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ABSTRACT
We reconsider the problem of gravitational structure formation inside and outside general relativity

(GR), in both the weakly and strongly nonlinear regime. We show how these regimes can be explored
observationally through clustering of high-order cumulants and through the epoch of formation, abun-
dance, and clustering of collapse structures, using Press-Schechter formalism and its extensions. We
address the question of how di†erent these predictions are when using a nonstandard theory of gravity.
We study examples of cosmologies that do not necessarily obey EinsteinÏs Ðeld equations : scalar-tensor
theories (STT), such as Brans-Dicke (BD), parametrized with u, a nonstandard parameterization of the
Hubble law, H2\ a~3(1`v), or a nonstandard cosmic equation of state p \ co, where c can be chosen
irrespective of the cosmological parameters and We present some preliminary bounds on c, u,()

M
)").

and v from observations of the skewness and kurtosis in the Automated Plate Measuring (APM) Galaxy
Survey. This test is independent of the overall normalization of rms Ñuctuations. We also show how
abundances and formation times change under these assumptions. Upcoming data on nonlinear growth
will place strong constraints on such variations from the standard paradigm.
Subject headings : galaxies : formation È gravitation È instabilities È large-scale structure of universe

1. INTRODUCTION

In cosmology, the standard picture of gravitational
growth, and also many aspects of fundamental physics, are
extrapolated many orders of magnitude from the scales and
times at which our current theory of gravity (general rela-
tivity, GR) has been experimentally tested, into the distant
universe. In particular, current limits on the (parametrized)
post-Newtonian formalism are mostly restricted to our very
local universe (see Will 1993). It is important to evaluate
how much our predictions and cosmological picture depend
on the underlying hypothesis (see Peebles 2000 for insightful
comments on the state of this subject). The other side of this
argument is that cosmology can be used to test fundamental
physics, such as our theory of gravity.

One aspect of GR that could be questioned or tested
without modifying the basic structure or symmetry of the
theory are EinsteinÏs Ðeld equations, relating the energy
content to the curvature One such modiÐcation,(Tkl) (Rkl).which will be considered here, is scalar-tensor theories
(STT), such as the Brans-Dicke (BD) theory. A more
generic, but also more vague, way of testing the importance
of EinsteinÏs Ðeld equations is to independently model the
geometry and the matter content, thus allowing for the
possibility of other relations between them. Some simple
aspects of this idea will be illustrated here by studying struc-
ture formation in a Ñat, matter-dominated universe, but
with a more general growth law for the Hubble rate (see
° 3.2). Similarly, we will also consider results for a generic
equation of state : p \ co, where c can be chosen indepen-
dently of the cosmological parameters and()

M
, )

k
, )").

Our aim in this paper is to explore certain variations of
the standard model to see how they a†ect structure forma-
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tion. The idea is to Ðnd a way to parameterize variations
from GR that might produce di†erences large enough to be
observable. The variations considered could have other
observable consequences (e.g., in the local universe or in the
radiation-dominated regime) which might rule them out as
a viable new theory. But even if this were the case, we still
would have learned something about how structure forma-
tion depends on the underlying theory of gravity or the
assumptions about the equation of state. This aspect of the
theory has hardly been explored, and it therefore represents
an important step forward in analyzing alternatives to the
current paradigm, e.g., nonbaryonic matter (see Peebles
2000), and could also help to set limits on variations of GR
or the equation of state at high redshifts.

Here we consider two main regimes for structure forma-
tion in nonstandard gravity/cosmology : weakly nonlinear
and strongly nonlinear large-scale clustering. We study the
shear-free or spherical collapse (SC) model, which corre-
sponds to the spherically symmetric (or local) dynamics (see
below). This approximation works very well in at least two
di†erent contexts that will be explored here.

The Ðrst scenario is the growth of the smoothed one-
point cumulants of the probability distribution for large-
scale density Ñuctuations : the SC model turns out to
reproduce exactly the leading-order perturbation-theory
predictions (Bernardeau 1992), and turns out to be an excel-
lent approximation for the exact dynamics as compared to
N-body simulations with both Gaussian (Fosalba &

1998a, 1998b) and non-Gaussian initial condi-Gaztan8 aga
tions & Fosalba 1998). The measured one-point(Gaztan8 aga
cumulants in galaxy catalogs have been compared with
these predictions (e.g., Bouchet et al. 1993 ; 1992,Gaztan8 aga
1994, 1995 ; & Frieman 1994 ; Baugh,Gaztan8 aga

& Efstathiou 1995 ; Baugh & 1996 ;Gaztan8 aga, Gaztan8 aga
Colombi et al. 1997 ; Hui & 1999).Gaztan8 aga

The second scenario is the study of the epoch of forma-
tion and abundance of structures (such as galaxies and
clusters), using the Press & Schechter (1974) formalism and
its extensions (e.g., Bond et al. 1991 ; Lacey & Cole 1993 ;
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Sheth & Lemson 1999 ; Scoccimarro et al. 2000). Given
some Gaussian initial conditions, this formalism can predict
the number of structures (halos) of a given mass that will
form at each stage of the evolution. One can use the SC
model to predict the value of the critical linear overdensity,

that will collapse into virialized halos. It turns out thatd
c
,

the analytical predictions for the halo mass function and
formation rates are remarkably accurate as compared to
N-body simulations (Lacey & Cole 1994). One can also use
this type of modeling to predict clustering properties of
halos (e.g., Mo & White 1996 ; Mo, Jing, & White 1997),
cluster abundances (White, Efstathiou, & Frenk 1993 ;
Bahcall & Fan 1998), or weak lensing through mass func-
tions (Jain & Van Waerbeke 2000). The observed cluster
abundances have been used as a strong discriminant for
cosmological models and also as a way to measure the
amplitude of mass Ñuctuations, (see White et al. 1993 ;p8Bahcall & Fan 1998).

In summary, we propose to address a very speciÐc ques-
tion here : how di†erent are the above nonlinear predictions
when using a nonstandard cosmology and nonstandard
theory of gravity? To answer this question, we consider two
nonstandard variations : scalar-tensor models and some
examples of a cosmology that do not obey EinsteinÏs Ðeld
equations. The paper is organized as follows. In ° 2 we give
a summary of how nonlinear structure formation relates to
the underlying theory of gravity (see Weinberg 1972 ;
Peebles 1993 ; Ellis 1999, and references therein for a re-
view of the relation between gravitational theory and
cosmology). This section covers old ground with some
detail, as an introduction to later sections and for the reader
who is not familiar with this subject or notation. We also
present the more general case of an ideal (relativistic) Ñuid.
As far as we know, some of the nonlinear results presented
here are new. In ° 3 we show how these predictions change
in the two examples of nonstandard gravity. Observational
consequences are explored in ° 4. In ° 5 we present a dis-
cussion and our conclusions.

2. GRAVITATIONAL GROWTH INSIDE GR

The self-gravity of an overdense region works against the
expansion of the universe, so that this region will expand at
a slower rate that the background. This increases the
density contrast, so that eventually the region collapses.
The details of this collapse depend on the initial density
proÐle. Here we focus on the spherically symmetric case.
We revise nonlinear structure growth in the context of the
Ñuid limit and the shear-free approximation. These turn out
to be very good approximations for the applications that
will be considered later (leading-order and strongly nonlin-
ear statistics).

