
tions with larger reÐnement levels show faster acceleration
and faster growth of Figure 4 shows how the particleP

c
.

distribution [g(p)\ f (p)p4] at the shock evolves with time

in the simulations with di†erent reÐnement levels for the
same shock model shown in Figure 2 : there are Ðve curves
corresponding to 1, 2, 3, and 4 in each panel. Theylmax\ 0,
show the typical Maxwellian distribution that peaks at

and the CR distribution that asymptotes to apthD 10~2.3
power law as time increases. For (dotted lines), thelmax \ 0
cell size *x \ 0.05 is too large for the di†usion of the par-
ticles in the injection pool to be treated correctly, so the
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FIG. 4.ÈDistribution function (g \ fp4) at the shock for the M \ 20 shock at t \ 10, 30, 50, and 60. The results of the simulations with the maximum
reÐned grid level (dotted lines), 1 (long-dashed lines), 2 (dot-dashed lines), 3 (dashed lines), and 4 (solid lines) are plotted for comparison.lmax \ 0

injection and the acceleration are underestimated, and the
slope just above the injection pool is steeper than the
canonical strong-shock test particle spectrum of f (p) D p~4.
For the highest reÐnement case, (solid lines), the CRlmax\ 4
pressure becomes dominant over the gas pressure, and the
compression ratio at the subshock becomes 3.3. As a result,
the distribution function steepens from a power law of p~4
at lower momentum just above the injection momentum,
but it Ñattens at higher momenta since high-energy particles
di†use on a much larger scale and sample a larger velocity

jump. These opposite trends lead to a concave curve in the
middle, which is a typical signature of nonlinear e†ects
(Berezhko & Ellison 1999). Figure 5 shows how the CR
pressure increases with time in the simulations with di†er-
ent reÐnement levels shown in Figure 4. It demonstrates
that injection and acceleration are much slower in under-
resolved simulations From comparison between(lmax \ 4).
results of (dashed line) and (solid lines), welmax\ 3 lmax \ 4
have concluded that the simulation is mostly converged for

For example, the CR pressure at the shock atlmax \ 4.
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FIG. 5.ÈSame as Fig. 4 except CR pressure is plotted

t \ 50 and 60 is the same for the and 4 simulations,lmax\ 3
although the shock position is slightly di†erent in the two
cases because of slightly di†erent evolution in early stages.

The required computing time increases with andlmax Nrf,given the same resolution at the base grid. For the simula-
tion considered here, in which the computingNrf/N \ 0.1,
time increases by factors of 1.5, 2.3, 4, and 7 for the
maximum reÐnement levels 2, 3, and 4, respec-lmax\ 1,
tively, compared with the case of no reÐnement (lmax \ 0).
The computing time would increase by factors of if(2lmax)2
the simulations were done on a uniform grid spacing that

matches the cell size at the highest reÐned level grid. Figure
6 compares the computing time for these two cases. Since
only the precursor region needs to be reÐned, our CR/AMR
code will be most cost e†ective for simulations where the
precursor is only a small fraction of the total computational
domain.

3.2. Convergence Test
In this section we explore how a simulation with our

CR/AMR code using multilevel reÐnements would be com-
pared with that with no reÐnement but on a single uniform
grid of the same spacing as the highest level of the other.
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FIG. 6.ÈSolid line shows the ratio of computational time required to
include levels relative to the time required with no reÐnement. HereL maxthe number of cells at the base grid is N \ 2000 and the cellsNrf \ 200
around the shock are reÐned. The dotted line shows the same ratio for the
case when the Ðnest resolution is applied over the entire grid, that is,
(2Lmax)2.

For this test, we use the following di†usion model : il \for p \ 1 and for p º 1. Thisp/J2 i
h
\ p2/(p2] 1)1@2

model has a Bohm-type di†usion at higher momenta but
much weaker momentum dependence at lower momenta.
This allows us to use larger grid spacing near the injection
pool (p D 0.01), compared to a Bohm di†usion model,
which scales as p2 for p > 1. The initial shock parameters
are the same as the M \ 20 shock model in the previous
section. We consider the following three models : model A, a
uniform grid with *x(0)\ 0.1 and model B, anlmax\ 0 ;
adaptively reÐned grid with *x(0)\ 0.1 and andlmax\ 5 ;
model C, a uniform grid with *x(0)\ 0.1/32 and lmax\ 0.
The numerical domain is [[50,]50] and the number of
cells, N \ 1000 for models A and B, and N \ 32,000 for
model C. So model C has the same grid spacing as the

level grid of model B. The computing time forlmax \ 5
model C with a single Ðne grid is about 150 times longer
than that for model B with the reÐnement. We expect that
in the model A simulation the transport of low-energy par-
ticles are underresolved, so it is included only for compari-
son. We choose for model B, so 10% of the baseNrf\ 100
grid is reÐned. The major di†erence between models B and
C is that the reÐned grid at covers only about 1/32lmax \ 5
of the precursor in model B, while the entire grid of model C
has the Ðnest resolution.

