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ABSTRACT
Solutions for magnetoatmospheric waves in an isothermal plane stratiÐed atmosphere with uniform

vertical magnetic Ðeld have long been known in terms of Meijer G-functions. It is pointed out that they
may alternatively be expressed using the more familiar hypergeometric functions, with signiÐcant2F3advantages for ease of use and physical interpretation. The nature of these solutions in di†erent regions
of the frequency-wavenumber plane is fully discussed, with particular reference to reÑection, transmis-
sion, and mode conversion. ReÑection, transmission, and mode conversion coefficients for slow and fast
waves incident from below, including the e†ects of tunnelling, are calculated exactly. The exact solutions
are useful in interpreting observational results and numerical simulations of more complex magneto-
atmospheric waves.
Subject headings : MHD È Sun: atmosphere È waves

1. INTRODUCTION

Waves in the solar atmosphere have frequently been modeled, at least in part, as linear magnetohydrodynamic oscillations
in a gravitationally plane stratiÐed isothermal atmosphere permeated by a uniform vertical magnetic Ðeld (see the review by
Thomas 1983). Although not entirely realistic, this model bears sufficient resemblance to certain solar features (e.g., the
atmosphere above sunspot umbrae) that it is a useful Ðrst step. Indeed, it can be instructive even for more complex magnetic
geometries if gravitational stratiÐcation is a dominant feature. The modelÏs utility was enhanced by the observation by
Zhugzhda & Dzhalilov (1982 ; see also Zhugzhda 1979) that these oscillations could be fully expressed in terms of Meijer
G-functions, speciÐcally Unfortunately, Meijer functions are at once the most obscure and difficult to use of all theG2412.
special functions, and furthermore software for evaluating them numerically has only recently become widely available. These
facts have limited the extent to which the exact solutions have been used in practice.

However, as was not readily apparent to many, is considerably more elementary than the general Meijer functionG2412 G
pq
mn

(the nonstandard notation for the G-function adopted by Zhugzhda & Dzhalilov 1982 added to the confusion). In fact, it may
always be expressed in terms of the more familiar hypergeometric functions :2F3
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These are easy to work with and easy to evaluate numerically. It is therefore unfortunate that the comparatively elementary
nature of the solutions was masked by their formulation in terms of Meijer G-functions.

One purpose of this paper, therefore, is to rework the solutions using hypergeometric functions throughout, with no
reference to Meijer functions, so as to make the theory more accessible. We also adopt di†erent notations for the coefficients
occurring in the solutions, as these simplify physical interpretation in terms of well-understood acoustic-gravity waves in the
two asymptotic regimes1 b ] 0 and b ] O. We must emphasize though that our solutions are not any more complete or
correct than the Meijer G solutions. There is nothing in this paper that could not be derived in principle using those functions.
Indeed, many of the results presented here are also to be found in Zhugzhda & Dzhalilov (1982).

Finally, as well as pointing out the more elementary form of the solutions, we also take the opportunity to complete the
discussion of reÑection and transmission coefficients in Zhugzhda & Dzhalilov by including the e†ect of fast mode tunnelling
in the lower atmosphere, which allows evanescent waves to carry energy upward.

2. EQUATIONS AND SOLUTIONS

Without loss of generality, we consider waves propagating in the x-z plane, with a time and horizontal dependence of the
form exp [i(kx [ ut)] assumed. The governing linearized adiabatic ideal MHD oscillation equations are then of sixth order.
However, the magnetoacoustic-gravity waves (fourth order, with Ñuid velocity ui ] wk purely in the x-z plane) and the
transverse waves (second order, velocity vj) decouple. The magnetoacoustic-gravity wave equation was given byAlfve� n
Zhugzhda & Dzhalilov (1982) as a single fourth order ordinary di†erential equation for u. Adopting di†erent notations, this
may be written as

f4u(4)] 4f3u@@@] f2(2[ 4i2] 4i02] 4f2)u@@] 4f(i2] i02] 3f2)u@] 4[(4i
z
2] 1)f2 [ 4i02 i2[ i2]u \ 0 . (2)

