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ABSTRACT

Parallel thermal conduction along stochastic magnetic field lines may be reduced because the heat-
conducting electrons become trapped and detrapped between regions of strong magnetic field (magnetic
mirrors). The problem reduces to a simple but realistic model for diffusion of monoenergetic electrons
based on the fact that when there is a reduction of diffusion, it is controlled by a subset of the mirrors,
the principal mirrors. The diffusion reduction can be considered as equivalent to an enhancement of the
pitch angle scattering rate. Therefore, in deriving the collision integral, we modify the pitch angle scat-
tering term. We take into account the full perturbed electron-electron collision integral, as well as the
electron-proton collision term. Finally, we obtain the four plasma transport coefficients and the effective
thermal conductivity. We express them as reductions from the classical values. We present these
reductions as functions of the ratio of the magnetic field decorrelation length to the electron mean free
path at the thermal speed V; = (2kT/m,)'/?. We briefly discuss an application of our results to clusters of

galaxies.

Subject headings: conduction — diffusion — magnetic fields — methods: analytical — plasmas

1. INTRODUCTION

The problem of thermal conduction in a stochastic mag-
netic field is crucial for our understanding of galaxy cluster
formation (Suginohara & Ostriker 1998; Cen & Ostriker
1999) and for the theory of cooling flows (Fabian 1990). It is
also of great interest for solar physics and for various ques-
tions of plasma physics. At the same time, the question of
whether or not electron thermal conduction is so strongly
inhibited by a stochastic magnetic field in a galaxy cluster
that it can be neglected is a very controversial one (Rosner
& Tucker 1989; Tribble 1989; Tao 1995; Pistinner &
Shaviv 1996; Chandran & Cowley 1998). It is currently
estimated that if the coefficient of thermal conductivity is
less than 1/30 of the Spitzer value, then the timescale of the
heat conduction in the cluster is more than the Hubble time
(Suginohara & Ostriker 1998). Otherwise, thermal conduc-
tion is important.’

The problem of thermal diffusion of heat-conducting
electrons in a stochastic magnetic field should be divided
into two separate parts because there are two separate
effects that reduce diffusion in the presence of a stochastic
magnetic field (Pistinner & Shaviv 1996; Chandran,
Cowley, & Ivanushkina 1999). The first effect is that the
heat-conducting electrons have to travel along tangled
magnetic field lines, and as a result, they have to go larger
distances between hot and cold regions of space. (In other
words, the temperature gradients are weaker along mag-
netic field lines.) The second effect is that electrons, while
they are traveling along the field lines, become trapped and
detrapped between magnetic mirrors (which are regions of
strong magnetic field). A trapped electron is reflected back
and forth between magnetic mirrors until collisions make
its pitch angle sufficiently small for the electron to escape
the magnetic trap.

In this paper we concentrate on the second effect, and we
derive the reduction of the effective electron thermal con-

! This numerical estimate, 1/30 of the Spitzer value, is based on numeri-
cal simulations with limited resolution, so it is not the last word on the
problem.
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duction parallel to the magnetic field lines caused by the
presence of stochastic magnetic mirrors.

As is well known, a temperature gradient produces elec-
trical current as well as heat flow. Similarly, an electric field
produces heat flow as well as current. The four transport
coefficients describing this are given in equations (34) and
(35). The transport coefficients were first calculated by
Spitzer & Hidrm for an unmagnetized plasma (Cohen,
Spitzer, & Routly 1950; Spitzer & Harm 1953). Their coeffi-
cients also apply in an uniform magnetic field for transport
parallel to the field. In this paper, we show how the parallel
transport coefficients can be reduced in the presence of sto-
chastic magnetic mirrors, and we calculate their reduced
values by the same kinetic approach as that of Spitzer &
Harm. The reduction factors are presented in Figure 5. The
reduced effective thermal conductivity (that resulting when
the electric field is present to cancel the current) is given in
Figure 6. Spatial diffusivity of monoenergetic electrons
along the magnetic field lines is presented in Figure 3.

First, in § 2, we solve the kinetic equation to find the
escape time t1,, for electrons trapped between two equal
magnetic mirrors. We assume that all electrons have a
single value of speed, V, i.e., they are monoenergetic. The
exact calculations of the escape time are given in Appen-
dices A and B. In addition, we carry out Monte Carlo parti-
cle simulations to confirm our results.

Second, in § 3, we apply our results for this escape time to
find the reduction of diffusion of monoenergetic electrons in
a system of stochastic mirrors. It turns out that in the limit
lo > A, where [, is the magnetic field decorrelation length
and 4 is the electron mean free path, the parallel diffusivity
is unaffected by magnetic mirrors and is given by the stan-
dard value D, = (1/3)V 4. In the opposite limit, /, < A, mag-
netic mirrors do reduce diffusivity. We find that in this case
there is a subset of the mirrors, the principal mirrors, that
inhibits diffusion the most. These are mirrors whose separa-
tion distances are approximately equal to the electron effec-
tive mean free path, A, the typical distance that electrons
travel in the loss cones before they are scattered out of them.
In order to estimate the reduction of diffusion in this limit,
we need consider only the principal mirrors, neglecting all
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others. Again, we perform the numerical simulations to
support these theoretical results.

Third, in § 4, in order to carry out a precise kinetic treat-
ment involving all electrons, we consider the diffusion
reduction to be equivalent to an enhancement of the pitch
angle scattering rate of electrons. In deriving the collision
integral, we, therefore, modify the pitch angle scattering
term by the inverse of the factor by which the spatial diffu-
sion is reduced. We take into account the full perturbed
electron-electron collision integral, as well as the electron-
proton collision term. We obtain an integrodifferential
equation for the perturbed electron distribution function in
the presence of stochastic magnetic mirrors. If there is no
reduction of electron diffusivity, our equation reduces to the
well-known result obtained by Spitzer & Hirm (Cohen et
al. 1950; Spitzer & Harm 1953; Spitzer 1962).

Fourth, in § 5, we solve our equation numerically, separa-
tely for the Lorentz gas in the presence of magnetic mirrors,
neglecting electron-electron collisions (in this case the equa-
tion simplifies greatly), and for the Spitzer gas in the pres-
ence of magnetic mirrors. We find the reductions of the four
plasma transport coefficients and of the effective thermal
conductivity as functions of the ratio of the magnetic field
decorrelation length [, to the electron mean free path at the
thermal speed V; = (2kT/m_)!/? (this mean free path is dif-
ferent for the Lorentz and Spitzer models). We find that the
major effect of the magnetic mirrors is the reduction of
anisotropy of superthermal electrons (this anisotropy is
driven by a temperature gradient or/and by an electric
field). Electrical current and heat are mainly transported by
these electrons, whose diffusivity is suppressed the most.

Finally, we discuss our results and give the conclusions in

§6.

