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ABSTRACT
Three resonances, the 3 :2 mean motion resonance, the Kozai resonance, and the 1:1 superresonance,

are known to govern the stability of the motion of Pluto concurrently. In this work, we report an exten-
sive numerical exploration of the 1 :1 superresonance region in element space and the e†ects of the giant
planets on this resonance. It is shown that the 1:1 superresonance region is narrower than those for the
other two resonances and that it is a second-order resonance. We use the orbits of known Plutinos to
investigate our result. None of these Plutinos is in the 1:1 superresonance. We also Ðnd that the Jovian
planets, especially Jupiter, play important roles in concert in the superresonance.
Key words : celestial mechanics È Kuiper belt È planets and satellites : individual (Pluto)

1. INTRODUCTION

In the solar system, Pluto has always enjoyed a kind of
““ special status ÏÏ as the result of its unique orbital conÐgu-
ration. By the remarkable concerted action of three known
resonances, Pluto is protected from encounters with
Neptune. The Ðrst dynamical protection mechanism was
reported by Cohen & Hubbard (1965) : Pluto is in a 3:2
mean motion resonance with Neptune so that the distance
between the two planets can never reach its possible
minimum in the vicinity of PlutoÏs perihelion. The second
mechanism was identiÐed by Williams & Benson (1971) :
PlutoÏs argument of perihelion, u, librates about 90¡, thus
preventing Pluto from approaching the orbital planes of the
other planets at its perihelion. The periods of the eccentric-
ity, e, and the inclination, i, were found to be similar to that
of u, a result that is explainable by the Kozai mechanism
(Kozai 1962). Williams & Benson (1971) also conjectured
that the di†erence between the longitudes of the ascending
nodes of Pluto and Neptune, is in resonance or) [ )N,
near-resonance with the libration of u. This was conÐrmed
by Milani, Nobili, & Carpino (1989), who named it the 1 :1
superresonance. Kinoshita & Nakai (1996) pointed out that
when is 0¡, u is 90¡, e reaches a minimum, and i) [ )Nreaches a maximum; in addition, when is 180¡, u is) [ )Nalso 90¡, e reaches a maximum, and i reaches a minimum.
The concerted action of these three resonances ensures that
Pluto and Neptune do not encounter each other.

Sussman & Wisdom (1988) numerically integrated the
outer solar system for 845 million yr and found that the
motion of Pluto is chaotic, with an e-folding (Lyapunov)
time corresponding to about 10~7.3 yr~1. This result does
not imply some gross instability of PlutoÏs orbit, but rather
it conÐrms the sensitivity of PlutoÏs trajectory to its initial
coordinates and velocity. We report herein on a project to
explore more thoroughly but qualitatively the regions of the
resonances in parameter space, especially for the orbital
elements. The resonance regions may thereby provide some
clue to the evolutionary path of this planet and some infor-
mation on the stability of its orbit. It is well known that

many minor bodies, called Plutinos, are trapped in 3:2
resonance with Neptune. The corresponding resonance
region should therefore not be narrow. By using a circular
planar restricted three-body model, Malhotra (1996)
showed theoretically that the range of the semimajor
““ radius ÏÏ for the 3 :2 resonance is about 0.6 AU. This value
is quite close to the result from our numerical simulations.
She went on to conjecture the possible migrations of planet-
ary orbits in the outer solar system.

Our research focuses on the 1:1 superresonance. In ° 2,
the initial coordinates and velocities and the model for our
numerical simulations are introduced. Methods for the
numerical integration and methods for Ðnding the periods
of libration or circulation are also described in ° 2. The
range of the resonance zone is the main content of ° 3. In ° 4,
we discuss the superresonance as a second-order resonance.
As a check of our exploration of the resonance zone, in ° 5
we apply our results to the so-called Plutinos. The role of
the Jovian planets on the superresonance is discussed in ° 6.
Finally, in ° 7, we provide a brief summary and discussion.

2. NUMERICAL EXPERIMENTS

The model in our simulation is composed of the Sun and
the Ðve outer planets, with the masses of the four inner
planets added to the Sun. The masses and the initial values
of the positions and velocities of the Sun and the planets
are taken from DE234 (M. E. Standish 1993, private
communication) with the associated epoch of 1969 June 28.
Given in the heliocentric mean equatorial system of J2000.0,
the initial coordinates and velocities have been transformed
to the system of the heliocentric invariant plane. The origin
of longitude for the latter system is chosen to assure that the
node of the mean equator and the invariant plane have the
same longitude in both systems. The initial orbital elements
are listed in Table 1.