1 The plasma b is deÐned as the ratio of the gas and the magnetic pressure. In terms of the sound and speeds c and a, respectively, b \ 2c2/(ca2),Alfve� n
where c is the adiabatic index.
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Here l\ uH/c is a dimensionless frequency and i \ kH a dimensionless wavenumber, where H is the (constant) density scale
height and c is the adiabatic sound speed (not the isothermal sound speed, as is the notation in Zhugzhda & Dzhalilov 1982).
Vertical position is represented by f\ uH/a, where a is the speed. Note that a P ez@2H (where z is the height), so that fAlfve� n
decreases with increasing z such that the limit z] O corresponds to f] 0`. The primes on u represent derivatives with
respect to f. Setting n \ NH/c, where N \ (c[ 1)1@2c/cH is the frequency, we have deÐnedBrunt-Va� isa� la�

i
z
\ Jl2] (n2[ l2)i2/l2[ 14 (3a)

and

i0\ Jl2[ 14 . (3b)

In a uniform magnetoÑuid, the magnetoacoustic oscillations may be classed as either ““ fast ÏÏ or ““ slow ÏÏ (Ferraro &
Plumpton 1966), depending on their phase speed. This classiÐcation is at best useful only locally in a stratiÐed Ñuid. An exact
normal mode of this system may be fast in some regions and slow in others, or, as we shall see, may contain a mixture of both
fast and slow. However, in practice, it is often important to keep track of how the fast and slow waves reÑect or couple as they
propagate through the inhomogeneous region. The exact solutions we present here provide useful insights into these pro-
cesses since their asymptotic behaviors in the regions a ? c and a > c are easily identiÐed with the classical fast and slow
waves.

The signiÐcance of as deÐned by equation (3a) is that it is the vertical dimensionless wavenumber in an isothermali
zatmosphere without magnetic Ðeld. In that case, the acoustic-gravity wave dispersion relation is (Lamb 1945)

l4[ l2(i2] i
z
2] 14) ] i2n2 \ 0 . (4)

The known acoustic-gravity solutions are then

u
ag

\ exp (z/2H) exp (^ik
z
z) P f~1Y2iiz , (5)

which therefore is the expected fast mode velocity where a > c. The propagation diagram, Figure 1, shows where in the i-l
plane these waves are vertically propagating Regions I and II) and where they are evanescent Regions III(i

z
2 [ 0 : (i

z
2\ 0 :

and IV). is then the value of if the wave is purely vertical, i.e., i \ 0. The parameters and take important roles in thei0 i
z

i
z

i0exact solution for magneto-acoustic-gravity waves.
Equation (2) describes the magnetoatmospheric waves only. The (entirely transverse) modes decouple and admit theAlfve� n

solution for the y-component of velocity v in terms of Bessel functions (Ferraro & Plumpton 1958)

vA \AJ0(2f) ]BY0(2f) .

If f extends to 0, then clearly B\ 0 must be selected. We shall not be directly concerned with waves, but note theAlfve� n
following for future reference.

1. For a > c in an unstratiÐed medium, the slow wave dispersion relation reduces to that for waves, whereAlfve� n u\ ak
z
,

is the wavenumber in the direction of the Ðeld lines. In this limit, the group velocity has collapsed to be purely vertical, justk
z

FIG. 1.ÈPropagation diagram for acoustic-gravity waves with c\ 5/3 (n \ 0.4899). In regions I (acoustic) and II (gravity) the waves are vertically
propagating whereas they are evanescent in Regions III and IV on the heavy curves, 0.5, 0.75, and 1 on the dashed curves(i

z
2[ 0), (i

z
2\ 0). i

z
\ 0 i

z
\ 0.25,

(increasing away from the heavy lines), and and 0.5i on the dotted curves. The acoustic cuto† is shown as a thin full line. The distinctioni
z
\ 0.25i l\ 12between III and IV is that a purely vertical mode (i \ 0) is vertically propagating in the former but evanescent in the latter.
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as for the wave. Furthermore, in the stratiÐed medium, the vertical wavelength is much less that the scale height,Alfve� n
2nu/a > H, and so the unstratiÐed results apply there in the WKB sense. We therefore conclude that the slow and Alfve� n
solutions are essentially identical in this limit (the polarization is irrelevant because propagation is purely vertical).

2. The large f asymptotic formula is (with A2]B2\ 1)

vA \ 1

Jnf
[cos (2f[ /) ] O(f~1)] , (6)

where / is a phase constant.

