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ABSTRACT
Parallel thermal conduction along stochastic magnetic Ðeld lines may be reduced because the heat-

conducting electrons become trapped and detrapped between regions of strong magnetic Ðeld (magnetic
mirrors). The problem reduces to a simple but realistic model for di†usion of monoenergetic electrons
based on the fact that when there is a reduction of di†usion, it is controlled by a subset of the mirrors,
the principal mirrors. The di†usion reduction can be considered as equivalent to an enhancement of the
pitch angle scattering rate. Therefore, in deriving the collision integral, we modify the pitch angle scat-
tering term. We take into account the full perturbed electron-electron collision integral, as well as the
electron-proton collision term. Finally, we obtain the four plasma transport coefficients and the e†ective
thermal conductivity. We express them as reductions from the classical values. We present these
reductions as functions of the ratio of the magnetic Ðeld decorrelation length to the electron mean free
path at the thermal speed We brieÑy discuss an application of our results to clusters ofV
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galaxies.
Subject headings : conduction È di†usion È magnetic Ðelds È methods : analytical È plasmas

1. INTRODUCTION

The problem of thermal conduction in a stochastic mag-
netic Ðeld is crucial for our understanding of galaxy cluster
formation (Suginohara & Ostriker 1998 ; Cen & Ostriker
1999) and for the theory of cooling Ñows (Fabian 1990). It is
also of great interest for solar physics and for various ques-
tions of plasma physics. At the same time, the question of
whether or not electron thermal conduction is so strongly
inhibited by a stochastic magnetic Ðeld in a galaxy cluster
that it can be neglected is a very controversial one (Rosner
& Tucker 1989 ; Tribble 1989 ; Tao 1995 ; Pistinner &
Shaviv 1996 ; Chandran & Cowley 1998). It is currently
estimated that if the coefficient of thermal conductivity is
less than 1/30 of the Spitzer value, then the timescale of the
heat conduction in the cluster is more than the Hubble time
(Suginohara & Ostriker 1998). Otherwise, thermal conduc-
tion is important.1

The problem of thermal di†usion of heat-conducting
electrons in a stochastic magnetic Ðeld should be divided
into two separate parts because there are two separate
e†ects that reduce di†usion in the presence of a stochastic
magnetic Ðeld (Pistinner & Shaviv 1996 ; Chandran,
Cowley, & Ivanushkina 1999). The Ðrst e†ect is that the
heat-conducting electrons have to travel along tangled
magnetic Ðeld lines, and as a result, they have to go larger
distances between hot and cold regions of space. (In other
words, the temperature gradients are weaker along mag-
netic Ðeld lines.) The second e†ect is that electrons, while
they are traveling along the Ðeld lines, become trapped and
detrapped between magnetic mirrors (which are regions of
strong magnetic Ðeld). A trapped electron is reÑected back
and forth between magnetic mirrors until collisions make
its pitch angle sufficiently small for the electron to escape
the magnetic trap.

In this paper we concentrate on the second e†ect, and we
derive the reduction of the e†ective electron thermal con-

1 This numerical estimate, 1/30 of the Spitzer value, is based on numeri-
cal simulations with limited resolution, so it is not the last word on the
problem.

duction parallel to the magnetic Ðeld lines caused by the
presence of stochastic magnetic mirrors.

As is well known, a temperature gradient produces elec-
trical current as well as heat Ñow. Similarly, an electric Ðeld
produces heat Ñow as well as current. The four transport
coefficients describing this are given in equations (34) and
(35). The transport coefficients were Ðrst calculated by
Spitzer & for an unmagnetized plasma (Cohen,Ha� rm
Spitzer, & Routly 1950 ; Spitzer & 1953). Their coeffi-Ha� rm
cients also apply in an uniform magnetic Ðeld for transport
parallel to the Ðeld. In this paper, we show how the parallel
transport coefficients can be reduced in the presence of sto-
chastic magnetic mirrors, and we calculate their reduced
values by the same kinetic approach as that of Spitzer &

The reduction factors are presented in Figure 5. TheHa� rm.
reduced e†ective thermal conductivity (that resulting when
the electric Ðeld is present to cancel the current) is given in
Figure 6. Spatial di†usivity of monoenergetic electrons
along the magnetic Ðeld lines is presented in Figure 3.

First, in ° 2, we solve the kinetic equation to Ðnd the
escape time for electrons trapped between two equalq

mmagnetic mirrors. We assume that all electrons have a
single value of speed, V , i.e., they are monoenergetic. The
exact calculations of the escape time are given in Appen-
dices A and B. In addition, we carry out Monte Carlo parti-
cle simulations to conÐrm our results.

Second, in ° 3, we apply our results for this escape time to
Ðnd the reduction of di†usion of monoenergetic electrons in
a system of stochastic mirrors. It turns out that in the limit

where is the magnetic Ðeld decorrelation lengthl0? j, l0and j is the electron mean free path, the parallel di†usivity
is una†ected by magnetic mirrors and is given by the stan-
dard value In the opposite limit, mag-D0\ (1/3)V j. l0> j,
netic mirrors do reduce di†usivity. We Ðnd that in this case
there is a subset of the mirrors, the principal mirrors, that
inhibits di†usion the most. These are mirrors whose separa-
tion distances are approximately equal to the electron e†ec-
tive mean free path, the typical distance that electronsjeff,travel in the loss cones before they are scattered out of them.
In order to estimate the reduction of di†usion in this limit,
we need consider only the principal mirrors, neglecting all
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others. Again, we perform the numerical simulations to
support these theoretical results.

Third, in ° 4, in order to carry out a precise kinetic treat-
ment involving all electrons, we consider the di†usion
reduction to be equivalent to an enhancement of the pitch
angle scattering rate of electrons. In deriving the collision
integral, we, therefore, modify the pitch angle scattering
term by the inverse of the factor by which the spatial di†u-
sion is reduced. We take into account the full perturbed
electron-electron collision integral, as well as the electron-
proton collision term. We obtain an integrodi†erential
equation for the perturbed electron distribution function in
the presence of stochastic magnetic mirrors. If there is no
reduction of electron di†usivity, our equation reduces to the
well-known result obtained by Spitzer & (Cohen etHa� rm
al. 1950 ; Spitzer & 1953 ; Spitzer 1962).Ha� rm

Fourth, in ° 5, we solve our equation numerically, separa-
tely for the Lorentz gas in the presence of magnetic mirrors,
neglecting electron-electron collisions (in this case the equa-
tion simpliÐes greatly), and for the Spitzer gas in the pres-
ence of magnetic mirrors. We Ðnd the reductions of the four
plasma transport coefficients and of the e†ective thermal
conductivity as functions of the ratio of the magnetic Ðeld
decorrelation length to the electron mean free path at thel0thermal speed (this mean free path is dif-V
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ferent for the Lorentz and Spitzer models). We Ðnd that the
major e†ect of the magnetic mirrors is the reduction of
anisotropy of superthermal electrons (this anisotropy is
driven by a temperature gradient or/and by an electric
Ðeld). Electrical current and heat are mainly transported by
these electrons, whose di†usivity is suppressed the most.

Finally, we discuss our results and give the conclusions in
° 6.

2. MONOENERGETIC ELECTRONS TRAPPED BETWEEN

TWO EQUAL MAGNETIC MIRRORS

In this section we solve the kinetic equation to Ðnd the
escape time for electrons trapped between two equalq

mmagnetic mirrors. We assume here and in the next section
that all electrons have a single value of speed, V , which is
unchanged by collisions ; i.e., electrons are monoenergetic.
In order to derive an analytical solution, we make several

additional simplifying assumptions. Let the two magnetic
barriers (mirrors) both be equal to and we assume theB

m
,

magnetic Ðeld B is constant between them. We introduce
the mirror strength The separation of them4B

m
/B.

mirrors is and their thicknesses are negligible comparedl
m
,

to In other words, magnetic mirrors are similar to thinl
m
.

step functions with heights and with constant ÐeldB
m

[ B
B between them (see Fig. 1). This is a reasonable assump-
tion, because as we will see in the next section, electron
di†usion is controlled by strong mirrors with mirror
strengths which are separated by distances muchmZ 4,
larger than the magnetic Ðeld decorrelation length (if the
spectrum of mirrors falls o† with their strength signiÐcantly
faster than 1/m, the case that we consider in this paper).