2. MONOENERGETIC ELECTRONS TRAPPED BETWEEN
TWO EQUAL MAGNETIC MIRRORS

In this section we solve the kinetic equation to find the
escape time 7, for electrons trapped between two equal
magnetic mirrors. We assume here and in the next section
that all electrons have a single value of speed, V/, which is
unchanged by collisions; i.e., electrons are monoenergetic.
In order to derive an analytical solution, we make several
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additional simplifying assumptions. Let the two magnetic
barriers (mirrors) both be equal to B,,, and we assume the
magnetic field B is constant between them. We introduce
the mirror strength m = B, /B. The separation of the
mirrors is [,,, and their thicknesses are negligible compared
to [,,. In other words, magnetic mirrors are similar to thin
step functions with heights B,, — B and with constant field
B between them (see Fig. 1). This is a reasonable assump-
tion, because as we will see in the next section, electron
diffusion is controlled by strong mirrors with mirror
strengths m = 4, which are separated by distances much
larger than the magnetic field decorrelation length (if the
spectrum of mirrors falls off with their strength significantly
faster than 1/m, the case that we consider in this paper).
Under these assumptions, the kinetic equation for the
distribution function f (¢, x, u) of monoenergetic electrons
trapped between the two mirrors is (Braginskii 1965)

of o v, L
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Here x is a one-dimensional space coordinate along a mag-
netic flux tube, ¢ is time, u = cos 0 is the cosine of the elec-
tron’s pitch angle, and v = ¥/ is the collision frequency (4
is the mean free path, see eqgs. [43] and [46]). The right-
hand side of equation (1) represents the pitch angle scat-
tering rate, v, of electrons. The electrons are trapped in the
region of space between the mirrors, —1[,,/2 < x < [,/2, and
they can escape through the two windows, x =1,/2, u >
Pore = (1 — 1/m)Y?, and x = —1,,/2, 4 < — Uyi» as shown in
Figure 1. The mirror strength is m = B,,/B, and it is the
measure of the relative heights of the magnetic barriers. For
simplicity, we assume that the barriers are high, i.e., m > 1
and p_.;, & 1 — 1/2m. In this case the electron distribution is
in quasi-static equilibrium,

[, x, p)=e"""F(x, p), 7, >v" ", 2
and equation (1) reduces to
F OF v 0 » OF

Let us consider an electron traveling in the loss cone
B> ey = (1 - 1/m)1/2 ~1- 1/2m (Or < _”crit)' The
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Fi1G. 1.—(a) Magnetic flux tube with two “step function-like ” magnetic mirrors. The mirror strengths are m = B,,/B. (b) Phase space box where electrons
are trapped in coordinates x and p = cos 6. The horizontal dotted lines show a closed trajectory of a trapped electron in the limit/,, < A. The electrons escape
the magnetic trap through two escape windows: x = [ /2, u > p;, = (1 — I/m)*? and x = —1,/2, u < —p,,;,. In the limit [, < A, the electrons freely escape
to the right or left whenever they reach the two loss cones, u > p,;, and p < — p,;,. In the opposite limit, A, < I,,, the electrons escape when they reach the

two shaded regions of the phase space.
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effective electron mean free path, which is the typical dis-
tance the electron travels before it is scattered by small-
angle collisions out of the loss cone, is

dogs = A2m < A . )

In other words, A is a decay distance for a flow of elec-
trons traveling in the loss cones. The solution of equation
(3) and, therefore, the escape time t,, depend on the mirror
strength m and the ratio [,,/A. There are three limiting cases
for which simple approximate solutions exist: (1) [, <
dogt = 42, (2) Aee < Ly < A2 [Aege = 2mA, and (3) A2 /Ay <
l.. We solve equation (3) for case (1) in Appendix A and for
cases (2) and (3) in Appendix B, and we obtain the electron
escape times

Ti,})zv_llnm, lm<leffn
Tir%) = v_l(lm/}'eff) = v_l(zmlm/l)’ leff < lm < j‘Z/Aeff s
T =V G/ /A 22 Aege < Ly - )

The following simple physical arguments help to under-
stand these results in these three limiting cases. The col-
lisional scattering is a two-dimensional random walk of a
unit vector (which is the direction of the electron velocity)
on a surface of a unit-radius sphere with frequency v [so the
scattered angle A, = (2vt)}/? after time interval ¢]. The right-
hand side of the kinetic equation (1) represents a one-
dimensional random walk in u-space that follows from the
two-dimensional walk because of symmetry. However, it is
convenient for the moment to return to the original two-
dimensional scattering because it is isotropic. The angular
sizes of the two loss cones on the unit-radius sphere are
Ao~ 1 /\/ﬁ First, in the limit [,, <€ A, collisions are very
weak, and the scattered angle over the travel time between
mirrors, 1,,/V, is ~(I,,/A)'* < A.,.. Therefore, in this case we
can disregard the electron motion in x-space. We divide the
surface of the unit-radius sphere into ~m boxes, each of
angular size ~A, ~ 1 /\/ﬁ The time it takes for the unit
vector to random walk from one box to anotheris ~v~1/m,
resulting in the total escape time t,, ~ m(v_'/m)=v"1.
Because the unit vector can “visit” each box more than
once, the exact result contains the logarithm of m. Second,
in the limit A < I, < 42/, we have to consider motion
in x-space as well. In this case the electrons move in three-
dimensional phase space, and they escape when they are in
the two loss cones within distance A from the mirrors, as
shown by the shaded regions in Figure 1b. We divide the
three-dimensional phase space into ~ (I, /A )(1/A2.) ~
m?1,,/A boxes, each of size A AZ, ~ A/m. The time it takes
to move from one box to another is ~v~!/m, resulting in
the total escape time 7, ~ (m2l,/A)(v~1/m) = v~ 1(ml,/A).
Note that the electron distribution function is almost con-
stant in the phase space in this case (see Appendix B). Third,
in the limit A2/ < I,,, the escape of electrons is controlled
by slow diffusion in x-space, so the escape time is approx-
imately equal to the time of diffusion between mirrors, 7, ~
v~1(l,,/A)? in this case.

In our further calculations we use a simple interpolation
formula

T X T + 0+ ) = v Inm + (/) + 3/n%)(1,/4)7]
(6)

for the whole range of parameters m and [,,/A. This formula
is suggested by the numerical simulations shown in Figure
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F1G. 2—The dots show a logarithmic plot of the numerically obtained
electron escape time t,, in units of the collision time v~ ! as a function of the
separation /,, of two equal magnetic mirrors in units of the mean free path
A. These results are based on our Monte Carlo particle simulations of
103-10° trapped electrons, assuming three values of the mirror strengths,
m =2, m = 16, and m = 128. The solid lines represent the analytical result

(eq. [6]).
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2. The dots in this figure show the results of our Monte
Carlo particle simulations for three mirror strengths m = 2,
m = 16, and m = 128. To obtain our simulation results we
followed 103-10° electrons trapped between two equal
magnetic mirrors separated by distance [, ranging from
1/1024 to 256 in units of the mean free path 1. We carry out
Monte Carlo simulations in the following way: First,
initially all particles have x =0 and u = 0. Second, the
cosine of the pitch angle of each particle random walks
inside interval (—1, 1) according to equation (1); i.e., the
change of u in time interval dt<1/v is du=
+{[1 — (¢ + dw)?*]vdt}*>. Here + or — are chosen ran-
domly with equal probabilities, and du is given implicitly
(the implicit method guarantees that —1 < pu < 1; the
square root can be expanded in vdt < 1). The change of
particle position x in time interval dt is obviously
dx = pV dt. Third, each particle escapes the mirror trap
whenever u > p . and x =1,/2, or p < —p ,; and x =
—1,,/2. Independently of the initial distribution of electrons,
the number of trapped electrons tends to an exponential
dependence on time with the characteristic decay time 7,, in
just a few collision times (see eq. [2]). The solid lines in the
figure represent formula (6) and are in a very good agree-
ment with the simulations even for the smallest mirror
strength m = 2.

