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ABSTRACT
Core collapse in a massive rotating star may halt at subnuclear density if the core contains angular

momentum g cm2 s~1. An aborted collapse can lead to the formation of a rapidly rotatingJ Z 1049
equilibrium object, which, because of its high electron fraction, and high entropy per baryon,Y

e
[ 0.4,

is secularly and dynamically stable. The further evolution of such a ““ Ðzzler ÏÏ is driven byS
b
/k B 1È2,

deleptonization and cooling of the hot, dense material. These processes cause the Ðzzler both to contract
toward neutron star densities and to spin up, driving it toward instability points of the barlike modes.
Using linear stability analyses to study the latter case, we Ðnd that the stability properties of Ðzzlers are
similar to those of Maclaurin spheroids and polytropes despite the nonpolytropic nature and extreme
compressibility of the Ðzzler equation of state. For Ðzzlers with the speciÐc angular momentum distribu-
tion of the Maclaurin spheroids, secular and dynamic barlike instabilities set in at T / oW oB 0.14 and
0.27, respectively, where T is the rotational kinetic energy and W is the gravitational energy of the
Ðzzler, the same limits as found for Maclaurin spheroids. For Ðzzlers in which angular momentum is
more concentrated toward the equator, the secular stability limits drop dramatically. For the most
extreme angular momentum distribution we consider, the secular stability limit for the barlike modes
falls to T / oW oB 0.038, compared with T / oW oB 0.09È0.10 for the most extreme polytropic cases known
previously (Imamura et al.). For Ðxed equation-of-state parameters, the secular and dynamic stability
limits occur at roughly constant mass over the range of typical Ðzzler central densities. Deleptonization
and cooling decrease the limiting masses on timescales shorter than the growth time for secular insta-
bility. Consequently, unless an evolving Ðzzler reaches neutron star densities Ðrst, it will always encoun-
ter dynamic barlike instabilities before secular instabilities have time to grow. Quasi-linear analysis
shows that the angular momentum loss during the early nonlinear evolution of the dynamic barlike
instability is dominated by Newtonian self-interaction gravitational torques rather than by the emission
of gravitational wave (GW) radiation. GW emission may dominate after the initial dynamic evolutionary
phase ends. Nonlinear hydrodynamics simulations with a proper equation of state will be required to
determine the ultimate outcome of such evolutions and to reÐne predictions of GW production by
barlike instabilities.
Subject headings : black hole physics È hydrodynamics È instabilities È stars : rotation È

supernovae : general

1. INTRODUCTION

Stable, stationary, degenerate equilibrium conÐgurations
are possible only for stars with central density o

c
B 104È109

g cm~3 (white dwarfs) and g cm~3 (neutrono
c
B 1014È1015

stars). Nonrotating objects with between those of whiteo
cdwarfs and neutron stars are unstable to radial collapse

because of the low e†ective of their equation of state!
I(EOS) (see Shapiro & Teukolsky 1983). These states can be

stabilized against collapse by rapid rotation (Shapiro &
Lightman 1976 ; Tohline 1984). This possibility gives rise to
the concept of a Ðzzler, the term coined by Gold (1974) to
describe the delayed collapse of material toward neutron
star densities by the formation of a rotating state interme-
diate between white dwarfs and neutron stars. In the mid-
1980s, & Eriguchi (1985) numerically investigatedMu� ller
the properties of Ðzzlers using a cold b-equilibrium EOS.
They found that the range of densities available for Ðzzlers
was restricted. More recently, Hayashi, Eriguchi, & Hash-
imoto (1998, 1999) showed that hot Ðzzlers were stable
against axisymmetric collapse over a much wider range of
densities. Citing stability work by others, Hayashi et al.

noted that hot Ðzzlers are secularly unstable to barlike
modes driven by gravitational radiation reaction (GRR) for
T / oW o[ 0.14, where T is the rotational kinetic energy and
W is the gravitational potential energy of the object. This
leads to the traditional Ðzzler scenario in which collapse
Ðzzles because the relatively slow drain of angular momen-
tum resulting from the GRR-driven secular instability
permits a quasi-static approach to neutron star density and
thereby avoids a supernova event. Here we propose a modi-
Ðed Ðzzler scenario. We argue that the initial Ðzzler that
forms during core collapse is neither secularly nor dynami-
cally unstable to barlike modes and so the approach to
neutron star densities is driven by deleptonization and
cooling of the hot dense material. Deleptonization and
cooling cause the Ðzzler to contract and to spin up, which
may drive it to instability. In this paper, we investigate the
case in which Ðzzlers have enough angular momentum to
encounter a rotational instability point before reaching
neutron star densities. Combining detailed equilibrium
model construction and linear analyses with timescale argu-
ments, we Ðnd that dynamic instabilities rather than secular
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ones play the dominant role in evolving Ðzzlers and that
dynamically unstable Ðzzlers can readily form from rotating
precollapse cores with masses in the expected range,
between 1.25 and 2.05 according to Timmes, Woosley,M

_& Weaver (1996). Dynamic barlike instabilities may be an
unavoidable consequence of core collapse in massive stars
with very rapid rotation.

Interest in Ðzzlers has increased recently because they
may be strong sources of gravitational wave (GW) radi-
ation. It was, in fact, Ðrst conjectured in the 1970s that
collapsing rotating stars could be sources of gravitational
radiation. However, during the early 1990s, the consensus
was that collapsing rotating stars were not efficient sources
of gravitational radiation. Finn & Evans (1990) showed that
a collapsing rotating stellar core would radiate only D10~8
Mc2 in gravitational waves and, consequently, would be
visible by LIGO only within our Galaxy and the Magella-
nic Clouds (Abramovici et al. 1995). Several studies have
reconsidered this issue. For example, Houser (1998) showed
for sti† polytropes with 1.4 and km thatM

_
Req\ 15

unstable bar modes could produce time-integrated GW
luminosities as large as 10~3 Mc2. The GW luminosity and
the waveform are uncertain, however, because it is difficult
to determine the long-term outcome of barlike instabilities
using hydrodynamics simulations (Pickett, Durisen, &
Davis 1996 ; Smith, Houser, & Centrella 1996 ; Houser
1998 ; Imamura, Durisen & Pickett 2000 ; New, Centrella,
& Tohline 2000 ; Shibata, Baumgarte, & Shapiro 2000 ;
Durisen et al. 2000). Given the potential importance of Ðzz-
lers to the next generation of gravitational wave detectors,
further research is needed. This paper presents results on
the secular and dynamic barlike instabilities of hot Ðzzlers.
The linear tools of Toman et al. (1998) are used to determine
stability limits, eigenfunctions, eigenfrequencies, and
growth times, while the quasi-linear technique developed by
Imamura et al. (2000) is used to characterize the early non-
linear evolution of the dynamic instabilities, including an
assessment of gravitational wave production. In a future
paper, we will consider long-term Ðzzler evolution using
nonlinear hydrodynamic simulations and compute the
gravitational radiation produced by unstable Ðzzlers.

The remainder of this paper is organized as follows. The
mathematical models and methods are described in ° 2. The
numerical results are presented in ° 3. Discussions of Ðzzler
evolution and the gravitational wave luminosity of evolving
Ðzzlers are presented in ° 4. Our results are summarized in
° 5.