We start with RaychaudhuriÏs equation, which is valid for
an arbitrary Ricci tensor We use EinsteinÏs Ðeld equa-Rkl.tions and the continuity equation to turn RaychaudhuriÏs
equation into a second-order di†erential equation for the
density contrast. We Ðrst present the matter-dominated
(nonrelativistic) case, with solutions for the linear and non-
linear regimes. Later, in ° 2.5, we assess the more generic
case of an ideal (relativistic) Ñuid and its corresponding
solution.

2.1. EinsteinÏs and RaychaudhuriÏs Equations
We start by recalling that the metric tensor deÐnes thegkl

line element of spacetime :

ds2\ gkl dxk dxl , (1)

which in the homogeneous and isotropic model of the
cosmological principle can be written as (see, e.g., Weinberg
1972)

ds2\ dt2[ a2(t)
C dr2
1 ] kr2] r2(dh2] sin2 h d/2)

D
. (2)

As usual, we work in comoving coordinates x related to
physical coordinates by where a(t) \ (1 ] z)~1 isr

p
\ a(t)x,

the cosmic scale factor, and z the corresponding redshift
Thus, all geometrical aspects of this universal line(a04 1).

element are determined up to the function a(t) and the arbi-
trary constant k, which deÐnes the usual open, EinsteinÈde
Sitter, and closed universes. The function a(t) can be found
for each energy content by solving the corresponding equa-
tions of motion, e.g., the gravitational Ðeld equations.

In this section we consider EinsteinÏs equations,

Rkl] "gkl \ [8nG(Tkl [ 12gkl T ) , (3)

where is the trace of the energy-momentumT 4 gklTkltensor ; we have included a cosmological constant term to
keep the equations general at this stage. For an ideal Ñuid,
we have

Tkl\ pgkl] (p ] o)uk ul . (4)

We can now use the Ðeld equations and the above
energy-momentum to Ðnd the scale factor a(t) in the metric

3
a

a� \ [4nGo
A
1 ] 3p

o
B

] " (5)

H24
a5 2
a2\ 8nGo

3
] k

a2] "
3

, overdot 4
d
dt

. (6)

In the Ñuid approximation, deviations from the mean
background are characterized by Ñuctuations in theo
density and velocity Ðelds. The continuity equation for a
nonrelativistic Ñuid is (Peebles 1993)

L
Lq

d(x, q) ] $ Æ M[1] d(x, q)]¿(x, q)N\ 0 , (7)

where d(x, q) 4 o(x, q) is the local density contrast,/o [ 1
is the peculiar velocity (see eq. [11] below), and q is¿(x, q)

the conformal time, deÐned by

dq\ dt
a(t)

7
d
dt

\ 1
a

d
dq

. (8)

The continuity equation (7) can also be written

dd
dq

] (1] d)h \ 0 , h 4 $ Æ ¿ . (9)

In order to Ðnd an equation of motion for the density
contrast alone, we resort to the Raychaudhuri equation
(see, e.g., Wald 1984),

d#
ds

] 1
3

#2 \ [p
ij

pij] u
ij
uij] Rkl ukul , (10)

where is the shear tensor, is the vorticity# 4 +k uk, p
ij

u
ijtensor, is the Ricci tensor, and s is the proper timeRklparameter ; uk is the ÑuidÏs 4-velocity, u0\ 1, and

u \ a5 (t)x ]¿(x, t) . (11)
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It is important to stress that RaychaudhuriÏs equation,
equation (10), is purely geometric : it describes the evolution
in proper time of the dilatation coefficient # of a bundle of
nearby geodesics. There is no physics in this equation until
a relationship between and the matter contents of theRkluniverse is speciÐed by means of a set of Ðeld equations.
This makes it very useful for our purposes in this paper,
since we later make reference to a di†erent set of Ðeld equa-
tions.

If EinsteinÏs Ðeld equations, equations (3) and (4), are
assumed, then it is readily veriÐed that

Rkl ukul\ [4nGo
A
1 ] 3p

o
B

] " . (12)

2.2. Shear-Free and Matter Domination
In a matter-dominated regime (p \ 0), o D a~3. Equation

(6) for the Hubble rate H can be rewritten using the nota-
tion which is the ratio of the current)

M
4 8nGo0/(3H02),matter density to the critical density ; which)

k
\ k/H02,gives the global curvature ; and where " is)" \ "/(3H02),the cosmological constant, so that )

M
] )

k
] )" \ 1 :

H2(z)\ H02[)M
(1] z)3] )

k
(1] z)2] )"] . (13)

We can now substitute equation (12) into equation (10).
In a matter-dominated regime, and for a shear free, non-
rotating cosmic Ñuid, we obtain

d#
dt

] 1
3

#2 \ [4nGo ] " . (14)

On making use of equation (11), we can split # as

# 4 +k uk \ 3a5
a

] h
a

, (15)

so that, taking into consideration the Ðeld equations for the
expansion factor a(t) (eqs. [5] and [6]), equation (14) can be
recast in the form

dh
dq

]H(q)h ] 1
3

h2 \ [4nGa2od , (16)

where H(q)4 d( ln a)/dq. We can now eliminate h between
equations (9) and (16) to Ðnd the following second-order
di†erential equation for the density contrast :

d2d
dq2 ]H(q)

dd
dq

[ 3
2
H2(q))

M
(q)d

\ 4
3

(1] d)~1
Add
dq
B2] 3

2
H2(q))

M
(q)d2 , (17)

where we have shifted all nonlinear terms to the right-hand
side, and have used the notation

)
M

(q)\ )
M

)
M

] a)
k
] a3)"

. (18)

Equation (17) reproduces the equation of the spherical
collapse model (SC). In other words, the SC approximation
is the exact dynamics when shear is neglected (see Fosalba &

1998a). As one would expect, this yields a localGaztan8 aga
evolution, in the sense that the evolved Ðeld at a point is just
given by a local (nonlinear) transformation of the initial

Ðeld at the same point, independent of the surroundings.
This SC solution yields the exact perturbation-theory pre-
dictions for the cumulants at tree level (leading order with
Gaussian initial conditions), and it is also an excellent
approximation for next-to-leading orders (see below). As
mentioned in ° 1, one can also use the SC model to predict
the value of the critical linear overdensity, that will col-d

c
,

lapse into virialized halos.

2.3. L inear Growth
We next do a perturbative expansion for d. The Ðrst con-

tribution is the linear-theory solution. For this, equation
(17) clearly simpliÐes to

d2d
l

dq2 ]H(q)
dd

l
dq

[ 3
2
H2(q))

M
(q)d

l
\ 0 , (19)

where stands for the ““ linear ÏÏ solution. Because the coeffi-d
lcients of the above equation are time-dependent only, the

spatial and temporal part factorize :

d
l
(x, q) \ d0(x)D(q) , (20)

where D is usually called the ““ linear growth factor.ÏÏ Thus,
initial Ñuctuations, no matter what size, are ampliÐed by the
same factor, and the statistical properties of the initial Ðeld
are just linearly scaled. For example, the N-point corre-
lation functions are

m
N
(r1, . . . , r

N
, t) \ DNm

N
(r1, . . . , r

N
, 0) . (21)

To Ðnd the solution to equation (19), it is expedient to
change the time variable to g \ ln (a), so that

d
dg

\ 1
H(q)

d
dq

\ 1
H

d
dt

. (22)

We then have

d2D
d2g ]

A
2 ] H0

H2
B dD

dg
[ 3

2
)

M
(g)D\ 0 , (23)

where we can write

H0
H2\ [ 3

2
C )

M
] (2/3)eg)

k
)

M
] eg)

k
] e3g)"

D
, (24)

)
M

(g) \ )
M

)
M

] eg)
k
] e3g)"

, (25)

where and are just constants (the current value)
M

, )
k
, )"at a \ 1).

