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ABSTRACT
We show that main-sequence stars in dense stellar cusps around massive black holes are likely to

rotate at a signiÐcant fraction of the centrifugal breakup velocity as a result of spin-up by hyperbolic
tidal encounters. We use realistic stellar structure models to calculate analytically the tidal spin-up in
soft encounters and extend these results to close and penetrating collisions using smoothed particle
hydrodynamics simulations. We Ðnd that the spin-up e†ect falls o† only slowly with distance from the
black hole because the increased tidal coupling in slower collisions at larger distances compensates for
the decrease in the stellar density. We apply our results to the stars near the massive black hole in the
Galactic center. Over their lifetime, D1 main-sequence stars in the inner 0.3 pc of the GalacticM

_center are spun-up on average to D10%È30% of the centrifugal breakup limit. Such rotation is D20È60
times higher than is usual for such stars and may a†ect their subsequent evolution and their observed
properties.
Subject headings : Galaxy : center È Galaxy : kinematics and dynamics È galaxies : nuclei È

stars : kinematics È stars : rotation
On-line material : color Ðgures

1. INTRODUCTION

It is now widely accepted that supermassive black holes
(BHs) exist in many, if not all, galactic centers (Magorrian et
al. 1998). Dynamical models of the evolution of such
systems generically predict the formation of a dense stellar
cusp near the BH (e.g., Bahcall & Wolf 1977 ; Young 1980).
Stars moving rapidly in the dense stellar cusp near the BH
will su†er numerous high-velocity close tidal encounters
over their lifetimes. Although such encounters transfer some
energy and angular momentum from the hyperbolic orbit to
the colliding stars, they rarely remove enough energy for
tidal capture. This is in marked contrast to the situation in
the high-density cores of globular clusters, where the collid-
ing stars are on nearly zero-energy orbits and close colli-
sions lead to the formation of tight binaries. The e†ects of
hyperbolic encounters on the stars are mostly transient. The
dynamical and thermal relaxation timescales are very short
compared to the stellar lifetime, and thus apart from some
mass loss in very close collisions, the star is largely unaf-
fected. It is, however, more difficult for the star to shed the
excess angular momentum since magnetic breaking oper-
ates on timescales of the order of the stellar lifetime (Gray
1992). High rotation is therefore the longest lasting dynami-
cal aftere†ect of a close encounter.

The possibility that stars in BH cusps are rapid rotators
may have interesting implications for their evolution and
the interpretation of their observed properties. The e†ects of
rotation and rotationally induced mixing in a main-
sequence (MS) star on its subsequent evolution have been
studied by Sweigart (1997) and Vandenberg, Larson, & De
Propris (1998) in the context of globular clusters, without
specifying the origin of the rotation, and by Sills, Pinson-
neault, & Terndrup (2000) in the context of young open
clusters. Rotationally induced mixing may reveal itself in
the spectral line ratios, and rotation may be directly
observed in the spectral line proÐles. Detection of such sig-
natures in the spectra of the observed giants can provide
additional evidence for the existence of an underlying cusp
of MS stars, which at present cannot be directly observed.

The goal of this study is to estimate the magnitude of the
tidal spin-up, with particular emphasis on the Galactic
center (GC). Present-day observations can already resolve
individual giant stars very close to the BH in the GC
(Genzel et al. 1997 ; Ghez et al. 1998), and high-resolution
infrared spectroscopy is possible for the brighter giants
(Carr, Sellgren, & Balachandran 2000 ; Ramirez et al. 2000).
The depletion of luminous giants in the inner 2A (D0.1 pc)
around the supermassive BH in the GC was interpreted by
Alexander (1999) as evidence for collisional destruction in
an extreme density of a sharp stellar cusp. It is inevitable
that where the stellar density is high enough to destroy
giants, smaller stars that escape destruction will su†er very
close collisions. The inner GC is therefore a promising
environment for studying the spin-up e†ect.

The paper is organized as follows. In ° 2 we present the
formalism for spin-up in the linear regime of soft hyperbolic
encounters. In ° 3 we discuss results from smoothed particle
hydrodynamics (SPH) simulations of nonlinear close
encounters and incorporate them in our spin-up calcu-
lations. In ° 4 we calculate the spin-up of stars in the inner
parsec of the GC. We discuss and summarize our results in
° 5. An appendix describes the analytic calculation of the
tidal coupling constants for hyperbolic encounters using
realistic stellar structure models of an MS dwarf and of a
giant.

2. SPIN-UP BY SOFT HYPERBOLIC TIDAL ENCOUNTERS

2.1. Stochastic Spin-up in the L inear Regime
We begin by considering soft (distant) encounters where

the tidal deformations are small enough to be treated as
linear perturbations. We consider the e†ect of the tides
raised by an impactor star of mass m on a target star of
mass M and radius R as the impactor follows an unbound
orbit with a periseparation from the target star. We willr

puse the tilde symbol to denote mass in terms of M, distances
in terms of R, time in terms of (R3/GM)1@2, velocity in terms
of the Keplerian velocity (GM/R)1@2, energy in terms of
GM2/R, angular momentum in terms of (GM3R)1@2, and
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TABLE 1

PARAMETERS OF REPRESENTATIVE MS AND GIANT STARS

M R V
e

V
k

Vobs K T
Type (M

_
) (R

_
) (km s ~1) (km s ~1) (km s ~1) (mag) (yr) I3 E3

b

K2(V) . . . . . . . 0.76 0.75 621 440 D2 D22 [1010 0.07 1.65
G5(III) . . . . . . 2.4 8 340 240 D5 D16 1.6] 108 0.13 6.11
n \ 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.21 0.85

NOTE.ÈThe parameters of representative MS and giant stars (Zombeck 1990 ; Lang 1991). The mean observed
equatorial circular velocity is from Gray 1992. Over the time T , the star is as bright or brighter than the quotedVobsapparent K magnitude (for stars in the GC, *\ 14.5m, and has a radius as large or larger than the quotedA

K
\ 3.5m)

value (based on the twice solar metallicity stellar tracks of Schaerer et al. 1993). The moment of inertia and the bindingI3
energy were estimated from stellar structure models of the Sun (Christensen-Dalsgaard et al. 1996) and the aUMaE3

bgiant Guenther et al. 2000). For comparison, and for an ideal gas n \ 1.5 polytrope(M \ 4.25 M
_

, R\ 27.4 R
_

; I3 E3
bare also listed.

moment of inertia in terms of MR2. In these units is)3 \ 1
the centrifugal breakup angular frequency. A star with

will shed mass from its equator as a result of the)3 [ 1
centrifugal force.