The slow mode in the high b region should therefore have this asymptotic behavior for u.
The general solution of equation (2) may be written in terms of the hypergeometric function (Luke 1975), deÐned for all2F3complex x by the rapidly convergent series

2 F3(a1, a2 ; b1, b2, b3 ; x) \ ;
n/0

= (a1)n(a2)n
(b1)n(b2)n(b3)n

xn

n !
, (7)

where is the Pochhammer symbol. We Ðnd(a)0\ 1, (a)
n
\ a(a ] 1) . . . (a ] n[ 1)
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z
, 12 [ i ] ii

z
; 1 [ 2i, 12 [ i [ ii0, 12 [ i ] ii0 ; [f2)

]C2 f2i2F3(12 ] i [ ii
z
, 12 ] i ] ii

z
; 1 ] 2i, 12 ] i [ ii0, 12 ] i ] ii0 ; [f2)

]C3 f1~2ii02F3(1[ ii0[ ii
z
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z
; 1 [ 2ii0, 32 [ ii0[ i, 32 [ ii0] i ; [f2)

]C4 f1`2ii02F3(1] ii0[ ii
z
, 1 ] ii0] ii

z
; 1 ] 2ii0, 32 ] ii0[ i, 32 ] ii0] i ; [f2) , (8)

where the are arbitrary constants with the dimensions of velocity. (The solutions were noted by Zhugzhda & DzhalilovC
i 2F31982, eq. [4], as asymptotic representations of the Meijer functions in the f> 1 limit, but they did not recognize that they are

valid for all f.) These solutions have been veriÐed using the computer algebra package ““Mathematica ÏÏ (Wolfram 1999). The
vertical velocity w subsequently follows from

w\ il2
8cf2i(l2[ n2)

C
cf3u@@@] (3c[ 2)f2u@@] (4cf2 [ 4ci2] c[ 2)fu@] 8((c[ 1)f2] i2)u

D
. (9)

We denote the four solutions (without the C coefficients) by and respectively, and similarly for w, and refer tou1, u2, u3, u4,them as type 1, type 2, type 3, and type 4 solutions.
The general solution (eq. [8]) is surprisingly concise and suggestive, given the complexity of the di†erential equation (2). In

particular, its constituent parameters and clearly refer to the acoustic-gravity solution in the high b region and thei
z

i0vertically propagating sound wave in the low b regime, respectively. In the next section, we show that these waves appear
naturally and easily in these asymptotic limits, as do the magnetic solutions.

3. ASYMPTOTIC BEHAVIORS

3.1. L ow b Regime
The function as deÐned by equation (7) is almost elementary. In particular, for an unbounded atmosphere, where f] 02F3as z] O, the low b asymptotic behavior follows directly from equation (7) :

2F3(a1, a2 ; b1, b2, b3 ; [f2) \ 1 ] O(f2) .

The four leading asymptotic behaviors are then simply f~2i, f2i, and or, in terms of z,f1~2ii0, f1`2ii0,

f0Y2i eBkz and f01Y2ii0 exp M[(z/2H)[1< J1 [ (u2/u
c
2)]N , (10)

respectively. Here is the acoustic cuto† frequency in our dimensionless units), and is the value of f atu
c
\ c/2H (l\ 12 f0z\ 0. These clearly indicate the physical natures of the four solutions at large z, and make application of natural boundary

conditions there very straightforward. Assuming i [ 0, we must set to dispense with the exponentially growingC1\ 0
solution. The remaining solution is evanescent. Thus, the type 1 and type 2 solutions represent the fast mode at large z,C2where it is essentially magnetic since a ? c. In that limit, the fast wave dispersion relation is where isk2 ] k

z
2\ u2/a2] 0, k

zthe vertical wavenumber, i.e., Hence, the fY2i (i.e., eBkz) behaviors.k
z
\ ^ik.

The type 3 and type 4 solutions, however, are predominantly acoustic at large height, and strongly channeled in the vertical
direction by the magnetic Ðeld of the low b plasma (it is easily veriÐed that u/w\ O(f2) in this limit). In Regions I and III,
where is real (and by assumption positive), the type 3 solution represents and outgoing wave, and the type 4 an incomingi0wave. On the other hand, in Regions II and IV the kinetic energy density of the type 3 solution decays(arg i0\ n/2),
exponentially with increasing height, whereas for type 4 it grows exponentially. In either case, the physical solution is type 3,
i.e., we must set C4\ 0.
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3.2. High b Regime
Asymptotic expansions of the functions are also available for large f, i.e., a > c, (Luke 1975, ° 5.9.3). The appropriate2F3relation for our purposes is

2F3(a1, a2 ; b1, b2, b3 ; [f2)\ !(b1)!(b2)!(b3)
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] !(a2)!(a1 [ a2)
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f~2a2[1] O(f~2)]
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as f] O, where j \ 12 ] £
i/12 a

i
[ £

i/13 b
i
.