We have employed the modiÐed symplectic method for
solar system dynamics by Wisdom & Holman (1991). The
Hamiltonian is divided into two parts, a Kepler and an
interaction Hamiltonian. The former can be solved pre-
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TABLE 1

ORBITAL ELEMENTS OF FIVE OUTER PLANETS

a i u ) M
Planet (AU) e (deg) (deg) (deg) (deg)

Jupiter . . . . . . . . 5.208 0.04727 0.329 56.58 317.93 174.29
Saturn . . . . . . . . 9.522 0.05405 0.932 329.73 124.56 302.91
Uranus . . . . . . . 19.281 0.05138 1.028 219.76 312.53 10.53
Neptune . . . . . . 30.176 0.004914 0.724 217.72 195.03 185.61
Pluto . . . . . . . . . 39.775 0.2533 15.558 112.71 110.86 331.38

NOTE.ÈData are for 1969 June 28 in the system of the heliocentric invariant plane
of J2000.0.

cisely as several two-body problems ; the latter has a small
factor, k, the ratio of the planetary masses to the solar mass.
The relative energy error for the truncation of a sympletic
method is about *\ C(h/N)o`1, where h is the step size, o is
the order, N is the number of function evaluations per step,
and C is an error constant. As a result, C for the modiÐed
algorithm is smaller by a factor of the mass ratio, k, than
that for a general symplectic method. Consequently for the
same energy error the step size can be enlarged by a factor
of k~1@(o`1). Wisdom & Holman (1991) pointed out that the
most efficient algorithm for qualitative exploration in solar
system dynamics is the second-order modiÐed symplectic
method. This insight e†ectively makes long-period integra-
tions more efficient. In addition, we have compared the
second-order modiÐed sympletic method with a twelve-step
symmetric method (Quinlan & Tremaine 1990). After an 8
million year run, the relative error in the coordinates of
Pluto reaches about 0.07, quite a large number. We then
computed the corresponding orbital elements and found the
main error to be in mean anomaly. It is well known that the
main integration error is in in-track error (Huang &
Innanen 1983). The errors in the semimajor axis, a, eccen-
tricity, e, inclination, i, perihelion argument, u, and the lon-
gitude of the ascending node, ), of Pluto are 0.15 AU, 0.03,

and respectively. We found that the three0¡.03, 0¡.8, 0¡.16,
resonances of Pluto are all well sustained for a 100 Myr run
using the modiÐed symplectic integrator.

Wisdom, Holman, & Touma (1996) proposed a symplec-
tic corrector to remove spurious oscillation in energy and
state variables in integrations by the modiÐed symplectic
integrator. The leading terms of correction for coordinate,
x, and velocity, v, are

*x \ 1
24

h2F*, v\ [ 1
24

h2 dF
dt

, (1)

where h is the step size and F is the perturbation acceler-
ation (S. Mikkola 2000, private communication). Using the
corrector will change some last decimal places in the Ðnal
result, but it will not improve our calculation signiÐcantly.
The errors in our integration are caused mainly by the rela-
tively low order of the method.

Considering that this is a qualitative exploration, empha-
sizing the three resonances and the consequent need to do
long computations, we decided to use the second-order
modiÐed symplectic integrator as the best available option.
All the numerical experiments were performed in double
precision, using FORTRAN 77 on a Sun OS with a step size
of 365 days, and the output was stored every 15,000 steps.
As our research agenda was focused on the boundaries of
the stability regions, our calculations were thus not long

enough to show the chaotic property of the orbits. It is for
this reason that we have not included output giving Liapu-
nov e-folding times.

As mentioned above, the 1 :1 superresonance occurs
between and u, where the circulation period of) [ )Nis equal to the libration periods of u. Next, we)[ )Nchose a criterion to deÐne the edge of the resonance zone.
The following rule was adopted : the 1 :1 superresonance is
considered broken when the phase di†erence between the
two resonance arguments reaches n within the integration.
As our integration period is 108 yr and both the periods of
the resonance arguments are about 3.8 ] 106 yr, the chosen
criterion means that the di†erence of their periods reaches
8 ] 104 yr, or 2% of the period.