We describe the results in the reduced mass system where
the target star is at the origin. The angular momentum *L3
that is transferred from the orbit to the target star is related
to the deposited tidal energy by (Goldreich & Nicholson*E3
1989 ; Kumar & Quataert 1998)

*E3 \ *L3 )3
p

, (1)

where is the angular velocity at periastron. The energy)3
pinvested in raising the tides is given in the linear regime by

(Press & Teukolsky 1977)

*E3 \ m8 2
r8
p
2 ;

l/2

= T
l
(g)

r8
p
2l , (2)

where the tidal coupling coefficients depend on the struc-T
lture of the star and the eccentricity of the orbit and are

functions of the parameter g,

g \
S r8

p
3

1 ] m8
. (3)

For rigid body rotation,1 the change in the starÏs angular
momentum is related to the change in the angular velocity

by the starÏs moment of inertia*)3 I3 ,
*L3 \ I3 *)3 . (4)

In the case of di†erential rotation, is deÐned by equa-*)3
tion (4) and is the e†ective angular velocity. The spin-up of
the target star in a single tidal encounter can therefore be
expressed as

*)3 \ m8 2
I3 )3

p
r8
p
2 ;

l/2

= T
l
(g)

r8
p
2l , (5)

where it is assumed that the star maintains its original
moment of inertia. The periastron angular velocity is
related to the relative velocity at inÐnity, byv8=,

)3
p
2\ v8 =2

r8
p
2 ] 2(1] m8 )

r8
p
3 , (6)

where the second term expresses the enhancement due to
gravitational focusing.

1 The timescale for angular momentum redistribution due to convective
transport in a late-type giant is D1 yr (Zahn 1989), and so rigid rotation is
achieved on a timescale similar to that of the collision itself. The timescale
for angular momentum redistribution in radiative MS stars is not well
known, although it is likely to be shorter than the stellar lifetime.

FIG. 1.ÈFirst few orders of for the solar stellar structure model, the giant model, and the ideal gas n \ 1.5 polytrope. L eft : Parabolic (e\ 1) orbits.T
lRight : Hyperbolic (e\ 10) orbits.
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Many encounters at random orientations lead to a
““ random walk ÏÏ buildup of the stellar spin. Over the stellar
lifetime the rms change in the stellar angular velocity isT3 ,
given by adding in quadrature the contributions from colli-
sions with di†erent values of the periseparation and ofr8

pthe orbital energy weighted by the di†erential collisionE3
o
,

rate d2q8 /dr8
p
dE3

o
,

d)3 4 S*)3 2T1@2 \
A
T3
P

dr8
p

P
dE3

o
*)3 2 d2q8

dr8
p
dE3

o

B1@2
.

(7)

The di†erential rate is calculated with the approximation
that the relative velocity can be described by the Maxwel-
lian distribution function (DF) with a mass-independent
one-dimensional velocity dispersion (° 4.1),p8 22\ 2p8 2

d2q8
dr8

p
dE3

o
\J8nn8

k8 2p8 23
exp

A
[ E3

o
k8 p8 22
B
(2r8

p
E3
o
] m8 ) , (8)

where is the space density of the impactors. This estimaten8
involves the approximation that the angular momentum
transfer does not depend on whether the star is rotating in a
prograde or retrograde sense with respect to the orbit, and
it assumes that the mass loss and the change in the starÏs
structure and moment of inertia can be neglected. Because

whereas the rms is domi-*)3 2D r8
p
~9 d2q8 /dr8

p
dE3

o
D r8

p
, d)3

nated by the collisions with the smallest When the stellarr8
p
.

population includes a spectrum of masses, the/ f
m8

dm8 \ 1,
average spin-up is obtained by adding the weighted contri-
butions in quadrature,

d)3 4
TP

dm8 f
m8

*)3 2
U1@2

. (9)

2.2. L inear T idal Coupling Coefficients
The orbital energy is related to and the eccentricityE3

o
v8=of the orbit e by

E3
o
\ 1

2
k8 v8=2 \ 1

2
k8

e[ 1
r8
p

, (10)

where is the reduced mass. The eccentricityk8 \ m8 /(1 ] m8 )
that corresponds to the mean orbital energy (eq. [21]
below) is

SeT \ 6r8
p
p8 2] 1 . (11)

Since e can reach very high values when as is the casep8 ? 1,
for giants (low Keplerian velocity) close to the BH, it is
necessary to extend the standard (e\ 1) tidal interaction
formalism of Press & Teukolsky (1977) to hyperbolic orbits.
This is described in Appendix A.

In this work we consider two types of target stars : an MS
dwarf and a red giant, whose properties are summarized in
Table 1. The detailed stellar structures that we use to calcu-
late the tidal coupling coefficients for these stars are based
on the solar model of Christensen-Dalsgaard et al. (1996)
and a model for the red giant aUMa (Guenther et al. 2000).
Figure 1 shows the run of with g for the two stars and forT

lan ideal gas n \ 1.5 polytrope, for parabolic (e\ 1) and
hyperbolic (e\ 10) orbits. We Ðnd that the tidal coupling in
an ideal gas polytrope is stronger than in either of the more
realistic models. We also Ðnd a general trend for the T

lcoefficients to reach their maxima at larger values of g
(larger for a given with increasing e (and increasingr8

p
m8 )

periastron velocity This reÑects the fact that the coup-v8
p
).

ling is strongest when equals the lowest fre-)3
p
\ v8

p
/r8

pquency stellar pulsation mode.