3. DIFFUSION OF MONOENERGETIC ELECTRONS IN A
SYSTEM OF RANDOM MAGNETIC MIRRORS

In this section we continue to assume that electrons have
a single value of speed, V. If there were no magnetic mirrors
and the magnetic field had constant strength along the field
lines, the parallel diffusion of monoenergetic electrons
would be the standard spatial diffusion, D, = (1/3)V' 1. Here
A is the electron mean free path at speed V. However, as we
have discussed in the introductory section, diffusing elec-
trons move along flux tubes with random magnetic field
strength and become trapped and detrapped between mag-
netic mirrors. These mirrors are regions of strong field and
are separated by a field decorrelation length /. As a result,
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the diffusion is reduced by a factor that depends on the ratio
lo/A.

In the main part of this section we derive this diffusion
analytically and at the end of the section confirm it with
numerical simulations. (In contrast to the previous section,
where there were only two equal mirrors, in this section we
consider many mirrors with random spacing and strength.)

Consider the limit [, > 4 first. In this case collisions are
strong, and according to the third formula in equation (5),
the time it takes for electrons to escape a trap between two
magnetic mirrors is independent of the mirror strengths and
is entirely controlled by the standard spatial diffusion trans-
port of electrons between the mirrors. As a result, magnetic
mirrors can be ignored, and there is no reduction of diffu-
sion, D = D,,.

In the opposite limit, [, < 4, the collisions are weak, and
magnetic mirrors do result in a reduction of diffusion. To
find this reduction, we divide all mirrors into equal-size bins
b,, = (m — /2, m + 6/2], where m is the bin central mirror
strength and constant § is the width of the bins (the value of
¢ will be discussed later).

For the moment we consider the diffusion in the presence
of only those mirrors that are in a single bin b,,. It turns out
that one of the bins leads to a smaller diffusion than any
other bin, and the net diffusion due to all the mirrors is
approximately that due to only mirrors in this bin, provided
that the bins are sufficiently wide.

Let the spectrum of magnetic mirror strengths be 2(m).
We assume that strong magnetic mirrors are rare; i.e., the
spectrum falls off fast with the mirror strength (we will esti-
mate how fast it should fall off, below). The probability that
a mirror belongs to bin b,, is

m+9/2
P = J P(m)dm' ~ 6P(m) + (5°/24)2"(m) . (7)
m—6/2
At each decorrelation length [,, the magnetic field changes
and becomes decorrelated. Therefore, the mean separation
of mirrors that are in bin b,, is

b = 1o kz,lkpm(l — Pt =lo/Pm - )

Let us consider an electron trapped between two mirrors
of bin b,,. The time 7,, that it takes for this electron to escape
the trap is given by equation (6), where we keep only the
first two terms (because [, < 1)

T X T + 1@ = v~ n(mg,,) . )
Here, we introduce the important parameter

Gm = XD (Lu/Aerr) = exp (2mlo/py 4) , (10)

where the mean distance [,, between the two mirrors is given
by equation (8). After the electron escapes, it travels freely in
the loss cone in one of the two directions along the magnetic
field lines until it is again trapped between another two
mirrors of bin b,,. The freely traveling electron becomes first
trapped with probabilities 1 — e ' =1 — g~ 1 in 0 <
x <l,, e it _ o= 2mlkar — g1 _g-2 jpn | <x<2l,
e 2mlkett _ o= 3mlhett — g2 g3 in 21, < x < 31,,, and so
on. Therefore, the mean distance squared {Ax?>,, that the
electron travels in the loss cones before trapping is

dmlqm + 1)

@17~ W

Axy =15 Y K, " — 4,5 =1
k=1
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The processes of trapping and detrapping repeat in time
intervals z,,. In other words, electrons random walk along
the field lines in a system of mirrors that belong to bin b,
with steps ~ (Ax?),, in time intervals ~t,,. As a result, the
diffusion coefficient for these electrons is D(m) =
C({Ax*>,/2t,), where we introduce a scaling constant C,
which is of the order unity and will be determined by the
numerical simulations. The corresponding reduction of dif-
fusion is

2 N1 1
’_o> Gn(dm + 1) L <.

3
D(m)/Do = €5 (z (gw — 1) i 1In(mg,)’

(12)

where we use D, = (1/3)vA? and equations (8), (9), and (11),
and p,, and g,, are given by equations (7) and (10).

For a given spectrum of mirrors #(m) and given con-
stants 6 and C, the diffusion reduction (12) due to mirrors
of bin b,, is a function of mirror strength m. Let us analyze
this function in two limits: Ing,, < 1 and Ing,, > Inm 2 1.
If Ing,<1, then g¢,—1=2mly/p,A <1 Therefore,
D(m)/D, ~ C(3/4)(1/m*Inm) and (d/dm)[D(m)/D,] < O.
On the other hand, if Ing, > Inm, then D(m)/D, ~
C(3/4)1o/A)1/mp,,). Therefore, (d/dm)[D(m)/D,] >0 if the
spectrum of mirrors falls off faster than 1/m with the mirror
strength.”> In this paper we make an assumption that the
spectrum falls off significantly faster than 1/m.

Therefore, a minimum of D(m)/D, exists. Let this
minimum be achieved at m = m,. Then Ing,,, = 1, /A ~
2/lnm, ~ 1,0rl, ~ A The minimum can roughly be esti-
mated as D(m,)/D, = min [D(m)/D,] ~ 1/m2, which is in
agreement with the qualitative results of Albright et al.
(2000).

In other words, if [, < A, then there is the bin that inhibits
diffusion the most. We call it the principal bin, b, =
(m, — 6/2, m, + 6/2]. The corresponding mirror strength
m, is the principal mirror strength. The minimum of diffu-
sion D(m) due to mirrors of bin b,, is achieved at the prin-
cipal strength, m = m,,. The spacing of the mirrors that are
in the principal bin is of the order of the effective mean free
path for this bin, ,,, ~ A = 4/2m,. The main idea is that,
in order to estimate the net diffusion due to all mirrors, we
need consider only magnetic mirrors that are in the prin-
cipal bin and we can neglect all other bins. Mirrors that are
smaller than the principal mirrors “work” poorly in the
inhibition of diffusion because they are weak and are
separated by distances less than A (which is the distance
that electrons travel in the loss cones). Mirrors that are
larger than the principal mirrors “work ” poorly, because
they are very rare and are separated by very large distances
(provided the mirror spectrum falls off with the mirror
strength significantly faster than 1/m). Of course,
occasionally there will be a larger mirror between two prin-
cipal mirrors, since they have to be somewhere, but if the
distribution falls off rapidly with the mirror strength (see eq.
[14]), this occurs only very rarely and, as confirmed by our
numerical simulations, does not affect the statistical results.

2 This criterion is different from the result of Albright et al. (2000), who
found 1/m? to be the boundary spectrum for the transition between their
diffusive and subdiffusion regimes. We believe that the difference arises
because, for flat spectra, our bin width ¢ starts to depend on /,/A (and our
simple diffusion model breaks down).
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(a) Exponential: C=2.13, 6=2.60
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(b) Gaussian: C=1.68, 6=1.07
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F1G. 3—We consider two mirror spectra: (a) exponential and (b) Gaussian (see eq. [14]). The dots show the reduction of diffusion, R, = D/D, obtained
by Monte Carlo particle simulations of (1-6) x 10° electrons, each followed in a system of magnetic mirrors over 300 collision times v~ . The solid lines
represent the theoretical results given by eq. (13). The constants C and § are obtained by matching the theoretical results with the results of simulations for

each of the two spectra (and these constants do not depend on [,/4).