Under these assumptions, the kinetic equation for the
distribution function f (t, x, k) of monoenergetic electrons
trapped between the two mirrors is (Braginskii 1965)

Lf
Lt

] kV
Lf
Lx

\ l
2

L
Lk
C
(1[ k2) Lf

Lk
D

. (1)

Here x is a one-dimensional space coordinate along a mag-
netic Ñux tube, t is time, k \ cos h is the cosine of the elec-
tronÏs pitch angle, and l\ V /j is the collision frequency (j
is the mean free path, see eqs. [43] and [46]). The right-
hand side of equation (1) represents the pitch angle scat-
tering rate, l, of electrons. The electrons are trapped in the
region of space between the mirrors, and[l

m
/2 \x \ l

m
/2,

they can escape through the two windows, x \ l
m
/2, k [

and as shown inkcrit\ (1 [ 1/m)1@2, x \ [l
m
/2, k \ [kcrit,Figure 1. The mirror strength is and it is them\B

m
/B,

measure of the relative heights of the magnetic barriers. For
simplicity, we assume that the barriers are high, i.e., m? 1
and In this case the electron distribution iskcritB 1 [ 1/2m.
in quasi-static equilibrium,

f (t, x, k) \ e~t@qmF(x, k), q
m

? l~1 , (2)

and equation (1) reduces to

[ F
q
m

] kV
LF
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\ l
2

L
Lk
C
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Lk
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. (3)

Let us consider an electron traveling in the loss cone
(or Thek [kcrit\ (1 [ 1/m)1@2 B 1 [ 1/2m k \ [kcrit).

FIG. 1.È(a) Magnetic Ñux tube with two ““ step functionÈlike ÏÏ magnetic mirrors. The mirror strengths are (b) Phase space box where electronsm\B
m
/B.

are trapped in coordinates x and k \ cos h. The horizontal dotted lines show a closed trajectory of a trapped electron in the limit The electrons escapel
m

> j.
the magnetic trap through two escape windows : and In the limit the electrons freely escapex \ l

m
/2, k [ kcrit \ (1[ 1/m)1@2 x \ [l

m
/2, k \ [kcrit. l

m
> jeff,to the right or left whenever they reach the two loss cones, and In the opposite limit, the electrons escape when they reach thek [ kcrit k \ [kcrit. jeff > l

m
,

two shaded regions of the phase space.
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e†ective electron mean free path, which is the typical dis-
tance the electron travels before it is scattered by small-
angle collisions out of the loss cone, is

jeff 4 j/2m> j . (4)

In other words, is a decay distance for a Ñow of elec-jefftrons traveling in the loss cones. The solution of equation
(3) and, therefore, the escape time depend on the mirrorq

mstrength m and the ratio There are three limiting casesl
m
/j.

for which simple approximate solutions exist : (1) l
m

>
(2) and (3)jeff \ j/2m, jeff > l

m
> j2/jeff \ 2mj, j2/jeff >We solve equation (3) for case (1) in Appendix A and forl

m
.

cases (2) and (3) in Appendix B, and we obtain the electron
escape times

q
m
(1)\ l~1 ln m, l

m
> jeff ,

q
m
(2)\ l~1(l

m
/jeff)\ l~1(2ml

m
/j), jeff > l

m
> j2/jeff ,

q
m
(3)\ l~1(3/n2)(l

m
/j)2, j2/jeff > l

m
. (5)

The following simple physical arguments help to under-
stand these results in these three limiting cases. The col-
lisional scattering is a two-dimensional random walk of a
unit vector (which is the direction of the electron velocity)
on a surface of a unit-radius sphere with frequency l [so the
scattered angle after time interval t]. The right-*

s
\ (2lt)1@2

hand side of the kinetic equation (1) represents a one-
dimensional random walk in k-space that follows from the
two-dimensional walk because of symmetry. However, it is
convenient for the moment to return to the original two-
dimensional scattering because it is isotropic. The angular
sizes of the two loss cones on the unit-radius sphere are

First, in the limit collisions are very*esc B 1/Jm. l
m

> jeff,weak, and the scattered angle over the travel time between
mirrors, is Therefore, in this case wel

m
/V , D(l

m
/j)1@2> *esc.can disregard the electron motion in x-space. We divide the

surface of the unit-radius sphere into Dm boxes, each of
angular size The time it takes for the unitD*esc B 1/Jm.
vector to random walk from one box to another is Dl~1/m,
resulting in the total escape time q

m
D m(l~1/m)\ l~1.

Because the unit vector can ““ visit ÏÏ each box more than
once, the exact result contains the logarithm of m. Second,
in the limit we have to consider motionjeff > l

m
> j2/jeff,in x-space as well. In this case the electrons move in three-

dimensional phase space, and they escape when they are in
the two loss cones within distance from the mirrors, asjeffshown by the shaded regions in Figure 1b. We divide the
three-dimensional phase space into D(l

m
/jeff)(1/*esc2 ) D

boxes, each of size The time it takesm2l
m
/j jeff *esc2 D j/m.

to move from one box to another is Dl~1/m, resulting in
the total escape time q

m
D (m2l

m
/j)(l~1/m)\ l~1(ml

m
/j).

Note that the electron distribution function is almost con-
stant in the phase space in this case (see Appendix B). Third,
in the limit the escape of electrons is controlledj2/jeff > l

m
,

by slow di†usion in x-space, so the escape time is approx-
imately equal to the time of di†usion between mirrors, q

m
D

in this case.l~1(l
m
/j)2

In our further calculations we use a simple interpolation
formula

q
m

B q
m
(1)] q

m
(2)] q

m
(3)\ l~1[lnm] (l

m
/jeff)] (3/n2)(l

m
/j)2]

(6)

for the whole range of parameters m and This formulal
m
/j.

is suggested by the numerical simulations shown in Figure

FIG. 2.ÈThe dots show a logarithmic plot of the numerically obtained
electron escape time in units of the collision time l~1 as a function of theq

mseparation of two equal magnetic mirrors in units of the mean free pathl
mj. These results are based on our Monte Carlo particle simulations of

103È106 trapped electrons, assuming three values of the mirror strengths,
m\ 2, m\ 16, and m\ 128. The solid lines represent the analytical result
(eq. [6]).

2. The dots in this Ðgure show the results of our Monte
Carlo particle simulations for three mirror strengths m\ 2,
m\ 16, and m\ 128. To obtain our simulation results we
followed 103È106 electrons trapped between two equal
magnetic mirrors separated by distance ranging froml

m1/1024 to 256 in units of the mean free path j. We carry out
Monte Carlo simulations in the following way : First,
initially all particles have x \ 0 and k \ 0. Second, the
cosine of the pitch angle of each particle random walks
inside interval ([1, 1) according to equation (1) ; i.e., the
change of k in time interval dt > 1/l is dk \
^M[1[ (k ] dk)2]l dtN1@2. Here] or [ are chosen ran-
domly with equal probabilities, and dk is given implicitly
(the implicit method guarantees that [1 \ k \ 1 ; the
square root can be expanded in l dt > 1). The change of
particle position x in time interval dt is obviously
dx \ kV dt. Third, each particle escapes the mirror trap
whenever and or andk [ kcrit x \ l

m
/2, k \ [kcrit x \

Independently of the initial distribution of electrons,[l
m
/2.

the number of trapped electrons tends to an exponential
dependence on time with the characteristic decay time inq

mjust a few collision times (see eq. [2]). The solid lines in the
Ðgure represent formula (6) and are in a very good agree-
ment with the simulations even for the smallest mirror
strength m\ 2.

3. DIFFUSION OF MONOENERGETIC ELECTRONS IN A

SYSTEM OF RANDOM MAGNETIC MIRRORS

In this section we continue to assume that electrons have
a single value of speed, V . If there were no magnetic mirrors
and the magnetic Ðeld had constant strength along the Ðeld
lines, the parallel di†usion of monoenergetic electrons
would be the standard spatial di†usion, HereD0\ (1/3)V j.
j is the electron mean free path at speed V . However, as we
have discussed in the introductory section, di†using elec-
trons move along Ñux tubes with random magnetic Ðeld
strength and become trapped and detrapped between mag-
netic mirrors. These mirrors are regions of strong Ðeld and
are separated by a Ðeld decorrelation length As a result,l0.
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the di†usion is reduced by a factor that depends on the ratio
l0/j.