Figure 7 shows the evolution of the gas density and the
CR pressure and the CR distribution function at the shock
in models B and C. In model B with reÐnement, the CRs are
accelerated a little faster than in model C with a single Ðne
grid, so that the di†erence in the CR pressure at the shocks
is 8.3% at t \ 20, but this fraction decreases to 4.6% at
t \ 40 and to 3.0% at t \ 60. Thus, the two methods appear
to converge at slightly di†erent rates, but both give reason-
able results once the resolution next to the shock is reÐned
to resolve by more than an order of magnitude.Ddiff(p1)This test convinces us that our CR/AMR code can perform
the intended simulations with a reasonable accuracy in a
very cost e†ective way.

3.3. Dependence on Di†usion Model
Finally, in this section we explore brieÑy how di†erent

di†usion models a†ect evolution of the injection and the

acceleration efficiency in CR modiÐed shocks. First, we con-
sider the M \ 20 shock and the following three di†usion
models : For lower momenta, p \ 1, model K1 uses i

l, 1 \
model K2, and model K3,p/J2 ; i

l, 2\ p1.5/J2 ; i
l, 3 \

p2/(p2] 1)1@2. All three models use the Bohm-type di†usion
at higher momenta, that is, for p º 1,i

h
\ p2/(p2] 1)1@2

and so continuously matches at p \ 1. The gridil i
hspacing for the base grid is *x(0)\ 0.05, 0.025, and 0.005 for

models K1, K2, and K3, respectively. The maximum reÐne-
ment level is 7, and 7 for models K1, K2, and K3,lmax\ 4,
respectively. These parameters are chosen so that the grid
spacing at the Ðnest grid is Ðne enough to treat the low-
momentum particles near with the assumed di†usionp1model. While model K1 was integrated for t \ 100 and
model K2 for t \ 60, model K3 is integrated only up to
t \ 20 because of a much longer required computing time.

Figure 8 shows the gas density, the CR pressure, and the
CR distribution function at the shock for the M \ 20 shock
at t \ 20 simulated with the three di†erent i(p) (K1 : solid
line ; K2 : dotted line ; K3 : dashed line). Model K3 has the
smallest while model K1 has the largest forDdiff(p), Ddiff(p)
the particles in the injection pool (p D 0.01). So the injection
takes place the fastest and the CR pressure increases most
efficiently in model K3 during the early evolution. Accord-
ing to earlier evolution (not shown), the time evolution of
these three models di†ers signiÐcantly when the maximum
accelerated momentum is still nonrelativistic (pmax > 1).
At t \ 20, however, and mildly relativistic par-pmax D 2,
ticles dominate the CR pressure, so the di†erent di†usion
models at nonrelativistic momenta no longer play a signiÐ-
cant role. At this time all three models evolve in a similar
way, since the same is used for all models when p [ 1.i

hModels K2 and K3, especially, show very similar evolution
up to this time. Subsequent development of the shocks is
almost independent of the form for The bottom right-i

l
.

hand panel shows the CR distribution at the shock at t \ 60
in models K1 and K2 (K3 was ended at t \ 20), demon-
strating the very similar CR distribution evolution in
models K1 and K2 at later times. Considering the earlier
trend that models K2 and K3 are already very similar at
t \ 20, we can deduce that all three models evolve the same
way when becomes much larger than one. This impliespmaxthat i P p can be used instead of as long as the detailediBevolution at the early stage when the particles are still
mostly nonrelativistic is not taken seriously. Simulations
with the i(p) P p model allow much coarser grid spacings
to follow the lowest momentum particles than those spac-
ings with a Bohm-type di†usion, which reduces the required
level of reÐnements and the associated costs. The same set
of simulations were repeated for M \ 10 and M \ 5 shocks,
and we came to the same conclusion (see Fig. 9 for results
from the Mach 10 simulation). This validates the notion
that i(p) P p can be used instead of in the CR/iBhydrosimulation of supernova remnants (Berezhko et al.
1995 ; Berezhko & 2000).Vo� lk