The theoretical results based on these assumptions fit nicely
our simulation results for large and small 1/l (see Fig. 3).

As a result of these considerations, we can combine our
theoretical results for the reduction of diffusion of mono-
energetic electrons, Ry, = D/D,, into a single formula valid
in the two limits for /,/4,

in [D(m)/D,] = D(m,)/D, , .
19 lo>ia
(13)

where D(m)/D,, is given by equation (12) and the minimum
is achieved at the principal mirror strength m = m, (note
thatlng,,, =1, /A ~ 1).

We show the theoretical monoenergetic diffusion
reduction (13) by the solid lines in Figure 3 for two mirror
spectra: exponential and Gaussian,?

e m=2) exponential ,

P(m) = {(2/7z)1/2e“’"_2)2/2 Gaussian . (14)

The results of our Monte Carlo particle simulations are
shown by dots. The constants C and ¢ (top) are of the order
unity, and we adjust them by matching our theoretical
results with the results of simulations in the case of each of
the two spectra (C and ¢ do not depend on /,/4). The simu-
lations are based on (1-6) x 10° particles. For each particle
we choose a distribution of mirrors m > 2. These are placed
at x=0, +1,, +2l,, +3l,...; ie, all mirrors are
separated by the magnetic field decorrelation length [,. The
strengths of all mirrors are chosen (for each particle)
according to the assumed mirror spectrum (14). Initially, all
particles start in the middle between two mirrors, x = [,/2,
and particles have zero cosine of the pitch angle, u = 0. We
evolve u and x of each particle in the way that was
described in the previous section, except now when particles
reach the loss cones, they are allowed to move from one
mirror trap to another. We follow the particles during 300

3 We find the minimum in eq. (13) numerically.

collision times v~ ! after their distribution relax in couple

collision times. Then we average the particle displacements
squared {Ax?) at a given time t to obtain the diffusion
coefficient (Ax2)/2t given in Figure 3.

Note that the bin width 6 is larger for the exponential
spectrum than it is for the Gaussian. This is because the
latter is steeper at large mirror strengths. Figures 4a and 4b
clearly demonstrate the difference. In these figures we plot
the natural logarithm of the diffusion reduction (12) caused
by mirrors that are in bin b,, versus the mirror strength m
for I,/A = 1/16 and for both spectra (eq. [14]) of mirror
strengths. The principal bins are shown by arrows. In the
case of each spectrum, the reduction has the minimum at
the corresponding principal mirror strength m,. We see that
the reduction roughly doubles over its minimal value at the
boundaries of the principal bin, m = m, + §/2 and m = m,
— /2.

4. THE FOKKER-PLANCK KINETIC EQUATION

In this section we use the results found above to obtain a
modified kinetic equation to describe electrons traveling in
a system of random magnetic mirrors. The reduction of
spatial diffusion of monoenergetic electrons with speed V,
R, was obtained in the previous section. However, mirrors
reduce only the electron spatial diffusion, and they hardly
affect the diffusion and flux of the averaged probability dis-
tribution of electrons in velocity (energy) space. Therefore,
in order to represent the spatial diffusion reduction in the
familiar form of the Fokker-Planck equation, we note that
such a reduction would be achieved by a distribution of
electrons with an enhanced pitch angle scattering rate, since
the pitch angle scattering is directly related to spatial diffu-
sion. (Of course, for any case in which the diffusion is
reduced significantly, our description really refers to a time
average of the kinetic equation over a time interval long
compared to a bounce time between mirrors, during which
the pitch angle of any particle changes finitely.) We believe
that the two electron distributions, one with an enhanced
pitch angle scattering and no mirrors, and the other our
distribution in mirrors with no enhanced scattering, behave
the same way as far as transport phenomena are considered.
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lo,/A=1/16

(a) Exponential:

LN[D(m) /D]
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(b) Gaussian: l,/A=1/16

LN[D(m)/D,]

F1G. 4—Natural logarithm of the diffusion reduction (12) caused by mirrors that are in bin b,, for [,/A = 1/16. We consider two mirror spectra:
(a) exponential and (b) Gaussian (see eq. [14]). The principal bins are shown by arrows. In the case of each spectrum, the reduction has the minimum at the
principal mirror strength m,, and it roughly doubles at the boundaries of the principal bin.

As a result, hereafter we consider only the first electron
distribution, and in deriving the collision integral, we
modify the pitch angle scattering term by factor Rj, !, where
R,, is the factor by which the spatial diffusion is reduced (see
the previous section). R, does depend on electron speed, so
we no longer assume electrons to be monoenergetic. We
take into account the full perturbed electron-electron colli-
sion integral, as well as the electron-proton collision term.
When R, = 1, our equations reduce to those of Spitzer &
Hérm (Cohen et al. 1950; Spitzer & Harm 1953; Spitzer
1962).
The electron distribution function is

f, V) =foV) + fiw, V) , (15)

where f, is the zero-order isotropic part given by the
Maxwellian distribution,

fo = n(x)[m,/2nkT(x)]32e M V2I2kT®) = pp=32 3 g2 |
(16)

and f; oc u is the first-order anisotropic perturbation (of
order the temperature gradient and electric field)

filw, V) = unV 73 S©) . 17)
Here m, is the electron mass, k is the Boltzmann constant,
and the electron temperature T(x) and concentration n(x)
slowly change in space. We also introduce the dimension-
less electron speed v = V/V;, where the thermal electron
speed is V; = (2kT/m,)}'. Thus, the function S(v) in equa-
tion (17) is dimensionless.
In a steady state, the kinetic equation for the electrons is
obviously

VA0fo/0X) — (eE/m,)(0fo/0V) = (8f/0Y). (18)
where (df/4t), is the Coulomb collision integral that includes
electron-proton and electron-electron collisions, V, = uV is
the x-component of the electron velocity (the component
along the magnetic field lines), and E is the electric field in
the x-direction. The electron pressure should be constant,
P = kn(x)T(x) = const.* As a result, the derivatives of the

4 Because the hydrodynamic timescale is much shorter than the trans-
port, e.g., thermal conduction, timescale.

Maxwellian electron distribution are
Ufo/0x = (v* — 2.5)(fo/T)AT/dx) ,
ofo/0V, = —Qu/Vr)fo - (19)
The collision integral is divided up as
(0f]61). = (9fo/0t)o + (9f1/01)0 + (8fo/01),
= (9f1/08)0 + (fo/00)1 (20)

where (0f,/6t), = 0 corresponds to Maxwellian collisions
acting on f,, (0f/0t), corresponds to Maxwellian collisions
(with enhanced pitch angle scattering) acting on f;, and
(0fy/0t), corresponds to perturbed collisions acting on f,
(since f,, is isotropic, there is no pitch angle scattering in this
collision term). The collision integral (20) can be best
obtained, in the Fokker-Planck form, by wusing the
Rosenbluth potentials h(u, V) = ho(V) + hy(p, V) and
gu, V) =go(V) + g1(, V) (Rosenbluth, MacDonald, &
Judd 1957). Here h, and g, are calculated using the Max-
wellian parts of the electron and ion distribution functions
in equation (16), while the perturbed potentials, h, =
2us/ (V) and g, = u4,(V), are proportional to p, and they
are calculated using the perturbed part of the electron dis-
tribution function (17).