In the main part of this section we derive this di†usion
analytically and at the end of the section conÐrm it with
numerical simulations. (In contrast to the previous section,
where there were only two equal mirrors, in this section we
consider many mirrors with random spacing and strength.)

Consider the limit Ðrst. In this case collisions arel0? j
strong, and according to the third formula in equation (5),
the time it takes for electrons to escape a trap between two
magnetic mirrors is independent of the mirror strengths and
is entirely controlled by the standard spatial di†usion trans-
port of electrons between the mirrors. As a result, magnetic
mirrors can be ignored, and there is no reduction of di†u-
sion, D\D0.In the opposite limit, the collisions are weak, andl0> j,
magnetic mirrors do result in a reduction of di†usion. To
Ðnd this reduction, we divide all mirrors into equal-size bins

m] d/2], where m is the bin central mirrorb
m

\ (m[ d/2,
strength and constant d is the width of the bins (the value of
d will be discussed later).

For the moment we consider the di†usion in the presence
of only those mirrors that are in a single bin It turns outb

m
.

that one of the bins leads to a smaller di†usion than any
other bin, and the net di†usion due to all the mirrors is
approximately that due to only mirrors in this bin, provided
that the bins are sufficiently wide.

Let the spectrum of magnetic mirror strengths be P(m).
We assume that strong magnetic mirrors are rare ; i.e., the
spectrum falls o† fast with the mirror strength (we will esti-
mate how fast it should fall o†, below). The probability that
a mirror belongs to bin isb

m

p
m

\
P
m~d@2

m`d@2
P(m@) dm@ B dP(m)] (d3/24)P@@(m) . (7)

At each decorrelation length the magnetic Ðeld changesl0,and becomes decorrelated. Therefore, the mean separation
of mirrors that are in bin isb

m

l
m

\ l0 ;
k/1

=
kp

m
(1[ p

m
)k~1\ l0/pm . (8)

Let us consider an electron trapped between two mirrors
of bin The time that it takes for this electron to escapeb

m
. q

mthe trap is given by equation (6), where we keep only the
Ðrst two terms (because l0> j)

q
m

B q
m
(1)] q

m
(2)\ l~1 ln (mq

m
) . (9)

Here, we introduce the important parameter

q
m

4 exp (l
m
/jeff)\ exp (2ml0/pm

j) , (10)

where the mean distance between the two mirrors is givenl
mby equation (8). After the electron escapes, it travels freely in

the loss cone in one of the two directions along the magnetic
Ðeld lines until it is again trapped between another two
mirrors of bin The freely traveling electron becomes Ðrstb

m
.

trapped with probabilities in 0¹1 [ e~lm@jeff \ 1 [ q
m
~1

inx \ l
m
, e~lm@jeff [ e~2lm@jeff \ q

m
~1 [ q

m
~2 l

m
¹ x \ 2l

m
,

in and soe~2lm@jeff [ e~3lm@jeff \ q
m
~2[ q

m
~3 2l

m
¹x \ 3l

m
,

on. Therefore, the mean distance squared that theS*x2T
melectron travels in the loss cones before trapping is

S*x2T
m

B l
m
2 ;

k/1

=
k2(q

m
~k`1[ q

m
~k)\ l

m
2 q

m
(q

m
] 1)

(q
m

[ 1)2 . (11)

The processes of trapping and detrapping repeat in time
intervals In other words, electrons random walk alongq

m
.

the Ðeld lines in a system of mirrors that belong to bin b
mwith steps in time intervals As a result, theBS*x2T

m
Bq

m
.

di†usion coefficient for these electrons is D(m)\
where we introduce a scaling constant C,C(S*x2T

m
/2q

m
),

which is of the order unity and will be determined by the
numerical simulations. The corresponding reduction of dif-
fusion is

D(m)/D0\ C
3
2
Al0

j
B2 q

m
(q

m
] 1)

(q
m

[ 1)2
1
p
m
2

1
ln (mq

m
)
, l0 > j ,

(12)

where we use and equations (8), (9), and (11),D0\ (1/3)lj2
and and are given by equations (7) and (10).p

m
q
mFor a given spectrum of mirrors P(m) and given con-

stants d and C, the di†usion reduction (12) due to mirrors
of bin is a function of mirror strength m. Let us analyzeb

mthis function in two limits : andln q
m

> 1 ln q
m

? ln mZ 1.
If then Therefore,ln q

m
> 1, q

m
[ 1 \ 2ml0/pm

j > 1.
andD(m)/D0B C(3/4)(1/m2 ln m) (d/dm)[D(m)/D0]\ 0.

On the other hand, if thenln q
m

? ln m, D(m)/D0B
Therefore, if theC(3/4)(l0/j)(1/mp

m
). (d/dm)[D(m)/D0][ 0

spectrum of mirrors falls o† faster than 1/m with the mirror
strength.2 In this paper we make an assumption that the
spectrum falls o† signiÐcantly faster than 1/m.

Therefore, a minimum of exists. Let thisD(m)/D0minimum be achieved at Thenm\m
p
. ln q

mp
\ l

mp
/jeff Dor The minimum can roughly be esti-2/ln m

p
D 1, l

mp
D jeff.mated as which is inD(m

p
)/D0 \min [D(m)/D0]D 1/m

p
2,

agreement with the qualitative results of Albright et al.
(2000).

In other words, if then there is the bin that inhibitsl0> j,
di†usion the most. We call it the principal bin, b

p
\

The corresponding mirror strength(m
p
[ d/2, m

p
] d/2].

is the principal mirror strength. The minimum of di†u-m
psion D(m) due to mirrors of bin is achieved at the prin-b

mcipal strength, The spacing of the mirrors that arem\m
p
.

in the principal bin is of the order of the e†ective mean free
path for this bin, The main idea is that,l

mp
D jeff \ j/2m

p
.

in order to estimate the net di†usion due to all mirrors, we
need consider only magnetic mirrors that are in the prin-
cipal bin and we can neglect all other bins. Mirrors that are
smaller than the principal mirrors ““ work ÏÏ poorly in the
inhibition of di†usion because they are weak and are
separated by distances less than (which is the distancejeffthat electrons travel in the loss cones). Mirrors that are
larger than the principal mirrors ““ work ÏÏ poorly, because
they are very rare and are separated by very large distances
(provided the mirror spectrum falls o† with the mirror
strength signiÐcantly faster than 1/m). Of course,
occasionally there will be a larger mirror between two prin-
cipal mirrors, since they have to be somewhere, but if the
distribution falls o† rapidly with the mirror strength (see eq.
[14]), this occurs only very rarely and, as conÐrmed by our
numerical simulations, does not a†ect the statistical results.

2 This criterion is di†erent from the result of Albright et al. (2000), who
found 1/m2 to be the boundary spectrum for the transition between their
di†usive and subdi†usion regimes. We believe that the di†erence arises
because, for Ñat spectra, our bin width d starts to depend on (and ourl0/jsimple di†usion model breaks down).
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FIG. 3.ÈWe consider two mirror spectra : (a) exponential and (b) Gaussian (see eq. [14]). The dots show the reduction of di†usion, obtainedR
D

\ D/D0,by Monte Carlo particle simulations of (1È6)] 105 electrons, each followed in a system of magnetic mirrors over 300 collision times l~1. The solid lines
represent the theoretical results given by eq. (13). The constants C and d are obtained by matching the theoretical results with the results of simulations for
each of the two spectra (and these constants do not depend on l0/j).

The theoretical results based on these assumptions Ðt nicely
our simulation results for large and small (see Fig. 3).j/l0As a result of these considerations, we can combine our
theoretical results for the reduction of di†usion of mono-
energetic electrons, into a single formula validR

D
\ D/D0,in the two limits for l0/j,

R
D

\ D/D0 \
4
5
6

0
0

min
m

[D(m)/D0]\ D(m
p
)/D0 , l0> j ,

1 , l0? j ,
(13)

where is given by equation (12) and the minimumD(m)/D0is achieved at the principal mirror strength (notem\m
pthat ln q

mp
\ l

mp
/jeff D 1).

We show the theoretical monoenergetic di†usion
reduction (13) by the solid lines in Figure 3 for two mirror
spectra : exponential and Gaussian,3

P(m)\ 4
5
6
0
0

e~(m~2) exponential ,
(2/n)1@2e~(m~2)2@2 Gaussian .