Equation (11) may be used to determine the asymptotic natures of the four solutions at high b. To leading order,

u
j
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( j\ 1, . . . , 4), as f] O. Applying this to the solution, for which we Ðndu2 j \ [12 [ 2i,
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In each case, the Ðrst-named a coefficient on the left-hand side corresponds to the upper sign on the right-hand side. On the
other hand, for the type 3 solution (where j \ [32 ] 2ii0)

a1 3, a2 3 \!(1[ 2ii0)!(3/2 [ i [ ii0)!(3/2 ] i [ ii0)
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The coefficients are the same as the but with the sign of i reversed. The are as for but with reversed.a
k1 a

k2, a
k4 a

k3, i0Reference to equations (6) and (5) indicate that the Ðrst two terms on the right-hand side of equation (12) represent the slow
modes locally and the last two terms are the fast modes.

We now consider each of the four regions of the propagation diagram in turn.

I. Here and Both slow and fast waves are propagating. In the type 2 mode, since the upward and downwardi
z
[ 0 i0[ 0.

amplitudes for each are equal, they are both standing waves. This is consistent with type 2 being evanescent at large z. On the
other hand, the amplitudes of the upward propagating fast and slow waves at low z exceed those of the downward
propagating modes, i.e., the waves are only partly reÑected.

II. Here and is imaginary Both fast and slow waves are standing for each of type 2 and type 3i
z
[ 0 i0 (Imi0[ 0).

solutions.
III. Here is imaginary and The fast wave is evanescent. For type 2, the slow wave is standing. It isi

z
(Imi

z
[ 0) i0[ 0.

partially reÑected in the type 3 solution.
IV. Here both and are imaginary The fast wave is evanescent and the slow wave standing fori

z
i0 (Imi0[ 0, Imi

z
[ 0).

each of type 2 and type 3 solutions.

4. ENERGY TRANSPORT AND MODE CONVERSION

The time-averaged wave-energy Ñux is made up of acoustic and magnetic components (Bray & Loughhead 1974, p. 252),

F \ 1
2

Re
G
p1 ¿6 [ 1

k
(v6 Â B0) Â B1

H
,

where is the vector velocity, the Eulerian pressure perturbation, the background uniform magnetic Ðeld,¿\ (u, 0, w) p1 B0the perturbation to the Ðeld, and k the magnetic permeability. In terms of our dimensionless variables, the verticalB1component is

F
z
\ pmag

c
Re
G
if2l~3

A
c~1w[ iiu ] 1

2
fw@
B
w6 ] i

1
2

l~1fu@u6
H

, (13)

where is the magnetic pressure. We shall neglect the factor from now on. It may be conÐrmed that equation (13)pmag pmag/cyields a Ñux independent of f for each of the four normal modes. Indeed, for type 1 and type 2, for type 3,F
z
\ 0 F

z
\/U(i02)
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where U is the unit step function and

/\ i0 l[(i2] l2)2 [ i2]
i2(l2[ n2) , (14)

and for the type 4 solution. These are consistent with the pure asymptotic behaviors at low b. However, thereF
z
\ [/U(i02)are also cross-terms of the types 1 and 2 solutions, resulting from and in equation (13). The respective contributionsu1@ u6 2 u2@ u6 1to the Ñux are [ili and ili. Of course these are of no concern if the isothermal atmosphere extends indeÐnitely upward, since

then the solution must be dropped. However, it will be present in a Ðnite layer such as the chromosphere, and even if f> 1u1there and and take the asymptotic forms set out in equation (10), energy is carried upward by them in combination. Thisu1 u2is the e†ect of tunnelling. Similarly, there are cross-terms of the type 3 and 4 solutions : results from the term,/U([i02) w3@ w6 4and from the one involving Note that / is pure imaginary where These are the only cross-terms.[/U([i02) w4@ w6 3. i02 \ 0.
Representing the Ñux associated with solution u by F[u], these results may be represented as a Hermitian form:

F
z
\F[C1 u1] C2 u2] C3 u3 ] C4 u4]\ CH'C ,

where the superscript H indicates the Hermitian transpose, andC\ (C1, C2, C3, C4)T,
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0 0 /U(i02) [/U([i02)
0 0 /U([i02) [/U(i02)

=

t

?

t

t

. (15)

We may of course employ any linearly independent combination of the as a solution basis. One obvious choice is the setu
iwith asymptotic behaviors u D f~1@2eY2if and as f] O (cf. eq. [12]). Ifu D f~1Y2iiz

u D c1 f~1@2e2if] c2 f~1@2e~2if ] c3 f~1`2iiz ] c4 f~1~2iiz (16)

in that limit, then the C and the c coefficients are related by c\ AC, where and A is the 4 ] 4 matrixc\ (c1, c2, c3, c4)T (a
jk
).