The Maxwellian potentials h, and g, determine the
(0f1/0t), part of the Fokker-Planck collision integral, and
the perturbed potentials, h; = 2u.o/ (V) and g, = u%,(V),
are used to find the (df,/0t); part of the Fokker-Planck
collision integral (see eq. [31] of Rosenbluth et al. 1957),

@{ Li( dh) 1

wm v\ MR
.4y 1_ dgo

(v Ee)- (fl 1)

A I A

(0f1/0t)o =

R7 - _Yv ____
MR RETZ I T
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A 2 (e,
(0f0/08); = u m |: V2 av <f0V dV)

4 1 a2 a>#
+;5ﬁwf1+§;5355<ﬂﬁﬂ dV;>

3 3 d
BN A O T T

d#, 3. d B,
X(foﬁ)-i-%ﬁ(fo?)]. (22)

For a hydrogen plasma the “ diffusion constant ” A, is

Ap = 8nne* In A/m? , (23)
where e is the absolute value of the electron charge and In A
is the Coulomb logarithm (Spitzer 1962). Note that the last
term in equation (21) is the pitch angle scattering term, and
we multiply it by our enhancement factor R,' (compare
this term with the right-hand side of eq. [1]).

Using equations (17) and (18) of Rosenbluth et al. (1957),
we express the derivatives of the potentials h, and g,
in terms of the three Maxwellian diffusion coefficients
CAV >0, {(AV))*Do, and {(AV})*>,, which are further given
in terms of error functions (see eqs. [5-15]-[5-20] of Spitzer
1962)

dho/dV = (2n/Ap)]XAV|>o = —(n/V?)[1 + 4°G(v)] ,

dgo/dV = (n/Ap)V{(AV,)*>o = n[1 + @) — GW)] ,
d*go/dV?* = (2n/Ap)X(AV))* o = (2n/V)G(v) . 24)
Here ® is the usual error function, and G is expressed in

terms of ® and its derivative @'; they are functions of the
dimensionless speed v = V/Vy [V = (2kT/m)'/?],
v ® _ Q/

o) = 21/ f e, Gy ="

0

The perturbed potentials, h; = 2u.s/,(V) and g, = u%,(V),
are calculated using the perturbed electron distribution

function (17) and are given by the following formulae (see
egs. [40],[41]7, [45], and [46] of Rosenbluth et al. 1957):

o 1 = (4n/3)(n/Vy)[v~*I5(S; v) + vL(S; v)] ,
B, = (4n/3)nV;[0.207214(S; v) — I5(S; v)
— vI,(S; v) + 0.20°L4(S; v)] , (26)
where we introduce integrals

I,(S;v) = f Uv'”S(v) dv, I,(S;v)= vamS(v) do. (27)
0 v

Now, substituting equations (16), (17), (24), and (26) into
formulae (21) and (22), and using definitions (25) and (27)
and equation (20), after considerable algebra, we have for
the collision integrals

(8f1/08)0 = (nAp/2V o~ X(ZS — 20°0'S) ,
(8fo/08); = (nAp/2V P~ *(JS + 2°D'S)
(8f/00). = (nAp/2V P~ (LS + 75, (28)

where the differential and the integral operators are defined
as

3 d#y

. (25)

ZS(v) = d/dv[vG(dS/dv)] + 2v>G(dS/dv)
—[ 'Ryl 4+ ® — G) — 42®]S, (29)
FS(v) = (4/15/m)e"*[1214(S; v) — 10I4(S; v)
+203(602 — 5)I(S; v)] - (30)
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The enhancement of the Maxwellian pitch angle scattering
rate, R, !, enters into the differential operator (29). The term
R, depends on the dimensionless speed v = V/V;; we will
explicitly give this dependence in equations (42) and (45).
Finally, substituting formulae (28) and (19) into equation
(18), we obtain the kinetic equation for the dimensionless
perturbed electron distribution function S(v) (see eq. [17]),

ZS =yp0320% — S)e ™ + ypv3e " — IS,  (31)
S(v)—>0, asv—>0andasv—> 0, (32)
where constants y; and yj are

I Y N
= 20ne*nA dx’ 'E T mPnelnA

We also take the obvious boundary conditions in equation
(32) for function S. Equations (29)-31) reduce to the Spitzer
equations for an ionized hydrogen gas (Cohen et al. 1950;
Spitzer & Harm 1953) if we set R, = 1 and make a substi-
tution S(v) = 7~ 32e~*’D(v). However, we prefer to use func-
tion S, because of the simpler boundary conditions in
equation (32).

Yr (33)

5. THE REDUCTION OF TRANSPORT COEFFICIENTS BY
STOCHASTIC MAGNETIC MIRRORS

In a steady state, an electric field E and a temperature
gradient dT/dx both produce anisotropic perturbations of
the electron distribution function, f;(u, v) = unV 53 S(v) (see
eqs. [15] and [17]). This anisotropy results in an electron
flow and, consequently, in an electric current j and in a heat
flow Q along magnetic field lines (in the x-direction),

o (1
j= —ef j uVf, du2nv?dv
o J-1

= oE + o(dT/dx) , (34)
0= jw jl wV(m,V2/2) f, du2nV?dv
o J-1
= —BE — x(dT/dx) . (35)

Here o, o, f, and k are the four transport coefficients to be
found (¢ and « are the electrical and thermal conductivities).

Before we proceed to the calculation of the transport
coefficients, let us first call attention to the electron flow
produced by the electric field. The electric field produces
two different kinds of electron flow. The first, the main flow,
is due to acceleration of electrons, which is described by the
term containing E in equation (18) and correspondingly by
the term containing y; in equation (31). The second, an
additional flow, arises because the electric field changes the
size of the two loss cones of a mirror trap, so in Figure 1b
Ui 1 the right upper corner is not equal to p,;, in the left
lower corner. As a result, the electrons are more likely to
escape the trap in the direction opposite to the electric field.
Fortunately, this additional flow, which is rather compli-
cated to find precisely, can be neglected compared to the
flow dsue to acceleration. We give a proof of this in Appen-
dix C.

5 The main reason is that the difference in the two loss cones due to
electric field is inversely proportional to the electron kinetic energy, so the
additional flow has a factor 1/V2 compared to a factor 1/V'2 that enters the
main flow due to acceleration. Because both the current and the heat flow
are mainly transported by superthermal electrons v = V/V;. ~ 2, the addi-
tional flow is approximately 20% of the main flow (see Appendix C).
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In further calculations, it is convenient to break S(v) into
the two separate inhomogeneous solutions of equation (31),
which we denote as S(v) and Sg(v).® The first solution, S, is
obtained by setting y; = 1 and y; = 0, and the second solu-
tion, S, is obtained by setting y; = 0 and y; = 1,1i.e,,

Sr(v) =S(v), whenyr=1and y;=0,
Sg(v) = S(v), when y; =0and y;=1. (36)

The general solutions to equation (31) and the perturbed
distribution function (17) are the linear combinations of the
two inhomogeneous solutions,
S() =7 S1(v) + v Sv)

fi(w, v) = unV 1 3[yr S(v) + v SpO)] - (37)
In other words, S; and Sy correspond to anisotropic per-
turbations of the electron distribution function, which are
driven by the temperature gradient and by the electric field,
respectively, while S = y; S + y; Sg is the total anisotropic
perturbation.