To Ðnd the periods of the arguments and u, we)[ )Nadopt simple rules. The circulation of is assumed to) [ )Nbe and the oscillation of u, e, and i to be/1 ] (2n/T1)tA0] A1 sin [(2nt/T1) ] /1]M1] A2 sin [(2nt/T2)] /2]N,where and are not necessarilyA0, A1, A2, T1, T2, /1, /2the same for u, e, and i. A program was written to) [ )N,
Ðnd the best Ðt for these coefficients for all the numerical
simulations by using the method of least squares. The
periods of u, e, and i for real Pluto in 100 Myr) [ )N,
simulations are (3.787] 106) ^ 128, (3.784] 106)^ 271,
(3.783] 106) ^ 396, and (3.783 ] 106) ^ 365 yr, respec-
tively. These values are consistent with the results obtained
by Milani et al. (1989), who used a more complex model.

3. RESONANCE REGION IN ELEMENT SPACE

To Ðnd the boundary of the resonance region for the 1:1
superresonance in the space of the orbital elements, we have
conducted a number of numerical experiments by changing
the initial orbit elements little by little. Each experiment
changes only one element, and the others keep the value of
PlutoÏs orbit as shown in Table 1. The periods of libration
or circulation were obtained by the method described in ° 2.
The Ðtting errors for the periods are less than 200 yr for

1500 yr for u, and 2000 yr for i, so the relative)[ )N,
errors of the periods we obtained are less than 10~3 to a
good approximation.

Table 2 lists our main results : the boundaries of the 1 :1
superresonance in element space. As a contrast, in this table
we also list the corresponding boundaries of the 3 :2 mean
motion resonance and the Kozai resonance. These were
obtained from our numerical experiments by a procedure
similar to that described above. The value in the last
decimal place in data in Table 2 displays the precision in
our determination of the resonance boundary. PlutoÏs ele-
ments are also listed. It is clear that the mean motion reso-
nance has the widest region, the Kozai resonance is next,
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TABLE 2

UPPER AND LOWER LIMITS OF THE ORBITAL ELEMENTS FOR THE THREE RESONANCES

LOWER LIMIT UPPER LIMIT

ORBITAL ELEMENTS 3:2 Kozai Super Pluto Super Kozai 3 :2

a (AU) . . . . . . . . . . . . . . 39.39 39.52 39.57 39.78 39.82 39.86 40.02
e . . . . . . . . . . . . . . . . . . . . . 0.065 0.222 0.230 0.253 0.270 0.296 0.434
i (deg) . . . . . . . . . . . . . . . 0.0 7.4 10.9 15.6 22.9 49.8 144.0
u (deg) . . . . . . . . . . . . . 26.0 52.5 88.8 112.7 119.2 129.0 151.4
) (deg) . . . . . . . . . . . . . 25.5 47.3 57.3 110.9 118.6 127.9 147.0
M (deg) . . . . . . . . . . . . . 271.7 289.6 297.0 331.4 337.7 343.7 70.6

NOTE.È The epoch is the same as in Table 1.

and the superresonance has the narrowest zone. For
example, the ranges of semimajor axis for the super-
resonance, the Kozai resonance, and the mean motion reso-
nance are 0.25, 0.34, and 0.63 AU, respectively. It is
interesting to compare these values with the result of Mal-
hotra, who used a planar circular restricted three-body
model. She found that the typical width of a Neptune reso-
nance libration zone is about 0.6 AU, a value quite consis-
tent with our results.

A. Milani (2000, private communication) pointed out to
us that there should exist another resonance zone for the
Kozai resonance around u\ 270¡ since it is a mirror image
of u\ 90¡ with the invariant plane as the mirror. Table 2
lists only the resonance regions of the three resonances
around Pluto. There should exist mirror images of the
regions in Table 2, obtained by changing u to u] 180¡ and
) to )] 180¡ at the same time. A resonance zone would
not be perfectly symmetric to its mirror image since the
inclinations of the Jovian planets are not exactly zero.

Table 2 shows that both the superresonance and the
Kozai resonance exist only for an eccentricity near 0.25. It
also shows that the superresonance zone is quite narrow.
The width of this resonance zone for semimajor axis, eccen-
tricity, and inclination is 0.25 AU, 0.040, and 12¡, respec-
tively. Pluto is not at the center of this resonance zone. Its
semimajor axis, 39.78 AU, is about halfway to the upper
limit.