In the EinsteinÈde Sitter universe we have()
k
\)" \ 0),

and so the di†erential equation)
M
(g) \ 1 H0 /H2 \[3/2,

becomes

d2D
d2g ] 1

2
dD
dg

[ 3
2

D\ 0 , (26)

whose solutions,

D\ C1 eg ] C2 e~3@2g \ C1 a ] C2 a~3@2 , (27)

reproduce the usual linear growth DD a and the decaying
solutions DD a~3@2.
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2.4. Nonlinear Growth
The exact (nonperturbative) solution for the SC equation

(17) for the density contrast in an EinsteinÈde Sitter uni-
verse admits a well-known parametric representation :

d(r)\ 9
2

(r[ sin r)2
(1[ cos r)3[ 1 ,

d
l
(r)\ 3

5
C3
4

(r[ sin r)
D2@3

, (28)

for linear overdensity, andd
l
[ 0,

d(r)\ 9
2

(sinh r[ r)2
(cosh r[ 1)3[ 1 ,

d
l
(r)\ [ 3

5
C3
4

(sinh r[ r)
D2@3

, (29)

for linear underdensity (see Peebles 1993), where thed
l
\ 0,

parameter r is just a parametrization of the time coordi-
nate. There is also a solution for the case (see)

M
D 1

Bernardeau 1992 ; Fosalba & 1998b). TheGaztan8 aga
continuous line in Figure 1 illustrates the solution to the
above equation (the other lines will be explained later).
Note the singularity at which corresponds tod

l
^ 1.686,

gravitational collapse (see ° 3.1.3).
If we are only interested in the perturbative regime

which is the relevant one for the description of(d
l
] 0),

structure formation on large scales, then the above solution
can be expressed directly in terms of the linear density con-
trast, which plays the role of the initial size of the spher-d

l
,

ical Ñuctuation in equation (20). This way, the evolved

FIG. 1.ÈNonlinear density contrast, d, as a function of the linear one,
in the spherical collapse. The solid line shows the GR predictiond

l
,

(u\ O, v\ 0, c\ 0) ; the short-dashed lines correspond to the BD model
with u\ 10 and u\ 1 (left to right). The long-dashed line shows the case
with a nonstandard Hubble rate H2\ a~3(1`v) for v\ 0.5.

density contrast in the perturbative regime is given by a
local-density transformation of the linear density Ñuctua-
tion,

d \ f (d
l
) \ ;

n/1

= l
n

n !
[d

l
]n . (30)

Note that all the nonlinear dynamical information in the
SC model is encoded in the coefficients. We can nowl

nintroduce the above power series expansion in equation (17)
and determine the coefficients one by one. Before we dol

nthis, it is convenient to again change the time variable to
g \ ln (a), as we did in the linear case, equation (23) :

d2d
d2g ]

A
2 ] H0

H2
B dd

dg
[ 3

2
)

M
(g)d

\ 4
3

1
1 ] d

Add
dg
B2] 3

2
)

M
(g)d2 . (31)

We can now use the expansion in equation (30) with d
lgiven by the linear growth factor D\ a \ eg and compare

order by order. For the EinsteinÈde Sitter universe, they
turn out to be

l2\ 3421 , l3\ 682189 , (32)

and so on (see, e.g., Folsalba & 1998b for otherGaztan8 aga
cases). Once we have these coefficients, we can get the evolu-
tion of the nonlinear variance and higher order moments in
terms of the initial conditions (see ° 4.1).

2.5. Equation of State p \ co
We now consider a perfect Ñuid with equation of state

p \ co. Not all values of c make physical sense. Here, in the
spirit of going beyond the standard paradigm, we ignore
these restrictions and assume that c can take any real con-
stant value, irrespective of other cosmological parameters.

The time component of the energy conservation equa-
tions gives us (for p \ co) both the background+lT kl\ 0
density behavior,

oa3(1`c)\ const , (33)

and the continuity equation for the density contrast,

dd
dq

] (1] c)(1] d)h \ [co(¿ Æ $d), (34)

where, as before, q is the conformal time, and Thish 4 $ Æ ¿.
is the generalization of equation (9) for a relativistic Ñuid.
Note that an additional (quadratic) term now appears in the
right-hand side of equation (34). The magnitude of this term
is assessed by resorting to the space components of the
energy conservation equations these are identi-+l T kl\ 0 ;
cally satisÐed when c\ 0, and they show that ¿ Æ $d P

plus higher order contributions. These can be safelyo ¿ o 2/c2,
neglected, since peculiar velocities are always very small
compared to the speed of light ; in fact, the approximation

is always made, even in the more standard caseo ¿ o 2/c2] 0
when c\ 0. We therefore consistently adopt the following
equation for the density contrast :

dd
dq

] (1] c)(1] d)h \ 0 . (35)
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FIG. 2.ÈLinear growth index (solid line) and nonlinear coefficientsa1(short-dashed line) and (long-dashed line), as a function of c4 p/o.l2 l3Vertical dotted lines correspond to the vacuum-, matter-, and radiation-
dominated cases c\ [1, 0, and The horizontal dotted lines bracket the13.

and regions within 10% error of the matter-dominated (c\ 0) case.l2 l3

In addition, HubbleÏs equation, equation (13), now
becomes

H2 \H02[)M
a~3(1`c)] )

k
a~2 ])"] . (36)

FIG. 3.ÈCritical value of the linear density contrast, where d \ Od
c
,

as a function of c4 p/o.

We can combine equation (35) with the Raychaudhuri
equation for this case (cf. eqs. [10] and [12]),

d#
dt

] 1
3

#2 \ [4nGo(1] 3c) ] " , (37)

to obtain, after some algebra,

d2d
d2g ]

A
2 ] H0

H2
B dd

dg
[ 3

2
(1] c)(1] 3c))(g)d

\ 4 ] 3c
3 ] 3c

1
1 ] d

Add
dg
B2] 3

2
(1] c)(1] 3c))(g)d2 , (38)

where we have expediently redeÐned )(g) in equation (25) to

)
M
(g) \ )

M
)

M
] eg(1`3c))

k
] e3g(1`c))"

, (39)

and we can write

H0
H2 \ [ 3

2
C(1] c))

M
e~3gc ] (2/3)eg)

k
)

M
e~3gc ] eg)

k
] e3g)"

D
. (40)

In an EinsteinÈde Sitter universe )(g)\ 1,()
k
\)" \ 0),

and the linear regime is governed by

d2D
d2g ] 1 [ 3c

2
dD
dg

[ 3
2

(1] c)(1] 3c)D\ 0 , (41)

which has the usual solutions of the form D\ aa, with

a1\ 1 ] 3c , a2 \ [3(1] c)/2 . (42)

Figure 2 shows these perturbative solutions. The shaded
region corresponds to the case in which linear evolution is
suppressed, e.g., a \ 0. In this case, as can be seen from
equations (43)È(48), and have a very rapid variation.l2 l3The growing mode for isc[ [13

a1\ 1 ] 3c , (43)

l2\ 2(17] 48c] 27c2)
3(1] c)(7] 15c)

, (44)

l3\
C
72 ] 540c] 324c2] 16

(1] c)2] 24
1 ] c

[ (6] 18c)(17] 48c] 27c2)
(1] c)(7] 15c)

D

] (27] 144c] 189c2)~1 . (45)

For c\ [1 the dominant linear growth is and thea2,values of and are constant :l2 l3

a2\ [3(1] c)
2

, (46)

l2\ 32 , (47)

l3\ 3 . (48)

For radiation we have which reproduces(c\ 13), a1\ 2,
the well-known results (see Peebles 1993), and andl2\ 3/2
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which are new results as far as we know. Note thatl3\ 3,
these values are identical to the case of negative pressure,
c\ [1, the only di†erence being in the linear growth, but
for c\ [7/3 all a, and are identical to the radiationl2, l3case. In the limit of strong pressure, c] O, we Ðnd l2\ 6/5
and As can be seen in Figure 2, and also in thel3\ 12/7.
equations above, there are poles for at c\ [1 andl2c\ [7/15.