2. MATHEMATICAL MODELS

2.1. Equilibrium ConÐgurations
The equation of motion in steady state is

(¿ Æ $)¿] 1
o

$P] $'
g
\ 0 , (1)

where P is the pressure, v is the velocity, and is the'
ggravitational potential. The equation of state (EOS) of the

hot, dense stellar material is nonpolytropic ; however, fol-
lowing Hayashi et al. (1998), we assume that it is barotropic.
This eliminates the need for solution of the energy equation
and requires that the object rotate on cylinders (see Tassoul
1978), in other words, and wherevÕ\ )(-)-/ü v– \ v

z
\ 0,

(-, /, z) are cylindrical coordinates about the rotation axis,
the z-axis. To deÐne the pressure, we use the EOS of Latti-

mer & Swesty (1991), which is based on the compressible
liquid drop model of nuclei. For a given nuclear compress-
ibility K, electron fraction and entropy per baryonY

e
, S

b
,

the pressure and temperature are functions of the baryon
number density alone. Using o and P for given K, andY

e
,

we deÐne a barotropic EOS, which we approximateS
b
,

by a series of piecewise polytropic functions, P(o)\
& Eriguchi 1985). The quantitiesK

i
(o)o1`1@ni(o) (Mu� ller

and are deÐned on a grid with spacingK
i
(o) n

i
(o)

Given the piecewise polytropic approx-log (o
i`1/oi

) \ 0.02.
imation, the equation of motion can be integrated to yield

[n
i
(o) ] 1]K

i
(o)o1@ni(o)\ C

i
(o) [ '

g
[ '

c
, (2)

where is a o-dependent integration constant (EriguchiC
i
(o)

& 1991) and the centrifugal potential, is given byMu� ller '
c
,

'
c
(-) \ [

P
0

–)2(-)- d3x . (3)

To determine )(-), and hence we specify the speciÐc'
c
,

angular momentum distribution where is the massh(m
c
), m

ccontained within a cylindrical volume of radius -. Our
choices for are deÐned as follows. The structure of ah(m

c
)

static polytrope with index n@ is calculated. The polytrope is
then imagined to rotate uniformly but remain spherical.
Uniformly rotating, spherical polytropes deÐne a family of

functions parameterized by n@ (Bodenheimer &h(m
c
)

Ostriker 1973). The n@\ 0 is that of a Maclaurinh(m
c
)

spheroid. The distributions peak more stronglyh(m
c
)

toward the equatorial radius of the object for larger n@.
We solve for a unique equilibrium object as follows : (1) n@

and the EOS parameters are speciÐed. (2) The central
density, and the ratio of the polar and equatorial radii,o

c
,

are set. (3) A o(r) distribution and are guessed.R
p
/Req, Req(4) and are calculated using o(r) and (5) Equa-'

g
'

c
h(m

c
).

tion (2) is solved for o(r). (6) The initial o(r) and the new o(r)
are compared. If they are consistent to within some prede-
termined tolerance, the calculation is declared to have con-
verged. If the o(r) distributions are not consistent, new
guesses for o(r) and are made and steps (4)È(6) repeated.ReqThe calculation determines M, and J for the givenReq, o

cand The code for this iterative procedure is basedR
p
/Req.on a version of HachisuÏs (1986) self-consistent Ðeld code.

2.2. Stability Analyses
We consider secular and dynamic nonaxisymmetric

instabilities in modes that are analogs of the Kelvin modes
of incompressible Ñuids (see Chandrasekhar 1969). The
modes have azimuthal dependence exp (^im/), where m is
a constant and / is the azimuthal angle. Secular instabilities
set in when more than one equilibrium conÐguration exists
for a given angular momentum J. One equilibrium state can
evolve to another if the second state has lower total energy
and an appropriate dissipation mechanism exists. Secular
instabilities grow on the dissipation timescale, which is gen-
erally much longer than the dynamic timescale for the
conÐguration. Dynamic instabilities occur when small
perturbations about equilibrium grow spontaneously on a
dynamic timescale.

2.2.1. Secular Instability

Secular instability may be driven by gravitational radi-
ation reaction (GRR) or viscous dissipation. Here we con-
sider GRR-driven modes. Secular instabilities driven by
GRR set in along sequences of equilibrium rotating models
at neutral points where the canonical energy passesE

c
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through zero (Friedman & Schutz 1978). We locate neutral
points using the Lagrangian variational principle developed
by Friedman & Schutz (1978). The canonical energy is

E
c
\ 0.5u2

P
on* Æ n d3x ] 0.5

]
P

n* Æ [T(n)] V(n)] P(n)]d3x , (4)

where u is the oscillation frequency of a mode, n is the
Lagrangian displacement of the perturbation, and

T(n)\ o(¿ Æ V)2n [ o(n Æ V)(¿ Æ $)¿ , (5)
V(n)\ [o$d' , (6)

P(n)\
A$P

o
B
(+$ Æ on)[ $(!P Æ m)[ $(n Æ $P) (7)

(Clement 1979). To Ðnd neutral points (u\ 0) in an inertial
frame, we look for places along a sequence of models where
the rightmost integral in equation (4) changes sign.

We use the prescription for n given in Bardeen et al.
(1977, hereafter BFSS),

n \ (A(-), i[A(-)] B(-)], 0)-m~1 exp (im/) , (8)

where A(-) and B(-) are arbitrary functions. The n are
constrained only by the requirement that the perturbation
conserve circulation on a constant entropy surface. Because
of this, we are free to choose either A(-) or B(-) arbitrarily.
We let

A(-)\ ;
j/1

N
c
j
-j~1 , (9)

where the are arbitrary constants and N \ 7. We Ðnd thec
jbest (and hence best n) through minimization ofc

j
E
c
(u\ 0)

with respect to the (Imamura et al. 1995).c
j

2.2.2. Dynamic Instability

The properties of dynamic instabilities are found by
solving an initial-value problem (IVP) for the evolution
away from equilibrium of linearized perturbations of the
form

o \ o
o
] o1 exp (im/), P\ P

o
] P1 exp (im/) ,

and v
j
\ v

j,o ] v
j,1 exp (im/) (10)

(Toman et al. 1998). Here and are the perturbedo1, P1, v
j,1density, pressure, and velocities, respectively ; j denotes -, /,

and z ; and and are the equilibrium density,o0, P0, v
j,0pressure, and velocity, respectively. The perturbations

depend implicitly on time, and the linearized equations
form a set of partial di†erential equations that describes the
time evolution of the perturbations about equilibrium. The
perturbation equations are complex and solved by convert-
ing each complex equation into a pair of real equations. The
evolution equations are given in the Appendix. We impose
symmetry about the equatorial plane and set andP1, o1,to zero on the surface of the Ðzzler. The continuity ofv
j,1 '

gat the surface of the Ðzzler is guaranteed by imposing
boundary conditions on the potential on the surface of the
cylinder deÐned by the maximum - and z of the computa-
tional grid. The on the surface of the cylinder is found by'

gsolving the integral form for the perturbed '
g
.

The equations with the imposed boundary conditions are
solved as follows. We use grids of square cells with size

in (-, z)-space. The values of and(N–, N
z
)\ (128,64) o1 P1are deÐned at cell centers, and those of at cell vertices.v

j,1

The equations are solved by approximating spatial deriv-
atives with centered Ðnite di†erences. The system of equa-
tions is advanced in time using a Runge-Kutta algorithm.
We integrate for more than 20 central initial rotation
periods (CIRPs) or until a single exponentially growing
global disturbance emerges from imposed random noise.
Growth rates are determined by least-squares Ðts to the
exponential growth portion of the evolution, and eigen-
frequencies are found by least-squares Ðts to the linear por-
tions of the phase evolution. The functional forms of o1, P1,and are the eigenfunction of the most unstable mode. Ifv

j,1exponential growth is not detected after more than 20
CIRPs, the model is deemed dynamically stable to dis-
turbances with the given m-symmetry.

2.3. Torques
Barlike modes can redistribute angular momentum

through internal Newtonian gravitational torques or
through the emission of gravitational wave radiation. We
estimate the Newtonian self-interaction torque of the
barlike mode using the quasi-linear theory of Imamura et
al. (2000). The quasi-linear torque density, integrated over /
and z at time t, is

c(-) \ nmo1'1 sin (/o [ /') , (11)

where and are the phases of and respectively./o /' o1 '1,To calculate the GW torque, we use the linear eigen-
functions and the slow motion quadrupole GRR torque
formula (see Finn & Evans 1990). For rotation about the
z-axis and pure m eigenfunctions, only the torque about the
z-axis is nonzero, which, from here on, we refer to as J0GW.

is given byJ0GW

J0GW\ 2Gu5
5c5 (I

o
2]I12) , (12)

where

I
o
\n

2
P

o1 cos (/o)-3d - dz

and

I1\ [ n
2
P

o1 sin (/o)-3 d- dz . (13)

Calculating is straightforward for the dynamic barJ0GWmodes because the IVP determines the eigenfunction and
eigenvalues automatically. However, for the secularly
unstable modes, it is not as easy. We cannot determine o1and u for secularly unstable bar modes beyond the neutral
points using the technique given in ° 2.2.1. We instead esti-
mate u by evaluating the Lagrangian variational principle
of Lynden-Bell & Ostriker (1967),

iu
P

on* Æ [(¿ Æ $)n ] X Â n]d3x ] E
c
\ 0 , (14)

for trial functions determined by the BFSS constraint equa-
tions using a generalization of the circulation constraint
given in Imamura et al. (1995).