It is evident that the 1:1 superresonance is very sensitive
to a and e among the six elements. The width of the reso-

FIG. 1.ÈVariation of i, u, and with time. Initial a is 39.56 AU,) [ )Njust below the superresonance zone. One sees that the period of u switches
from the period of i to that of ) [ )N.

nance zone for them is even smaller than the variation range
of these elements during the time interval of our numerical
integration. For example, PlutoÏs semimajor axis is in oscil-
lation with an amplitude about 0.9 AU, much larger than
the size of the resonance zone. This fact reminds us that our
numerical result is valid only at the speciÐed epoch we
adopted, that of 1969 June 28.

Figure 1 shows the variation of i, u, and when a) [ )Nis 39.56 AU, just below the lower limit of the super-
resonance zone. It is observed that the amplitude of u
changes about 30¡ in about 15 Myr. The libration period of
u is also changing with amplitude, with a value close to the
libration period of i, when the amplitude of u is near 0¡ ;
however, it is almost the same as the circulation period of

when the amplitude is large. When the initial posi-)[ )Ntion is further out of the resonance zone, the libration
period of u is still close to that of i, but then it di†ers more
from the circulation period of )[ )N.

The above phenomenon can be also seen in Figure 2,
where the periods and are plotted as functionsTu, T

i
, T)~)Nof the variation of orbital elements. The location of Pluto is

marked by a vertical bar in Figure 2. From Figure 2, one
notes the following : (1) all the periods change almost lin-
early with e, i, and u but change nearly quadratically with a,
), and M ; (2) stays close to even in the boundaryTu T

iregion but gradually moves away from near theT)~)Nboundary ; and (3) the three periods remain together within
the resonance zone when only i is changed. However, the
three periods later have a sudden separation when i is out of
the boundary. This sudden separation is not drawn in
Figure 2 for the separation is so large that the point is out of
the range of this Ðgure. This kind of sudden change is quite
typical at the boundary of resonance regions for all the
elements.

From the above description, we have seen that the 1:1
superresonance region is the narrowest of the three reso-
nance regions and is the easiest to break, compared with the
other two resonances. This means that it is the least impor-
tant protection mechanism for the orbital stability of Pluto.
In fact, we have done a long integration, lasting for 100
Myr, with the initial condition outside the superresonance
region but inside the 3:2 mean motion and Kozai reso-
nance regions. We found this orbit to be stable.

4. 1 :1 SUPERRESONANCE AS A SECOND-ORDER

RESONANCE

The 1:1 superresonance occurs when the oscillation
period of u coincides with the circulation period of ) [ )N.
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FIG. 2.ÈPeriods of u, and i with di†erent initial orbital elements. L eft to right and top to bottom : a, e, i, u, ), and M.) [ )N,

This indicates that the superresonance is a second-order
resonance (Lichtenberg & Lieberman 1990). In this section,
we apply a theory of second-order resonance to discuss this
resonance and estimate its critical argument.

Lichtenberg & Lieberman (1990) pointed out that the
action-angle variables of a resonance can be written as

I\ I0] I1 cos /, h \ h0] h1 sin / , (2)

where and are constants. For a resonance withoutI0 h0higher order resonances, and are also constants. If / isI1 h1in resonance with another angle variable h@, and canI1, h1

be expressed as

I1\ (2JR)1@2, h1\ (2J/R)1@2, /\ h ] r , (3)

where J and r are the action-angle variables for the second-
order resonance and R is a constant parameter. It is evident
that

J \ J0] J1 cos t, r\ r0] r1 sin t . (4)

If there are no further higher order resonances, in each right
side of equations (4) t is in circulation and the other param-
eters are constants. In the above presentation, the critical
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argument for the Ðrst-order resonance is the angle variable,
h, and the critical argument for the second-order resonance
is r.

From equations (2)È(3) we get the Ðnal expression for I
and h as follows :

I\ I0] (2JR)1@2 cos / ,

h \ h0] (2J/R)1@2 sin / . (5)

In the current problem, the Kozai resonance is the Ðrst-
order resonance and its critical argument, h, is the element
u. Actually our u is an instantaneous element and is not
strictly one of the action-angle variables. An averaging pro-
cedure over u for removing all the short-period oscillations
and the 3:2 mean motion resonance period oscillation
would result in the corresponding critical argument. We
neglect this di†erence and just take u as the critical argu-
ment of the Kozai resonance. In the same way h@ in equa-
tions (3) is now and the critical argument of the)[ )N,
superresonance is where / is the phase angle/ [ () [ )N),
of u oscillation. Finally, we have

e\ e0] (e1 ] e2 cos t)1@2 cos / ,

u\ u0] (u1] u2 cos t)1@2 sin / . (6)

Here e and u are not canonical conjugate, but the form of
equations (6) should be correct.