Figure 3 shows the corresponding variation in deÐnedd
c
,

as the value of the linear overdensity where the correspond-
ing nonlinear value becomes inÐnity (see ° 3.1.3).

3. GRAVITATIONAL GROWTH OUTSIDE GR

3.1. Scalar-Tensor T heories
Here we investigate how a varying G could change the

above results. We parameterize the variation of G using
scalar-tensor theories (STT) of gravity, such as the Brans-
Dicke (BD) theory or its extensions.

To make quantitative predictions, we consider cosmic
evolution in STTs, where G is derived from a scalar Ðeld /,
which is characterized by a function u\ u(/) determining
the strength of the coupling between the scalar Ðeld and
gravity. In the simplest BD models, u is just a constant, and
G^ /~1 (see below). However, if u varies then it can
change with cosmic time, so that u\ u(z). The structure of
the solutions to BD equations is quite rich and depends
crucially on the coupling function u(/) (see Barrow &
Parsons 1997).

Here we consider the standard BD model with constant
u ; the Ðeld equations are (see, e.g., Weinberg 1972)

Rkl\ [ 8n
/
A
Tkl[

1 ] u
3 ] 2u

gkl T
B

[ u
/2 +k/+l [ 1

/
+k +l // , (49)

K/\ 8n
3 ] 2u

T , (T 4 gklTkl) . (50)

The Hubble rate, H, for a homogeneous and isotropic
background universe can be easily obtained from the above
equations :

H24
Aa5
a
B2\ 8no

3/
] k

a2]"
3

]u
6

/5 2
/2[ H

/5
/

. (51)

These equations must be complemented with the equa-
tion of state for the cosmic Ñuid. In a Ñat, matter-dominated
universe (p \ 0), an exact solution to the problem can be
found :

G\ 4 ] 2u
3 ] 2u

/~1 \ G0(1] z)1@(1`u) (52)

and

a(t)\ (t/t0)(2u`2)@(3u`4) . (53)

This solution for the Ñat universe is recovered in a general
case in the limit t ] O, and also arises as an exact solution
of Newtonian gravity with a power law GP tn (Barrow
1996). For nonÑat models, a(t) is not a simple power law,
and the solutions get far more complicated. To illustrate the
e†ects of a nonÑat cosmology, we consider general solutions
that can be parametrized as equation (52), but which are not

simple power laws in a(t). In this case, it is easy to check that
the new Hubble law given by equation (51) becomes

H2\ H02[)Œ M(1] z)3`1@(1`u)] )Œ
k
(1] z)2] )Œ "] (54)

where and follow the usual relation)Œ
M

, )Œ
k
, )Œ " )Œ

M
] )Œ

kand are related to the familiar local ratios] )Œ " \ 1,
and[z] 0:)

M
4 8nG0 o0/(3H02), )

k
\ k/H02, )" \ "/

by(3H02)]

)Œ
M

\ )
M

3(1] u)2
(2] u)(4] 3u)

,

)Œ " \ )"
6(1] u)2

(3] 2u)(4] 3u)
,

)Œ
k
\ )

k
6(1] u)2

(3] 2u)(4] 3u)
. (55)

Thus, the GR limit is recovered as u] O.
We now investigate the density Ñuctuations in the above

theory. As in ° 2, we make use of the continuity equation (9)
in combination with the Raychaudhuri equation (10). As
mentioned above (° 2.1), both of these are still valid within
the context of BD theory ; it is only necessary to replace the
Ricci tensor in the right-hand side of equation (10) accord-
ing to BDÏs Ðeld equations, equation (49). Considering
again a nonrotating, shear-free cosmic Ñuid, we Ðnd

d#
dt

] 1
3

#2 \ [ 4 ] 2u
3 ] 2u

4no
/
A
1 ] 1 ] u

2 ] u
3p
o
B

[ u
/5 2
/2[/�

/
. (56)

We still make use of a gravitational ““ constant ÏÏ para-
metrized as in equation (52) ; this is justiÐed insofar as the
characteristic length for the variation of / is typically much
greater than that of the density Ñuctuations in a matter-
dominated universe (see, e.g., Nariai 1969). In this approx-
imation, the above equation gives

dh
dq

]H(q)h ] 1
3

h2 \ [4 ] 2u
3 ] 2u

4na2od
/

, (57)

where q is again the conformal time parameter, dq\ a~1dt,
and h is deÐned in equations (9) and (15). Remarkably, this
equation is very similar to the GR equation (4) : we only
need to replace the gravitational constant G by its expres-
sion as a multiple of the varying scalar Ðeld / given in
equation (52). Combining equation (57) with the continuity
equation (9), we immediately Ðnd

d2d
dq2 ]H(q)

dd
dq

[ 4
3(1] d)

Add
dq
B2\ 4 ] 2u

3 ] 2u
4na2od

/
.

(58)

As in ° 2, we change the independent variable in equation
(58) to g \ ln a, whereby we obtain

d2d
dg2]

A
2 ] H0

H2
B dd

dg
[ 4

3
(1] d)~1

Add
dg
B2

\ 4 ] 2u
3 ] 2u

4na2od
H2/ . (59)
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Using equation (51) to calculate and assuming furtherH0 ,
that we Ðnally get)Œ

k
\ )Œ " \ 0,

d2d
d2g ] 1

2
u

1 ] u
dd
dg

[ 1
2

(2] u)(4] 3u)
(1] u)2 d

\ 4
3

1
1 ] d

Add
dg
B2] 1

2
(2] u)(4] 3u)

(1] u)2 d2 . (60)

We next examine the solutions to this equation.

3.1.1. L inear Growth

Let us call D(g) the solution to the linearized version of
equation (60), i.e.,

d2D
d2g ] 1

2
u

1 ] u
dD
dg

[ 1
2

(2] u)(4] 3u)
(1] u)2 D\ 0 . (61)

Again, the solutions are given by the roots and ofa1 a1the corresponding characteristic functions :

D\ C1 aa1 ] C2 aa2 , (62)

where

a1\ 2 ] u
1 ] u

^ 1 ] 1
u

] O
A 1
u2
B

, (63)

a2\ [4 [ 3u
2 ] 2u

^ [ 3
2

[ 1
2

1
u

] O
A 1
u2
B

, (64)

which reproduces the usual linear growth DD a and
DD a~3@2 in the limit u] O. Note that corresponds toa1the growing mode only for large values of ou o , but the
situation is more complicated when u is not large.