3. SPIN-UP BY STRONG HYPERBOLIC COLLISIONS

3.1. SPH Simulations
In order to extend the linear treatment of the soft encoun-

ters to strong (close and penetrating) encounters, we simu-
lated such encounters with the SPH technique (Lucy 1977 ;
Gingold & Monaghan 1977). In view of the difficulty of
simulating all the aspects of a real stellar collision, and in
view of the many uncertainties in the details of the stellar
structure, the purpose of these simulations is not to calcu-
late precisely for speciÐc collisions but rather to gain*)3
qualitative insight about angular momentum transfer in
strong encounters, which can then be incorporated in our
semianalytic calculations by simple approximations. The
SPH code we use calculates the gravitational force by direct
N2 operations and is therefore limited to relatively low
resolution simulations (typically N \ 2048 particles). The
code integrates in time the entropy equation (Hernquist
1993), conserves particle momenta identically, uses the sym-
metrized spline kernel (Monaghan & Lattanzio 1985)W4with an adaptive smoothing length that is adjusted always
to include 40 neighboring particles, and uses the artiÐcial
viscosity prescription given by Hernquist & Katz (1989, eqs.
[2.22], [2.23], and [2.37]) and the time step criteria of Katz,
Weinberg, & Hernquist (1996). The amount of stellar mass
loss in the collisions is estimated by the enthalpy criterion of
Rasio & Shapiro (1991).

We veriÐed the code by constructing stable n \ 1.5 poly-
trope conÐgurations, by conÐrming that the results con-
verge as the number of particles is increased, and by
reproducing qualitatively the spin-up and mass loss
obtained in the SPH simulations of Davies, Benz, & Hills
(1991), who used a much more realistic stellar structure
model. Of direct relevance is the fact that our SPH code
reproduces the results of the linear theory at the soft colli-
sion limit and at smaller follows closely the(r8

p
Z 2.5) r8

pSPH results obtained by Rasio & Shapiro (1991) (Fig. 2) in
SPH simulations with 104 particles.

3.2. Beyond the L inear Regime
3.2.1. Deep Inelastic Collisions

At small periseparations (small g for Ðxed the sum inm8 ),
equation (5) converges slowly and the truncation of the T

lseries at some order l \ k could underestimate We*)3 .
make use of the fact that the ratio is roughlyT

l`1(g)/T
l
(g)

constant (Fig. 1) over the small-g range of interest to
extrapolate the sum to high l by a geometric series

*)3 B CNL
m8 2

I3 )3
p
r8
p
2
C

;
l/2

k~2 T
l

r8
p
2l]

T
k~1

r8
p
2k~2

A
1 [ T

k
r8
p
2 T

k~1

B~1D
,

(12)

where the constant is a nonlinear correction factor,CNLwhich we calibrate by the SPH simulations as discussed
below. Figure 2 compares the prediction of the linear theory
with the numeric SPH results without correcting for nonlin-
ear e†ects While the two agree at the limit of soft(CNL\ 1).
(distant) encounters, grows faster than the linear theory*E3
at close encounters. In this particular example the high-
order correction is very small and does not exceed 2% down
to r8

p
\ 1.6.
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FIG. 2.ÈEnergy transferred from the orbit to the star in a parabolic
collision between a point mass and an ideal gas n \ 1.5 polytrope of equal
mass as a function of the periseparation The SPH(m8 \ 1, E3

o
\ 0) r8

p
.

results from this work are compared with the higher resolution SPH
results of Rasio & Shapiro (1991) and with the predictions of the linear
theory (eq. [12] with CNL\ 1).

Figures 3 and 5 show snapshots from two SPH simula-
tions of extremely nonlinear collisions. Figure 4 shows the
run of the dynamical properties of the target star with inr8

pcollisions. Our analytic expressions form8 \ 1, E3
o
\ 2 *L3

and consistently underestimate the SPH results for a*)3
point mass impactor by a factor of D3 down to r8

p
D 1.5.

Similarly, it underestimates in parabolic collisions by a*E3
factor of D1.5 at (Fig. 2). We Ðnd that at smallerr8

p
\ 1.8

periseparations where signiÐcant amounts of mass are
ejected in the collisions, a large fraction of the angular
momentum that is taken out of the orbit is deposited in the
ejecta rather than in the target star. This truncates the

divergence and limits the spin-up efficiency, so*)3 D r8
p
~5

that the di†erence between the analytic calculations and
simulation results decreases with until the two crossr8

pover. We approximate the decrease in spin-up efficiency by
introducing a truncation periseparation such thatr8 0for*)3 (r8

p
) \ *)3 (r8 0) r8

p
\ r8 0.We now discuss our choice of Figure 4 shows thatr8 0. *)3

is much more suppressed than at small because the*L3 r8
pstellar moment of inertia increases as a consequence of the

FIG. 3.ÈSequence of snapshots from an SPH simulation of a deep collision between two equal-mass stars (modeled as ideal gas n \ 1.5 polytropes with
N \ 1024 particles each). The dots represent SPH gas particles that remain bound to the stars, and the circles represent those that are lost. The orbital
parameters of the encounter are and At after the periastron passage (not shown here), the stars lost 5% of their mass each, werer8

p
\ 1.0 E3

o
\ 2. t8 \ 20

spun-up by and acquired a moment of inertia more than twice the initial value. [See the electronic edition of the Journal for a color*)3 \ 0.025, I3 \ 0.47,
version of this Ðgure.]
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FIG. 4.ÈResponse of a star modeled as an ideal gas n \ 1.5(m8 \ 1,
polytrope) to deep nonlinear hyperbolic collisions with another(E3

o
\ 2)

star, for both the case in which the impactor (modeled as a point mass) is
compact relative to the target star (circles) and the case in which the
impactor (modeled as an ideal gas n \ 1.5 polytrope) is of the same size as
the target star (triangles). The SPH results (thin lines with symbols) are
compared with the analytic calculations without the nonlinear correction
(thick lines) for (top panel) and (middle panel). Also shown in the*L3 *)3
bottom panel are the mass that remains bound to the star after1 [ *M3

*
,

the collision (thin lines with Ðlled symbols), and the starÏs moment ofI3 ,
inertia after the collision (thin lines with open symbols).