(14)

The results of our Monte Carlo particle simulations are
shown by dots. The constants C and d (top) are of the order
unity, and we adjust them by matching our theoretical
results with the results of simulations in the case of each of
the two spectra (C and d do not depend on The simu-l0/j).
lations are based on (1È6)] 105 particles. For each particle
we choose a distribution of mirrors mº 2. These are placed
at x \ 0, i.e., all mirrors are^ l0, ^ 2l0, ^ 3l0, . . . ;
separated by the magnetic Ðeld decorrelation length Thel0.
strengths of all mirrors are chosen (for each particle)
according to the assumed mirror spectrum (14). Initially, all
particles start in the middle between two mirrors, x \ l0/2,
and particles have zero cosine of the pitch angle, k \ 0. We
evolve k and x of each particle in the way that was
described in the previous section, except now when particles
reach the loss cones, they are allowed to move from one
mirror trap to another. We follow the particles during 300

3 We Ðnd the minimum in eq. (13) numerically.

collision times l~1 after their distribution relax in couple
collision times. Then we average the particle displacements
squared S*x2T at a given time t to obtain the di†usion
coefficient S*x2T/2t given in Figure 3.

Note that the bin width d is larger for the exponential
spectrum than it is for the Gaussian. This is because the
latter is steeper at large mirror strengths. Figures 4a and 4b
clearly demonstrate the di†erence. In these Ðgures we plot
the natural logarithm of the di†usion reduction (12) caused
by mirrors that are in bin versus the mirror strength mb

mfor and for both spectra (eq. [14]) of mirrorl0/j \ 1/16
strengths. The principal bins are shown by arrows. In the
case of each spectrum, the reduction has the minimum at
the corresponding principal mirror strength We see thatm

p
.

the reduction roughly doubles over its minimal value at the
boundaries of the principal bin, andm\m

p
] d/2 m\m

p[ d/2.

4. THE FOKKER-PLANCK KINETIC EQUATION

In this section we use the results found above to obtain a
modiÐed kinetic equation to describe electrons traveling in
a system of random magnetic mirrors. The reduction of
spatial di†usion of monoenergetic electrons with speed V ,

was obtained in the previous section. However, mirrorsR
D
,

reduce only the electron spatial di†usion, and they hardly
a†ect the di†usion and Ñux of the averaged probability dis-
tribution of electrons in velocity (energy) space. Therefore,
in order to represent the spatial di†usion reduction in the
familiar form of the Fokker-Planck equation, we note that
such a reduction would be achieved by a distribution of
electrons with an enhanced pitch angle scattering rate, since
the pitch angle scattering is directly related to spatial di†u-
sion. (Of course, for any case in which the di†usion is
reduced signiÐcantly, our description really refers to a time
average of the kinetic equation over a time interval long
compared to a bounce time between mirrors, during which
the pitch angle of any particle changes Ðnitely.) We believe
that the two electron distributions, one with an enhanced
pitch angle scattering and no mirrors, and the other our
distribution in mirrors with no enhanced scattering, behave
the same way as far as transport phenomena are considered.
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FIG. 4.ÈNatural logarithm of the di†usion reduction (12) caused by mirrors that are in bin for We consider two mirror spectra :b
m

l0/j \ 1/16.
(a) exponential and (b) Gaussian (see eq. [14]). The principal bins are shown by arrows. In the case of each spectrum, the reduction has the minimum at the
principal mirror strength and it roughly doubles at the boundaries of the principal bin.m

p
,

As a result, hereafter we consider only the Ðrst electron
distribution, and in deriving the collision integral, we
modify the pitch angle scattering term by factor whereR

D
~1,

is the factor by which the spatial di†usion is reduced (seeR
Dthe previous section). does depend on electron speed, soR

Dwe no longer assume electrons to be monoenergetic. We
take into account the full perturbed electron-electron colli-
sion integral, as well as the electron-proton collision term.
When our equations reduce to those of Spitzer &R

D
4 1,

(Cohen et al. 1950 ; Spitzer & 1953 ; SpitzerHa� rm Ha� rm
1962).

The electron distribution function is

f (k, V )\ f0(V )] f1(k, V ) , (15)

where is the zero-order isotropic part given by thef0Maxwellian distribution,

f0\ n(x)[m
e
/2nkT (x)]3@2e~me V2@2kT(x)\ nn~3@2V

T
~3 e~Ò2 ,

(16)

and is the Ðrst-order anisotropic perturbation (off1 Pk
order the temperature gradient and electric Ðeld)

f1(k, V )\ knV
T
~3 S(t) . (17)

Here is the electron mass, k is the Boltzmann constant,m
eand the electron temperature T (x) and concentration n(x)

slowly change in space. We also introduce the dimension-
less electron speed where the thermal electront\ V /V

T
,

speed is Thus, the function S(t) in equa-V
T

\ (2kT /m
e
)1@2.

tion (17) is dimensionless.
In a steady state, the kinetic equation for the electrons is

obviously

V
x
(Lf0/Lx)[ (eE/m

e
)(Lf0/LV

x
)\ (df/dt)

c
, (18)

where is the Coulomb collision integral that includes(df/dt)
celectron-proton and electron-electron collisions, isV

x
\ kV

the x-component of the electron velocity (the component
along the magnetic Ðeld lines), and E is the electric Ðeld in
the x-direction. The electron pressure should be constant,
P\ kn(x)T (x)\ const.4 As a result, the derivatives of the

4 Because the hydrodynamic timescale is much shorter than the trans-
port, e.g., thermal conduction, timescale.

Maxwellian electron distribution are

Lf0/Lx \ (t2 [ 2.5)( f0/T )(dT /dx) ,

Lf0/LV
x
\ [(2k/V

T
)tf0 . (19)

The collision integral is divided up as

(df/dt)
c
\ (df0/dt)0] (df1/dt)0] (df0/dt)1
\ (df1/dt)0] (df0/dt)1 , (20)

where corresponds to Maxwellian collisions(df0/dt)04 0
acting on corresponds to Maxwellian collisionsf0, (df1/dt)0(with enhanced pitch angle scattering) acting on andf1,corresponds to perturbed collisions acting on(df0/dt)1 f0(since is isotropic, there is no pitch angle scattering in thisf0collision term). The collision integral (20) can be best
obtained, in the Fokker-Planck form, by using the
Rosenbluth potentials h(k, V ) and\ h0(V ) ] h1(k, V )
g(k, V ) (Rosenbluth, MacDonald, &\ g0(V ) ] g1(k, V )
Judd 1957). Here and are calculated using the Max-h0 g0wellian parts of the electron and ion distribution functions
in equation (16), while the perturbed potentials, h1\

and are proportional to k, and they2kA1(V ) g1\ kB1(V ),
are calculated using the perturbed part of the electron dis-
tribution function (17).

The Maxwellian potentials and determine theh0 g0part of the Fokker-Planck collision integral, and(df1/dt)0the perturbed potentials, andh1\ 2kA1(V ) g1\ kB1(V ),
are used to Ðnd the part of the Fokker-Planck(df0/dt)1collision integral (see eq. [31] of Rosenbluth et al. 1957),

(df1/dt)0\ A
D

2n
G
[ 1

V 2
L

LV
A

f1 V 2 dh0
dV
B

] 1
2V 2

L2
LV 2

]
A

f1 V 2 d2g0
dV 2

B
[ 1

V 2
L

LV
A

f1
dg0
dV
B

] R
D
~1 1

2V 3
dg0
dV

L
Lk
C
(1[ k2) Lf1

Lk
DH

, (21)
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(df0/dt)1\ k
A

D
2n
C
[ 2

V 2
d

dV
A

f0 V 2 dA1
dV
B

] 4
V 2 f0A1] 1

2V 2
d2

dV 2
A

f0 V 2 d2B1
dV 2

B

[ 3
V 3 f0

dB1
dV

] 3
V 4 f0B1 [ 3

V 2
d

dV

]
A

f0
dB1
dV
B

] 3
V 2

d
dV
A

f0
B1
V
BD

. (22)

For a hydrogen plasma the ““ di†usion constant ÏÏ isA
D

A
D

\ 8nne4 ln "/m
e
2 , (23)

where e is the absolute value of the electron charge and ln "
is the Coulomb logarithm (Spitzer 1962). Note that the last
term in equation (21) is the pitch angle scattering term, and
we multiply it by our enhancement factor (compareR