Figure 4 shows the values of and as functions of u.a1 a2The e†ective G in BD decreases as the universe expands if
[1 \ u \O, and the expansion factor a(t) stops for
u\ [1 ; the growing mode in this regime is controlled by

FIG. 4.ÈLinear growth indices (solid line) and (dashed line),a1 a2deÐned by the solution as a function of the BD param-D\ C1 a1a ] C2 a1aeter u for a time-varying gravitational constant G\ G0 a~1@(1`u).

since this is the positive root. The growing mode fora1,[4/3 \ u \[1 is but the universe shrinks to an even-a2,tual collapse in this regime (see eq. [53]). In the range
[2 \ u \[4/3 the universe expands again, but there are
no growing modes, as can be seen in Figure 4 (both anda1are negative). For u\ [2 the expansion factor growsa2with time, and becomes the growing mode again. Notea1that in this regime of u\ [2, so that it is slowera1\ 1,
than for u[ 0. As we show below, this is compensated for
in part by a stronger nonlinear growth.

3.1.2. Nonlinear Growth

In the nonlinear case, we consider the full version of
equation (60). We can now proceed as before, using the
expansion in equation (30) with given by the lineard

lgrowth factor and compare order by order.D\ aa1 \ ea1 g,
We Ðnd

l2\ 34u] 56
21u] 36

\ 34
21
C
1 [ 8

119
1
u

] O
A 1
u2
BD

, (65)

l3\ 2(944] 1136u] 341u2)
3(12] 7u)(16] 9u)

\ 682
189

C
1 ] 3452

21483
1
u

] O
A 1
u2
BD

. (66)

Note how for positive u nonlinear e†ects tend to com-
pensate for the increase in linear e†ects (cf. Fig. 4), whereas
for u\ [4/3 the linear e†ects are reduced (a \ 1) while
nonlinearities get larger.

Figure 5 shows the variation in as a function of ul2using equation (65). Negative values of u produce almost
symmetrical variations in the opposite direction when ou o
is large. For small u there is a pole at u\ [12/7 where l2diverges. However, note that there is no growing linear
mode in this case, which means that Ñuctuations are rapidly
suppressed.

3.1.3. Strongly Nonlinear Regime

Figure 1 shows the fully nonlinear solution for the over-
density, d, as a function of the linear one, The solid lined

l
.

shows the standard solution to equation (17) as given in
equations (28) and (29). As can be seen in the Ðgure, there is
a critical value of where the non-d

l
\ 3/2(3n/2)3@2^ 1.6865

linear Ñuctuations become inÐnite. This corresponds to the
point at which spherical collapse occurs (see Peebles 1993).
Thus, an initial Ñuctuation will collapse after evolving ad0time t, such that the growth factor is For theD(t) \ d

c
/d0.standard GR, Ñat, and matter-dominated case, this time

would correspond to a formation redshift (ifz
f
\ d0/dc

[ 1
we use a \ 1 today). For the BD case, both and D(t) ared

cdi†erent, so that formation times will be correspondinglyz
fdi†erent (see eq. [87]). The short-dashed lines in Figure 1

correspond to the same exact solution in the BD model with
u\ 10 and u\ 1. The right panel in Figure 5 illustrates
how changes in the BD model as a function of u.d

c

3.2. Gravitational Growth with H2D a~3(1`v)
Consider now the Ñat case with To account)

k
\ )" \ 0.

for a simple variation on the standard Einstein Ðeld equa-
tions, we consider the case in which Ñuctuations grow
according to the matter-dominated case (i.e., c\ 0), but the
background evolves in a di†erent way. We assume that the
Hubble rate scales as H2D a~3(1`v) rather than H2D a~3.



54 GAZTAN3 AGA & LOBO Vol. 548

FIG. 5.ÈL eft : Dashed lines show (top) and (bottom) as a function of u for a time-varying gravitational constant The GR results,l2 l3 G\G0 a~1@(1`u).
(solid horizontal lines) are bracket by 10% errors (dotted lines). Right : Critical value of the linear density contrast, where d \ O as a function of u.G\G0 d

c
,

It might be possible to Ðnd some motivation for this model,
but this is beyond the scope of this work. Here we just want
to introduce some parametric variations around the stan-
dard Ðeld equations to see how things might change. In this
case, we have

d2d
d2g ] 1 [ 3v

2
dd
dg

[ 3
2

d \ 4
3

1
1 ] d

Add
dg
B2 ] 3

2
d2 . (67)

The solutions for the linear growth factor index and the
nonlinear coefficient arel2

a1\ [1 ] 3v] J25 [ 6v] 9v2
4

, (68)

l2\ 131 [ 30v] 45v2] (1[ 3v)J25 [ 6v] 9v2
84 [ 18v] 27v2 . (69)

FIG. 6.ÈL eft : Linear growth index (solid line) and nonlinear coefficients (short-dashed line) and (long-dashed line), as a function of v, whicha1 l2 l3parameterizes a nonstandard Hubble rate H2D a~3(1`v). Vertical dotted line corresponds to the standard Hubble law (v\ 0). The horizontal dotted lines
bracket the and regions within 10% error of the standard (v\ 0) case. Right : Critical value of the linear density contrast, where d \ O as a functionl2 l3 d

c
,

of v.
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These solutions as a function of v are illustrated in Figure
6, which also shows As can be seen in the Ðgure, thel3.higher the linear growth index the lower the nonlineara1,
coefficients. The right panel in Figure 6 shows the corre-
sponding variation in d

c
.

4. OBSERVATIONAL CONSEQUENCES

We focus here on Gaussian initial conditions. That is, our
initial Ðeld for structure formation is a spatial realization of
a (three-dimensional) Gaussian distribution with a given
power-spectrum shape and a very small initial amplitude.
Since we are interested in the gravitational regime alone,
this Ðeld will be smoothed over a large enough scale, corre-
sponding to the distance beyond which nongravitational
forces (e.g., hydrodynamics) can be neglected. Thus, at each
point the overdensity d(x) grows according to gravity,
which in the shear-free approximation is just a local
dynamics : the spherical collapse (e.g., eq. [17]).

4.1. Cumulants
Consider the J-order moments of the Ñuctuating Ðeld,

m
J
4 SdJT . (70)

Here the expectation values S . . . T correspond to an
average over realizations of the initial Ðeld. On comparing
with observations, we assume the ““ fair sample hypothesis ÏÏ
(see ° 30 of Peebles 1980), by which we can commute spatial
integrals with expectation values. Thus, in practice S . . . T is
the average over positions in the survey area. In this nota-
tion, the variance is deÐned as

Var (d)4 p24 m2[ m12 . (71)

More generally, we introduce the ““ connected moments ÏÏ
which carry statistical information independent of them

J
,

lower order moments, and are formally denoted by a
bracket with subscript c :

m
J
4 SdJT

c
. (72)

The connected moments are also called cumulants,
reduced moments, or irreducible moments. They are
deÐned by just subtracting the lower order contributions :

m1\ m14 0 ,

m2\ p2\ m2 [ m12\ m2 ,

m3\ m3[ 3m2 m1[ m13\ m3 ,

m4\ m4[ 4m3 m1[ 3m22[ 6m2 m12[ m14\ m4[ 3m22 , (73)

and so on. It is useful to introduce the ““ hierarchical ratios ÏÏ :

S
J
\ m

J
m2J~1 , (74)

which are also called normalized one-point cumulants or
reduced cumulants. We use the term ““ skewness ÏÏ for S3\

and ““ kurtosis ÏÏ form3/m22 S4\ m4/m23.