3. NUMERICAL RESULTS

3.1. Equilibrium Sequences
We set K to 180 MeV, and consider entropy per baryon

and 1.5k. We have explored e†ects of electronS
b
\ 0.7k

fractions from 0.15 to 0.4. These and ranges areY
e

Y
e

S
b
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roughly those expected for collapsing stellar cores (see
Strobel, Schaab, & Weigel 2000). The rest of this paper
focuses on because secular and dynamic barlikeY

e
¹ 0.3

instabilities occur only for plausible Ðzzler masses (¹2 M
_

)
at the lower range of In Figure 1 we show theY

e
-values.

e†ective polytropic index

neff \
Ao
P

LP
Lo

[ 1
B~1

(15)

for and 0.3 and EOSs. In terms of theY
e
\ 0.2 S

b
\ 1.5k neff,EOS is somewhat sti†er at most o but is still veryY

e
\ 0.2

compressible. It is interesting to note that is slightly lessneffthan 3 for the EOS for densities between 109 and aY
e
\ 0.2

few times 1012 g cm~3. This makes the e†ective !\ 1
slightly greater than 4/3 ; and so, for Ðzz-] 1/neff Y

e
[ 0.2,

lers in some density ranges are stable against axisymmetric
collapse even when they are not rotating. However, such
states would not be long-lived because of the e†ects of elec-
tron captures and cooling. On the other hand, Ðzzlers with

EOSs have and e†ective !\ 4/3, and soY
e
Z 0.3 neff [ 3

are unstable to radial collapse in the absence of rotation.
The Lattimer & Swesty EOS is uncertain for low tem-
perature and for g cm~3. Beyond nuclearo

c
[ 107È108

density g cm~3), the LS EOS sti†ens to(onucB 2 ] 1014
neff [ 1.

Structure properties for representative Ðzzler models are
given in Tables 1 and 2. The tables also include eigenvalues
for the unstable models. In the next to last column, the
oscillation frequencies u for the unstable barlike modes are
given. The u are found from equation (14) for secular insta-
bility or by Ðtting m\ 2 Fourier phases in the IVP method
for dynamic instability. The pattern period of the m\ 2P

pmode is related to u by The last column in theP
p
\ 4n/u.

tables gives the shorter of the secular and dynamic insta-
bility growth times. For secular instabilities, equation (16)
from ° 3.2 is used. We only give eigenvalues for the secular
modes for because our method becomesT / oW o[ 0.2
increasingly inaccurate beyond the neutral point, T /
oW oB 0.14 (° 3.2). For dynamic instability, Ðts to the expo-
nential growth of dynamically unstable modes in the IVP
method are used.

In Figure 2 we show plots of Ðzzler mass M versus central
density for n@\ 0 and for EOSs with and 0.3 ando

c
Y
e
\ 0.2

FIG. 1.ÈE†ective polytropic indices for the Lattimer-Swesty EOS. The
e†ective polytropic index, is deÐned by Weneff, LP/Lo \ (1 ] 1/neff)(P/o).
show K \ 180 MeV, and (dashed line), and andY

e
\ 0.2 S

b
\ 1.5k Y

e
\ 0.3

(solid line).S
b
\ 1.5k

and 0.7k. Beyond g cm~3, our Newto-S
b
\ 1.5k o

c
B 1014

nian approach becomes increasingly inaccurate because
e†ects of general relativity are increasingly important. The
solid lines are lines of constant total Ðzzler angular momen-
tum, J \ 0, 5 ] 1049, and 2.5] 1050 g cm2 s~1. As dis-
cussed by Hayashi et al., models along sequences with the
same J whose curves in the (M, slope downwardo

c
)-plane

are unstable to axisymmetric collapse. For as illus-Y
e
[ 0.3,

trated in Figure 2a, the curves for nonrotating Ðzzlers slope
downward ; but, for g cm2 s~1, the models areJ Z 1049
stable against axisymmetric collapse because they have J-
constant curves that slope upward. For nonaxisymmetric
perturbations, the dotted lines labeled ““ sec ÏÏ and ““ dyn ÏÏ
mark the onset of the secular and dynamic barlike insta-
bilities, respectively (see ° 3.2). For given EOS and o

c
\

the stability limits are lines of roughly constant M. Asonuc,can be seen by comparing the various panels in Figure 2,
these stability limits are lower for smaller and depend-Y

e
S
b
,

ing more strongly on than on As explained later inY
e

S
b
.

° 4.2, this mass constancy of the stability limits, combined
with their decrease in mass as the Ðzzler deleptonizes
(lowering and cools (lowering has profound conse-Y

e
) S

b
),

quences for Ðzzler evolution.
In Figure 3 we present o(r) structures for n@\ 0 Ðzzlers

near the secular and dynamic barlike stability limits, T /
oW oB 0.14 and 0.27. We show Ðzzlers with andY

e
\ 0.2

and 1014, and 2.51 ] 1014 g cm~3.S
b
\ 1.5k, o

c
\ 1012,

The centers of the g cm~3 models areo
c
\ 2.51] 1014

beyond the transition to the sti† EOS regime. The T /
oW oB 0.14 Ðzzlers have M \ 0.520, 0.497, and 1.24 M

_
.

The T / oW oB 0.27 Ðzzlers have M \ 1.12, 1.07, and 2.61
Other data on the 1012 and 1014 g cm~3 models inM

_
.

Figure 3 are given in Table 2. For the Ðzzlers areo
c
\ onuc,very compressible and, consequently, are strongly centrally

condensed and Ñare as the equatorial radius is approached.
For the Ðzzlers are sti†er and more boxlike ino

c
[ onuc,shape. However, where o is small, they still Ñare strongly

and thus di†er from pure sti† polytropes (see, for instance,
Pickett et al. 1996).

Only Ðzzler models are illustrated in Figure 3Y
e
\ 0.2

because the o(r) structures are qualitatively similar for the
range of we consider. On the other hand, the o(r) struc-Y

etures can vary dramatically with n@. Equilibrium properties
for and n@\ 3 Ðzzlers are given in TableY

e
\ 0.3 S

b
/k \ 1.5,

3. In Figure 4a we show g cm~3, n@\ 3 Ðzzlerso
c
\ 1014

with T / oW o\ 0.0359 and 0.132. The T / oW o\ 0.0359
model is just below the secular stability limit (see ° 3.2). The
high-T / oW o Ðzzler has a compact central core and an
extensive low-density envelope. To illustrate how radically
di†erent Ðzzlers can be owing to their angular momentum
distributions alone, Figure 4b shows the g cm~3,o

c
\ 1014

n@\ 0 Ðzzler with T / oW o\ 0.142 from Table 1 for the
same EOS. Looking at the Table 1 and 3 entries, we see that
about 30% more angular momentum is required to support
7% less mass at the same when n@\ 3 rather than zero.o

cThe structural di†erences can be seen by comparing the
rightmost panels of Figure 4a with Figure 4b. The n@\ 3
model is far more distorted and has much more severe dif-
ferential rotation.