To use the data from our numerical simulation to evalu-
ate the phase angle, /, we set and/\ l1t ] /0 t\ l2tA least-squares Ðt is then performed for] t0. e0, e1, e2, u0,

and where we adopt the frequency ofu1, u2, l2, t0, /0,as in a previous Ðt (see ° 1) as Then we use our)[ )N, l1.numerical data and the previous Ðt results to determine the
value of / as a function of time from equations (6).

Figure 3a shows the critical argument of the super-
resonance, versus time for the case e\ 0.250,/[ () [ )N),
the other elements having PlutoÏs values. We clearly see this
angle to be in oscillation. For all the element sets that are
deep in the resonance zone determined in ° 3, the situation
is similar. Difficulties arise when we move to the element
sets that are near the boundary of the resonance zone, i.e.,
where the simple form of equations (6) does not work. In
these cases we use the method suggested by Milani et al.
(1989) to obtain /. Figure 3bÈ3d shows the results using
their method. Figure 3b shows the result for e\ 0.263, near
the boundary we determined in the last section. It shows
that the critical argument is mostly in oscillation and that
the form of its variation is distorted from a sine curve ; that
is, it has slow descent and more rapid ascension. At about
4 ] 107 Myr the critical argument is in circulation within a
very short interval. This phenomenon can also be seen in
Figure 3c, occurring in a regular time interval of about
3.7] 107 Myr. This Ðgure is for e\ 0.270, right on the

FIG. 3a FIG. 3b

FIG. 3c FIG. 3d

FIG. 3.ÈVariation of the critical argument of the superresonance with time. All the orbital elements are the same as that of Pluto except the eccentricity.
(a) e\ 0.250, inside the resonance zone. (b) e\ 0.263, near the boundary of the resonance zone. (c) e\ 0.270, on the boundary of the resonance zone. (d)
e\ 0.274, outside the boundary of the resonance zone.
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boundary. The rapid descent of the critical argument is
caused by the fact that / has a temporary oscillation
around 0¡ ; thus the critical argument behaves just as

which is in circulation from west to east. This[()[ )N),
kind of phenomenon disappears in Figure 3d, which is for
e\ 0.274, just outside the boundary. It clearly shows that
the critical argument is in circulation and the super-
resonance does not exist any more. One immediately con-
jectures that the superresonance is in its chaotic separatrix
layer between e\ 0.263 and e\ 0.270. After a careful com-
parison between this numerical phenomenon and the
theory (Lichtenberg & Lieberman 1990), we are convinced
of this result.

The above presentation has shown that the 1:1 super-
resonance is a second-order resonance of the Kozai reso-
nance and that the theory for a second-order resonance Ðts
the data well. It would thus be the easiest among the three
resonances to break. This also conÐrms that the resonance
zone determined in ° 3, i.e., by the behavior of the critical
argument, is correct.

5. PLUTINOS

It is well known that a group of Kuiper belt objects called
Plutinos share the 3:2 Neptune resonance with Pluto. One
may use their real orbits to check against our resonance
zone listed in Table 2.

The orbital elements of these trans-Neptunian objects
have been obtained from the Minor Planet Circulars and
Minor Planet Electronic Circulars. We selected the objects
that have a semimajor axis around 39.5 AU. As they are in
di†erent initial epochs, the Sun and Ðve outer planets were
integrated from our epoch to the epoch of each Plutino.
Next we integrated the system with each Plutino back to
our epoch using a Cowell integrator. Then all the candi-
dates were integrated together for a 100 MyrÈlong run by a
twelfth-order symmetric integrator (Quinlan & Tremaine
1990). All the small bodies were treated as test particles
during this integration. From this simulation, we selected
those that were found to be in the 3:2 mean motion reso-
nance with Neptune. Thirty-two such Plutinos were identi-
Ðed.

