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ABSTRACT
To determine the equation of state of the universe, we propose to use a new independent variable

where and are the present Hubble parameter and the luminosity dis-R4 (H0/c)[dL
(z)/(1 ] z)], H0 d

L
(z)

tance, respectively. For the Ñat universe suggested by the observation of the anisotropy of cosmic micro-
wave backgrounds, the density and the pressure are expressed as ando/o0\ 4(df/dR)2/f 6 p/o0\
[4/3(d2f/dR2)/f 5, where is the present density and f (R) \ 1/[1] z(R)]1@2. In the (R, f ) plane the signo0as well as the strength of the pressure is in proportion to the curvature of the curve f (R). We propose to
adopt a Pade-like expression of f (R)\ 1/u1@2 with For the Ñat " models, the expan-u 4 1 ] £

n/1N u
n
Rn.

sion up to N \ 7 has at most an error less than 0.2% for z\ 1.7 and any value of ". We also propose a
general method to determine the equation of state of the universe that has N [ 1 free parameters. If the
number of parameters are smaller than N [ 1, there is a consistency check of the equation of state so
that we may conÐrm or refute each model.
Subject headings : cosmology : theory È dark matter È distance scale

1. INTRODUCTION

Recent measurements of the luminosity distance using Type Ia supernovae (Riess et al. 1998 ; Schmidt et al. 1998 ;d
L
(z)

Perlmutter et al. 1999) suggest that accurate may be obtained in the near future. SNAP1 especially will give us thed
L
(z)

luminosity distance of D2000 Type Ia supernovae with an accuracy of a few percent up to zD 1.7 every year. On the other
hand, from the observation of the Ðrst Doppler peak of the anisotropy of the cosmic microwave background, it is now
suggested that the universe is Ñat (de Bernardis et al. 2000 ; Lange et al. 2000), which may be proved in the future by the
Microwave Anistropy Probe and Planck satellite. If the Ñat universe case is correct, the density o(z) and the pressure p(z) in
principle can be determined only from (Nakamura & Chiba 1999), so that the equation of the state of the universe isd

L
(z)

uniquely determined. If not, the determination of the present curvature of the universe and the determination of o(z) and p(z)
will be coupled in general (Nakamura & Chiba 1999).

Now let us assume that the universe is Ñat. Even in this case at least two problems exist : (1) How to express the continuous
function which is accurate enough from z\ 0 to zD 1.7, using several free parameters. (2) How to obtain accurate o(z)d

L
(z),

and p(z) from that is, the equation of state of the universe (Starobinsky 1998 ; Huterer & Turner 1999 ; Nakamura &d
L
(z),

Chiba 1999 ; Chiba & Nakamura 2000 ; Saini et al. 2000).
In this paper, we propose to use a new independent variable instead of z, where is the presentR4 (H0/c)[dL

(z)/(1 ] z)] H0Hubble parameter. We show that and where is the present density ando(R)/o0\ 4(df/dR)2/f 6 p(R)/o0\[4/3(d2f/dR2)/f 5, o0f (R)\ 1/[1] z(R)]1@2. This means that the pressure is in proportion to the curvature of the curve f (R). For an accurate
expression of f (R), we propose a Pade-like form of f (R) \ 1/u1@2 with For the Ñat " model, the expansionu 4 1 ] £

n/1N u
n
Rn.

up to N \ 7 has at most an error less than 0.2% for z\ 1.7 and all values of ". We also propose a general method to
determine the equation of state of the universe that has fewer than N [ 1 free parameters.