3.2. Stability Results
For n@\ 0 and g cm~3, the neutral pointso

c
\ 1010È1014

for the GRR-driven modes fall at T / oW o\ 0.13È0.15, 0.10È
0.11, and 0.08È0.09 for m\ 2, 3, and 4, respectively. The
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TABLE 1

EQUILIBRIUM MODELS AND BAR MODE EIGENVALUES : n@\ 0Y
e
\ 0.3, S

b
\ 1.5k,

M J CIRP Req u q
g

T / oW o (M
_

) (g cm2 s~1) (ms) (km) (s~1) (ms)

o \ 1012 g cm~3

0.146 . . . . . . 1.08 2.91] 1049 23.9 395 2.8 2.2 ] 1015
0.176 . . . . . . 1.26 4.32] 1049 22.9 440 28 1.3 ] 1010
0.212 . . . . . . 1.55 7.11] 1049 22.3 508 45 1.4 ] 109
0.257 . . . . . . 2.11 1.40] 1050 22.1 625 . . . . . .
0.270 . . . . . . 2.34 1.74] 1050 22.2 669 . . . . . .
0.284 . . . . . . 2.62 2.22] 1050 22.3 722 148 53.8
0.299 . . . . . . 3.00 2.92] 1050 22.5 788 162 38.0
0.315 . . . . . . 3.51 4.02] 1050 22.8 873 175 29.4
0.323 . . . . . . 3.81 4.80] 1050 23.0 926 181 26.5

o \ 1013 g cm~3

0.146 . . . . . . 1.05 1.90] 1049 7.56 182 8.8 1.1 ] 1014
0.176 . . . . . . 1.22 2.82] 1049 7.25 203 86 6.7 ] 108
0.212 . . . . . . 1.51 4.64] 1049 7.05 234 170 7.0 ] 106
0.257 . . . . . . 2.05 9.17] 1049 7.00 288 . . . . . .
0.270 . . . . . . 2.27 1.14] 1050 7.02 308 . . . . . .
0.284 . . . . . . 2.55 1.45] 1050 7.05 332 464 17.3
0.299 . . . . . . 2.92 1.91] 1050 7.11 363 507 12.4
0.315 . . . . . . 3.41 2.62] 1050 7.21 402 548 9.56
0.324 . . . . . . 3.71 3.14] 1050 7.26 426 569 8.60

o \ 1014 g cm~3

0.142 . . . . . . 0.953 1.10] 1049 2.41 86.0 11 . . .
0.172 . . . . . . 1.11 1.63] 1049 2.31 95.4 220 9.1 ] 107
0.208 . . . . . . 1.37 2.68] 1049 2.24 110 470 9.3 ] 105
0.253 . . . . . . 1.86 5.29] 1049 2.22 135 . . . . . .
0.266 . . . . . . 2.05 6.56] 1049 2.22 144 . . . . . .
0.280 . . . . . . 2.30 8.36] 1049 2.23 155 1,390 6.60
0.295 . . . . . . 2.63 1.10] 1050 2.25 169 1,540 4.51
0.312 . . . . . . 3.08 1.51] 1050 2.28 187 1,670 3.38
0.329 . . . . . . 3.69 2.21] 1050 2.31 211 1,820 2.69

T / oW o Ïs for the neutral points depend only weakly upon o
cand EOS. They are, however, very sensitive to Forh(m

c
).

n@\ 3 Ðzzlers and andY
e
\ 0.2È0.3, S

b
\ 1.5k, o

c
\ 1013

and 1014 g cm~3, the neutral points, drop to T /
oW o\ 0.037È0.038, 0.020È0.021, and 0.013 for m\ 2, 3,
and 4, respectively. This is the same tendency found for
polytropes by Imamura et al. (1995). Although there is some
concern about the severe distortions in n@\ 3 models at
high T / oW o , the left-hand panels of Figure 4a indicate that
the models have reasonably well-behaved structures for the
low T / oW o -values near the secular stability limits. So our
neutral point location algorithm should be giving accurate
results, and the dramatic reduction of the secular stability
limit for n@\ 3 is probably real.

The growth time for the GRR-driven secular instability is

qGRRB
2E

c
/)

p
o J0GW o

. (16)

increases strongly with m. If the viscous torque is com-qGRRparable to or dominates the GRR torque, viscosity
increases and acts to damp the GRR-driven secularqGRRinstability (Lindblom & Detweiler 1977). The viscous
torque timescale decreases with increasing m, and so high-m
GRR-driven modes are easily damped by viscosity (Ipser &
Lindblom 1991). Here we therefore use the m\ 2 mode to
deÐne the secular stability limit. For the n@\ 0o

c
\ onuc,barlike secular stability limits fall at D0.5, 1, and 1.6È1.7

for 0.3, and 0.4, respectively. Above allM
_

Y
e
\ 0.2, onuc,stability limits rise steeply in M.

The dynamic stability limit for n@¹ 1.5 for the barlike
modes falls near T / oW o\ 0.27, similar to the limit found
for polytropes (Pickett et al. 1996 ; Toman et al. 1998). For
numerical reasons, we are able to generate models for n@Z 2
with rotation rapid enough to excite the dynamic insta-
bility. This is why Table 3 for n@\ 3 ends with T /
oW o\ 0.132. Dynamic instabilities for mº 3 modes set in
for higher T / oW o than the m\ 2 barlike mode and are not
considered here (see Toman et al. 1998). For Ðzzlers, the bar
mode dynamic stability limit falls at D2 forM

_
Y
e
\ 0.3

and D1 for when Above the MM
_

Y
e
\ 0.2 o

c
\ onuc. onuc,limits increase strongly with for all ando

c
Y
e

S
b
.

The Ñatness and level of the secular and dynamic M-o
stability curves can be understood analytically. Over the
Ðzzler density range, !B 4/3 and so one expects that the
mass of a nonrotating Ðzzler will be approximatelyMnrconstant as a function of o. Second, using the virial theorem
for !\ 4/3 together with approximate homology assump-
tions, one gets for the Ðzzler mass

M B Mnr(1[ 2T / oW o )~3@2 \Mnr f . (17)

For T / oW o\ 0.14, f \ 1.637 and for T / oW o\ 0.27,
f \ 3.205. For g cm~3 in Figure 2a,o

c
\ 1010 MnrB 0.65

Using the values of f above, we estimateM
_

. Msec B 1.06
for the secular stability limiting mass andM

_
MdynB 2.08
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TABLE 2

EQUILIBRIUM MODELS AND BAR MODE EIGENVALUES : n@\ 0Y
e
\ 0.2, S

b
\ 1.5k,

M J CIRP Req u q
g

T / oW o (M
_

) (g cm2 s~1) (ms) (km) (s~1) (ms)

o \ 1012 g cm~3

0.148 . . . . . . 0.520 8.66] 1048 23.8 278 5.6 2.6 ] 1014
0.194 . . . . . . 0.664 1.59] 1049 22.5 329 44 3.3 ] 109
0.222 . . . . . . 0.788 2.36] 1049 22.2 370 63 2.3 ] 108
0.255 . . . . . . 0.987 3.86] 1049 22.1 432 . . . . . .
0.272 . . . . . . 1.12 5.11] 1049 22.2 479 . . . . . .
0.293 . . . . . . 1.35 7.45] 1049 22.4 533 159 39.8
0.330 . . . . . . 1.94 1.58] 1050 23.1 693 188 23.7
0.340 . . . . . . 2.18 1.97] 1050 23.4 735 195 21.6

o \1013 g cm~3

0.141 . . . . . . 0.519 5.72] 1048 7.64 129 4.0 . . .
0.185 . . . . . . 0.652 1.02] 1049 7.19 151 110 4.8 ] 108
0.222 . . . . . . 0.811 1.69] 1049 7.03 176 200 1.1 ] 107
0.272 . . . . . . 1.16 3.71] 1049 7.04 226 . . . . . .
0.292 . . . . . . 1.39 5.34] 1049 7.10 253 491 13.3
0.322 . . . . . . 1.86 9.67] 1049 7.26 307 565 8.52
0.330 . . . . . . 2.01 1.14] 1050 7.31 327 584 7.83

o \1014 g cm~3

0.142 . . . . . . 0.497 3.69] 1048 2.41 63.9 16 . . .
0.187 . . . . . . 0.631 6.73] 1048 2.27 75.2 340 2.4 ] 107
0.215 . . . . . . 0.746 9.94] 1048 2.22 84.11 530 1.3 ] 106
0.248 . . . . . . 0.931 1.62] 1049 2.22 97.6 . . . . . .
0.266 . . . . . . 1.07 2.20] 1049 2.22 107 . . . . . .
0.286 . . . . . . 1.26 3.13] 1049 2.23 120 1,470 5.38
0.318 . . . . . . 1.71 5.76] 1049 2.28 145 1,750 3.04
0.334 . . . . . . 2.05 8.27] 1049 2.32 164 1,890 2.49

for the dynamic stability limiting mass, in good agree-M
_ment with the values in Figure 2a. Equation (17), when

applied to white dwarfs, also reproduces the secular and
dynamic upper mass limits given in Durisen (1977).