D
~1

this term with the right-hand side of eq. [1]).
Using equations (17) and (18) of Rosenbluth et al. (1957),

we express the derivatives of the potentials andh0 g0in terms of the three Maxwellian di†usion coefficients
and which are further givenS*V

A
T0, S(*V

M
)2T0, S(*V

A
)2T0,in terms of error functions (see eqs. [5-15]È[5-20] of Spitzer

1962)

dh0/dV \ (2n/A
D
)S*V

A
T0\ [(n/V 2)[1] 4t2G(t)] ,

dg0/dV \ (n/A
D
)V S(*V

M
)2T0\ n[1] '(t)[ G(t)] ,

d2g0/dV 2\ (2n/A
D
)S(*V

A
)2T0\ (2n/V )G(t) . (24)

Here ' is the usual error function, and G is expressed in
terms of ' and its derivative '@ ; they are functions of the
dimensionless speed t\ V /V

T
[V

T
\ (2kT /m

e
)1@2],

'(t)\ (2/Jn)
P
0

Ò
e~x2 dx, G(t)\ '(t)[ t'@(t)

2t2 . (25)

The perturbed potentials, andh1\ 2kA1(V ) g1\ kB1(V ),
are calculated using the perturbed electron distribution
function (17) and are given by the following formulae (see
eqs. [40], [41], [45], and [46] of Rosenbluth et al. 1957) :

A1\ (4n/3)(n/V
T
)[t~2I3(S ; t)] tI0(S ; t)] ,

B1\ (4n/3)nV
T
[0.2t~2I5(S ; t)[ I3(S ; t)

[ tI2(S ; t)] 0.2t3I0(S ; t)] , (26)

where we introduce integrals

I
m
(S ; t)\

P
0

Ò
tmS(t) dt, I

m
(S ; t)\

P
Ò

=
tmS(t) dt . (27)

Now, substituting equations (16), (17), (24), and (26) into
formulae (21) and (22), and using deÐnitions (25) and (27)
and equation (20), after considerable algebra, we have for
the collision integrals

(df1/dt)0\ (nA
D
/2V

T
6)kt~2(LŒ S [ 2t2'@S) ,

(df0/dt)1\ (nA
D
/2V

T
6)kt~2(IŒ S ] 2t2'@S) ,

(df/dt)
c
\ (nA

D
/2V

T
6)kt~2(LŒ S ]IŒ S) , (28)

where the di†erential and the integral operators are deÐned
as

LŒ S(t)\ d/dt[tG(dS/dt)]] 2t2G(dS/dt)

[[t~1R
D
~1(1] '[ G)[ 4t2'@]S , (29)

IŒ S(t)\ (4/15Jn)e~Ò2[12I5(S ; t)[ 10I3(S ; t)

]2t3(6t2 [ 5)I0(S ; t)] . (30)

The enhancement of the Maxwellian pitch angle scattering
rate, enters into the di†erential operator (29). The termR

D
~1,

depends on the dimensionless speed we willR
D

t\ V /V
T

;
explicitly give this dependence in equations (42) and (45).

Finally, substituting formulae (28) and (19) into equation
(18), we obtain the kinetic equation for the dimensionless
perturbed electron distribution function S(t) (see eq. [17]),

LŒ S \ c
T

t3(2t2[ 5)e~Ò2 ] c
E
t3e~Ò2 [IŒ S , (31)

S(t) ] 0, as t] 0 and as t] O , (32)

where constants and arec
T

c
E

c
T

\ k2T
2n5@2ne4 ln "

dT
dx

, c
E
\ kT

n5@2ne3 ln "
E . (33)

We also take the obvious boundary conditions in equation
(32) for function S. Equations (29)È(31) reduce to the Spitzer
equations for an ionized hydrogen gas (Cohen et al. 1950 ;
Spitzer & 1953) if we set and make a substi-Ha� rm R

D
4 1

tution However, we prefer to use func-S(t) \ n~3@2e~Ò2D(t).
tion S, because of the simpler boundary conditions in
equation (32).

5. THE REDUCTION OF TRANSPORT COEFFICIENTS BY

STOCHASTIC MAGNETIC MIRRORS

In a steady state, an electric Ðeld E and a temperature
gradient dT /dx both produce anisotropic perturbations of
the electron distribution function, (seef1(k, t) \ knV

T
~3 S(t)

eqs. [15] and [17]). This anisotropy results in an electron
Ñow and, consequently, in an electric current j and in a heat
Ñow Q along magnetic Ðeld lines (in the x-direction),

j \ [e
P
0

= P
~1

1 kV f1 dk2nV 2 dV

\ pE] a(dT /dx) , (34)

Q\
P
0

=P
~1

1 kV (m
e
V 2/2) f1 dk2nV 2 dV

\ [bE[ i(dT /dx) . (35)

Here p, a, b, and i are the four transport coefficients to be
found (p and i are the electrical and thermal conductivities).

Before we proceed to the calculation of the transport
coefficients, let us Ðrst call attention to the electron Ñow
produced by the electric Ðeld. The electric Ðeld produces
two di†erent kinds of electron Ñow. The Ðrst, the main Ñow,
is due to acceleration of electrons, which is described by the
term containing E in equation (18) and correspondingly by
the term containing in equation (31). The second, anc

Eadditional Ñow, arises because the electric Ðeld changes the
size of the two loss cones of a mirror trap, so in Figure 1b

in the right upper corner is not equal to in the leftkcrit kcritlower corner. As a result, the electrons are more likely to
escape the trap in the direction opposite to the electric Ðeld.
Fortunately, this additional Ñow, which is rather compli-
cated to Ðnd precisely, can be neglected compared to the
Ñow due to acceleration. We give a proof of this in Appen-
dix C.5

5 The main reason is that the di†erence in the two loss cones due to
electric Ðeld is inversely proportional to the electron kinetic energy, so the
additional Ñow has a factor 1/V 2 compared to a factor that enters the1/V

T
2

main Ñow due to acceleration. Because both the current and the heat Ñow
are mainly transported by superthermal electrons the addi-t\V /V

T
D 2,

tional Ñow is approximately 20% of the main Ñow (see Appendix C).
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In further calculations, it is convenient to break S(t) into
the two separate inhomogeneous solutions of equation (31),
which we denote as and The Ðrst solution, isS

T
(t) S

E
(t).6 S

T
,

obtained by setting and and the second solu-c
T

\ 1 c
E
\ 0,

tion, is obtained by setting and i.e.,S
E
, c

T
\ 0 c

E
\ 1,

S
T
(t)\ S(t), when c

T
\ 1 and c

E
\ 0 ,

S
E
(t)\ S(t), when c

T
\ 0 and c

E
\ 1 . (36)

The general solutions to equation (31) and the perturbed
distribution function (17) are the linear combinations of the
two inhomogeneous solutions,

S(t)\ c
T

S
T
(t)] c

E
S
E
(t) ,

f1(k, t)\ knV
T
~3[c

T
S
T
(t)] c

E
S
E
(t)] . (37)

In other words, and correspond to anisotropic per-S
T

S
Eturbations of the electron distribution function, which are

driven by the temperature gradient and by the electric Ðeld,
respectively, while is the total anisotropicS \ c

T
S
T

] c
E
S
Eperturbation.

We now consider separately two cases : Ðrst, the Lorentz
gas in a system of random mirrors, and second, the Spitzer
gas in a system of random mirrors. For the Lorentz gas,
electrons are assumed to collide only with protons, so equa-
tions (29)È(31) become greatly simpliÐed. For the Spitzer
gas, we consider both the electron-electron and the
electron-proton collisions, so we solve the full set of our
equations.