2. NEW VARIABLES

The luminosity distance is given by with where H(z) and are the Hubbled
L
(z) d

L
(z)\ a0(1 ] z) f (s), s \ 1/a0 /0z dz@/H(z@), a0parameter at z and the present scale factor, respectively, and f (s) \ s, sinh s, and sin s for a Ñat, open, and closed universe,

respectively. Let us deÐne where is the present Hubble parameter. Then o(z) and p(z) areR\ (H0/c)[dL(z)/(1 ] z)], H0expressed as

o(z)
o0

\ 1
(dR/dz)2 ]

C
(1] z)2[ R2

(dR/dz)2
D
H02)

k0 ,

3p(z)
o0

\ [ 3
(dR/dz)2] (1] z)

d
dz
C 1
(dR/dz)2

D
[
G
(1] z)2[ 3R2

(dR/dz)2] (1] z)
d
dz
C R2
(dR/dz)2

DH
H02)

k0 , (1)

1 Supernova/Acceleration Probe at http ://snap.lbl.gov.
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where is the present density and (Nakamura & Chiba 1999). Since the Ñat universe is suggested from botho0 )
k0 4 k/(a02H02)observations (de Bernardis et al. 2000 ; Lange et al. 2000) and theory (inÑation paradigm), we consider only the case in)

k0 \ 0
this paper.

Now we adopt R as an independent variable instead of z. Then o(R) and p(R) are expressed as ando(R)/o0 \ 4(df/dR)2f ~6
where f (R)\ 1/[1 ] z(R)]1@2. These expressions of o(R) and p(R) have quite interesting physicalp(R)/o0\ [4/3(d2f/dR2) f ~5,

meanings. The density is in proportion to the square of the Ðrst derivative of f with respect to the new independent variable R,
while the pressure is in proportion to the second derivative of f, that is, the curvature. Therefore, if the pressure is zero, f (R) is
the straight line, while the negative pressure corresponds to the positive curvature of the curve f (R) in the (R, f ) plane. This is
completely in contrast to the [z, plane, where as far as o [ 3p, the curve has the positive curvature. Therefore, ind

L
(z)] d

L
(z)

the [z, plane it is difficult to distinguish by eye if the pressure is negative or not. However, in the (R, f ) plane it is quited
L
(z)]

easy to distinguish the sign of the curvature of the curve so that the negative pressure can be identiÐed by eye. To demonstrate
this we show in Figure 1 the data from the Supernova Cosmology Project (Perlmutter et al. 1999) in the (R, f ) plane.2
Although the error bar is considerably large, a glance shows that the curvature is positive.

The Ðrst way to analyze the data quantitatively is to expand f in a power series of R as where aref (R) \ 1 ] £
n/1N f

n
Rn, f

nconstants. We did this expansion with N \ 4 for the data from the Supernova Cosmology Project (Perlmutter et al. 1999) and
obtained3 and Therefore, the apparent positive curva-f1\ [0.5, f2\ 0.292~0.015`0.018, f3\ [0.257^ 0.034, f4\ 0.046~0.075`0.060.
ture by eye is conÐrmed quantitatively since is positive.4f2

2 Similar analysis may be possible using data from the High-Z Supernova Search (Schmidt et al. 1998). As an example we use only the data from the
Supernova Cosmology Project in this article. This does not mean that other data are not important.

3 In the likelihood analysis, we used the inverse function R\ R(z) by solving the quartic equation.
4 Note here that for the Ñat " model with and z\ 1, which roughly corresponds to the data of the Supernova Cosmology Project (Perlmutter et)

M
\ 0.3

al. 1999), the expansion of f with N \ 4 has an accuracy of 3.6%. Here the accuracy means the relative error of f computed from the expansion (eq. [3]) to the
given f in eq. (2).

FIG. 1.È54 Type Ia supernovae data sets from the Supernova Cosmology Project (Perlmutter et al. 1999) in the (R, f ) plane. The variable f\ 1/(1 ] z)1@2,
and R is a new independent variable deÐned by where and are the present Hubble parameter and the luminosity distance,R4 (H0/c)[dL(z)/(1 ] z)], H0 d

L
(z)

respectively. The dotted line shows the Ñat dust case f \ 1 [ 0.5R. The solid line is given by the likelihood analysis f \ 1/u1@2 and
u \ 1 ] R] 0.084R2] 0.343R3] 0.360R4 with s2\ 47.72 for 54[ 4 \ 50 dof. The long- and short-dashed lines correspond to ^1 p values of andu2, u3,u4.
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To know the convergence property of the expansion of f in a power series of R, let us consider the Ñat " model. In this
model, R is expressed as