We now consider separately two cases: first, the Lorentz
gas in a system of random mirrors, and second, the Spitzer
gas in a system of random mirrors. For the Lorentz gas,
electrons are assumed to collide only with protons, so equa-
tions (29)31) become greatly simplified. For the Spitzer
gas, we consider both the electron-electron and the
electron-proton collisions, so we solve the full set of our
equations.

5.1. Lorentz Gas in a System of Random Mirrors

Here we assume that the electrons collide only with
protons, so we have for operators (29) and (30)
PS=—S/R,, FS=0, (38)
resulting in the two simple inhomogeneous solutions in
equation (36) of equation (31),
S(v) = —v*2v% — 5)e"*’Rp, Syv) = —v*e ’R,.  (39)
If there are no magnetic mirrors, so R, = 1, we substitute
equations (39) into formula (37) and easily carry out the two
integrals in equations (34) and (35). Taking into consider-

ation the definitions in equation (33), we obtain the well-
known Lorentz transport coefficients (Spitzer 1962)

2<2>3/2 (kT)S/Z 3(2)3/2 k(kT)3/2
o, =2(- o, =3|—
T

mi?e*InA’ n) mi?ellnA’

2 3/2 (kT)S/Z 2 3/2 k(kT)S/z
=8| — ——a—, Kk, =20]- —— -
b T mi2e3In A t n) ml?2e*lnA
(40)
If there are magnetic mirrors, it is convenient to normal-
ize the resulting transport coefficients to the corresponding
Lorentz coefficients in equation (40). Substituting equation

(37) into the two integrals in equations (34) and (35), and
again using the definitions in equation (33), we have

/o, = —(1/3)I5(Sg; ), afo, = —(1/9)5(Sr; ),
B/B. = —(1/12)I5(Sg;00), /K, = —(1/60)I5(S7;00) ,
(41)
where the integral moments are defined by equation (27),

and S; and S are given by equation (39).
In order to find explicitly the diffusion reduction factor

6 The two homogeneous solutions of eq. (31) must be excluded, because
they diverge either at v — 0 or at v — oo, violating the conditions in eq. (32)
(see more details in Cohen et al. [1950]).
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R, in equation (39) as a function of v, we refer to the results
of § 3. In that section we found the diffusion reduction as a
function of the ratio of the magnetic field decorrelation
length I, to the electron mean free path A. For Lorentz
electrons the mean free path /; is proportional to the fourth
power of the electron speed, 4; oc V* (Spitzer 1962; Bra-
ginskii 1965). Thus, we have

Rp = Rp(lo/41) = RD(D_4IO/ j'L, T) > 42)

where A, ; is obviously the Lorentz electron mean free path
at the thermal speed V; = (2kT/m_)'/?,

Ap.r = (kT)?/mne*In A ~ 0.1 kpc(T/10” K)*(10™ 3 cm ™ */n) .
(43)

Here we assume the Coulomb logarithm for a cluster of
galaxies to be In A =~ 40 (Suginohara & Ostriker 1998).

We use our analytical results of equation (13) for the
monoenergetic diffusion reduction Rp = Rp(ly/AL) =
Rp(v™*lo/A 1) when v~ *ly/A 1 < 1/300 and v~ *l/A 7 >
300 (the numerical simulations are extremely time consum-
ing for very small and very large [,/1), and we use our
numerical simulation results presented in Figure 3 for
v~ *ly/A 7 in between. (We carry out the cubic spline inter-
polation of the simulation results. Note that Ry, is not differ-
entiated in operator [29], so our final results are not
sensitive to small noise errors in the calculation of Rj,.)

Using equations (39) and (42) with R, given in § 3 and
numerically performing the velocity integrals, we find all
four transport coefficients in equation (41) normalized to
the standard Lorentz coefficients in equation (40). The
dashed lines in Figures 5a—5h show the resulting normalized
transport coefficients o, «, B, and « as functions of [/, for
the two mirror spectra: (a) exponential and (b) Gaussian
(see eq. [14]). The asymptotic values of the coefficients at
large values of I,/A. ; are given by the numbers on the
dashed lines, and they are unity. Thus, there are no
reductions of the transport coefficients at [,/A; > 1, as one
can expect because there is no reduction of electron diffusiv-
ity in this limit (see eq. [13]). In a steady state, the electrical
current j in a highly ionized plasma should be zero. Thus, if
a temperature gradient is present, the resulting electric field
E is obtained by setting j to zero in equation (34). Substitut-
ing this result for E into equation for the heat flow (35), we
find for the effective thermal conductivity

Kegs = K — aﬁ/a ’
Kegr/ K1, = K/, — (3/5) (/o )(B/BL)(oL/0) , (44)

where we use the formulae in equation (40) for the Lorentz
transport coefficients in the second line of this equation.

Using the transport coefficients reported in Figure 5 by
dashed lines and formula (44), it is easy to find the effective
thermal conductivity k., normalized to the standard
Lorentz thermal conductivity x; (see eq. [40]). However, it
is more useful to give the ratio of k. to the Lorentz effec-
tive conductivity, &y ¢ = 0.4x;. This ratio is the actual sup-
pression of the effective conductivity of the Lorentz gas by
magnetic mirrors. The dashed lines in Figure 6 show this
suppression, K.«/Ky ., as functions of [,/A;  for the two
mirror spectra: (a) exponential and (b) Gaussian (see eq.
[14]). It has been estimated that the time of heat conduction
in clusters of galaxies is possibly larger than the Hubble
time if the thermal conductivity is less than 1/30 of the
Spitzer value (Suginohara & Ostriker 1998). The horizontal
dotted lines indicate this reduction of 1/30.
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F1G. 5—Panels on the left/right correspond to the exponential/Gaussian mirror spectra (see eq. [14]). The solid/dashed lines in all panels show the four
transport coefficients, g, o, §, and «, for the Spitzer/Lorentz gas in the presence of stochastic magnetic mirrors as functions of the ratio of the magnetic field
decorrelation length I, to the Spitzer/Lorentz electron mean free path, Ag /4, r, calculated at the electron thermal speed V. = (2kT/m,)"/* (see egs. [43] and
[46]). All transport coefficients are normalized to the standard Lorentz transport coefficients given by eq. (40). The asymptotic values of the coefficients at
lo/Ar > 1 are given by the numbers on the lines. They agree with the results of Spitzer & Hérm (1953).

For comparison, the dotted lines represent the mono-
energetic diffusion reduction at the electron thermal speed,
Rp(lo/2r, 1) = D(o/AL,1)/Do. We see that the Lorentz gas
effective conductivity is reduced to a value 2-3 times smaller
than that of the diffusion reduction. This is because heat is
mainly transported by superthermal electrons. These elec-
trons have long mean free paths, and the magnetic mirrors
more strongly inhibit their diffusion.