The resonance zone in the element space should be a
six-dimensional region, but Table 2 lists only six intervals,
which cross each other at the real Pluto. It is almost impos-
sible for us to get the whole six-dimensional resonance zone
by pure numerical integration, considering that a huge
amount of CPU time is needed to fulÐll this task. Neverthe-
less, we did complete a calculation to Ðnd the two-
dimensional resonance region in the (a, e) plane, keeping the
values of the other four elements the same as that of Pluto.
The open circles in Figure 4 mark the edge of the super-
resonance region, as earlier calculated. The epoch is also at
1969 June 28. Pluto is marked on this Ðgure with a Ðlled
circle. It is not at the center of the resonance region. We

FIG. 4.ÈRegion of the superresonance and the initial positions of Plu-
tinos in the (a, e) plane, showing the edge of the resonance we calculated
(open circles), Plutinos ( Ðlled squares), and Pluto ( Ðlled circle). Three Plu-
tinos inside the resonance zone are labeled.

have marked the positions of all 32 Plutinos at the epoch of
1969 June 28 on Figure 4 with Ðlled squares.

It can be seen that only three Plutinos are inside the
resonance region. They are 1997QJ4, 1999JB132, and
1999JC132 ; the former two are very near the boundary of
the region. On the other hand, we have found that there is
no Plutino that is in 1 :1 superresonance. We have therefore
further investigated 1997QJ4, 1999JB132, and 1999JC132.
Table 3 lists their elements at the epoch of 1969 June 28.
For 1997QJ4, a and i are well inside the superresonance
interval (see Table 2), e is at the edge, and u is outside the
superresonance interval but inside the Kozai resonance
interval. It seems at Ðrst that it may be in the Kozai reso-
nance but its ) is far away from the Kozai resonance inter-
val. Our numerical experiment thus shows that it is not in
the Kozai resonance. Furthermore, it escapes after about 29
million yr. We did another 100 Myr run, in which PlutoÏs
mass was set to zero and 1997QJ4 did not escape. This run
proves that its escape is mainly because of the perturbation
of Pluto.

Our numerical experiment shows that although it is
not in the 1:1 superresonance, 1999JB132 stays in the
Kozai resonance. We can see that the four elements of
1999JB132, a, e, i, and u, are well inside the Kozai reso-
nance interval and its ) and M are out of the interval but
not so far as for 1997QJ4. We believe that 1999JB132 is
inside the Kozai resonance region but outside our reso-
nance interval.

The perihelion argument, u, of 1999JC132 is switching
between circulation and oscillation but switches around
270¡ instead of 90¡ by our calculation. It should be at the
boundary of the mirror image of the Kozai resonance zone
listed in Table 2 (see ° 3).

TABLE 3

ORBITAL ELEMENTS OF 1997QJ4, 1999JB132, AND 1999JC132 ON JUNE 28, 1969

a i u ) M
(AU) e (deg) (deg) (deg) (deg)

1997QJ4 . . . . . . . . 39.6199 0.2334 17.4334 86.5312 342.4243 270.8792
1999JB132 . . . . . . 39.6654 0.2719 13.5185 88.2016 218.3899 253.7382
1999JC132 . . . . . . 39.6636 0.2402 5.4341 295.5822 19.9260 241.9865
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6. EFFECT OF THE JOVIAN PLANETS

PlutoÏs three resonances function mainly under
NeptuneÏs gravitational inÑuence. What is the inÑuence of
the other three Jovian planets? To investigate, we pro-
ceeded in the following ad hoc way : we simply removed the
other three Jovian planets one at a time from the model,
maintaining self-consistency, and integrated for 100 Myr.
Each time there is only one giant planet being removed. We
found that the superresonance always disappeared when
any Jovian planet is removed. In addition, we gradually
decreased the mass of each Jovian planet to measure
empirically its e†ect on the superresonance. One Ðnds that
the superresonance is present until 43% of the mass of
Jupiter is left. For Saturn and Uranus these numbers are
39% and 37%, respectively. The decrease of the masses of
the Jovian planets results in an increase of the libration
period, and a larger amplitude of libration, This canTu, Au.
be seen in Table 4. It should be noted that the larger the
amplitude of the u libration, the less stable PlutoÏs orbit
would be.