R\ 2
P
f

1
df/J)

M
] (1[ )

M
) f 6 , (2)

where is the present density parameter of the dark matter. For N \ 7, the expansion is expressed as)
M

f\ 1 [ 12R] 38(1[ )
M
)R2[ 516(1[ )

M
)R3] 5128(1[ )

M
)(7[ 3)

M
)R4[ 3256(1[ )

M
)(17)

M
[ 21)R5

] 11024(1[ )
M
)[8)

M
] 168(1 [ )

M
) ] 12)

M
(1[ )

M
) ] 63(1[ )

M
)2]R6

[ 114336(1[ )
M
)[8)

M
] 1176(1 [ )

M
) ] 132)

M
(1[ )

M
) ] 1827(1[ )

M
)2]R7 . (3)

However, in this expansion the sign of changes alternately so that the convergence is extremely slow. The accuracy of thef
nexpansion is only 16% for and f\ 0.6, corresponding to z\ 1.77 and R\ 1.13, while for low z, the accuracy is)

M
\ 0.3

better. For example, for and f\ 0.7(R\ 0.79, z\ 1.04), the accuracy is 0.95%.)
M

\ 0.3
The above expansion might not be accurate enough to analyze the data from such projects as SNAP, so we need a

Pade-like approximation in a power-series expansion of f. We adopt the following Pade-like approximation :

f (R)\ 1/Ju , u \ 1 ] ;
n/1

N
u
n
Rn . (4)

For the Ñat " model, R is related to u as

R\
P
1

u
du/J)

M
u3] (1[ )

M
) . (5)

Up to N \ 7, u is expanded as

u \ 1 ] R] 34)M
R2 ] 12)M

R3] 116)M
(2 ] 3)

M
)R4] 316)M

2 R5] 164)M
2 (4] 3)

M
)R6] 1112)M

2 (1] 6)
M
)R7 . (6)

All are positive so that the convergence is very rapid. In reality, for and f \ 0.6(R\ 1.13, u \ 2.77), the relativeu
n

)
M

\ 0.3
error of f is 0.059%. In this expansion the error is the largest for However, even in this case, the error is 0.2% for)

M
\ 1.

f\ 0.6(R\ 0.8, u \ 2.77). Therefore, if accurate values of R for various z are obtained observationally, we may determine
seven parameters, which may be enough to express f (R) in less than 0.1% accuracy.u

n
(n \ 1,2, . . . ,7),

3. EQUATION OF STATE

Let us assume that accurate for n \ 1, . . . , N are obtained from the analysis of observational data. In this section weu
ndiscuss how to determine and conÐrm the equation of state from First, o(R) and p(R) are expressed asu

n
. o(R)/o0 \ (du/dR)2

and respectively. Second, the square of the sound velocity dp/do is expressed asp(R)/o0\ [(du/dR)2] 2u/3(d2u/dR2),
dp
do

\ [ 2
3

] u(d3u/dR3)
3[(du/dR)(d2u/dR2)] . (7)

3.1. One-Parameter Equation of State
The Ñat " model has only one parameter, This parameter is equal to either or so that the identity of)

M
. 4u2/3 2u3will be the consistency check of the " model (see also Chiba & Nakamura 1998). From the data of the)

M
\ 4u2/3 \ 2u3Supernova Cosmology Project (Perlmutter et al. 1999) we obtained andu1\ 1, u2\ 0.084~0.063`0.076, u3 \ 0.343~0.13`0.14, u4\

Therefore, while Note here that for the Ñat " model with and0.360~0.24`0.32. 4u2/3 \ 0.112~0.084`0.101, 2u3\ 0.686~0.26`0.28. )
M

\ 0.3
z\ 1, which roughly corresponds to the data of the Supernova Cosmology Project (Perlmutter et al. 1999), the expansion of u
with N \ 4 has an accuracy of 0.19%. There is another null test of the " model for all R. From equation (5), we can derive

du/dR\ J)
M

u3] (1[ )
M

) , d2u/dR2\ 32)M
u2 , d3u/dR3\ 3)