collision. The increase in far exceeds the small change thatI3
is expected as a result of the stellar oblateness that develops
in response to the rotation. The e†ect seen in the simulation
is due to the heating and subsequent expansion of the star
by the collision. Our SPH models do not include the radi-
ative processes that are necessary for describing the later
stages of cooling and contraction. It is therefore likely that
the Ðnal value of is not as strongly suppressed as is*)3
implied by Figure 4 but rather follows more closely the
behavior of A collision with an impactor of a size com-*L3 .
parable to that of the target results in much more mass loss
than a collision with an impactor that is e†ectively a point
mass (e.g., a stellar remnant on an MS star or an MS star on
a giant). However, it is likely that the SPH results overesti-
mate the mass loss since an n \ 1.5 polytrope has a signiÐ-
cantly lower binding energy than the realistic stellar
structure models on which we base our analytic calculations
(Table 1). Figure 4 shows that the analytic estimate of *)3
equals the value derived from the simulation at andr8

p
D 1.3

for polytrope and point mass impactors, respec-r8
p
D 0.9

tively. For the analytic estimate and the simulation*L3
results are equal at and respectively. Basedr8

p
D 0.9 r8

p
D 0.8,

on the arguments presented above, we adopt in this work
the simple prescription that or the size of ther8 0\ 1.0
impactor, whichever is larger, for all types of collisions. We
note that the analytic calculations still underestimate the
SPH results by a factor of 2 at and by a factor of 3 atr8

p
\ r8 0A di†erence of a similar magnitude is seen also inr8

p
\ 2.

parabolic collisions (Fig. 2). We compensate for this dis-
crepancy by setting the nonlinear correction factor to

A more extensive investigation of parameter spaceCNL\ 2.
by SPH simulations with more realistic stellar structure
models will be required to reÐne this prescription.

3.2.2. Prompt Disruption of T idally Formed Binaries

Close hyperbolic encounters of stars in the low-energy
tail of the orbital energy distribution can lead to the forma-
tion of a bound system with a large semi-(E3

o
] *E3

o
\ 0)

major axis Although such encounters are very efficient ina8 .
spinning-up stars, the subsequent evolution of the stellar
rotation in binaries is very di†erent from that due to sto-
chastic encounters. We do not consider such cases in this
work, and they are not included in the average (eq. [9]).d)3
Because of the very large stellar density and the proximity
of the massive BH, it is necessary to check whether a newly
formed binary can survive its Ðrst orbital period without
being disrupted by a tidal interaction with either a third
nearby star or the central BH.

We take this into account by considering the orbit as
bound only if the change in the orbital angular momentum,

due to the torque exerted on the system by the third*L3 orb,mass (star or central BH) is smaller than the orbitalm8 3angular momentum L3 orb,

*L3 orb\ 4n
Aa8
d8
B3A m8 3

1 ] m8
B
(1[ e2)~1@2L3 orb , (13)

where is the distance of from the binary and where wed8 m8 3used the relation For disruption by aL3 orb2 \ m8 k8 a8 (1 [ e2).
star, and the no-disruption criterion isd D n8 ~1@3, m8 3Dm8 ,

4nn8 a8 3k8 (1[ e2)~1@2 \ 1 . (14)

The eccentricity and the semimajor axis are estimated from
the unperturbed periseparation and the bound orbitÏs
energy

e\ 2(E3
o
] *E3

o
)

k8
r8
p
] 1 , a8 \ r8

p
1 [ e

. (15)

In practice, we Ðnd that the contribution from disrupted
binaries to in the GC is negligible.d)3

3.2.3. T idal and Collisional Destruction

The precise criterion for tidal destruction of stars by
hyperbolic encounters is not well known. In this work we
adopt the simple criterion that tidal breakup occurs when

the change in the velocity of a mass element on the*v8 ,
stellar surface, exceeds the escape velocity, *v8 D (2m8 /r8

p
3)

The tidal radius is a function of the impac-(r8
p
/v8

p
) [ J2. r8

ttor mass and orbital energy and is given by the solution to
the equation

r8
t
\
A k8 m8
m8 ] r8

t
E3
o

B1@3
m8 1@3 . (16)

Our SPH simulations indicate that this is a conservative
criterion. Figure 5 shows a sequence of snapshots from an
encounter with between anr8

p
\ r8

t
\ 2.0, E3

o
\ 1.0 m8 \ 10

black hole (modeled as a point mass) and an MS dwarf
(modeled as an ideal gas n \ 1.5 polytrope). The star sur-
vives the collision after su†ering D25% mass loss. We per-
formed several spot checks with di†erent values of andr8

p
E3

oand veriÐed that this prescription for indeed roughlyr8
tdemarcates the boundary where the fractional mass loss

increases to order unity and that signiÐcantly exceeds*)3
the value predicted by our extrapolated linear formalism for
such deep collisions.

When (point mass impactor) or (impactor ofr8
t
\ 1 r8

t
\ 2

same size as the target), it is necessary to consider the possi-
bility of collisional destruction. Our SPH simulations indi-
cate that the n \ 1.5 polytrope stellar models can survive
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FIG. 5.ÈSequence of snapshots from an SPH simulation of a collision at the tidal limit (eq. [16]) between an BH (modeled as a point mass) and anm8 \ 10
MS star (modeled as an ideal gas n \ 1.5 polytrope). The dots represent SPH gas particles that remain bound to the star, and the circles represent those that
are lost. The line traces the trajectory of the BH in a frame where the target was initially at rest. The orbital parameters of the encounter are andr8

p
\ r8

t
\ 2.0

In spite of the signiÐcant tidal stretching of the star (bottom left panel), the star ultimately relaxes after losing 25% of its mass. At (bottomE3
o
\ 1.0. t8 \ 124

right panel) the stellar mass that has settled back to within of the stellar core rotates at 20% of the centrifugal breakup velocity. The moment of inertiar8 \ 2
of the mass within is more than twice its initial value. [See the electronic edition of the Journal for a color version of this Ðgure.]r8 \ 2 I3 \ 0.45,

very deep collisions see Figs. 3 and 4), albeit with(r8
p
D 0.5 ;

a signiÐcant mass loss. One concern when considering pen-
etrating collisions by compact remnants is the energy
release by nuclear reactions near the surface of the impac-
tor. et al. (1989) and Ru†ert & (1990) ÐndRo� z5 yczka Mu� ller
that nuclear reactions probably do not play a signiÐcant
role even in parabolic head-on collisions between low-mass
stars and white dwarfs. We will assume that stars can
survive collisions down to even when the impactorr8

p
\ 0.5

is a compact object.