4.1.1. L inear T heory

As mentioned in ° 2.3, initial Ñuctuations, no matter ofd0,what amplitude, all grow by the same factor, D ; thus, the
statistical properties of the initial Ðeld are just linearly
scaled in the Ðnal (linear) Ðeld, d

l
:

Sd
l
JT

c
\ DJSd0JTc

. (75)

Consider, for example, the linear rms Ñuctuations or itsp
lvariance In the linear regime, we havep

l
2.

p
l
24 Sd2(t)T \ SD(t [ t0)2d02T \ D(t [ t0)2p02 , (76)

where refers to some initial reference time To give anp0 t0.idea of this e†ect, consider the growth of Ñuctuations since
matter domination, when the universe was about 1100
times smaller. In GR, in the matter-dominated EinsteinÈde
Sitter universe, p would grow by a factor D^ 1100.
However, if we take u^ 10 in the DB theory (e.g., eq. [63]),
we Ðnd that Ñuctuations increase instead by a factor
D^ 2079, which is about 1.9 times larger in p, so the
variance nowadays would be about 3.6 times larger if we
Ðxed it around the COBE variance of the cosmic microwave
background (CBM) temperature Ñuctuations. For u^ 100,
the variance would only be 14% larger than in GR. This
latter result is small, but it could be relevant for future
precision measurements (e.g., MAP or Planck satellites to
map CMB, and Two-Degree Field [2DF] or Sloan Digital
Sky Survey [SDSS] galaxy surveys). Similar considerations
can be made for the values of a with a di†erent cosmic
equation of state (e.g., eq. [43]) or a di†erent Hubble law
(eq. [68]). In general, we can write that a small change in a
would produce a relative change in the linear rms of

*p
p

\ ln (1] z)*a . (77)

Thus, a change of only 1% in the absolute value of the
equation of state c would produce a relative change of 20%
in p between recombination (z^ 1100) and now (cf. eq.
[43]).

The hierarchical ratios (see eq. [74]) will scale as S
J
\

where are the initial ratios. This impliesS
J
(0)/DJ~2, S

J
(0)

that the linear growth erases the initial skewness and kur-
tosis, so that as time evolves (and D] O). Note thatS

J
] 0

if we want to do a meaningful calculation of these ratios or
the cumulants, in general we might need to consider more
terms in the perturbative series, equation (30). For Gaussian
initial conditions and we need to consider higherS

J
(0)\ 0,

order terms in the perturbation series to Ðnd the leading-
order prediction.

4.1.2. Weakly Nonlinear

The next-to-leading-order solutions for the cumulants of
the evolved Ðeld, given the expansion equation (30), can be
easily found by just taking expectation values of di†erent
powers of d (see, e.g., Fosalba & 1998a). ForGaztan8 aga
leading-order Gaussian initial conditions, we have

S3\ 3l2] O(p
l
2) ,

S4\ 4l3] 12l22] O(p
l
2) . (78)

For non-Gaussian initial conditions, see Fry & Scherrer
(1994), , Chodorowski & Bouchet (1996), &Gaztan8 aga
Mahonen (1996), and & Fosalba (1998).Gaztan8 aga

If we use for the solution in equation (32), e.g.,l2 l2\
34/21, the skewness yields which repro-S3\ 3l2\ 34/7,
duces the exact perturbation-theory (PT) result by Peebles
(1980) in the matter-dominated EinsteinÈde Sitter universe.
Thus, the shear-free or SC model gives the exact leading-
order result for the skewness. This is also true for higher
orders (see Bernardeau 1992 ; Fosalba & 1998a)Gaztan8 aga
and for other cosmologies (e.g., Bouchet, Juszkiewicz, &
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Colombi 1992 ; Bernardeau 1994a ; Fosalba & Gaztan8 aga
1998b ; Kamionkowski & Buchalter 1999). For smoothed
Ðelds, the exact leading-order results are slightly di†erent :

S3\ 347 ] c1 ,

S4\ 607121323 ] 623 c1] 73 c12 , (79)

where is the logarithmic slope of the smoothed variancec1(see Juszkiewicz, Bouchet, & Colombi 1993 ; Bernardeau
1994a, 1994b). These can also be reproduced in the shear-
free approximation, as shown by & FosalbaGaztan8 aga
(1998) ; this results in a smoothing correction

l2\ l2 ] c1
3

,

l3\ 14([2c1] c12] 6c1 l2] 4l3), (80)

and replacing and by and in equation (78) (seel2 l3 l2 l3Fosalba & 1998a for more details). There areGaztan8 aga
also corrections to the above expressions when measure-
ments are taken in redshift space (e.g., Hivon et al. 1995 ;
Scoccimarro, Couchman, & Frieman 1999). Next-to-
leading-order terms have been estimated by Scoccimarro &
Frieman (1996 ; see also Fosalba & 1998a,Gaztan8 aga
1998b).

The smoothed values of and can be measured asS3 S4traced by the large-scale galaxy distribution (e.g., Bouchet
et al. 1993 ; 1992, 1994 ; Szapudi el at 1995 ; HuiGaztan8 aga
& 1999, and references therein), weak lensingGaztan8 aga
(Bernardeau, van Waerbeke, & Mellier 1997 ; &Gaztan8 aga
Bernardeau 1998 ; Hui 1999), or the Lya QSO absorptions

& Croft 1999). These measurements of the(Gaztan8 aga
skewness and kurtosis can be translated into estimations of

and that can be used to place constraints on c, u, or vl2 l3using equations (44), (65), and (69). For small values of these
parameters the relationship is linear, so the uncertainties in

and would directly translate into the correspondingS3 S4uncertainties in c, u, or v.
The expressions above apply to unbiased tracers of the

density Ðeld ; since galaxies of di†erent morphologies are
known to have di†erent clustering properties, at least some
galaxy species must be biased tracers of the mass. As an
example, suppose the probability of forming a luminous
galaxy depends only on the underlying mean density Ðeld in
its immediate vicinity. Under this simplifying assumption,
the relation between the galaxy density Ðeld, and thedgal(x),
mass density Ðeld, d(x), can be written as

dgal(x)\ f (d(x))\ ;
n

b
n

n !
dn(x) , (81)

where are the bias parameters. Thus, biasing and gravityb
ncould produce comparable nonlinear e†ects. To leading

order in this local bias scheme implies andm2, m2gal\ b12 m2,
(see Fry & 1993)Gaztan8 aga

S3gal \
S3
b1

] 3
b2
b12

,

S4gal \
S4
b12

] 12
b2 S3
b13

] 4
b3
b14

] 12
b22
b14

. (82)

& Frieman (1994) have used the comparisonGaztan8 aga
of and in PT with the corresponding values measuredS3 S4by the Automated Plate Measuring Facility (APM) Galaxy
Survey (Maddox et al. 1990), to infer that b1^ 1, b2 ^ 0,
and but the results are degenerate due to the relativeb3^ 0,
scale-independence of and the increasing number ofS

Nbiasing parameters. One could break this degeneracy by
using the conÐguration dependence of the projected three-
point function, as proposed by Frieman &q3(a), Gaztan8 aga
(1994), Fry (1994), Matarrese, Verde, & Heavens (1997), and
Scoccimarro et al. (1998). As shown in Frieman &

(1999), the conÐguration dependence of onGaztan8 aga q3(a)
large scales in the APM catalog is quite close to that
expected in perturbation theory (see Fry 1984 ; Scoccimarro
et al. 1998 ; Buchalter, Ja†e, & Kamionkowski 2000), sug-
gesting again that is of order unity (and for theseb1 b2^ 0)
galaxies. These agreement indicates that large-scale struc-
ture is driven by nonlinear gravitational instability and that
APM galaxies are relatively unbiased tracers of the mass on
these large scales.