M
uJ)

M
u3] (1[ )

M
) . (8)

Using these expressions of derivatives, we can easily prove dp/do \ 0 for all u. Therefore, the null test of dp/do in equation (7)
observationally can conÐrm the " model. At present from the above values of and we have dp/do at u \ 1 asu2 u3,which means the present data are not accurate enough to conÐrm the " model.dp/do \ 3.41~5.2`4.7,

3.2. Two-Parameter Equation of State
The Ñat w-cosmology is an example of this class. In w-cosmology the universe contains x-matter with where w is apx \wox,constant. R is expressed as Then derivatives are given byR\ /1u du/[)

M
u3] (1 [ )

M
)u3(1`w)]1@2.

du
dR

\ J)
M

u3] (1[ )
M
)u3(1`w) ,

d2u
dR2\ 3

2
)

M
u2] 3

2
(1] w)(1[ )

M
)u3w`2 ,

d3u
dR3\

C
3)

M
u ] 3

2
(1] w)(3w] 2)(1[ )

M
)u3w`1

D
J)

M
u3] (1[ )

M
)u3(1`w) . (9)
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The constants and are given byu2 u3

u2\ 3)
M

4
] 3(1 ] w)(1[ )

M
)

4
, u3\ )

M
2

] (1] w)(3w] 2)(1[ )
M
)

4
. (10)

The constants and w are determined from and as)
M

u2 u3

)
M

\ 1 [ (4u2[ 3)2
12u3 [ 6 [ 5(4u2[ 3)

, w\ 4u3[ 2
4u2[ 3

[ 5
3

. (11)

Then dp/do should agree with dp/do in equation (7) so that we[\w(1] w)(1[ )
M

)u2`3w/()
M

u2] (1 ] w)(1[ )
M

)u2`3w)]
can conÐrm or refute the w-cosmology.

3.3. General Equation of State
Let us now consider the general case in which w is a function of u in w-cosmology. R is expressed as

R\
P
1

u du

J)
M

u3] (1[ )
M

) exp [q(u)]
, q(u) \

P
1

u 3[1] w(u)]
u

du . (12)

Then derivatives are given by

du
dR

\ J)
M

u3] (1[ )
M

) exp [q(u)] ,

d2u
dR2\ 3

2
)

M
u2] 3

2
(1[ )

M
)
[1] w(u)]

u
exp [q(u)] ,

d3u
dR3\

A
3)

M
u ] 3

2
G[1] w(u)]

u2 [3w(u)] 2]] dw
udu
H
(1[ )

M
) exp [q(u)]

B
J)

M
u3] (1[ )

M
) exp [q(u)] .

The constants and are given byu2 u3

u2\ 3)
M

4
] 3(1 ] w0)(1[ )

M
)

4
, u3\)

M
2

] (1[ )
M

)[(1] w0)(3w0 ] 2)] w1]
4

, (13)

where and Now we have only two equations for three unknown constants and Tow0\ w(1) w1\ dw/du(u \ 1). )
M

, w0, w1.resolve this one may use the expression for However, in the expression of a new unknown constantu4. u4, w2\ d2w/du2
(u \ 1) appears so that we have to make the closure. One way is to determine from other data such as for z[ 3 from)

M
d
L
(z)

the Next Generation Space Telescope (Efstathiou 1999). In this case and are determined asw0 w1 É É É

w0 \ 4u2[ 3)
M

3(1 [ )
M
)
[ 1 , w1\ 4u3 [ 2)

M
[ (1] w0)(3w0] 2) , w2\ É É É (14)

The other case is to assume Then and are determined as a solution to simultaneous nonlinear equations asw2\ 0. )
M

, w0, w1
u2\ u2()M

, w0, w1) , u3\ u3()M
, w0, w1) , u4\ u4()M

, w0, w1) . (15)

In both cases dp/do is given by

dp
do

\w(u)[1] w(u)]] (u/3)w1(1[ )
M
) exp [q(u)]

)
M

u2] (1[ )
M
)[1 ] w(u)/u] exp [q(u)]

, (16)

where As before this dp/do should agree with dp/do in equation (7), which is used to conÐrm or refutew(u)\ w0] w1(u [ 1).
each model. In general, if are determined up to N, the equation of state with can be determinedu

n
w\ w0 ] £

n/1N~1 w
n
(u [ 1)n

in principle.