An alternate equation for the vertical Ñux is therefore

F
z
\ cH(c , (17)

where ( \ A~H'A~1 is given concisely by

( \
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z
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z
2)

0 0 [fU([i
z
2) fU(i

z
2)

=

t

?

t

t

, (18)

where

f \ li
z

i2(l2[ n2) .

The term l~1 represents the vertical Ñux carried by the pure slow mode in the limit f] 0. On the other hand, f is the fast mode
Ñux in this limit. Note that f[ 0 in Region I, f\ 0 in Region II, arg f \ n/2 in Region III, and arg f \ [n/2 in Region IV.
That f is negative in Region II is due to the well-known feature of gravity waves that the vertical components of phase and
group velocity have opposite signs. In Regions III and IV the fast mode is evanescent at high b, but energy may nonetheless be
carried by tunnelling if has a nonzero imaginary part.c3 c6 4

4.1. ReÑection, Transmission, and Conversion Coefficients
In their classic paper, Zhugzhda & Dzhalilov (1982) presented a near-complete survey of reÑection and transmission

coefficients in the four regions of the propagation diagram. Only the e†ect of fast mode tunnelling in Regions III and IV was
left out. We correct that omission here and take the opportunity to set out the complete picture.

4.1.1. Incident Slow Mode

With the asymptotic expressions (eq. [16]) in mind, a physical solution which has only a slow wave incident from high b is

u
s
\ a43 u2[ a42 u3 , (19a)

in Regions I, III, and IV, or

u
s
\ a3 3 u2[ a3 2 u3 , (19b)

in Region II. In Regions III and IV, where the fast wave is evanescent, it is appropriate to retain only the fast mode solution
which decreases downward, i.e., which is a surface wave on the b B 1 layer, excited by the upgoing slow wave. This is why
equation (19a) is selected there. In general, the slow wave will be partially transmitted into the overlying low b region (where it
will always take the form of a slow wave, since the fast mode there is evanescent), partially reÑected as a downgoing slow
wave, and partially converted into a downgoing fast wave. Table 1 lists incident, reÑected, and converted energy Ñuxes. In
Region III, where f\ io f o and the fast mode terms in ( are o†-diagonal, the total Ñux as given by equation (18) is

These terms are therefore identiÐed as the downward and[o c1 o2l~1 ] o c2 o2l~1 [ 12o c3[ ic4 o2 o f o] 12o c3] ic4 o2 o f o .
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TABLE 1

INCIDENT, REFLECTED, AND CONVERTED ENERGY FLUXES FOR SLOW AND FAST MODES INCIDENT FROM BELOW

SLOW FAST

REGION f Finc Fref Fconv Finc Fref Fconv
I . . . . . . . . [0 o c2 o2/l o c1 o2/l o c3 o2f o c4 o2f o c3 o2f o c1 o2/l
II . . . . . . . \0 o c2 o2/l o c1 o2/l o c4 o2 o f o o c3 o2 o f o o c4 o2 o f o o c1 o2/l
III . . . . . . i o f o o c2 o2/l o c1 o2/l 0 12o c3] ic4 o2 o f o 12o c3[ ic4 o2 o f o o c1 o2/l
IV . . . . . . [i o f o o c2 o2/l o c1 o2/l 0 12o c3[ ic4 o2 o f o 12o c3] ic4 o2 o f o o c1 o2/l

TABLE 2

REFLECTION, TRANSMISSION, AND CONVERSION COEFFICIENTS FOR A SLOW MODE INCIDENT FROM BELOW

Region R T C

I . . . . . . . . e~4n(i0~iz) 2 sinh 2ni0 sinh n(i0[ i
z
)

sinh n(i0] i
z
)

e~2n(i0~iz)
2 sinh 2ni

z
sinh n(i0[ i

z
)

sinh n(i0] i
z
)

e~2n(i0~iz)

II . . . . . . . e~4niz 0 1[ e~4niz

III . . . . . . e~4ni0 1 [ e~4ni0 0
IV . . . . . . 1 0 0

upward slow mode Ñuxes, and the downward and upward fast mode Ñuxes, respectively. Since f \ [i o f o in Region IV, the
identiÐcation of the downward and upward fast mode Ñuxes is reversed there.