5.1. L orentz Gas in a System of Random Mirrors
Here we assume that the electrons collide only with

protons, so we have for operators (29) and (30)

LŒ S \ [S/tR
D
, IŒ S \ 0 , (38)

resulting in the two simple inhomogeneous solutions in
equation (36) of equation (31),

S
T
(t)\ [t4(2t2[ 5)e~Ò2R

D
, S

E
(t)\ [t4e~Ò2R

D
. (39)

If there are no magnetic mirrors, so we substituteR
D

4 1,
equations (39) into formula (37) and easily carry out the two
integrals in equations (34) and (35). Taking into consider-
ation the deÐnitions in equation (33), we obtain the well-
known Lorentz transport coefficients (Spitzer 1962)

p
L
\ 2
A2
n
B3@2 (kT )3@2

m
e
1@2 e2 ln "

, a
L
\ 3
A2
n
B3@2 k(kT )3@2

m
e
1@2 e3 ln "

,

b
L
\ 8
A2
n
B3@2 (kT )5@2

m
e
1@2 e3 ln "

, i
L
\ 20

A2
n
B3@2 k(kT )5@2

m
e
1@2 e4 ln "

.

(40)

If there are magnetic mirrors, it is convenient to normal-
ize the resulting transport coefficients to the corresponding
Lorentz coefficients in equation (40). Substituting equation
(37) into the two integrals in equations (34) and (35), and
again using the deÐnitions in equation (33), we have

p/p
L
\ [(1/3)I3(SE

; O), a/a
L
\ [(1/9)I3(ST

; O) ,

b/b
L
\ [(1/12)I5(SE

;O), i/i
L
\ [(1/60)I5(ST

;O) ,

(41)

where the integral moments are deÐned by equation (27),
and and are given by equation (39).S

T
S
EIn order to Ðnd explicitly the di†usion reduction factor

6 The two homogeneous solutions of eq. (31) must be excluded, because
they diverge either at t] 0 or at t] O, violating the conditions in eq. (32)
(see more details in Cohen et al. [1950]).

in equation (39) as a function of t, we refer to the resultsR
Dof ° 3. In that section we found the di†usion reduction as a

function of the ratio of the magnetic Ðeld decorrelation
length to the electron mean free path j. For Lorentzl0electrons the mean free path is proportional to the fourthjLpower of the electron speed, (Spitzer 1962 ; Bra-jLP V 4
ginskii 1965). Thus, we have

R
D

\ R
D
(l0/jL) \ R

D
(t~4l0/jL,T) , (42)

where is obviously the Lorentz electron mean free pathjL,Tat the thermal speed V
T

\ (2kT /m
e
)1@2,

jL,T \ (kT )2/nne4 ln "B 0.1 kpc(T /107 K)2(10~3 cm~3/n) .

(43)

Here we assume the Coulomb logarithm for a cluster of
galaxies to be ln"B 40 (Suginohara & Ostriker 1998).

We use our analytical results of equation (13) for the
monoenergetic di†usion reduction R

D
\R

D
(l0/jL)\when andR

D
(t~4l0/jL,T) t~4l0/jL,T \ 1/300 t~4l0/jL,T [

300 (the numerical simulations are extremely time consum-
ing for very small and very large and we use ourl0/j),
numerical simulation results presented in Figure 3 for

in between. (We carry out the cubic spline inter-t~4l0/jL,Tpolation of the simulation results. Note that is not di†er-R
Dentiated in operator [29], so our Ðnal results are not

sensitive to small noise errors in the calculation of R
D
.)

Using equations (39) and (42) with given in ° 3 andR
Dnumerically performing the velocity integrals, we Ðnd all

four transport coefficients in equation (41) normalized to
the standard Lorentz coefficients in equation (40). The
dashed lines in Figures 5aÈ5h show the resulting normalized
transport coefficients p, a, b, and i as functions of forl0/jL,Tthe two mirror spectra : (a) exponential and (b) Gaussian
(see eq. [14]). The asymptotic values of the coefficients at
large values of are given by the numbers on thel0/jL,Tdashed lines, and they are unity. Thus, there are no
reductions of the transport coefficients at as onel0/jL,T ? 1,
can expect because there is no reduction of electron di†usiv-
ity in this limit (see eq. [13]). In a steady state, the electrical
current j in a highly ionized plasma should be zero. Thus, if
a temperature gradient is present, the resulting electric Ðeld
E is obtained by setting j to zero in equation (34). Substitut-
ing this result for E into equation for the heat Ñow (35), we
Ðnd for the e†ective thermal conductivity

ieff \ i [ ab/p ,

ieff/iL\ i/iL[ (3/5)(a/aL)(b/bL)(pL/p) , (44)

where we use the formulae in equation (40) for the Lorentz
transport coefficients in the second line of this equation.

Using the transport coefficients reported in Figure 5 by
dashed lines and formula (44), it is easy to Ðnd the e†ective
thermal conductivity normalized to the standardieffLorentz thermal conductivity (see eq. [40]). However, itiLis more useful to give the ratio of to the Lorentz e†ec-iefftive conductivity, This ratio is the actual sup-iL,eff \ 0.4iL.pression of the e†ective conductivity of the Lorentz gas by
magnetic mirrors. The dashed lines in Figure 6 show this
suppression, as functions of for the twoieff/iL,eff, l0/jL,Tmirror spectra : (a) exponential and (b) Gaussian (see eq.
[14]). It has been estimated that the time of heat conduction
in clusters of galaxies is possibly larger than the Hubble
time if the thermal conductivity is less than 1/30 of the
Spitzer value (Suginohara & Ostriker 1998). The horizontal
dotted lines indicate this reduction of 1/30.
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FIG. 5.ÈPanels on the left/right correspond to the exponential/Gaussian mirror spectra (see eq. [14]). The solid/dashed lines in all panels show the four
transport coefficients, p, a, b, and i, for the Spitzer/Lorentz gas in the presence of stochastic magnetic mirrors as functions of the ratio of the magnetic Ðeld
decorrelation length to the Spitzer/Lorentz electron mean free path, calculated at the electron thermal speed (see eqs. [43] andl0 jS,T/jL,T, V

T
\ (2kT /m

e
)1@2

[46]). All transport coefficients are normalized to the standard Lorentz transport coefficients given by eq. (40). The asymptotic values of the coefficients at
are given by the numbers on the lines. They agree with the results of Spitzer & (1953).l0/jT ? 1 Ha� rm

For comparison, the dotted lines represent the mono-
energetic di†usion reduction at the electron thermal speed,

We see that the Lorentz gasR
D
(l0/jL,T)\ D(l0/jL,T)/D0.e†ective conductivity is reduced to a value 2È3 times smaller

than that of the di†usion reduction. This is because heat is
mainly transported by superthermal electrons. These elec-
trons have long mean free paths, and the magnetic mirrors
more strongly inhibit their di†usion.

5.2. Spitzer Gas in a System of Random Mirrors
Now consider the full collision integral (28) for the

Spitzer gas in a system of random magnetic mirrors. We
have numerically solved the full set of our equations (29)È
(32). Formulae (41) and (44) remain the same as for the
Lorentz gas, but the functions and are di†erent.S

T
(t) S

E
(t)

For Spitzer electrons the mean free path is jSP V 4[1
] '(t)[ G(t)]~1 (Spitzer 1962 ; the error functions ' and
G are given by eq. [25]). Thus, formula (42) for the
reduction of spatial di†usivity now becomes

R
D

\ R
D
(l0/jS)\ R

D

A
t~4 l0

jS,T

1 ] '(t)[ G(t)
1 ] '(1)[ G(1)

B
, (45)

where the Spitzer electron mean free at the thermal speed
isV

T
\ (2kT /m

e
)1@2

jS,T \ 0.614(kT )2/nne4 ln "
B 0.06 kpc (T /107 K)2(10~3 cm~3/n) . (46)

Functions and are deÐned by equation (36),S
T
(t) S

E
(t)

and they are the two inhomogeneous solutions of equations
(31) and (32). To Ðnd these solutions we solved equation (31)
numerically by iterations. At each iteration step the integral
part of this equation, was calculated using the old solu-IŒ S,
tion for S from the previous step, and the new solution for S
was calculated by the method of Gaussian decomposition
with backsubstitution (Fedorenko 1994), using the bound-
ary conditions of equation (32).7 Initially, we started with
zero function S \ 0. The iterations converged very rapidly,
and the Gaussian decomposition method is stable. We
believe that our numerical method is much better and faster

7 This method works as follows : At each iteration step we write the
di†erential operator in eq. (31) as a Ðnite-di†erence operator leading toLŒ S
a system of linear equations for the new solution for S. This system is a
tridiagonal matrix, which is solved by Gaussian decomposition with back-
substitution.