3.2.4. T he Survival Probability

In an environment that is dense enough for efficient tidal
spin-up there is also a nonnegligible probability for destruc-
tive head-on collisions. Our estimate of implicitly*)3
assumed that the target star survives its full life span TheT3 .
Poissonian survival probability against collisions with

over a time isr8
p
\ r8

c
T3

f
c
\ exp ([q8 T3 ) , (17)

where is the collision rate for collisions with whichq8 r8
p
\ r8

c
,

for a Maxwellian velocity DF is given by (e.g., Binney &

Tremaine 1987)

q8 \ 4Jnn8 p8 r8
c
2
A
1 ] 1 ] m8

2p8 2r8
c

B
, (18)

where the second term expresses the enhancement due to
gravitational focusing. Stars with low survival probability

will have a shorter e†ective lifetime for spin-up,(q8 T3 [ 1)
and consequently will be reduced by a factorDq8 ~1, d)3

relative to that predicted by equation (7).D(q8 T3 )~1@2

4. TIDAL SPIN-UP IN THE INNER GALACTIC CENTER

Up to this point our treatment of the tidal spin-up e†ect
has been general. We now turn our attention to the speciÐc
case of the GC.

4.1. T he Stellar Velocity Distribution in the GC
The e†ects of the stellar collisions depend critically on the

relative velocity of the two colliding stars and their mass
ratio. It is therefore important to understand the mass
dependence of the velocity distribution. We are interested in
particular in the case in which the stellar system around the
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black hole has undergone two-body relaxation, as appears
to be the situation in the GC (Alexander 1999).

Let be the DF of stars of mass m as af
m
(v) (m1¹ m¹m2)function of speciÐc energy in a spherical stellar system

whose potential is dominated by a central BH, where
v\ ( [ v2/2 [ 0, and is the mass of the( \ GMBH/r, MBHBH. Bahcall & Wolf (1977) have shown that when such a
system undergoes two-body relaxation, the DF has the fol-
lowing properties : to a goodp

m
4 d ln f

m
/d ln vD constant

approximation, and so thatp
m2

^ 1/4, p
m
/p

m2
^m/m2 0 [

In this case and the velocity dispersionp
m

[ 1/4. f
m
(v)P vpm

isp
m
2 \Sv2T/3

p
m
2 \

A 1
p
m

] 5/2
B GMBH

r
. (19)

The velocity dispersion is almost independent of the stellar
mass. The relative change in the value of over the fullp

m
2

mass range is only D10% independently of the ratio m2/m1,in marked contrast with the wide spread of velocities
expected in the case of equipartition in which p

m
2 P m~1.

The reason why the relaxed system does not reach equi-
partition can be understood by considering the fate of a
massive star that is momentarily on a circular orbit. The
orbital radius depends only on the speciÐc energy. Equi-
partition works to equate the kinetic energy per star,
thereby always reducing the speciÐc energy of the massive
stars and causing them to sink to ever lower orbits. This is
analogous to the equipartition instability discussed by
Spitzer (1969) in the context of a stellar cluster without a
central BH, but where the fraction of mass in the massive
stars is large enough to create a centrally concentrated sub-
system.

The resulting distribution of the relative velocity ¿2 \
between two stars of masses is¿

a
[ ¿

b
m1¹ m

a
¹m

b
¹ m2given by

f ((¿2))\
1

8n3(3@2
!(5/2 ] p

ma
)!(5/2 ] p

mb
)

!(1] p
ma

)!(1] p
mb

)

]
P

d3u
A
1 [ u2

2
BpmaC

1 [ ((u)[ (w))2
2

Dpmb
, (20)

where and the integration is(u)4 (¿
a
)/(1@2, (w)4 (¿2)/(1@2,

over the region and This dis-u \ J2 o (w) [ (u) o \ J2.
tribution is not very di†erent from a Maxwellian DF with
the same one-dimensional velocity dispersion p. This can be
seen in Figure 6, which compares the Maxwellian DF with
the case in which both (low-mass stars) andp

ma
\ p

mb
\ 0

equation (20) simpliÐes to

f (v2)dv2\ !(5/2)2
24n

w2(32J2 [ 24w] w3)dw .

In particular, the two DFs have the same mean orbital
energy

SE
o
T \ 3kp2 . (21)

We conclude that the velocity Ðeld in a relaxed stellar
system very near a BH is well approximated by a Maxwel-
lian velocity distribution where the one-dimensional veloc-
ity dispersion is independent of the stellar mass.

4.2. T he Stellar Population in the GC
Stellar population synthesis models of the observed lumi-

nosity function averaged over the inner few parsecs of the
GC (Alexander & Sternberg 1999) indicate that it is well

FIG. 6.ÈComparison of the DFs of the relative stellar velocity (w4
in a Maxwellian DF and in an vp DF of relaxed low-mass starsv2/(1@2)

very near a black hole (Bahcall & Wolf 1977). Both DFs have the same
one-dimensional velocity dispersion and the same mean orbital energy.

described by a continuous star-forming population with a
Miller-Scalo initial mass function (IMF; Miller & Scalo
1979) with masses in the range 0.1È125 The meanM

_
.

impactor mass (live stars and remnants) in this model is
SmT \ 0.5 In an isolated system the present-day massM

_
.

function (PMF) preserves the IMF distribution for low-
mass stars that are longer lived than the system but falls
more rapidly for the shorter lived massive stars, so that over
time the low-mass stars accumulate and take an ever larger
fraction of the total stellar mass. However, the timescale for
mass segregation in the GC, which is of the same order as
the relaxation timescale, is only 3 Gyr (e.g., Alexander 1999).
It is therefore reasonable to assume that the mass fraction of
the very low mass stars in the inner GC is signiÐcantly
lower than implied by continuous star formation.

In view of the uncertainties in the low-mass end of the
PMF, we do not attempt to construct a detailed mass func-
tion for the impactors in the innermost GC. Instead, we
base it on the stellar synthesis model (Table 2) and take
account of the mass segregation by assuming a Salpeter
power-law PMF with a low-mass cuto† close to the mean
impactor mass. The model parameters are listed in Table 3.
The mean impactor mass in this model is SmT \ 0.9 M

_
.