In Imamura et al. (2000), we demonstrated that the quasi-
linear analysis of ° 2.3 does an excellent job of predicting the
early nonlinear behavior of dynamically unstable barlike
models, including the maximum amplitude attained during
nonlinear growth and the fraction of the initial mass con-
tained in the central barlike region. Tables 4 and 5 contain
results of applying quasi-linear analyses to the dynamically

TABLE 3

EQUILIBRIUM MODELS : n@\ 3, FORY
e
\ 0.3, S

b
\ 1.5k,

o \ 1014 G CM ~3

M J CIRP Req
T / oW o (M

_
) (g cm2 s~1) (ms) (km)

0.000 . . . . . . . 0.552 0 0 59.1
0.0119 . . . . . . 0.573 1.26] 1048 12.0 73.6
0.0225 . . . . . . 0.593 1.91] 1048 8.75 94.0
0.0359 . . . . . . 0.622 2.72] 1048 6.91 134
0.0454 . . . . . . 0.643 3.34] 1048 6.10 172
0.0600 . . . . . . 0.679 4.41] 1048 5.22 245
0.0712 . . . . . . 0.710 5.38] 1048 4.71 315
0.0883 . . . . . . 0.760 7.14] 1048 4.07 445
0.0964 . . . . . . 0.784 8.12] 1048 3.81 519
0.106 . . . . . . . 0.816 9.48] 1048 3.49 626
0.118 . . . . . . . 0.854 1.15] 1049 3.06 793
0.132 . . . . . . . 0.891 1.41] 1049 2.40 1,068

unstable models from Tables 1 and 2. and are theM
b

J
bmass and angular momentum in the central barlike regions,

is the total Newtonian torque over the bar, and is theJ0
b

M
dmass contained in the spiral arms. The angular momentum

transfer (or loss) times andq
b
\J

b
/ o J0

b
o qGW\ J

b
/ o J0GW o

are calculated for normalized such thato1

dM\ / o o1 o d3x
M

\ 1 . (18)

The and scale as dM~2. The choice dM\ 1 gives aq
b

qGWgood estimate for the minimum expected and Theq
b

qGW.
hydrodynamic simulations in Imamura et al. (2000) showed
that for n \ 1.5 and 2.5 polytropes, the amplitude of the
dynamic barlike instability peaks at dMB 1.

Two representative barlike structures for n@\ 0 Ðzzlers
with and are given in Figure 5. We showY

e
\ 0.2 S

b
\ 1.5k

the real parts of o and v in a frame rotating with the bar (eq.
[10]), in the equatorial plane. The amplitude of the linear
eigenfunction is chosen to satisfy equation (18). If this leads
to o \ 0, then o is set to 0. The model in Figure 5a has

g cm~3 and T / oW o\ 0.286, and the one ino
c
\ 1014

Figure 5b has g cm~3 and T / oW o\o
c
\ 2.51 ] 1014

0.303. Figure 5 demonstrates how the bar mode structure
depends on The Ðzzler has a compact bar witho

c
. o

c
\ onucextensive spiral arms, while the Ðzzler has a largero

c
[ onucbar with weaker spiral arms. For the Ðzzler, theo

c
\ onucbar mass the bar angular momen-M

b
\ 0.95 M

_
\ 0.75M,

tum g cm2 s~1\ 0.53J, and the bar equa-J
b
\ 1.65 ] 1049

torial radius km \ 0.32 The NewtonianR
b
\ 39 Req.torque g cm2 s~2, and the GRR torqueJ0

b
\ [7.59] 1050
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FIG. 2a FIG. 2b

relations for rotating objects computed for K \ 180 MeV, and 0.3, and and 1.5k. The results are shown in Fig.FIG. 2.ÈM
c
-o

c
Y
e
\ 0.2 S

b
\ 0.7k Y

e
\ 0.3

2a, and the results are shown in Fig. 2b. The solid lines are for J \ 0 (““ 0 ÏÏ), 1049 g cm2 s~1 (““ 1 ÏÏ), 5] 1049 g cm2 s~1 (““ 5 ÏÏ), and 2.5] 1050 g cm2 s~1Y
e
\ 0.2

(““ 25 ÏÏ). The dotted lines are for the bar mode secular (sec) and the bar mode dynamic (dyn) stability limits.

g cm2 s~2, roughly 3 orders of magni-J0GW\ [6.30] 1047
tude smaller than the Newtonian torque. For the o

c
[onucÐzzler, g cm2M

b
\ 2.18 M

_
\ 0.85M, J

b
\ 5.28] 1049

s~1\ 0.69J, and km\ 0.43 The NewtonianR
b
\ 28 Req.torque g cm2 s~2, and the GRR torqueJ0

b
\ [3.11] 1051

g cm2 s~2. Although is stillJ0GW\ [5.35] 1049 J0GW >J0
b
,

it is considerably enhanced relative to for theJ0
b

o
c
[onucÐzzler. Some of the increased relative importance of gravita-

tional radiation is due to the smaller mass fraction of the
spiral arms, but most of it is due to the fact that the higher
density of the second model puts it further into the rela-
tivistic regime.

4. DISCUSSION : FIZZLER EVOLUTION

4.1. Rotating Precollapse Cores
The iron cores of massive stars have in the rangeMcore1.25È2.05 (Timmes et al. 1996) and andM

_
Y
e
D 0.4È0.49

(see Hashimoto 1995). As argued by Hayashi etS
b
/k D 1È2

al. (1998, 1999) and corroborated by our own calculations, if
a core has angular momentum g cm2 s~1, itsJcore Z 1049
collapse is likely to Ðzzle and avoid a supernova outburst
(see also Zwerger & 1997). For comparison, noteMu� ller
that the fastest normal pulsar PSR J0537[6910 (Marshall
et al. 1998) has spin period 16 ms, which, for neutron star
parameters, implies g cm2 s~1. The fastest milli-JPSRD 1048
second pulsars have g cm2 s~1. The fact that theJPSRD 1049
most rapidly spinning pulsars are near the Ðzzler J-
threshold suggests that rotation plays an important role in
their formation. However, for the millisecond pulsars, it is

also possible that their rapid spin is due to the accretion of
mass and angular momentum from a companion star.
Recent work on the quasi-periodic oscillations of soft X-ray
transients implies that two systems contain nearly maxi-
mally rotating black holes (Cui, Zhang, & Chen 1998). The
system for which the most information is available (GRO
J1655[40) consists of a 7 black hole with a low-massM

_stellar companion. The black hole angular momentum
cannot have been acquired by accretion through mass
transfer because the companion mass is too low. It seems
that rotation must have played a role in the collapse that
produced this black hole. Further, observations of the most
rapidly rotating upper main-sequence stars suggest that
their central regions could have as large as 1050 g cm2Jcores~1 (Hayashi et al. 1998), well within the regime of inter-
esting Ðzzler phenomena (see Fig. 2).