We also ran a model with a pure power-lawÈtype di†u-
sion model, that is, i \ p for all momenta until t \ 104, to
study the long-term evolution. For this simulation, the com-
putational domain is increased to [[4000,]4000], the
zone number in the base grid to N \ 40,000, and the
maximum reÐnement level to Figure 10 showslmax\ 6.
the shock structure, the CR distribution at the shock, and
its power-law slope, q \ [(L ln f/L ln p), at t \ 200, 800,
2 ] 103, 5 ] 103, and 104. The CR pressure at the shock
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FIG. 7.ÈTime evolution of the shock structure and the distribution function g \ fp4 at the shock for models B (dashed line) and C (solid line). The shock
moves to the left, so the right-hand plots correspond to the earliest time t \ 20 in the gas density and CR pressure plots.

seems to have reached a quasi-steady state value at t [ 200,
even though the maximum momentum continues to
increase with time. The compression ratio at the subshock is

at t \ 103, which leads to the test particle slope ofr
s
D 3.1

q D 4.5. So the particle distribution near the injection pool
reÑects this slope. Although the CR pressure at the shock
stays more or less constant after t \ 200, and the total
shock jump does also, the precursor and its associated
velocity structure broadens with time. Thus, since i(p) does
not change over time in this idealized simulation, the par-

ticles of a given momentum sample a smaller velocity jump,
*u(p), around the shock, as the precursor broadens,
resulting in a slightly steeper slope. On the other hand, the
highest momentum particles sample something close to the
full velocity jump on their di†usion scales, so the slope
Ñattens gradually to q D 3.2 toward which corre-pmax,sponds to the total compression ratio, ThisrtotD 11È12.
hardening of the CR distribution from q D 4.5 to 3.2 pro-
duces concave curves in the log (g \ fp4) versus log p plot.
This illustrates the importance of following correctly the
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FIG. 8.ÈComparison of the M \ 20 shock structure at t \ 20 for models K1 (solid line), K2 (dotted line), and K3 (dashed line) with di†erent di†usion
coefficients (top). Comparison of the distribution function g \ fp4 at the shock at t \ 20 for models K1, K2, and K3 (bottom left) and at t \ 60 for models K1
and K2 (bottom right).

nonlinear feedbacks between the CRs and the dynamics
inside the precursor, which requires one to resolve numeri-
cally all relevant scales.

Finally, Figure 11 shows how the postshock gas tem-
perature decreases as the CR pressure becomes dominant in
the precursor and how the injection parameter settles down
to a constant value at g D 6 ] 10~4 after the shock has
reached a quasi-steady state. The injection parameter g is
deÐned in Kang & Jones (1995) and represents the fraction
of the incident proton Ñux that is injected into the CR

population at the shock. We also plot the adiabatic index of
the CR population at the shock, which also settles down to
a constant value at The injection parameter andc

c
D 1.37.

the CR adiabatic index along with the mean di†usion coeffi-
cient are three free parameters for the so-called two-Ñuid
model for the CR modiÐed shock simulations.

4. SUMMARY

We have developed a new CR/hydro code that is speciÐ-
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FIG. 9.ÈSame as Fig. 8 except that the Mach number is 10

cally designed to solve the time-dependent evolution of CR
shocks. Di†usive shock acceleration of the CR particles
depends on the di†usion of particles whose momenta span
many orders of magnitude. Since the length and timescales
for evolution of the CR kinetic equation scale directly with
the di†usion coefficient, an accurate solution to the problem
requires that one include all of those scales in the simula-
tion, beginning just outside the gas subshock thickness.
Thus, in order to follow accurately the evolution of a CR
modiÐed shock, it is necessary to resolve the precursor

structure upstream of the subshock and, at the same time, to
solve correctly the di†usion of the low-energy particles near
the injection pool. These low-energy particles have di†usion
lengths that are much smaller than the scale length of the
precursor, so a large dynamic range of resolved scales is
required for CR shock simulations. To solve this problem
generally we have successfully combined a powerful AMR
technique (Berger & Colella 1989 ; Berger & LeVeque 1998)
and a ““ shock-tracking ÏÏ technique (LeVeque & Shyue 1995)
and implemented them into a CR/hydro code based on the
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FIG. 10.ÈTime evolution of the Ñow velocity and the CR pressure for the M \ 20 shock with i(p)P p for all momenta. Also shown is the CR distribution
function g at the shock and its power slope q \ [L ln f/L ln p. The shock moves to the left, so the right-hand plots correspond to the earliest time t \ 200 in
the Ñow velocity and CR pressure plots.