5.2. Spitzer Gas in a System of Random Mirrors

Now consider the full collision integral (28) for the
Spitzer gas in a system of random magnetic mirrors. We
have numerically solved the full set of our equations (29
(32). Formulae (41) and (44) remain the same as for the
Lorentz gas, but the functions S;(v) and Sg(v) are different.
For Spitzer electrons the mean free path is Agoc V4[1
+ ®(v) — G(v)]~* (Spitzer 1962; the error functions ® and
G are given by eq. [25]). Thus, formula (42) for the
reduction of spatial diffusivity now becomes

1y 1+(I)(v)—G(u)> @)

Rp = Rp(lo/%s) = RD<U4 Jsz 1+ 0(1) — G(1)

where the Spitzer electron mean free at the thermal speed
Vy = (2kT/m,)? is

As.r = 0.614(kT)*/nne* In A
~ 0.06 kpe (T/107 K)?(10™3 cm™3/n) . (46)

Functions Sp(v) and Sg(v) are defined by equation (36),
and they are the two inhomogeneous solutions of equations
(31) and (32). To find these solutions we solved equation (31)
numerically by iterations. At each iteration step the integral
part of this equation, .7 S, was calculated using the old solu-
tion for S from the previous step, and the new solution for S
was calculated by the method of Gaussian decomposition
with backsubstitution (Fedorenko 1994), using the bound-
ary conditions of equation (32).” Initially, we started with
zero function S = 0. The iterations converged very rapidly,
and the Gaussian decomposition method is stable. We
believe that our numerical method is much better and faster

7 This method works as follows: At each iteration step we write the
differential operator S in eq. (31) as a finite-difference operator leading to
a system of linear equations for the new solution for S. This system is a
tridiagonal matrix, which is solved by Gaussian decomposition with back-
substitution.
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412 MALYSHKIN & KULSRUD

than the method of Spitzer & Harm (1953) because their
method was not stable. It took us less than 10 s of computer
time to calculate all digits of the transport coefficients
reported by Spitzer & Harm.

The solid lines in Figures 5a—5h show the resulting trans-
port coefficients o, o, f, and k normalized to the standard
Lorentz coefficients of equation (40) as functions of ly/Ag 1
for the two mirror spectra: (a) exponential and (b) Gaussian
(see eq. [14]; remember that [, is the magnetic field decor-
relation length). The asymptotic values of the coefficients at
large values of [,/ ; are given by the numbers on the solid
lines, and they agree with the results of Spitzer & Harm.

The effective thermal conductivity, k¢, normalized to the
Spitzer effective conductivity, kg ¢y = 0.0943%x;, is given in
Figure 6 by the solid lines for the two mirror spectra. This
normalized conductivity is the actual suppression of the
effective thermal conductivity of the Spitzer gas by stochas-
tic magnetic mirrors. It is the result that should be applied in
astrophysical problems with random magnetic mirrors.

Finally, it is interesting to see how the mirrors change the
Spitzer perturbed electron distribution function. In Figure 7
we plot functions v2S(v) and v2Sg(v) for the case when [, =
s, 7 (note that 2nV2f; is the actual distribution of electrons
over speed V = vVr; see eq. [37]). The solid lines represent
these functions for the Spitzer gas in a system of random
mirrors with the exponential mirror spectrum (for the
Gaussian spectrum the results are similar). The dashed lines
show the same functions for the Spitzer gas without mag-
netic mirrors. We see that v25,(v) and v2S,(v) are reduced at
large values of v, i.e., magnetic mirrors reduce the anisot-
ropy of the superthermal electrons, which carry the electri-

cal current and heat.

6. CONCLUSIONS

In this paper we have derived the actual parallel effective
thermal conductivity that should be applied to astro-
physical systems with random magnetic mirrors, as well as
other important transport coefficients.

Now, let us apply our results for the reduction of the
Spitzer effective electron thermal conductivity, shown in
Figure 6 by the solid lines, to the galaxy cluster formation
problem. If the reduction is by more than a factor of 30

v*S(v), exponential, [;=Ag
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(Fig. 6, horizontal dotted lines), then the time of heat trans-
port becomes larger than the Hubble time, and the heat
conduction can be neglected (Suginohara & Ostriker
1998).28 We see that this is the case if the magnetic field
decorrelation length [, is roughly less than 10~ 4-102 of
the electron mean free path at the thermal speed A, =
M~/2kT /m,) (we consider the Spitzer gas). Although there is
little observational data about the topology of magnetic
fields in clusters of galaxies, the magnetic field scale is prob-
ably 1-10 kpc (Kronberg 1994; Eilek 1999 and references
therein). According to equation (46) the characteristic elec-
tron mean free path at the thermal speed is 0.06—-60 kpc for
temperatures T = 10’-108 K and densities n = 10~ #-1073
cm 3. We see that, in general, the effective electron thermal
conductivity parallel to the magnetic field lines is not
reduced enough by magnetic mirrors to be completely
neglected. However, as we pointed out in the introductory
section, there is an additional effect that electrons have to
travel along tangled magnetic field lines larger distances
from hot to cold regions of space, so the thermal conduction
is further reduced (this effect will be considered in our future
paper). At the moment, whether or not electron thermal
conductivity in clusters of galaxies is sufficiently inhibited
that it can be ignored is still an open question.

Recently, Cowley, Chandran, et al. studied the reduction
of the parallel thermal conduction, and they concluded that
the thermal conductivity in galaxy clusters is reduced
enough to be neglected (Chandran & Cowley 1998; Chan-
dran et al. 1999; Albright et al. 2000). Their conclusions are
different from ours. The reason is that our approach in
calculation of the conductivity is very different, and our
results are qualitatively different. The main difference is that
they took the reduction of thermal conductivity to be equal
to the reduction of diffusivity of thermal electrons. In fact,
the reduction of diffusivity is due to the enhanced pitch
angle scattering by stochastic magnetic mirrors, and to find
the reduction of thermal conductivity, the full set of kinetic
equations must be derived and solved. This consistent way
of solving the problem makes a considerable difference (see
Fig. 6). On the other hand, Cowley, Chandran, et al. first

8 See footnote 1.
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results are similar).
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called attention to the importance of the effective mean free
path A and found the correct qualitative result that in the
limit [, < A the diffusion reduction is controlled by the
mirrors whose spacing is of order of the effective mean free.
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APPENDIX A
SOLUTION OF EQUATION (3) IN THE LIMIT I,, < A

Here we solve equation (3) by expansion in the limit /,, < 1.. This condition means that collisions are too weak to scatter
the electron out of the loss cones. Therefore, F(x, u) = 0 when | u| > p -

We make use of the fact that (V/v)(0/0x) ~ A/l,, > 1. Also we will show that 1/vt,, < 1. The validity of this last assumption
appears below. To zero order, we have 0F/0x = 0 and F(x, u) = Fo(u). Fo(—u) = Fo(p) because of electron reflection at the
mirrors and the symmetry of the loss cones. Up to first order, F(x, u) = Fo(1) + F,(x, p), and we have

OF, _v 0 2y0Fo | Fo
Vax‘zau[(l u)aﬂ]Jr . (A1)

We integrate this equation over x along a closed back-and-forth trajectory of a trapped electron shown by the dotted lines in
Figure 1b to obtain

m

0/0ul(1 — u?)oF /0] + 2Fo/vt,, =0,  Fo(—u)=Fo(),  Fo(£pen) =0. (A2)

We solve equation (A2) by a further expansion, 1/vt,, < 1. The even solution in the “inside” region 1 — | u| > e~ "™ up to
first order is

. . 1 1
FY = C"’(l ——1In 2) , 1—jpu|>e V™. (A3)
v, 1—u
On the other hand, the zero-order solution in the “boundary” regions 1 — | u| < 11is
o _ corpg L H]
FO_C In s 1_llcmSl—|ﬂ|<1 (A4)
— Herit

We match solutions (A3) and (A4) together in regions e "™ < 1 — | u| < 1 to finally obtain t,, = v~ ! Inm, justifying 1/v7,, < 1.
This is the first result in equation (5).