We carried out spot checks to verify that the exact values of
the mass ranges and power-law indices do not a†ect the
Ðnal results signiÐcantly. The one important assumption in
this model is that the mass in the inner GC is not dominated

TABLE 2

STELLAR REMNANT MASS AS A FUNCTION OF INITIAL

STELLAR MASS

Initial Mass Range Remnant Mass
(M

_
) (M

_
) Mass Fraction

0.8È1.5 . . . . . . . . . . . . . . 0.6 0.03
1.5È2.5 . . . . . . . . . . . . . . 0.7 0.08
2.5È8 . . . . . . . . . . . . . . . . 1.1 0.12
8È30 . . . . . . . . . . . . . . . . 1.4 0.03
[30 . . . . . . . . . . . . . . . . 10 0.01

NOTE.ÈStellar remnant mass as a function of initial stellar
mass (Meylan & Mayor 1991 ; Timmes, Woosley, & Weaver
1996) and its mass fraction in the continuous star-forming
stellar population model for the GC (Alexander & Sternberg
1999).
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TABLE 3

MODEL FOR THE IMPACTOR MASS FUNCTION IN THE

INNER GC

Mass Range
Type (M

_
) a Mass Fraction

MS . . . . . . 0.4È4.0 2.35 0.73
WD . . . . . . 0.7È1.1 0.0 0.23
NS . . . . . . . 1.2È1.5 2.35 0.03
BH . . . . . . 7.0È12.0 2.35 0.01

NOTE.ÈA df/dmP m~a mass distribution is assumed
within the mass range.

by very low mass stars, which are inefficient in raising tides.
More detailed modeling of the dynamical evolution of the
inner GC will be required to verify this. The results for the
tidal spin-up that are presented below can easily be scaled
to other mass fraction ratios through equations (8) and (9).

We represent the mass distribution in the innermost GC
by a stellar cusp of the form (° 4.1 ; see also Alexander 1999)

o \ 106
A r
0.4 pc

B~(3@2`pm)
M

_
pc~3 , (22)

and the one-dimensional velocity dispersion by equation
(19). We set to represent the typical low-mass impac-p

m
\ 0

tors and assume (Genzel et al. 1997).MBH\ 2.6 ] 106 M
_

4.3. Results
We calculated the spin-up in the GC following the pro-

cedure outlined in the previous sections. To summarize, the
calculation proceeded by a triple numeric integration : Ðrst,
integration over the impactor mass function (Table 3) ;
second, integration over from a suitably large distancer8

pdown to the larger of (eq. [16]) and where forr8
t

r8
p
\ 0.5

was held Ðxed to account for mass loss ; andr8
p
\ r8 0\ 1, *)3

third, integration over from a suitable large value downE3
oto 0. Collisions that resulted in bound orbits (eq. [13]) were

omitted from the sum. For each point in the integration, *)3
was calculated (eq. [12]) with a nonlinear correction factor

and summed in quadrature, weighted by the di†er-CNL\ 2
ential rate (eq. [8]). We assumed that long after the collision
recovers its initial value and that is unchanged.I3 m8
Figure 7 shows the run of with distance from the BHd)3

in the GC for the model MS target star with T \ 10 Gyr, as
well as the separate contributions from collisions with white
dwarfs (WDs), neutron stars (NSs), and stellar mass BHs.
Figure 7 also shows that the survival probability is of order
unity as close as 0.02 pc to the BH, and so the fact that it
was not taken into account explicitly in the estimate of d)3
does not introduce a serious error. Interior to 0.02 pc the
collisional destruction of MS stars is expected to Ñatten the
cusp to an r~1@2 conÐguration of marginally bound stars
(Murphy, Cohn, & Duriden 1991 ; Alexander 1999). The
stellar rotation falls only slowly with distance from the
black hole and is at the level of in the inner 0.3d)3 D 0.1È0.3
pc. Most of the e†ect comes from collisions with MS stars
and WDs. Field MS stars later than DF5 are very slow
rotators (Gray 1992). For D1 stars these values ofM

_
d)3

correspond to rotational velocities 20È60 times higher than
normal (Table 1).

We carried out similar calculations for giant stars. We
Ðnd that the spin-up is much smaller, d)3 D 0.01È0.02,
because of the much higher and the shorter lifetime in thep8
giant phase. This is similar to the rotational velocity of Ðeld

FIG. 7.ÈMean stellar spin of an MS star as a function of distance*)3
from the BH in the GC assuming a Salpeter PMF and the remnant mass
fractions listed in Table 2. The survival probability against a destructive
collision with over 10 Gyr (eq. [17]) is also plotted for a meanr8

p
\ 0.5

impactor mass of SmT \ 0.9 M
_

.

giants later than DG3, and thus tidal spin-up may increase
their rotation to double the normal value.

5. DISCUSSION AND SUMMARY

Dense stellar cusps around massive BHs are environ-
ments where stellar collisions are frequent and energetic.
Hyperbolic head-on collisions may destroy the colliding
stars, but they are rare. For every head-on collision there
are many more close tidal encounters and grazing colli-
sions. The cumulative e†ects of such encounters are more
subtle. Energy and angular momentum are transferred from
the orbit to the stars, during the Ñyby the stellar structure
may be signiÐcantly disturbed by the tidal forces, and some
mass may be lost. However, the stars survive the collision,
and because of the high initial orbital energy, they rarely
form a bound binary system. This is in contrast to the situ-
ation in dense globular clusters. The stellar dynamical and
thermal relaxation timescales are very short relative to the
stellar lifetime, and the star can radiate the excess energy
quickly. It is harder to shed the excess angular momentum,
since magnetic breaking operates on timescales of the order
of the stellar lifetime. Thus, the direct long-term e†ects of
the collision are increased rotation and possibly some mass
loss and some mixing of the stellar envelope.

In this study we calculated the magnitude of the rotation
that is built up in a random walk fashion as the star under-
goes multiple hyperbolic tidal encounters. This is of interest
because of the e†ects high rotation may have on the starÏs
evolution and on its observed properties and because,
unlike destructive collisions, the spin-up a†ects the entire
stellar population and extends over a much larger volume
of the galactic nucleus. Many, if not most, galaxies have a
supermassive BH in their nucleus, and so high stellar rota-
tion in galactic nuclei may be common.

Our approach to the problem was to use detailed stellar
structure models to calculate, for the Ðrst time, the tidal
coupling constants for arbitrary hyperbolic orbits in the
linear regime of soft encounters. Because the tidal energy
and angular momentum fall o† as a high power of the
periseparation, it was necessary to extend the calculation to
the strongly nonlinear regime of grazing and penetrating
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collisions. We carried out a suite of SPH simulations to
study the qualitative behavior of such collisions and then
conservatively extrapolated the exact linear calculations to
the nonlinear regime by several simple prescriptions. The
simulations indicated the following. (1) At periseparations
closer than about twice the target starÏs radius, the linear
results are smaller than the actual spin-up by a factor of at
least 2. (2) Once mass loss becomes signiÐcant, the ejecta
carry away a large fraction of the angular momentum that
is extracted from the orbit, and therefore the spin-up satu-
rates at its level just before the onset of mass loss. (3) Stars
can survive deep collisions down to a periseparation of half
the target starÏs radius. (4) A simple tidal disruption cri-
terion for hyperbolic encounters can roughly indicate the
point where the fractional mass loss increases to order
unity.