wave propagation method (LeVeque 1997). The AMR tech-
nique allows us to ““ zoom in ÏÏ inside the precursor structure
with a hierarchy of small, reÐned grid levels applied around
the shock. The shock-tracking technique tracks hydrody-
namical shocks and maintains them as true discontinuities,
thus allowing us to reÐne the region around the shock at an
arbitrary level. The result is an enormous savings in both
computational time and data storage over what would be
required to solve the problem using more traditional
methods on a single Ðne grid.

The code has been applied to simulations of CR modiÐed

shocks with several di†usion coefficient models with strong
momentum dependence, which were not possible previously
because of severe computational requirements. The main
conclusions from the simulations can be summarized as
follows :

1. Our CR/AMR technique code proves to be very cost
e†ective. In typical simulations where 10% of the base grid
is reÐned with levels, for example, the computing timelmaxincreases by factors of compared to the case of no(2lmax)0.7,
reÐnement It should be compared with the time(lmax \ 0).
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FIG. 11.ÈTime evolution of the postshock shock temperature, injection
rate, and the adiabatic index of the CRs at the shock from the same
simulation shown in Fig. 10.

increases by factors of for the simulations of an(2lmax)2
uniform grid spacing that matches the cell size at the lmax-threÐned level grid. In a simulation where the precursor scale
is only a small fraction of the computational domain, the
advantage in computing time of the reÐned multilevel grid
over a single Ðne grid becomes even greater.

2. A convergence test is performed for a Mach 20 gas
shock with which evolves into a CR pressureV

s
/c\ 0.01,

dominated shock. Comparison between a simulation on a
coarse grid with multilevel reÐnement and another simula-
tion on a single Ðne grid without reÐnement has demon-
strated that our CR/AMR code can perform the intended
simulation with reasonable accuracy at a much shorter
computing time. The di†erence in the CR pressure in two
test simulations is around 10% in early evolution but
deceases to a few percent after the shock has reached a
quasi-steady state in later evolution. The required comput-

ing time is reduced by a factor of 150 in the AMR simula-
tion.

3. We also carried out a set of simulations when three
di†erent di†usion models, and p2/il\ p/J2, p1.5/J2,
(p2] 1)1@2 for p \ 1, are included, while a Bohm-type i

h
\

p2/(p2] 1)1@2 is assumed for p º 1. Three simulations gen-
erate similar results once the CR pressure is dominated by
the relativistic particles (p [ 1), when the maximum acceler-
ation momentum becomes Thus, a di†usionpmax? 1.
model of i P p can be used instead of a Bohm model as
long as one does not focus on the early evolution when

Since we can use much larger grid spacings inpmax\ 1.
simulations with the i P p model than those with a Bohm-
type di†usion at low momenta p > 1, the required level of
reÐnements, and thus the computing resources, can be
reduced greatly.

4. For a Mach 20 shock, with an injection rate of
g D 6 ] 10~4, the shock becomes CR-dominated and
develops a signiÐcant precursor. Since the Ñow is deceler-
ated gradually through the precursor, the velocity jump
that the CR particles sample across the shock depends on
the di†usion length of the particle, that is, *u(p) \ fcn[i(p)].
So the slope of the particle distribution function, deÐned as
q(p) \ [(L ln f/L ln p), increases with p. In the simulated
shock, the compression ratios across the subshock and
across the total transition are 3.1 and 11, respectively, so
f (p) is P p~4.5 at low-energy momenta but Ñattens to
f (p) P p~3.3 at high-energy momenta just below Thispmax.demonstrates that nonlinear feedbacks between the precur-
sor dynamics and the CR injection and acceleration should
be treated accurately in numerical simulations of CR
shocks.

We are currently implementing a numerical scheme for
the self-consistent injection model by Gieseler et al. (2000),
which is based on the plasma-physics study of the nonlinear
wave-particle interactions in shocks presented by Malkov
(1998). This will allow us to eliminate any free parameters
for the injection process from the CR shock simulations. We
intend also to extend the code to treat spherical shocks in
order to study CR acceleration in supernova remnants.
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