PreÐzzler cores do not spin rapidly in a dynamical sense,
even for the large required for Ðzzler formation. ForJcoreexample, white dwarf models with M D 1.3 and n@\ 0M

_have for J \ 1049 g cm2 s~1 andT / oW o[ 0.01 T / oW o[
0.07 for J \ 1050 g cm2 s~1. Precollapse cores are thus
supported primarily by relativistically degenerate electrons,
not rotation. Because radiation pressure, electrostatic
e†ects, hot iron nuclei, and the nonzero surface pressure of
the core are not negligible, white dwarfs or pure non-
rotating n \ 3 polytropes serve only as guides to the struc-
tures of the cores. It is clear, however, that the precollapse
cores will be strongly centrally condensed, and so n@\ 0 is
probably not an appropriate choice for If the precol-h(m

c
).

lapse core is in uniform rotation, we expect the Ðzzler that
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FIG. 3.ÈComparison of the equilibrium structures for Ðzzlers calculated with n@\ 0 and EOS parameters and K \ 180 MeV. TheY
e
\ 0.2, S

b
\ 1.5k,

left-hand panels are for T / oW oB 0.14, and the right-hand panels are for T / oW oB 0.27, the approximate secular stability and dynamic stability limits. The
top row of models is for g cm~3. The middle row of models is for g cm~3. The bottom row of models is for g cm~3. Theo

c
\ 1012 o

c
\ 1014 o

c
\ 2.51] 1014

contour levels are set to 0.1, 0.01, 0.001, 10~4, 10~5, 10~6, and 10~7. For T / oW oB 0.14, the models have mass M \ 0.520, 0.497, and 1.24o/o
c
\ 0.9, M

_
;

and J \ 8.66] 1048, 3.69] 1048, and 1.22] 1049 g cm2 s~1 for 1014, and 2.51] 1014 g cm~3. For T / oW oB 0.27, the models have M \ 1.12,o
c
\ 1012,

1.07, and 2.61 and J \ 5.11] 1049, 2.20] 1049, and 6.71 ] 1049 g cm2 s~1 for 1014, and 2.51 ] 1014 g cm~3.M
_

; o
c
\ 1012,

forms during the prompt initial collapse of the relatively
uniform inner core to have an resembling n@\ 0.h(m

c
)

However, as the outer core and inner mantle accrete onto
the central core, the overall should become more likeh(m

c
)

n@\ 3.
The value of n@ strongly a†ects the secular stability limits.

However, we argue later that secular instability does not
play a large role in early Ðzzler evolution and so this does
not change most of our conclusions. The dynamic stability
limit does not depend on n@ for n@¹ 1.5 (Toman et al. 1998) ;
but, at present, we have little reliable information about the
dynamic stability properties of stellar models for anyn@ Z 2
EOS. The dynamic stability limit may drop as n@ increases
(Pickett et al. 1996). This would a†ect our quantitative con-
clusions ; but, for the rest of this discussion, we assume that
n@\ 0 models demonstrate the qualitatively correct Ðzzler
evolutionary behavior.

4.2. Rotating Core Collapse

The collapse of rotating stellar cores has been investi-
gated by Zwerger & (1997) and Rampp, &Mu� ller Mu� ller,
Ru†ert (1998). They showed that the outcome of rotating
core collapse depends on the angular velocity distribution,
the angular momentum, and e†ective polytropic index of
the collapsing core. However, rotating core collapse is
similar to the nonrotating case. The collapse is again non-
homologous ; the inner core (the central 0.6È0.8 for aM

_typical core) collapses Ðrst, while the outer core, to Ðrst
approximation, remains stationary. The inner core col-
lapses until it either compresses to or becomes centrifu-onucgally supported, whereupon collapse halts and the core
rebounds to an equilibrium conÐguration determined by its
M and J. This rebound occurs without signiÐcant develop-
ment of nonaxisymmetric structure even if the conÐguration
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TABLE 4

BARLIKE MODE PROPERTIES : n@\ 0Y
e
\ 0.3, S

b
\ 1.5k,

M
b

M
d

R
b

J
b

q
b

qGW
T / oW o (M

_
) (M

_
) (km) (g cm2s~1) (ms) (s)

o \ 1012 g cm~3

0.270 . . . . . . . . . . . . . . . . . . . . . .
0.284 . . . . 2.02 0.60 232 1.22] 1050 246 3,580
0.299 . . . . 2.14 0.86 235 1.39] 1050 194 2,740
0.315 . . . . 2.32 1.19 229 1.66] 1050 164 2,257
0.323 . . . . 2.41 1.40 227 1.83] 1050 153 1,910

o \ 1013 g cm~3

0.270 . . . . . . . . . . . . . . . . . . . . . .
0.284 . . . . 1.94 0.61 106 7.98] 1050 77.6 180
0.299 . . . . 2.18 0.74 104 8.88] 1050 62.1 141
0.315 . . . . 2.23 1.16 105 1.06] 1050 52.9 117
0.324 . . . . 2.35 1.46 107 1.26] 1050 49.2 107

o \ 1014 g cm~3

0.266 . . . . . . . . . . . . . . . . . . . . . .
0.280 . . . . 1.78 0.52 50.4 4.71] 1049 27.9 11.9
0.295 . . . . 1.86 0.77 48.2 5.17] 1049 22.1 9.15
0.312 . . . . 1.95 1.11 47.5 6.01] 1049 18.2 7.35
0.329 . . . . 2.12 1.58 48.5 48.5] 1049 15.6 6.10

reaches large values of T / oW o during the collapse (Rampp
et al. 1998). For cores with J [ 1049 g cm2 s~1, collapse is
halted by the centrifugal barrier at subnuclear densities.
During the short time period of collapse and rebound, the

of the inner core material should not decrease dramat-Y
eically below its initial and so it will haveY

e
Z 0.40, neff [ 3.

According to Zwerger & an core will settleMu� ller, neff [ 3
quickly into equilibrium after its rebound. For theyneff \ 3,
found, instead, that Ðzzlers execute large amplitude, weakly

TABLE 5

BARLIKE MODE PROPERTIES : n@\ 0Y
e
\ 0.2, S

b
\ 1.5k,

M
b

M
d

R
b

J
b

q
b

qGW
T / oW o (M

_
) (M

_
) (km) (g cm2s~1) (ms) (s)

o \1012 g cm ~3

0.272 . . . . . . . . . . . . . . . . . . . . . . . .
0.293 . . . . . . 1.02 0.32 180 4.00] 1049 201 9,130
0.330 . . . . . . 1.23 0.71 184 5.98] 1049 143 6,090
0.340 . . . . . . 1.31 0.86 184 6.74] 1049 134 5,640

o \1013 g cm ~3

0.272 . . . . . . . . . . . . . . . . . . . . . . . .
0.292 . . . . . . 1.02 0.36 85 2.85] 1049 74 495
0.322 . . . . . . 1.20 0.65 87 3.48] 1049 48.0 307
0.330 . . . . . . 1.26 0.75 86 4.17] 1049 45.6 288

o \1014 g cm ~3

0.266 . . . . . . . . . . . . . . . . . . . . . . . .
0.286 . . . . . . 0.95 0.32 39.0 1.65] 1048 25.0 30.1
0.318 . . . . . . 1.09 0.62 39.0 2.16] 1049 17.1 19.4
0.334 . . . . . . 1.15 0.89 39.0 2.64] 1049 15.3 16.8

damped oscillations after rebound. According to the Latti-
mer & Swesty EOS, oscillations would only be relevant for
a signiÐcantly deleptonized Ðzzler The equi-(Y

e
[ 0.2).

librium Ðzzler produced by the collapse of the low-mass
inner core will not have T / oW o[ 0.27, because, for Y

e
Z

0.3, the dynamic stability limit for barlike modes occurs
only at Ðzzler masses Z2 M

_
.

Probably the most important result in Zwerger & Mu� ller
is that axisymmetric collapses tend to overshoot the Ðnal
equilibrium and then rebound dynamically. Moreo

csophisticated multidimensional calculations will be
required to determine whether the shocks generated by the

FIG. 5a FIG. 5b

FIG. 5.ÈBar structure for and Ðzzlers with (a) g cm~3, T / oW o\ 0.286, and initial mass and angular momentum M \ 1.26Y
e
\ 0.2 S

b
\ 1.5k o

c
\ 1014

and J \ 3.13] 1049 g cm2 s~1 ; and (b) g cm~3, T / oW o\ 0.303, and initial mass and angular momentum M \ 2.57 andM
_

o
c
\ 2.51 ] 1014 M

_J \ 7.68] 1049 g cm2 s~1. The eigenfunctions are normalized so that dM\ 1. The contours are normalized to and are for levels 0.0001, 0.001, 0.01, 0.03,o
c0.06, 0.1, 0.3, 0.6, 0.9, 0.95, 0.98, and 1. The velocity Ðeld in the frame of the bar is superimposed on the density contours.
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rebound are strong enough to eject some or all of the outer
stellar material and perhaps produce a supernova event. In
the absence of such calculations, we here consider the likely
case that the shocks are not sufficiently strong to prevent
the eventual accretion of the outer part of the precollapse
core. This should occur on the dynamic timescale of the
initial outer core conÐguration (D100 ms for an outer pre-
collapse core with a density o D 109 g cm~3).