We calculated the spin-up of stars in the inner parsec of
the Galactic center, which is of special interest because of
the high quality and wealth of details of the observed stellar
data. We Ðnd that over 10 Gyr, D1 MS stars in theM

_inner 0.3 pc are stochastically spun-up to 10%È30% of the
centrifugal breakup velocity (20È60 times higher than is
usual for such stars in the Ðeld). This e†ect decreases only
weakly with distance from the BH because the increased
tidal coupling at lower collision velocities largely compen-
sates for the decrease in the collision rate at lower stellar
densities. We estimated also the stellar survival probability
against head-on collisions over 10 Gyr and found that it
was signiÐcantly large even very close to the center. The fact
that the spin-up is roughly constant over the volume of the
inner GC implies that no large error was introduced by
neglecting the fact that stars on noncircular orbits sample a
varying stellar density over their lifetime. The spin-up of
giant stars over the giant phase is much smaller, of order
1%È2% of the centrifugal breakup velocity (doubling the
rotation that is usual for such stars in the Ðeld). The e†ect is
smaller because of their short lifetime and because of the
large ratio between the collision velocity and the stellar
escape velocity, which decreases the tidal coupling.

Tidal spin-up is inefficient in globular clusters, where in
the absence of a central BH the velocity dispersion is so low
that a close encounter usually extracts enough energy from
the orbit for tidal capture. The spin-up by more distant
hyperbolic encounters is negligibly small because of the
steep fallo† (eq. [5]).*)3 D r8

p
~4.5

These results suggest that stochastic spin-up is an impor-
tant stellar e†ect in BH cusps. However, several caveats
apply. In our treatment we neglected the e†ects of magnetic
breaking, which, although slow, may be e†ective over 10
Gyr. As a very crude estimate, consider the Sun, for which
the halving time of rotation due to magnetic breaking is
D5 ] 109 yr (Brandt 1966). The spin-up is dominated by
the closest encounter, which occurs on average at andT3 /2,
so on average half of the acquired rotation will be lost as a

result of magnetic breaking by Gyr. This estimate isT3 \ 10
obviously quite uncertain, since the spin-up and the cumu-
lative mass loss in the course of many collisions are likely to
play some role in the magnetic breaking process. Unfor-
tunately, at present the details of this process cannot be
modeled with any certainty. Our results depend on the
validity of our extrapolation to the nonlinear regime. A real
star is not well represented by an ideal gas n \ 1.5 poly-
trope, and more realistic and extensive hydrodynamical
simulations, including the e†ects of radiation and nuclear
burning, will be needed to verify our results. We note,
however, that the n \ 1.5 polytrope model is signiÐcantly
less bound than the realistic stellar models (Table 1). This
implies that our estimates for the minimal periseparation
and the tidal radius may be overly conservative. Neverthe-
less, because a smaller binding energy, larger tidal coupling
coefficients (Fig. 1), and a larger moment of inertia go hand
in hand, the spin-up is less sensitive to the(*)3 D T

l
/I3 )

details of the stellar structure than any of these quantities
separately. Another uncertainty in applying our results to
any speciÐc system, such as the GC, lies in modeling the
PMF of the impactors. Generally, mass segregation will
work toward increasing the spin-up e†ect by pushing the
ine†ective low-mass projectiles out of the central region.
Dynamical models of the evolution of the galactic nucleus
are required to put this on a quantitative footing.

Detailed predictions for the observational consequences
of high rotation are outside the scope of this work. We limit
our comments on this matter to noting that rotation lowers
the e†ective temperature and luminosity of a star
(Kippenhahn, Meyer-Hofmeister, & Thomas 1970) but does
not signiÐcantly a†ect the spectral classiÐcation of a star
until it is close to breakup (Gray 1992). The long-term
e†ects of rotation on stellar evolution may be more signiÐ-
cant. We calculated the e†ective angular velocity, assuming
solid body rotation. The actual distribution of angular
momentum could become stratiÐed over time and lead to
rotational support of the core (Vandenberg et al. 1998) or to
the replenishment of the hydrogen in the core by large-scale
deep mixing (Sweigart 1997). These e†ects will manifest
themselves in the giant phase of the stars. Finally, we note
that even in the GC only the giant stars can be presently
observed. Rotational broadening in the giant spectra may
be marginally detectable with high-resolution spectroscopy
and could bolster the case for the existence of an underlying
very dense population of faint stars.

To summarize, we have shown that MS stars in a sub-
stantial volume of the dense cusps around massive black
holes are likely to rotate at a signiÐcant fraction of the
centrifugal breakup velocity as a result of stochastic spin-up
by hyperbolic tidal encounters.

We are grateful to P. Demarque for providing us with the
stellar structure model of the aUMa giant.

APPENDIX A

LINEAR TIDAL COUPLING COEFFICIENTS FOR HYPERBOLIC ORBITS

Following the formalism of Press & Teukolsky (1977), the linear tidal coupling coefficients are expressed as

T
l
(g)\ 2n2 ;

n
oQ

nl
o 2 ;

m/~l

l
oK

nlm
o2 , (A1)
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TABLE 4

MODE FREQUENCIES AND OVERLAP INTEGRALS FOR THE SOLAR MODEL OF CHRISTENSEN-DALSGAARD ET AL. (1996)