Evidently Uranus has the greatest inÑuence on the period
and amplitude of the u libration ; these are about 5.69 Myr
and 70¡, respectively, near the edge of the superresonance.
For Saturn, they are 5.05 Myr and 65¡, respectively. The
inÑuence of Jupiter on the period and amplitude is not so
strong, about 4.70 Myr and 25¡, respectively, near the
boundary. In other words, among the three Jovian planets,
Uranus may be the main agency maintaining the Kozai
resonance.1 We also argue that, after Neptune, Jupiter is the
most important body for maintaining the 1:1 super-
resonance. In summary, the other three giant planets play
essential roles in concert.

7. SUMMARY AND DISCUSSION

We have studied the Plutonian multiple resonance region
in element space. Numerical integrations have been per-

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 A. Milani wrote us : ““ It might be worth commenting that the close

approaches between Pluto and Uranus are not controlled by the 3:2
Pluto-Neptune resonance because Uranus and Neptune are not in the 2:1
resonance. Thus, the Kozai resonance is the one e†ectively controlling the
minimum approach distance between Pluto and Uranus : no wonder the
period of the Kozai resonance is strongly a†ected by Uranus.ÏÏ We agree
with him.

formed to study the width of the superresonance zone. The
result is shown in Table 2. This table and Figure 4 can be
used to check whether a minor body is in resonance. The
function of this check is limited as shown in ° 5. The main
limitation is caused by two factors : (1) We did not obtain
the whole six-dimensional resonance region but only six
resonance sections that are crossed at Pluto in this region,
and (2) PlutoÏs gravitational perturbation was neglected
during our exploration of this resonance region, although
PlutoÏs gravitation may be important to the orbital evolu-
tion of Plutinos. In spite of these limitations, our results
have still successfully been used to check the resonance
status of Plutinos, as shown in ° 5.

Our results apply at a special epoch, 1969 June 28. Our
resonance interval is given by using osculating elements. We
thought of using some kinds of proper elements. Because
most of the orbits in our experiment are in the 1:1 super-
resonance, their elements, a, e, i, and u, are in libration
around an average value. Therefore we cannot distinguish
these orbits clearly by averaging these elements with time.
One could adopt proper elements as the elements after re-
moving all their short-period oscillations. For this purpose
a long run of numerical integration becomes necessary.
Consequently it is better to use osculating elements to
present our results.

Clearly, the 1 :1 superresonance is a second-order reso-
nance. It has the narrowest resonance zone and is the
easiest to break, so it may be the most vulnerable protection
mechanism for Pluto. We have not found one existing
Plutino in this resonance. It should be pointed out that
most Plutinos were discovered recently and only a small
number of observations were used to determine their orbits.
We have found that a few of the Plutinos do not have stable
orbits with their recently published elements. More dis-
coveries and further observations are very necessary to
improve our understanding of these resonances.

From our numerical experiments that artiÐcially
removed or reduced the Jovian planets, we conclude that
the superresonance is not a pure three-body phenomenon.
Existence of the Jovian planets, especially Jupiter, appears
to be an essential condition of the existence of the 1 :1
superresonance. Finally, it is abundantly clear to us that
PlutoÏs orbit remains an enigmatic and complicated subject,
and our studies must be considered ““ work in progress.ÏÏ
There clearly exist many possible avenues of future investi-
gation.

TABLE 4

VARIATIONS OF PERIOD AND AMPLITUDE OF u LIBRATION AND CIRCULATION PERIOD OF )[ )N
WITH MASS DECREASE OF JOVIAN PLANETS

Mass Jupiter Mass Saturn Mass Uranus Tu Au T)~)N
Variation (%) (%) (%) (Myr) (deg) (Myr)

1 . . . . . . . . . 50 100 100 4.6314 26.0 4.6394
2 . . . . . . . . . 45 100 100 4.6726 26.5 4.6982
3 . . . . . . . . . 43 100 100 4.6828 29.0 4.7043
4 . . . . . . . . . 100 50 100 4.4721 46.6 4.4700
5 . . . . . . . . . 100 40 100 5.0725 61.0 5.0732
6 . . . . . . . . . 100 39 100 5.1162 66.5 5.1127
7 . . . . . . . . . 100 100 50 5.2292 59.2 5.1975
8 . . . . . . . . . 100 100 40 5.6484 61.3 5.6081
9 . . . . . . . . . 100 100 39 5.6946 62.6 5.6491
10 . . . . . . . . 100 100 38 5.7608 64.0 5.6894
11 . . . . . . . . 100 100 37 5.7838 66.6 5.7211
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