FIG. 5.ÈContinued

FIG. 6.ÈThe solid/dashed lines show the reduction of the parallel e†ective thermal conductivity for the Spitzer/Lorentz gas by stochastic magnetic
mirrors, as a function of the ratio of the magnetic Ðeld decorrelation length to the Spitzer/Lorentz electron mean free path. The notations are the same as in
Fig. 5. For comparison, we give the monoenergetic di†usion reduction by the dotted lines. The horizontal dotted lines represent theR

D
(l0/jT

)\D(l0/jT
)/D0reduction of 1/30 ; below these lines the thermal conduction is so weak that it should become negligible in clusters of galaxies.
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than the method of Spitzer & (1953) because theirHa� rm
method was not stable. It took us less than 10 s of computer
time to calculate all digits of the transport coefficients
reported by Spitzer & Ha� rm.

The solid lines in Figures 5aÈ5h show the resulting trans-
port coefficients p, a, b, and i normalized to the standard
Lorentz coefficients of equation (40) as functions of l0/jS,Tfor the two mirror spectra : (a) exponential and (b) Gaussian
(see eq. [14] ; remember that is the magnetic Ðeld decor-l0relation length). The asymptotic values of the coefficients at
large values of are given by the numbers on the solidl0/jS,Tlines, and they agree with the results of Spitzer & Ha� rm.

The e†ective thermal conductivity, normalized to theieff,Spitzer e†ective conductivity, is given iniS,eff\ 0.0943iL,Figure 6 by the solid lines for the two mirror spectra. This
normalized conductivity is the actual suppression of the
e†ective thermal conductivity of the Spitzer gas by stochas-
tic magnetic mirrors. It is the result that should be applied in
astrophysical problems with random magnetic mirrors.

Finally, it is interesting to see how the mirrors change the
Spitzer perturbed electron distribution function. In Figure 7
we plot functions and for the case whent2S

T
(t) t2S

E
(t) l0\

(note that is the actual distribution of electronsjS,T 2nV 2f1over speed see eq. [37]). The solid lines representV \ tV
T

;
these functions for the Spitzer gas in a system of random
mirrors with the exponential mirror spectrum (for the
Gaussian spectrum the results are similar). The dashed lines
show the same functions for the Spitzer gas without mag-
netic mirrors. We see that and are reduced att2S

T
(t) t2S

E
(t)

large values of t, i.e., magnetic mirrors reduce the anisot-
ropy of the superthermal electrons, which carry the electri-
cal current and heat.

6. CONCLUSIONS

In this paper we have derived the actual parallel e†ective
thermal conductivity that should be applied to astro-
physical systems with random magnetic mirrors, as well as
other important transport coefficients.

Now, let us apply our results for the reduction of the
Spitzer e†ective electron thermal conductivity, shown in
Figure 6 by the solid lines, to the galaxy cluster formation
problem. If the reduction is by more than a factor of 30

(Fig. 6, horizontal dotted lines), then the time of heat trans-
port becomes larger than the Hubble time, and the heat
conduction can be neglected (Suginohara & Ostriker
1998).8 We see that this is the case if the magnetic Ðeld
decorrelation length is roughly less than 10~4È10~2 ofl0the electron mean free path at the thermal speed j

T
\

(we consider the Spitzer gas). Although there isj(J2kT /m
e
)

little observational data about the topology of magnetic
Ðelds in clusters of galaxies, the magnetic Ðeld scale is prob-
ably 1È10 kpc (Kronberg 1994 ; Eilek 1999 and references
therein). According to equation (46) the characteristic elec-
tron mean free path at the thermal speed is 0.06È60 kpc for
temperatures T \ 107È108 K and densities n \ 10~4È10~3
cm~3. We see that, in general, the e†ective electron thermal
conductivity parallel to the magnetic Ðeld lines is not
reduced enough by magnetic mirrors to be completely
neglected. However, as we pointed out in the introductory
section, there is an additional e†ect that electrons have to
travel along tangled magnetic Ðeld lines larger distances
from hot to cold regions of space, so the thermal conduction
is further reduced (this e†ect will be considered in our future
paper). At the moment, whether or not electron thermal
conductivity in clusters of galaxies is sufficiently inhibited
that it can be ignored is still an open question.

Recently, Cowley, Chandran, et al. studied the reduction
of the parallel thermal conduction, and they concluded that
the thermal conductivity in galaxy clusters is reduced
enough to be neglected (Chandran & Cowley 1998 ; Chan-
dran et al. 1999 ; Albright et al. 2000). Their conclusions are
di†erent from ours. The reason is that our approach in
calculation of the conductivity is very di†erent, and our
results are qualitatively di†erent. The main di†erence is that
they took the reduction of thermal conductivity to be equal
to the reduction of di†usivity of thermal electrons. In fact,
the reduction of di†usivity is due to the enhanced pitch
angle scattering by stochastic magnetic mirrors, and to Ðnd
the reduction of thermal conductivity, the full set of kinetic
equations must be derived and solved. This consistent way
of solving the problem makes a considerable di†erence (see
Fig. 6). On the other hand, Cowley, Chandran, et al. Ðrst

8 See footnote 1.

FIG. 7.ÈThe solid lines show functions (left panel) and (right panel) for the Spitzer gas in a system of random magnetic mirrors for the caset2S
T
(t) t2S

E
(t)

is the magnetic Ðeld decorrelation length and is the Spitzer electron mean free path ; see eq. [46]). The dashed lines in the corresponding plotsl0\ jS,T (l0 jS,Tshow the same functions for the Spitzer gas without mirrors. Both graphs are plotted for the exponential mirror spectrum (for the Gaussian spectrum the
results are similar).
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called attention to the importance of the e†ective mean free
path and found the correct qualitative result that in thejefflimit the di†usion reduction is controlled by thel0> j
mirrors whose spacing is of order of the e†ective mean free.

We are happy to acknowledge many useful discussions of
this problem with Jeremiah Ostriker, Jeremy Goodman,
and David Spergel. We would also like to thank Makoto

Matsumoto, Takuji Nishimura, and Shawn J. Cokus for
providing us with fast random number generators.9 This
work was partially supported by DOE under contract
DE-AC 02-76-CHO-3073. Leonid Malyshkin would also
like to thank the Department of Astrophysical Sciences at
Princeton University for Ðnancial support.
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APPENDIX A

SOLUTION OF EQUATION (3) IN THE LIMIT l
m

> jeff
Here we solve equation (3) by expansion in the limit This condition means that collisions are too weak to scatterl

m
> jeff.the electron out of the loss cones. Therefore, F(x, k) 4 0 when o k o[kcrit.We make use of the fact that Also we will show that The validity of this last assumption(V /l)(L/Lx)D j/l

m
? 1. 1/lq

m
> 1.

appears below. To zero order, we have LF/Lx \ 0 and F(x, k) because of electron reÑection at the\ F0(k). F0([k) \ F0(k)
mirrors and the symmetry of the loss cones. Up to Ðrst order, F(x, k) and we have\ F0(k) ] F1(x, k),

kV
LF1
Lx

\ l
2

L
Lk
C
(1[ k2) LF0

Lk
D

] F0
q
m

. (A1)

We integrate this equation over x along a closed back-and-forth trajectory of a trapped electron shown by the dotted lines in
Figure 1b to obtain

L/Lk[(1[ k2)LF0/Lk]] 2F0/lqm \ 0 , F0([k) \ F0(k) , F0(^kcrit) \ 0 . (A2)

We solve equation (A2) by a further expansion, The even solution in the ““ inside ÏÏ region up to1/lq
m

> 1. 1 [ o k o? e~lqm
Ðrst order is

F0(i)\ C(i)
A
1 [ 1

lq
m

ln
1

1 [ k2
B

, 1[ o k o? e~lqm . (A3)

On the other hand, the zero-order solution in the ““ boundary ÏÏ regions 1 [ o k o> 1 is

F0(b) \C(b) ln 1 [ o k o

1 [ kcrit
, 1[ kcrit¹ 1 [ o k o> 1 . (A4)

We match solutions (A3) and (A4) together in regions to Ðnally obtain justifyinge~lqm > 1 [ o k o> 1 q
m

\ l~1 ln m, 1/lq
m

> 1.
This is the Ðrst result in equation (5).