During accretion, the Ðzzler may also begin deleptonizing
and cooling. For g cm~3, neutrinos are trappedo

c
Z 1011

in the core and the neutrino di†usion timescale is

qdelepB
Req2
cjabs

\ (5È15)
A o

c
3 ] 1014g cm~3

B
s , (19)

where is the mean free path for neutrino-nucleonjabsabsorption (Prakash et al. 1997). For smaller nucleonso
c
,

are nondegenerate and the coefficient in the expres-qdelepsion goes from (5È15) to 44. The cooling time for Ðzzler
matter is longer than but comparable to (Burrows,qdelepMazurek, & Lattimer 1981). For M \ 1È2 Ðzzlers withM

_between 1012 and 1014 g cm~3, s, and weo
c

qdelepD 0.15È5
expect that deleptonization and cooling e†ects will not be
important during accretion of the outer core except,
perhaps, for very low Ðzzlers (large angular momentumo

ccores).

4.3. Dominance of Dynamic Instability
We have just argued that the EOS is not likely to change

signiÐcantly during the inner core collapse and the accre-
tion of the outer core onto the inner core. So, because Y

e
Z

0.4, the dynamic barlike instability does not play a role until
after accretion because the mass stability limit lies well
above 2 outside the range of plausibleM

_
, Mcore-values.

On the other hand, the secular barlike stability limit falls at
M D 1.6È1.7 So, exceptionally massive Ðzzlers may beM

_
.

susceptible to secular instability during accretion. Whether
this is important or not depends on In Figure 6 weqGRR.plot for Ðzzlers with and 0.3 and forqGRR Y

e
\ 0.2 S

b
\ 1.5k

3.16] 1014, and 3.98 ] 1014 g cm~3. Foro
c
\ 1014, o

c
[

1014 g cm~3, is typically s ; and it is ?100 s forqGRR Z100
much lower (see Tables 1 and 2). We conclude that, foro

cthe entire outer core will accrete before secularo
c
[ onuc,instability has time to set in for any (see also Rampp et al.Y

e1998). Only if can be small enough to allowo
c
Z onuc qGRRsecular instabilities to grow. We would then be dealing with

direct formation of a rapidly rotating, hot, leptonized proto-
neutron star, not a Ðzzler, however. Further, Ðzzlers with

will have kT D 5È10 MeV, and viscosity is veryocÈonucefficient and will likely damp GRR-driven secular insta-
bilities (Ipser & Lindblom 1991). So, not only is the EOS
unlikely to change much during accretion of the outer core,
but the high and long mean that no non-Y

e
qGRRaxisymmetric instabilities will have time to grow.

In preceding sections, when constructing equilibrium
models for rotational stability analyses, we assumed that
there were zero surface stressesÈin other words, that
shocks and accretion e†ects were negligible. The arguments
in the paragraph above show that, in fact, signiÐcant secular
or dynamic instabilities are not likely to occur before the
accretion phase is over. Models with zero surface boundary
conditions should be adequate for that purpose. In a similar
investigation of interstellar cloud collapse (Imamura et al.
2000), we also found that conclusions based on zero surface

FIG. 6.ÈSecular instability growth time for Ðzzlers withqGRR Y
e
\ 0.2

and 0.3, and The curves in each panel are for Ðzzlers withS
b
\ 1.5k.

(dotted line), (0.3,1014) (solid line), (0.2, 3.16] 1014(Y
e
, o

c
)\ (0.2,1014)

(short-dashed line), and (0.3,3.98] 1014) (long-dashed line) g cm~3. The o
care chosen to straddle the line The trial functions used in theo

c
\ onuc.evaluation of are determined as described in ° 2.3.qGRR

boundary condition models agreed reasonably well, both
quantitatively and qualitatively, with three-dimensional
collapse simulations by Bate (1998). So, in our further dis-
cussion, we ignore the accretion phase and assume that a
hot, lepton-rich equilibrium Ðzzler forms which contains all
of the initial We further assume that our modelsMcore.represent the structure of this core with reasonable accuracy
within the constraints of our simpliÐed EOS.

After accretion, the inner region of the equilibrium Ðzzler
has and and the hot accreted envelopeY

e
D 0.4 S

b
/k D 1,

has and (see Strobel et al. 2000). TheY
e
D 0.4 S

b
/k D 4È5

further evolution is then driven by decreases in (cooling)S
band (deleptonization). There are two main consequences :Y

e(1) Study of Figure 2 and Tables 1 and 2 shows that a Ðzzler
that cools and deleptonizes at Ðxed M and J must contract
to higher This is manifested in Figure 2 by the drop in Mo

c
.

of the curves of constant J as and decrease. (2) ForY
e

S
bÐxed and the secular and dynamic stability limits forY

e
S
b
,

the barlike modes are nearly constant in mass over Ðzzler
densities. For the dynamic barlike stability limitY

e
[ 0.3,

drops below 2 A dynamically unstable bar mode willM
_

.
organize itself out of low-amplitude random noise with an
e-folding time given by in Tables 1 and 2 (see Imamura etq

gal. 2000). The are in the range of a few to several tens ofq
gmilliseconds. Although it might take tens of e-folds for the

mode to reach nonlinear amplitude, this would still be a
shorter time than The dynamic barlike instabilityqdelep.should thus have time to grow even if there are not large
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nonaxisymmetric seed perturbations from the collapse. The
only way this fate can be avoided is if deleptonization and
cooling cause the Ðzzler to reach before dynamico

c
Z onucinstability. The mass stability limit rises abruptly at nuclear

density.
So, contrary to traditional thinking, in which the secular

barlike instability is the Ðrst to occur and gently evolves the
object toward neutron star densities (e.g., Hayashi et al.
1998), we Ðnd that cooling and deleptonization always
cause a Ðzzler to encounter and manifest dynamic barlike
instabilities, as long as the Ðzzler does not reach nuclear
densities Ðrst. Secular e†ects cannot trigger barlike insta-
bilities in Ðzzlers simply because they do not have time to
grow. It is thus essential to understand how the dynamically
unstable barlike modes behave in Ðzzlers.

4.4. Dynamic Bar Mode Growth
Consider the case in which the dynamic barlike insta-

bility has occurred while still at Ðzzler densities. When the
bar mode instability reaches nonlinear amplitude, the New-
tonian self-interaction torques transport angular momen-
tum from the bar to the spiral arms. The bar mode saturates
at peak amplitude when the time required to drive

becomes comparable to (Imamura et al.J
b
] Jdyn(Mb

) q
g2000). Here is the J of the axisymmetric state withJdyn(Mb

)
mass that is marginally dynamically stable to barlikeM

bmodes. After saturation, the evolution remains dynamic for
several As the bar sheds angular momentum to the outerq

g
.

spiral arms, it should compress rapidly because of the soft-
ness of the Ðzzler EOS and may separate physically from
the surrounding spiral arms (see protostellar collapses by
Bate 1998 and the n \ 5/2 calculations in Imamura et al.
2000). If so, the central bar of the Ðzzler might achieve
nuclear densities on a dynamic timescale. If this does not
occur immediately, the angular momentum evolution will
slow but not stop because the Ðzzler, although dynamically
stable, is still secularly unstable. The slow drain of J from
the bar caused by the Newtonian torque and/or by GW
emission from the bar itself should maintain the bar ampli-
tude (Imamura et al. 2000 ; Shibata et al. 2000). The bar
evolution should continue until reaches orJ

b
Jsec(Mb

) o
creaches whichever comes Ðrst. In either case, the Ðzzleronuc,will relax to an axisymmetric state halting its evolution.

A serious complication to any simple scenario building is
that the EOS also continues to evolve on the timescale

If the dynamic stability limit drops below beforeqdelep. M
bthe bar reaches a second episode of dynamic behavioronuc,could ensue. Even without EOS complications, the long-

term evolution of bars and even the approach to dynamic
instability is still poorly understood (Durisen et al. 2000 ;
Tohline & Durisen 2001).