The total transmitted Ñux is the incident Ñux minus the reÑected and converted Ñuxes,

Ftrans \ Finc[ Fref [ Fconv .

The reÑection, transmission, and conversion coefficients are then deÐned by

MR, T, CN\ MFref, Ftrans, FconvN
Finc

, (20)

where an ordered list notation has been used. Expressions for T, R, and C may be reduced to simple forms using various
gamma function identities and are set out in Table 2 (all in agreement with the results given by Zhugzhda & Dzhalilov 1982).
They are also plotted in Figure 2 as a function of i for various frequencies l. Above the acoustic cuto† frequency, we see that
T increases monotonically from 0 toward 1 as i increases from 0, whereas R decreases from 1 toward 0 over the same range.
A non-negligible slow-to-fast mode conversion occurs at intermediate wavenumbers in Region I. In Region III, where of
course C\ 0 since the fast mode is evanescent, transmission is close to total. Below the cuto† frequency though, T\ 0
identically since all available modes in the overlying low b plasma are evanescent. E†ectively, slow-slow reÑection is total
(R\ 1) in Region IV, while slow-fast conversion has taken over in Region II.

FIG. 2.ÈThe transmission (solid curves), reÑection (dashed curves), and conversion (dotted curves) coefficients T, R, and C for a pure slow mode incident
from z] [O, as a function of position in the propagation diagram (cf. Fig. 1). The baseline of each graph is placed at its Ðxed frequency l\ 0, 0.2, 0.4, 0.6,
0.8, and 1.0, and wavenumber i is varied continuously. The adiabatic index c\ 5/3.
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TABLE 3

REFLECTION, TRANSMISSION, AND CONVERSION COEFFICIENTS FOR A FAST MODE INCIDENT FROM BELOW

Region R T C

I . . . . . . . . . sinh2 n(i0[ i
z
)

sinh2 n(i0] i
z
)
e4niz

C
1 [

sinh2 n(i0[ i
z
)

sinh2 n(i0] i
z
)

D
e~2n(i0~iz) 2

sinh 2ni
z

sinh n(i0[ i
z
)

sinh n(i0] i
z
) exp 2n(i0[ i

z
)

II . . . . . . . . e~4niz 0 1[ e~4niz

IIIa . . . . . . RIII 1 [RIII [CIII CIII
IVb . . . . . . 1 [CIV 0 CIV

a See eq. (22).
b See eq. (24).

4.1.2. Incident Fast Mode

Similarly for the incident fast wave, given by

u
f
\ a2 3 u2[ a2 2 u3 (21)

in each Region, the various energy Ñuxes are also set out in Table 1. The associated reÑection, transmission, and conversion
(fast to slow) coefficients are calculated as above, tabulated in Table 3, and plotted in Figure 3. Once again, transmission
cannot occur below the acoustic cuto† frequency because of the unavailability of a traveling wave at low b in this regime. In
Region I though, T decreases monotonically with increasing i to reach zero at the interface between Regions I and III.
However, we also see signiÐcant transmission in the low-frequency part of Region III, due to fast mode tunnelling. The
reÑection, conversion, and transmission coefficients here are
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FIG. 3.ÈSame as Fig. 2, but for a fast wave incident from below
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FIG. 4.ÈTransmission coefficients for slow (upper panel) and fast (lower panel) waves incident from below, for frequencies above the acoustic cuto† l\ 12(below this, T\ 0). The contours are of T\ 0.1,0.2, . . . ,0.9, with the darkest shading indicating 0 \T\ 0.1 and the lightest 0.9\T\ 1. The boundary
curve between Regions I and III is superimposed (dashed line).