The values of and in the APM are measured toS3 S4agree with the standard matter-dominated EinsteinÈde
Sitter universe within about 10%È20% (see Gaztan8 aga
1994, 1995 ; & Frieman 1994 ; Baugh et al. 1995 ;Gaztan8 aga
Hui & 1999), and are also in agreement with theGaztan8 aga
shape information in the three-point function (see Frieman
& 1999). For example, using the projected APMGaztan8 aga
catalog, (1994, Table 3) Ðnds an average ofGaztan8 aga

and scales between 7 and 30S3\ 3.2 ^ 0.2 S4^ 20.6^ 2.6
h~1 Mpc. For an average APM slope of thesec1^ 1.7,
values are in agreement with the PT predictions in equation
(79), yielding andS3^ 3.1 S4^ 18.

The 1 p error bar of ^10% on large scales quoted by
(1994) is mostly statistical (sampling error).Gaztan8 aga

Other systematic e†ects due to biasing, projection, or large-
scale errors in the building of the APM catalog could be of
the same order (see Frieman & 1999 ; Hui &Gaztan8 aga

1999). Thus, given the current uncertainties, itGaztan8 aga
would be conservative to take a 20% error bar. Unfor-
tunately, with such large error bars we cannot much con-
strain the values of c, u, or v. Stronger constraints can be
found if we take the more optimistic 1 p 10% error bars in
the measurements of and This case is shown byS3 S4.horizontal dotted lines in Figures 2, 5, and 6. From thel2,10% uncertainty translates into

[0.2\ c \ 0.4 ,

[2.4[ u [[1.0 ,

[0.9\ v \ 0.9 . (83)

Note that this is still of marginal interest. For example,
the constraints on c include the possibility of a radiation

matter (c\ 0), or negative pressure c\ 0. From(c\ 13), l3we can obtain stronger constraints from a 10% error (but
obviously systematic e†ects could be larger for higher order
cumulants) :

[0.1\ c \ 0.15 ,

[3.4[ u [[0.2 ,

[0.35\ v \ 0.35 . (84)

These bounds are more interesting. It is clear that forth-
coming surveys (such as SDSS) will dramatically improve
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FIG. 7.ÈSolid lines represent the expected di†erential count distribu-
tion per deg2 of massive clusters for three(M [ Mth ] 1014 h50~1 M

_
)

cosmologies : oCDM h \ 0.65, !\ 0.25,(Mth \ 1.9, )
m

\ 0.3, )" \ 0,
"CDM h \ 0.65, !\ 0.25,p8\ 1.0), (Mth \ 2.2, )

m
\ 0.3, )" \ 0.7,

and qCDM h \ 0.5, !\ 0.25,p8\ 1.0), (Mth \ 1.3, )
m

\ 1.0 ; )" \ 0,
derived using the Press-Schechter prescription. The bottom andp8\ 0.56),

top dashed lines correspond to the a Brans-Dicke Cosmology with
u\ 100 and 25, respectively, normalized to COBE with the qCDM model.
.

this situation (for errors on statistics, see Szapudi, Colombi,
& Bernardeau 1999, and references therein).

Note that the above results are independent of the nor-
malization of Ñuctuations.

4.2. Collapsed Objects
Press & Schechter (1974) formalism and its extensions

(e.g., Bond et al. 1991 ; Lacey & Cole 1993) predict the evol-
ution of the mass function of halos and also their clustering
properties. Comparison with N-body simulations show a
very good agreement of these prescriptions for a wide range
of statistical properties (see, e.g., Lacey & Cole 1994, and
references therein). For example, the comoving number
density of collapsed objects (halos or clusters) of mass M is

n(M)dM \ [
S2

n
Ad

c
p
B d ln p

d ln M
exp

A
[ d

c
2

2p2
B o6 dM

M2 , (85)

where p \ p(R) is the current linear rms Ñuctuation at the
scale R corresponding to the mass and isM \ 4/3nR3o6 , o6
the mean background. The value of corresponds to thed

cvalue of the linear overdensity at the time of collapse. The
collapsing structure virializes when the (nonlinear) over-
density becomes very large The actual deÐnition(d Z 100).
is not very important, since once the nonlineard Z 100
collapse is quite rapid, as can be seen in the plots of Figure
1, and the corresponding value of does not change much.d

lHere we take to be the critical value where d ] O ; otherd
cprescriptions (e.g., the value of corresponding d ^ 178)d

lyield similar results. For the standard EinsteinÈde Sitter
case, we have Note that the above abundanced

c
^ 1.686.

depends on the ratio

l4
d
c

p
. (86)

The time of collapse or formation is just given by the
ratio of to the linear overdensity today,d

c
d
l

z
f
\
Ad

l
d
c

B1@a[ 1 , (87)

so that an object that has now has a formationd
l
\ d

credshift while a Ñuctuation 4 times larger collapsesz
f
\ 0,

at if a \ 1, or at if a \ 2.z
f
\ 3 z

f
\ 1

Nonstandard parameterization of the spherical collapse
considered in the previous sections can change the above
formalism in two ways. If we label an object by its initial
overdensity, then the corresponding today isd0, d

l
d
l
\ d0 aa . (88)

Thus, a di†erent value of a from the standard GR result
as shown in Figures 2, 4, and 6, will(*a4 a [ aGR),produce a di†erent amplitude of linear Ñuctuations today.

Moreover, as shown in ° 3.1.3 and Figures 3, 5, and 6, the
solution to the spherical collapse equation produces di†er-
ent values of and therefore di†erent mass functions andd

c
,

formation times. Finally, for a directly measurable quantity,
such as the surface density of objects, typically one needs
the volume element, which is also a function of the cosmol-
ogy.

For example, if Ñuctuations are normalized at a given
redshift, then the change in today will bez

n
, d

l

*d
l

d
l

\ *a log (1 ] z
n
) . (89)

For recombination, e.g., COBE normalization, we have
andz

n
^ 1100,

*d
l

d
l

^ 3*a . (90)

In the case of the BD theory, we can see in Figure 4 that
for u[ [1, which means that*a4 a [ aGR [ 0, *d

l
[ 0.

This makes sense, since the linear growth is faster, and, for
Ðxed initial Ñuctuations, the Ðnal linear overdensity will be
larger. As shown in right panel of Figure 5, will also bed

clarger. Thus, in this case the e†ects tend to compensate for
each other. This is true for either the formation redshift z

for l in equation (86) above. For the formation redshift z
f
,

we have

*z
f

1 ] z
f
^

1
a
A*d

l
d
l

[*d
c

d
c

B
, (91)

which is only valid for small changes. In the BD example
given above with u\ 10 (and COBE normalization), we
have while so the net e†ect is still*d

l
/d

l
^ 0.9 *d

c
/d

c
^ 0.01,

quite large. In this case, a formation redshift of willz
f
\ 1

change to Thus, a positive Ðnite u (which corre-z
f
\ 1.39.

sponds to a larger G at high redshifts) tends to produce
larger (earlier) formation redshifts and higher densities (or
larger abundances) at a given redshift than the standard
model. This goes in the direction of some recent obser-
vations (see, e.g., Bahcall & Fan 1998 ; Robinson, Gawiser,
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& Silk 1998 ; Willick 2000), which seem to need larger abun-
dances than expected in some standard cosmologies. This
interpretation is degenerate with respect to initial condi-
tions and cosmological parameters.