APPENDIX B

SOLUTION OF EQUATION (3) IN THE LIMITS ANDjeff > l
m

> j2/jeff j2/jeff > l
m

Let us consider the kinetic equation (3) in the more limited case (note that This means that in the kineticj > l
m

jeff > j).
equation We will also show that The validity of this assumption appears below. To zero(V /l)(L/Lx)[ j/l

m
> 1. 1/lq

m
> 1.

order, we have LF/Lk \ 0, so F(x, k) because of symmetry. Up to Ðrst order, F(x, k)\\ F0(x). F0([x) \F0(x)
and we haveF0(x) ] F1(x, k),

l
2

L
Lk
C
(1[ k2) LF1

Lk
D

\ kV
LF0
Lx

[ F0
q
m

. (B1)

We integrate the above equation over k, and then set k \ ^1 to Ðnd the constant of integration. As a result, we obtain
(so is of second order) and We integrate this last equation over k onceF0/qm >V (LF0/Lx) 1/lq

m
LF1/Lk \[(V /l)(LF0/Lx).

more and obtain

F1 \ [(kV /l)(LF0/Lx) ] C(x) , (B2)

where C(x) is another integration constant.
We continue the expansion of the kinetic equation (3) to next order. Up to second order, F(x, k)\ F0(x) ] F1(x, k)

Using equation (B2), we have] F2(x, k).

l
2

L
Lk
C
(1[ k2) LF2

Lk
D

\ [ k2V 2
l

L2F0
L2x ] kV

LC
Lx

[F0
q
m

. (B3)
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We integrate equation (B3) over k from [1 to 1 and obtain

L2F0/L2x ] (3l/q
m

V 2)F0\ 0 , F0([x) \ F0(x) . (B4)

Finally, we integrate this equation and obtain the zero-order solution for the time-dependent distribution function (2),

f (t, x)\ e~t@qmF0(x) \ e~t@qm cos (xJ3l/q
m

V 2) , (B5)

where we drop an unnecessary normalization constant of integration.
Now, to Ðnd we calculate the Ñux of escaping electrons through the two escape windows (see Fig. 1),q

m

LN/Lt \ [2
P
kcrit

1 kV f (t, l
m
/2) dk \ [(V /m)e~t@qm cos [(l

m
/2)J3l/q

m
V 2] , (B6)

where we use equation (B5) for f (t, On the other hand, the Ñux is equal to the change of the total number of electrons,l
m
/2).

LN/Lt \
P
~lm@2

lm@2 P
~1

1
(Lf/Lt) dk dx \ [(4/q

m
)e~t@qmJq

m
V 2/3l sin [(l

m
/2)J3l/q

m
V 2] . (B7)

Equating the two formulae for LN/Lt, we obtain

(3/16)(lq
m
/m2) \ tan2 J3ll

m
2/4q

m
V 2 . (B8)

In the limit the argument of the tangent above is small, so we expand the tangent and obtainj > l
m

> j2/jeff, q
m

\
while In the limit the left-hand side of equation (B8) is large. Therefore, the argument ofl~1(l

m
/jeff), F0 B const. j2/jeff > l

m
,

the tangent is n/2, and we have (the third line in eq. [5]) ; i.e., the escape time is controlled by di†usion inq
m

\ l~1(3/n2)(l
m
/j)2

x-space. In both limits as we assumed above, and of second order.1/lq
m

> 1,
Now, the limit is still left. The result in this case is the same as the result in case However,jeff > l

m
[ j j > l

m
> j2/jeff.instead of solving the kinetic equation, we give the following qualitative arguments supported by our numerical simulations

(see Fig. 2). The relaxation time of the electron distribution in k-space can be estimated as The relaxation time in*tk D l~1.
x-space can be estimated as the crossing time in case and as the time of di†usion across*t

x
D l

m
/V \ l~1(l

m
/j) l

m
[ j,

in case All relaxation times are small compared to the escape time i.e., for the entire*t
x
D l~1(l

m
/j)2 j > l

m
. q

m
, *tk, *t

x
> q

mrange This means that the distribution function is approximately constant in x and k, sayjeff > l
m

> j2/jeff. F0B 1,
We then carry out calculations similar to those we used in formulae (B6) and (B7) to Ðnd that (thefB e~t@qm. q

m
\ l~1(l

m
/jeff)second line in eq. [5]).

APPENDIX C

THE ADDITIONAL ELECTRON FLOW PRODUCED BY ELECTRIC FIELD

Let us, for simplicity, consider the Lorentz gas. The results for the Spitzer gas are similar.
First, we derive an estimate for the additional Ñow of electrons that are in an interval V ½ [V , V ] dV ) of the velocitydF3

space, produced by an electric Ðeld E due to the change of the two loss cones of a mirror trap. Let us consider only the
principal mirrors, because they mainly control the di†usion of electrons (see ° 3). In this appendix, we denote their mirror
strength (the principal mirror strength) as M.

The principal mirror strength is of order of 5, so in the case when the magnetic Ðeld decorrelation length is more than or
approximately equal to the electron mean free path, the escape of electrons from the mirror trap is mainly controlledl0Z j,
by their spatial di†usion (see ° 2). Thus, in this limit, the electrons ““ do not care ÏÏ about the size of the loss cones, and therefore,
no additional Ñow arises.

In the case there is a nonzero additional Ñow In Figure 1b, because of the electric Ðeld, the loss cone on the left,l0[ j, dF3 .
is not equal to that on the right, The size of the two loss cones is estimated from the conservation of the electronkcrit,~, kcrit,`.

magnetic moment, (1[ k2)V 2/B\ const, and from the conservation of energy, We havem
e
V 2/2 ] eEx\ const.

kcrit,B2 B 1 [ 1/M ^ (eEl
M
/m

e
V 2M) , (C1)

where is the spacing of the principal mirrors.l
MLet and be the absolute values of the Ñuxes of the escaping electrons to the right and to the left, respectively.dF3

`
dF3 ~Then, their sum is

dF3
`

] dF3 ~\ (l
M
/q

M
)2nV 2f0 dV , (C2)

where is the number density of electrons expressed in terms of the Maxwellian zero-order electron distribution2nV 2f0 dV
function and is the escape time (see eqs. [2], [6], and [16] and ° 2). The actual electron Ñow, is equal to thef0, q

M
dF3 ,

di†erence of and because they are in opposite directions. An estimate for the ratio isdF3
`

dF3 ~, dF3 /(dF3
`

] dF3 ~)

dF3
dF3

`
] dF3 ~

\ dF3
`

[ dF3 ~
dF3

`
] dF3 ~

B
AP

kcrit,`

1
k dk [

P
kcrit,~

1
k dk

BAP
kcrit,`

1
k dk ]

P
kcrit,~

1
k dk

B~1
. (C3)

Now, using equations (C1)È(C3), we obtain the additional electron Ñow

dF3 B [2n(eE/m
e
) f0(lM2 /q

M
) dV . (C4)
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The factor in this equation is proportional to the spatial di†usivity of the electrons (provided that the di†usivity is(l
M
2 /q

M
)

controlled by the principal mirrors ; see ° 3). Thus, it is obviously where and are the standard Lorentzl
M
2 /q

M
\ R

D
jL2 lL, jL lLmean free path and collision frequency, and is the reduction of the spatial di†usivity reported in ° 3. UsingR

D
jL PV 4,

and equations (16), (43), and we Ðnally obtainlLPV ~3, V
T

\ (2kT /m
e
)1@2,

dF3 B[(1/2)(2/n)3@2(k3@2T 3@2E/m
e
1@2 e3 ln ")R

D
t5e~Ò2 dt . (C5)

Now we would like to compare this result for the additional Ñow with the main Ñow dF produced by the electric ÐelddF3
due to acceleration of particles. The latter is

dF\
P
~1

1 kV f1 dk2nV 2 dV dk \ [(2/3)(2/n)3@2(k3@2T 3@2E/m
e
1@2 e3 ln ")R

D
t7e~Ò2 dt , (C6)

where we substituted function given by equation (17) and function given by equations (33) and (39). As af1 S(t) \ c
E
S
E
(t)

result,

dF3 /dFB (3/4)t~2 . (C7)

Because the electrical current and the heat Ñow are mainly transported by superthermal electrons t2D 4, the additional Ñow
produced by electric Ðeld due to nonequal loss cones can indeed be neglected in comparison with the main Ñow due to
acceleration of electrons by electric Ðeld.
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