Finally, fast mode tunnelling in Region IV allows energy to reach up to the b B 1 layer, where it is converted into a
downgoing slow wave (as in Region II, no transmission into the asymptotic low b region can occur). The fast-to-slow
conversion coefficient may again be given exactly. Unfortunately, in this region where both and are imaginary, thei0 i

zcombination of gamma functions in the coefficients cannot be reduced as fully as they have been elsewhere, and rather
complicated expressions result. Nevertheless, we Ðnd
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FIG. 5.ÈHorizontal velocity u (solid curves) and vertical velocity w (dashed curves) corresponding to an incident tunnelling fast mode with i \ 0.75,
l\ 0.505, i.e., near the bottom of Region III (real parts are indicated by thick lines, and the imaginary parts by thin lines). The reÑection, transmission, and
conversion coefficients are R\ 0.014, T\ 0.425, and C\ 0.560. The atmosphere is deÐned by H \ 1 and a(0)/c\ 0.1, so that a \ c at z\ 4.6 and b \ 120
at z\ 0. Velocities are normalized so that ow o\ 1 at z\ 0.
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Figure 4 depicts the transmission coefficients for both the incident slow mode and the incident fast mode. The e†ects of fast
mode tunnelling in Region III are clear. Figure 5 shows the velocities for an incident tunnelling fast mode, with the downward
propagating slow wave (seen most clearly in horizontal velocity) very apparent.

5. MORE COMPLEX MODELS

Solar atmospheric models consisting of two stacked isothermal layers, a ““ chromosphere ÏÏ and a ““ corona,ÏÏ have often been
adopted in wave studies (e.g., Cally 1983 ; Cally, Bogdan, & Zweibel 1994, which addresses the coupling of chromospheric and
coronal oscillations to solar interior magnetically modiÐed p-modes). In the top layer one would select the two physical
solutions as above. The matching condition across the interface (““ transition region ÏÏ) is that both u and w as well as their
z-derivatives are continuous there (Leroy & Schwartz 1982). This allows the calculation of the C coefficients in the lower layer.
All four solutions would in general be present, indicating partial reÑection o† the transition region. Calculation of the various
reÑection and transmission coefficients (which has been carried out numerically in the past using shooting methods) is trivial
using the exact solutions presented in this note. We shall not pursue this further here.

6. CONCLUSION

Nontrivial exact solutions in complex magnetohydrodynamic systems are a rarity. Their value exceeds that of direct
application to modeling physical systems, since they both aid in conceptual development, and provide valuable test cases for
numerical simulations.

Magneto-atmospheric waves are a case in point. There is currently much interest in modeling oscillations in the solar
atmosphere in response to detailed simultaneous SOHO observations at a range of heights (Judge, Tarbell, & Wilhelm 2000 ;
McIntosh et al. 2000). On the real Sun, waves must contend with a variety of complex magnetic structures, such as canopy
and dipole elements, but nevertheless a good understanding of the behavior of waves in a uniform vertical magnetic Ðeld and
isothermal atmosphere is a crucial step toward developing a conceptual framework in which we may interpret what we see.

In this note, the simplest magneto-atmospheric wave model which includes all three restoring forcesÈcompressibility,
buoyancy, and magneticÈis revisited. Although the pioneering paper of Zhugzhda & Dzhalilov (1982) is well known, its
representation of the solutions in terms of Meijer G-functions (which are deÐned in general by a complicated contour integral)
has deterred many from using them. The fact that the particular Meijer functions used by Zhugzhda & Dzhalilov could be
expressed as generalized hypergeometric functions did not seem to be appreciated. The solutions in terms of hypergeometric

functions are less daunting, and it is hoped will Ðnd ready applicability in modeling and code testing.2F3As well as presenting the hypergeometric form of the solutions, we have taken the opportunity to complete the discussion of
wave energy transport in a single layer isothermal magneto-atmosphere given by Zhugzhda & Dzhalilov. In particular, the
new results are as follows :

1. The wave energy Ñux can be represented very concisely as Hermitian forms CH'C or cH(c, where ' and ( are
extremely simple sparse 4 ] 4 Hermitian matrices. Their o†-diagonal terms, where present, directly represent energy trans-
port via tunnelling.

2. In Regions III and IV of the acoustic-gravity propagation diagram, where the fast wave is evanescent at high b,
tunnelling nevertheless allows energy to reach up to the b B 1 layer where it may be converted into a low-b fast mode and
propagated upward (Region III only), or converted into a slow wave and sent back downward (both Regions). Analytic
reÑection, transmission, and fast-to-slow conversion coefficients are presented.

In the interests of conciseness, and in accordance with the limited intent in this note to simply present the exact solutions for
use by the solar community, no detailed applications have been examined here.
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