Figure 7 illustrates the large di†erences in the cluster
counts that can be seen between di†erent cosmological
models at z[ 1 (see Holder et al. 2000 for details). Devi-
ations from GR in the BD models with u\ 100 and 25 can
be noticed even at low redshift, when models are normal-
ized to CMB Ñuctuations.

A similar trend is found for the case of Hubble rate
H2\ a~3(1`v) parameterization. A change of o*v o^ 0.3
(allowed by the bounds in eq. [84]), when normalized to
COBE, also produces and a smaller e†ect ono*d

l
/d

l
o^ 0.9

This translates into a similar change (of several tens*d
c
/d

c
.

to hundreds of percent) in Earlier (or later) formationz
f
.

times and larger (or smaller) abundances are found for v[ 0
(or v\ 0, respectively).

The change in the equation of state, p \ co, could
produce comparable e†ects. The allowed values in equation
(84) of o*c o^ 0.1 translate into whicho*d

l
/d

l
o^ 0.3,

results in similar changes for in either direction, withz
fearlier formation for c[ 0.

If the normalization is not Ðxed, i.e., if we do not quite
know the value of the initial Ñuctuation that gave rise to an
object we see today (e.g., a cluster), then all the relative
change in the formation or abundance comes through d

c
,

which tends to produce smaller (later) formation redshifts
is larger than the standard GR value) and lower den-(d

csities (or smaller abundances) at a given redshift.

5. DISCUSSION AND CONCLUSIONS

We have reconsidered the problem of nonlinear structure
formation in two di†erent contexts that relate to obser-
vations : one-point cumulants of large-scale density Ñuctua-
tions, and the epoch of formation and abundance of
structures using the Press & Schechter (1974) formalism.
We have use the shear-free or spherical collapse (SC) model,
which is a very good approximation for the above applica-
tions. We have addressed the question of how di†erent the
predictions are when using a nonstandard theory of gravity,
such as the BD model, or a nonstandard cosmological
model (e.g., a di†erent equation of state or Hubble law).
Note that these are slight variations on the standard theme
in the sense that they preserve the main ingredients of GR,
such as the covariance and the geometrical aspects of the
theory, including the same metric, with only slight changes
in the Ðeld equations.

We have also presented some preliminary bounds on c, u,
and v from observations of the skewness and kurtosis in the
APM Galaxy Survey, e.g., equations (83)È(84). These
bounds are optimistic given the current data, but the situ-
ation is going to change rapidly, and one can hope to Ðnd
much better bounds from upcoming data (such as the 2DF
or SDSS projects). In terms of the equation of state, the
bounds in equation (84) would indicate that our universe is
neither radiation nor vacuum dominated (c\ [1),(c\ 13)but somewhere in between (e.g., matter dominated). In
terms of the gravitational constant, the bounds on u from
equation (84) would say that G has not changed by more
than ^5% from z^ 1.15, or by distances of ^400 h~1
Mpc. Clustering at higher redshift would probe much larger
scales and times. In terms of v, the bounds equation (84)
would say that the Hubble law does not di†er by more than

7% from the standard result (assumed here to be v\ 0). We
have also shown how halo and cluster abundances and for-
mation times could change in these nonstandard cases. The
above bounds on c, u, and v from observations of the skew-
ness and kurtosis in the APM still allow signiÐcant changes
(of several tens to hundreds of percent) on formation red-
shifts and the corresponding abundances (see ° 4.2).z

fIn the context of BD models, the limits we Ðnd for u are
less restrictive than the solar system limits, uZ 100.
However, BD models allow u\ u(/), so that u can
increase with cosmic time, u\ u(z), in such a way that it
could approach the general relativity predictions (u] O)
at the present time and still give signiÐcant deviations at
earlier cosmological times. It is important to recall that our
theory of gravity has only been tested on stellar distances
(AU), while we want to use it on cosmological scales (Mpc).
Our working example shows, for the Ðrst time, how nonlin-
ear e†ects are changed in such a model, and it sets the
framework to study nonlinear e†ects of more complicated
(or realistic) scalar-tensor theories of gravity.

It is straightforward to combine several of the changes
proposed here to explore more general situations. One
could, for example, parameterize theories in the (c, u) plane,
e.g., di†erent equations of state with di†erent BD param-
eters, or consider the whole (c, u, space. One could)

M
, )")

also consider a di†erent equation of state for the " com-
ponent, as in quintessence cosmologies (Caldwell, Dave, &
Steinhardt 1998) ; such models have already been used to
predict cluster abundances within the ““ standard ÏÏ cosmol-
ogy (see Haiman, Mohr, & Holder 2000, and references
therein). This would obviously allow for a wider set of pos-
sible solutions and degeneracies. One should also consider
other observational consequences of these variations, in
particular relating to BD theory, such as the age of the
universe, the e†ects on CMB (see, e.g., Chen & Kamionk-
owski 1999), radiation-matter transition (Liddle, Mazum-
dar, & Barrow 1998), or the constraints from nucleo-
synthesis (Santiago, Kalligas, & Wagoner 1997). These
considerations could rule out some aspects of the proposed
variations on the standard model, or might require more
elaborate solutions [e.g., u\ u(/), which implies
u\ u(z)]. However, even if this were the case, we still have
learned a few new things about how structure formation
depends on the underlying theory of gravity, which is a Ðrst
step toward further analysis of these issues.

Throughout this paper we have assumed Gaussian initial
conditions and no biasing. Both biasing (e.g., Fry &

1993) and non-Gaussianities in the initial condi-Gaztan8 aga
tions & Fosalba 1998) would provide an addi-(Gaztan8 aga
tional source of degeneracy, since they might produce
similar e†ects as the nonstandard variations presented here.
This is the case, for example, when we have nonzero initial
skewness or kurtosis, which could produce quite di†erent
values of and (see, e.g., & Mahonen 1996 ;S3 S4 Gaztan8 aga
Peebles 1999a, 1999b ; White 1999 ; Scoccimarro 2000), and
therefore inferred values of and Biasing can have al2 l3.very similar e†ect (see, e.g., Mo et al. 1997). One would also
expect some level of degeneracy with biasing and initial
conditions for cluster abundances or formation times (see
Robinson et al. 1998 ; Willick 2000).

Rather than proposing an alternative theory of gravity or
cosmological model, the aim of this paper has been to show
that some small deviations from the current paradigm have
signiÐcant and measurable consequences for nonlinear
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structure formation. This could eventually help to explain
some of the current puzzles confronting the theory, such as
the need for nonbaryonic dark matter. Alternatively,
current and upcoming observations of nonlinear clustering
and mass functions can be used to explore our assumptions
and place limits on the theory of gravity at large h~1(Z1
Mpc) scales. This provides an interesting test for gravity as
the driving force for structure formation and for our know-
ledge of the cosmological equation of state. A more com-

prehensive comparison with particular scenarios is left for
future work.
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