APPENDIX B
SOLUTION OF EQUATION (3) IN THE LIMITS A < I, < A2/Ay; AND 22/A g <1,

Let us consider the kinetic equation (3) in the more limited case 1 < [, (note that A < A). This means that in the kinetic
equation (V/v)(0/0x) < A/l,, < 1. We will also show that 1/vt,, < 1. The validity of this assumption appears below. To zero
order, we have 0F/0u =0, so F(x, u) = Fo(x). Fo(—x)= Fo(x) because of symmetry. Up to first order, F(x, u) =
Fy(x) + F(x, u),and we have

v 0 [y o iy %0 Fo
25#[(1 u)aﬂ]—uV o (B1)

We integrate the above equation over u, and then set 4 = +1 to find the constant of integration. As a result, we obtain
Fy/z,, € V(0F,/0x) (so 1/vt,, is of second order) and 0F,/op = —(V /v)(OF ,/0x). We integrate this last equation over u once
more and obtain

Fy = —(uV/y)(0Fo/ox) + C(x), (B2)

where C(x) is another integration constant.
We continue the expansion of the kinetic equation (3) to next order. Up to second order, F(x, u) = Fo(x) + F(x, )
+ F,(x, u). Using equation (B2), we have

v @ oF W2V2 02F oC F
——la—-w)—2|=- L -2, B3
2au[( ”)au] v o%x TH 5 (B3)

m
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We integrate equation (B3) over u from —1 to 1 and obtain

0*Fy/0*x + (3v/1,, VI)F, =0, Fo(—x) = Fy(x) . (B4)
Finally, we integrate this equation and obtain the zero-order solution for the time-dependent distribution function (2),
f(t, x)=e "™Fy(x) = e "™ cos (x\/3v/t, V?), (BS)

where we drop an unnecessary normalization constant of integration.
Now, to find t,, we calculate the flux of escaping electrons through the two escape windows (see Fig. 1),

1

ON/ot = —2J Wi, 1,/2)du = —(V/mye~"m cos [(1,/2/3v/1, V21, (B6)

Hcrit
where we use equation (B5) for (¢, [,,/2). On the other hand, the flux is equal to the change of the total number of electrons,
m/2 ("1

ON/ot = J @fjot) dudx = —(4/1,)e "™ /7, V2/3v sin [(l,/2)/3v/1, V7] . (B7)

—Im/2 J-1

Equating the two formulae for dN/0t, we obtain

(3/16)(vt,,/m?) = tan* /3vI2 /47, V? . (B3)

In the limit A <[, € A%/A, the argument of the tangent above is small, so we expand the tangent and obtain 7, =
v~ 1(1,./Ac), while F, ~ const. In the limit A%/A < [, the left-hand side of equation (B8) is large. Therefore, the argument of
the tangent is ©/2, and we have t,, = v~ !(3/%?)(l,,/A)? (the third line in eq. [5]); i.., the escape time is controlled by diffusion in
x-space. In both limits 1/vt,, < 1, as we assumed above, and of second order.

Now, the limit A, < [,, < A is still left. The result in this case is the same as the result in case A < I,, € A?/44. However,
instead of solving the kinetic equation, we give the following qualitative arguments supported by our numerical simulations
(see Fig. 2). The relaxation time of the electron distribution in pu-space can be estimated as At, ~ v~ '. The relaxation time in
x-space can be estimated as the crossing time At, ~ I,/V = v~(l,/A) in case I, < A, and as the time of diffusion across
At, ~ v~ 1(1,/2)* in case A < I,,. All relaxation times are small compared to the escape time t,,, i.e., At,, At, < ,, for the entire
range A < 1, € A?/Ay. This means that the distribution function is approximately constant in x and pu, say F, ~ 1,
f~ e""™_ We then carry out calculations similar to those we used in formulae (B6) and (B7) to find that t,, = v~ 1(I,,/A.;) (the
second line in eq. [5]).

APPENDIX C
THE ADDITIONAL ELECTRON FLOW PRODUCED BY ELECTRIC FIELD

Let us, for simplicity, consider the Lorentz gas. The results for the Spitzer gas are similar.

First, we derive an estimate for the additional flow d% of electrons that are in an interval V € [V, V + dV) of the velocity
space, produced by an electric field E due to the change of the two loss cones of a mirror trap. Let us consider only the
principal mirrors, because they mainly control the diffusion of electrons (see § 3). In this appendix, we denote their mirror
strength (the principal mirror strength) as M.

The principal mirror strength is of order of 5, so in the case when the magnetic field decorrelation length is more than or
approximately equal to the electron mean free path, [, = 4, the escape of electrons from the mirror trap is mainly controlled
by their spatial diffusion (see § 2). Thus, in this limit, the electrons “ do not care ” about the size of the loss cones, and therefore,
no additional flow arises. 5

In the case [, < 4, there is a nonzero additional flow d%. In Figure 1b, because of the electric field, the loss cone on the left,
Kerit, —» is not equal to that on the right, u.;, . The size of the two loss cones is estimated from the conservation of the electron
magnetic moment, (1 — u?)V?/B = const, and from the conservation of energy, m, V2/2 + eEx = const. We have

Werit+ X 1 — 1/M & (eEly/m, VM), (C1)

where [, is the spacing of the principal mirrors.
Let d# . and d% _ be the absolute values of the fluxes of the escaping electrons to the right and to the left, respectively.
Then, their sum is

AF . +dF _ = (Lyfe)2nV?odV , (C2)

where 2V ?f, dV is the number density of electrons expressed in terms of the Maxwellian zero-order electron distribution
function f;, and 1, is the escape time (see eqs. [2], [6], and [16] and § 2). The actual electron flow, d#, is equal to the
difference ofd%# , andd% _, because they are in opposite directions. An estimate for the ratiod% /(d% , + d% _) is

dF A% , —d7F _ 1 1 t 1 -t
dﬁ++dﬁ__dﬁ++dﬁ_~<j; "d"_L "‘“‘)(L pdpt | pdp) o ©3)

crit, + crit, — crit, + crit, —

Now, using equations (C1)-(C3), we obtain the additional electron flow
dF ~ —2n(eE/m,) fo(I3;/t,) AV . (C4)
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The factor (I3;/7,,) in this equation is proportional to the spatial diffusivity of the electrons (provided that the diffusivity is
controlled by the principal mirrors; see § 3). Thus, it is obviously 12;/t,, = Rp AZ v;, where J; and v; are the standard Lorentz
mean free path and collision frequency, and Ry, is the reduction of the spatial diffusivity reported in § 3. Using A; oc V4,
v oc ¥V 73, and equations (16), (43), and V; = (2kT/m,)/, we finally obtain

dF ~ —(1/2)2/n)3*(k>*T32E/m!/? e In A)Rpvde " dv . (C5)
Now we would like to compare this result for the additional flow dZ with the main flow d# produced by the electric field
due to acceleration of particles. The latter is
1
dF = J uVfdp2aV?dvdu = —(2/3)2/m)>*(k3*T32E/m? e3In A)Rpv’e " dv , (C6)
-1
where we substituted function f; given by equation (17) and function S(v) = y; Sx(v) given by equations (33) and (39). As a
result,
dF |dF ~ (3/4w 2. (C7)

Because the electrical current and the heat flow are mainly transported by superthermal electrons v? ~ 4, the additional flow
produced by electric field due to nonequal loss cones can indeed be neglected in comparison with the main flow due to
acceleration of electrons by electric field.
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