l\ 2 l\ 3 l\ 4 l\ 5

MODE w8
nl
2 oQ

nl
o w8

nl
2 oQ

nl
o w8

nl
2 oQ

nl
o w8

nl
2 oQ

nl
o

p6 . . . . . . . 1.28 (]2) 2.38 ([2) 1.39 (]2) 1.12 ([2) 1.49 (]2) 5.39 ([3) 1.59 (]2) 2.74 ([3)
p5 . . . . . . . 9.70 (]1) 3.26 ([2) 1.06 (]2) 1.58 ([2) 1.14 (]2) 8.00 ([3) 1.23 (]2) 4.28 ([3)
p4 . . . . . . . 7.02 (]1) 4.67 ([2) 7.76 (]1) 2.34 ([2) 8.48 (]1) 1.22 ([2) 9.18 (]1) 6.82 ([3)
p3 . . . . . . . 4.79 (]1) 6.85 ([2) 5.36 (]1) 3.48 ([2) 5.90 (]1) 1.91 ([2) 6.45 (]1) 1.14 ([2)
p2 . . . . . . . 2.95 (]1) 1.06 ([1) 3.33 (]1) 5.61 ([2) 3.72 (]1) 3.32 ([2) 4.12 (]1) 2.16 ([2)
p1 . . . . . . . 1.70 (]1) 1.47 ([1) 1.82 (]1) 9.18 ([2) 2.01 (]1) 6.36 ([2) 2.23 (]1) 4.66 ([2)
f . . . . . . . . . 1.39 (]1) 1.39 ([1) 1.65 (]1) 5.54 ([2) 1.77 (]1) 8.62 ([3) 1.84 (]1) 7.56 ([4)
g1 . . . . . . . 9.12 (]0) 4.58 ([2) 1.17 (]1) 8.47 ([3) 1.35 (]1) 4.80 ([3) 1.47 (]1) 2.40 ([3)
g2 . . . . . . . 6.92 (]0) 1.13 ([1) 8.94 (]0) 4.46 ([2) 1.08 (]1) 1.64 ([2) 1.23 (]1) 7.29 ([3)
g3 . . . . . . . 5.11 (]0) 1.07 ([1) 7.02 (]0) 8.99 ([2) 8.58 (]0) 3.81 ([2) 1.00 (]1) 1.56 ([2)
g4 . . . . . . . 3.84 (]0) 8.31 ([2) 5.81 (]0) 1.10 ([1) 7.13 (]0) 1.00 ([1) 8.35 (]0) 4.85 ([2)
g5 . . . . . . . 2.92 (]0) 5.66 ([2) 4.75 (]0) 7.20 ([2) 6.35 (]0) 1.04 ([1) 7.51 (]0) 1.29 ([1)
g6 . . . . . . . 2.31 (]0) 3.91 ([2) 3.84 (]0) 4.36 ([2) 5.38 (]0) 4.76 ([2) 6.76 (]0) 5.20 ([2)
g7 . . . . . . . 1.82 (]0) 2.77 ([2) 3.13 (]0) 2.90 ([2) 4.45 (]0) 2.73 ([2) 5.76 (]0) 2.31 ([2)
g8 . . . . . . . 1.49 (]0) 1.99 ([2) 2.59 (]0) 2.04 ([2) 3.76 (]0) 1.84 ([2) 4.93 (]0) 1.48 ([2)
g9 . . . . . . . 1.23 (]0) 1.44 ([2) 2.19 (]0) 1.47 ([2) 3.20 (]0) 1.30 ([2) 4.24 (]0) 1.03 ([2)
g10 . . . . . . 1.04 (]0) 1.07 ([2) 1.85 (]0) 1.12 ([2) 2.76 (]0) 1.02 ([2) 3.69 (]0) 8.20 ([3)

where are overlap integrals that depend only on the stellar structure. The orbit enters in the termQ
nl

K
nlm

\W
lm
n
A r8

p
3

1 ] m8
B1@2

(1] e)~l`1@2
P
0

Õmax
d/(1] e cos /)l~1 cos [u8

nl
t8 (/) ] m/] , (A2)

where is the frequency of the mode, / is the angular position of the impactor in a coordinate system centered on the targetu8
nlstar (/\ 0 at periastron),

/max \ arccos
A1
e
B

, (A3)

and

W
lm

\ ([1)(l`m)@2 M[4n/(2l ] 1)](l [ m) !(l ] m) !N1@2
2l[(l [ m)/2] ![(l ] m)/2] !

. (A4)

The time along the hyperbolic orbit as a function of the angle / is given by

t8 (/)\ (1] e)3@2r8
p
3@2

(1] m8 )1@2
G sin /
1 ] e cos /

e
e2[ 1

[ (e2[ 1)~3@2 log
Ce] cos /] (e2 [ 1)1@2 sin /

1 ] e cos /
DH

. (A5)

Tables 4 and 5 list the mode frequencies and the overlap integrals for the solar and giant models that we investigate in this
work. The classiÐcation of the giant modes is complicated by the large value of the frequency in the core,Brunt-Va� isa� la�
compared to the f-mode frequencies, thereby giving rise to a mix of p- and g-mode behavior. The corresponding values for
ideal gas polytropes with n \ 1.5, 2, and 3 are given in Lee & Ostriker (1986).

TABLE 5

MODE FREQUENCIES AND OVERLAP INTEGRALS FOR THE GIANT MODEL OF

GUENTHER ET AL. (2000)

l\ 2 l\ 3 l\ 4

MODE w8
nl
2 oQ

nl
o w8

nl
2 oQ

nl
o w8

nl
2 oQ

nl
o

p8 . . . . . . 4.28 (]1) 1.25 ([2) 4.53 (]1) 1.62 ([2) 4.83 (]1) 1.86 ([2)
p7 . . . . . . 3.66 (]1) 1.66 ([2) 3.40 (]1) 2.82 ([2) 3.67 (]1) 3.18 ([2)
p6 . . . . . . 3.08 (]1) 2.29 ([2) 2.21 (]1) 6.09 ([2) 3.15 (]1) 4.12 ([2)
p5 . . . . . . 2.19 (]1) 4.35 ([2) 1.60 (]1) 1.02 ([1) 2.62 (]1) 5.86 ([2)
p4 . . . . . . 1.45 (]1) 8.40 ([2) 1.11 (]1) 1.66 ([1) 1.68 (]1) 1.13 ([1)
p3 . . . . . . 1.27 (]1) 1.05 ([1) 9.24 (]0) 2.47 ([1) 1.01 (]1) 2.27 ([1)
p2 . . . . . . 8.12 (]0) 2.36 ([1) 6.55 (]0) 1.26 ([1) 6.81 (]0) 3.59 ([2)
p1 . . . . . . 6.10 (]0) 2.68 ([1) 4.45 (]0) 9.06 ([2) 5.02 (]0) 3.42 ([2)
f . . . . . . . 3.57 (]0) 1.84 ([1) 3.39 (]0) 8.86 ([2) 2.19 (]0) 3.69 ([2)
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