The Ðzzler does not radiate signiÐcant GW radiation
during the early dynamic phase of the evolution ; the evolu-
tion is driven initially by the Newtonian self-interaction
torque (see also Shibata et al. 2000). It is only after dropsJ

bbelow that the bar can produce signiÐcant GWJdyn(Mb
)

radiation. We generally expect that the maximum amount
of angular momentum Ðzzlers can radiate is *J \Jdyn(Mb

)
in GW, regardless of the initial By Ðts to[ Jsec(Mb

) Jcore.our detailed model calculations, we obtain

Jdyn(M)D 1.7
A M
M

_

B1.4
] 1049 g cm2 s~1 (20)

and

Jsec(M) D 8.6
A M
M

_

B1.4
] 1048 g cm2 s~1 (21)

for The radiated energy is theno
c
[ onuc.

*E
M

b
c2¹

Jdyn(Mb
))

p
M

b
c2 B 3 ] 10~3

AM
b

M
_

B0.4A P
p

10 ms
B~1

, (22)

where and are the bar mode pattern frequency and)
p

P
pperiod for the marginally stable state.

The bars we have been discussing have thatM
b
-values

are less than any plausible nonrotating neutron star upper
mass limit. For is less than 1.3Mcore \ 2 M

_
, M

b
M

_
,

which is less than the measured mass of the binary pulsar
(Taylor & Weisberg 1989). The central bar region will thus
not collapse to a black hole. This is not the end of the story,
however, because the Ðnal mass and angular momentum of
the neutron star that may form is likely to be greater than

and Much of the mass shed to the spiral armsM
b

Jsec(Mb
).

may eventually accrete back onto the bar. So the ultimate
outcome of the Ðzzler evolution depends to a great extent
on the evolution of the ejected material. This again requires
reliable long-term hydrodynamics simulations that include
cooling, deleptonization, dissipative heating by shocks, and
a realistic EOS. Further, after the Ðzzler settles into an
axisymmetric shape at and neutron star densities, itJsec(Mb

)
is possible that GRR-driven r-modes could cause further
angular momentum loss on a timescale of roughly 1 yr (see
Lindblom, Owen, & Morsink 1998).

4.5. Published Nonlinear Bar Mode Simulations and
Gravitational Radiation

The gravitational radiation produced by n \ 0.5È1.5
polytropes unstable to the dynamic bar mode instability,
has been investigated by several groups in the Newtonian
limit (Houser, Centrella, & Smith 1994 ; Smith et al. 1996 ;
Houser 1998 ; Rampp et al. 1998 ; New, Centrella, & Tohline
2000) and by Shibata et al. (2000) in the relativistic limit.
Shibata et al. also found that the bar mode dynamic stabil-
ity limit drops in the relativistic regime to T / oW oB 0.25, an
e†ect similar to the decrease of the secular barlike stability
limit found by Stergioulas & Friedman (1998) in the rela-
tivistic regime. Long-term hydrodynamics simulations that
started from axisymmetric equilibria with T / oW o[ 0.27
were used to determine the GW signature of unstable poly-
tropes in the Newtonian limit ; Shibata et al. followed the
relativistic bar mode evolution to slightly beyond satura-
tion. Only one investigation of which we are aware has
investigated nonaxisymmetric dynamic instabilities in col-
lapsing cores (Rampp et al. 1998).

The efficiency of GW production from bar unstable poly-
tropes can be high but depends strongly on the Ðnal proper-
ties of the central object. As Ðrst described by Durisen et al.
(1986), the early nonlinear outcome of all unstable barlike
mode simulations is the same : the formation of a dynami-
cally stable central bar that resembles a Dedekind-like
Riemann S-type ellipsoid surrounded by expanding spiral
arms. However, after the early nonlinear phase of evolution,
the predictions of the simulations diverge. Some lead to
axisymmetric central objects surrounded by disks, while
others lead to long lived central bars. According to Houser
(1998), to within a factor of order unity, GW energies as
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large as

*E
Mc2B

A GM
Req c2

B7@2
(23)

can be produced by n \ 0.5 polytropes if long-lived bars
form. For 1.4 polytropes with and 50 km,M

_
Req \ 15

*E/(Mc2)D 0.002 and 10~6.
The long-term evolution appears to depend as sensitively

on numerical techniques as on real hydrodynamic and
thermal e†ects (Tohline, Durisen, & McCollough 1985 ;
Williams & Tohline 1987, 1988 ; Pickett et al. 1996 ; Toman
et al. 1998 ; Imamura et al. 2000 ; New et al. 2000 ; Durisen et
al. 2000, Tohline & Durisen 2001). This is an issue that
needs to be addressed with considerable care before the
observable properties of Ðzzlers can be accurately predicted.

5. SUMMARY

The stability properties of Ðzzlers are similar to those of
Maclaurin spheroids and polytropes. For Ðzzlers with
angular momentum distributions similar to that of theh(m

c
)

Maclaurin spheroids (n@\ 0), the secular instability and
dynamic instabilities of barlike modes set in for T / oW oZ
0.14 and 0.27, respectively, the same limits as found for the
Maclaurin spheroids. On the other hand, for Ðzzlers with
angular momentum distributions that concentrate more J
toward the equatorial radius than does the Maclaurin
spheroid the secular stability limits drop signiÐcantly.h(m

c
),

For the most extreme case we consider (n@\ 3), one which
should be a good approximation for a precollapse iron core
in uniform rotation, the bar mode secular stability limit
drops to T / oW oB 0.038. This sense of change is the same
as found by Imamura et al. (1995) for polytropes, but the
e†ect here is more extreme. The bar mode dynamic stability
limit does not appear to depend strongly on n@ for values up
to 1.5, but we could not verify this for all n@ because we are
unable to generate equilibrium Ðzzler models withn@Z 2
large enough T / oW o .

We have shown that the dynamic barlike mode insta-
bility is likely to be much more important for Ðzzler evolu-
tion than the secular one. The dynamic barlike evolution for

Ðzzlers with is driven by the Newtonian gravita-o
c
\onuctional self-interaction torque, not by gravitational radiation

reaction. Loss of angular momentum by the central bar as a
result of these torques, combined with the soft EOS and
further deleptonizaton, could cause rapid collapse or con-
traction of the central bar to neutron star densities. After
nuclear densities are reached and dynamic evolution ceases,
GW emission may dominate. The efficiency of GW pro-
duction depends strongly upon the detailed structure and
evolution of the bar and of the ejected spiral arms. If the
arms wrap into a nearly axisymmetric disk, the Newtonian
coupling between the bar and disk may weaken, and the
relative overall importance of GW emission would be
enhanced. The ejected arms may instead partially recollapse
onto the central bar and produce shocks. The long-term
evolution of the bar and surrounding material thus depends
sensitively on a variety of factors. Long and accurate hydro-
dynamics simulations of dynamically unstable objects that
include e†ects of cooling, deleptonization, shock heating,
and a realistic EOS may be critical for predicting the correct
GW signature and integrated GW luminosity of Ðzzlers.

The traditional Ðzzler scenario, namely, collapse to a
central density intermediate between white dwarf and
neutron star densities followed by a quasi-static approach
to neutron star density as a result of GRR-driven secular
instability, probably does not occur. For Ðxed EOS param-
eters, the stability limits in the Ðzzler density regime tend to
be constant in mass. The limiting masses decrease as the
Ðzzler cools and deleptonizes. For initially large values of
the lepton fraction Ðzzlers are stable to theY

e
(Z0.3),

dynamic bar mode instability, but cooling and deleptoniza-
tion drive the dynamic stability mass limit downward in M
on a timescale shorter than the GRR timescale for secular
instability. Fizzlers thus become dynamically unstable to
the barlike modes before secular instabilities can grow
appreciably.

J. I. thanks the National Aeronautics and Space Adminis-
tration for support. R. D. enjoyed the hospitality of the Max
Planck Institute for Extraterrestrial Physics as a Humboldt
Awardee during part of this research.

APPENDIX

LINEARIZED EVOLUTION EQUATIONS

The evolution equations form a set of partial di†erential equations that describes the time evolution of inÐnitesimal
perturbations about equilibrium. The evolution equations are complex and solved by converting each complex equation to a
pair of real equations. The set of real linearized evolution equations is
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where
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The gravitational perturbation is found from

+2'1\ 4nGo1 , (A10)

where

'1 \ '
R
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. (A11)

The and are found separately from and respectively. The evolution equation set is closed by'
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