4. DISCUSSION

Now if x-matter consists of the scalar Ðeld / with the potential V (/), they are related to and asox px
Ad/

dt
B2\ ox ] px , V (/) \ 12(ox [ px) .

Using o(R) and p(R), we have

/[ /0\ 1

J8nG

P
0

RS[3)
M

u ] 2
u

d2u
dR2 dR4 g(R) , (17)

V (/)\ 3H02
J16nG

C
2
Adu
dR
B2[ )

M
u3[ 2u

3
d2u
dR2
D

4 h(R) , (18)
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FIG. 2.È38 Simulated Type Ia supernovae data sets in the (R, f ) plane. See text for how this data is made. The dotted line shows the Ñat dust case
f\ 1 [ 0.5R. The solid line is the result of likelihood analysis of f\ 1/(1 ] R] 0.2240R2] 0.1505R3] 0.0585R4] 0.0187R5] 0.0095R6] 0.0053R7)1@2
with s2\ 36.16 for 38[ 7 \ 31 dof. The dashed line is the theoretical curve of f\ 1/(1 ] R] 0.225R2] 0.15R3] 0.054375R4] 0.016875R5
] 0.0068906R6] 0.00225R7)1@2. Note that error bars are extended by a factor 100.

where is the present value of the scalar Ðeld. From equation (17) we have Then the potential is expressed/0 R\ g~1(/[ /0).as V (/)\ h[g~1(/[ /0)].In ° 3 we assumed that accurate for n \ 1, . . . , N are obtained. We here show an example of the determination of foru
n

u
nn \ 1, . . . , 7. We adopt the redshifts of 38 data sets with z[ 0.17 from Perlmutter et al. (1999). We also adopt the relative error

of R for each data set as Now let us assume that our universe obeys the " model with Then we know theX
i
. )

M
\ 0.3.

theoretical value of for each To simulate the real observation, we set where S is a scale factor. Let usR
i
t z

i
. R

i
\R

i
t(1 ^ SX

i
),

assume that an accurate observation gives us 38 luminosity distances with D0.1% accuracy so that the scale factor S is chosen
to make the relative error of R for 38 data sets be D0.1%.5 We performed the likelihood analysis for this simulated data and
obtained and with s2\ 36.16 for 38[ 7 \ 31u2\ 0.2240, u3\ 0.1505, u4 \ 0.0585, u5\ 0.0187, u6\ 0.0095, u7 \ 0.0053
degrees of freedom (dof ), while theoretical values are u2\ 0.225, u3\ 0.15, u4 \ 0.054375, u5\ 0.016875, u6\ 0.0068906,
and From this, or is obtained, while dp/do \ 0.0052 at u \ 1.u7\ 0.00225. )

M
\ 4/3u2\ 0.29866 )

M
\ 2u3\ 0.3010

Assuming the more general equation of state with we have andw2 \w3 . . . \w7\ 0, )
M

\ 0.31095, w0\ [1.01783,
This suggests that we may conÐrm the " model if such accurate luminosity distances are available. We showw1\ [0.04768.

in Figure 2 the simulated data and the results of the likelihood analysis. Note that error bars are extended by a factor of 100.
The theoretical curve (dashed line) and the observational curve (solid line) are almost indistinguishable.

This work was supported in part by Grants-in-Aid of the ScientiÐc Research of the Ministry of Education, Culture, and
Sports, 11640274 and 09NP0801.

5 This might be possible if the statistical error approaches the systematic error in, for example, the SNAP project.
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