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ABSTRACT
It is generally thought that most of the spin-down power of a pulsar is carried away in an MHD wind

dominated by Poynting Ñux. In the case of an oblique rotator, a signiÐcant part of this energy can be
considered to be in a low-frequency wave, consisting of stripes of a toroidal magnetic Ðeld of alternating
polarity propagating in a region around the equatorial plane. Magnetic reconnection in such a structure
has been proposed as a mechanism for transforming the Poynting Ñux into particle energy in the pulsar
wind. We have reexamined this process and conclude that the wind accelerates signiÐcantly in the course
of reconnection. This dilates the timescale over which the reconnection process operates so that the wind
requires a much larger distance than was previously thought in order to convert the Poynting Ñux to
particle Ñux. In the case of the Crab pulsar, the wind is still Poynting-dominated at the radius at which
a standing shock is inferred from observation. An estimate of the radius of the termination shock for
other pulsars implies that all except the millisecond pulsars have Poynting ÑuxÈdominated winds all the
way out to the shock front.
Subject headings : MHD È plasmas È pulsars : general È pulsars : individual (Crab Pulsar) È

stars : winds, outÑows È waves

1. INTRODUCTION

The di†use synchrotron radiation from the Crab Nebula
now has been observed in great detail in several wavebands,
e.g., Hester et al. (1995). Although by far the best observed
example, the Crab pulsar is just one of several pulsars sur-
rounded by such a nebula (Arons 1996) whose ultimate
source of energy is almost certainly the rotational kinetic
energy of the central neutron star (Pacini 1967). However,
despite intensive e†orts, it is still not known how this energy
is transferred from the neutron star to the radiating, rela-
tivistic electrons.

It is widely accepted that pulsars emit an electron-
positron plasma, which carries away energy in the form of
an ultrarelativistic magnetized wind, together with large-
amplitude waves (Rees & Gunn 1974). At a shock front
located, in the case of the Crab Nebula, some 1017 cm from
the neutron star, this energy is released into the relativistic
electrons responsible for the observed radiation. The most
serious problem with this picture is that close to the strong-
ly magnetized neutron star the energy must be carried
mostly by electromagnetic Ðelds as Poynting Ñux (Michel
1982). But, in order to produce the radiating electrons, the
energy Ñux at the shock front must be carried mainly by the
particles (Rees & Gunn 1974 ; Kennel & Coroniti 1984 ;
Emmering & Chevalier 1987). As has been pointed out by
several authors and emphasized recently by Chiueh, Li, &
Begelman (1998) and Bogovalov & Tsinganos (1999), in an
ideal, ultrarelativistic MHD wind there is no plausible way
of converting the Poynting Ñux into particle energy Ñux.
Several e†ects have been investigated in attempts to over-
come this difficulty, ranging from rapid expansion in a mag-
netic nozzle (Chiueh et al. 1998) to nonideal MHD e†ects in
a two-Ñuid (electron and positron) plasma (Mestel &
Shibata 1994 ; Melatos & Melrose 1996). It has also been
suggested that a global nonaxisymmetric instability of the

nebular plasma alleviates the problem by enabling the con-
version of magnetic to particle energy (Lyubarsky 1992 ;
Begelman 1998). However, perhaps the most promising
explanation to date has been that of reconnection in a
striped pulsar wind, as advanced by Michel (1982, 1994) and
Coroniti (1990). Here, we reanalyze this process. Both
Coroniti and Michel e†ectively assumed that the wind
maintained constant speed during reconnection. We Ðnd
that the hot plasma in the current sheets where reconnec-
tion takes place performs work on the wind, accelerating it
substantially. As a result, the reconnection rate is much
slower than hitherto claimed. In the case of the Crab
Nebula, we conclude that reconnection is not capable of
converting a signiÐcant fraction of the energy Ñux before the
wind reaches the position at which the shock front is
encountered.

The conversion of Poynting Ñux to kinetic energy is also
a central problem in a certain class of models of gamma-ray
bursts. It has been proposed that the emission of a large-
amplitude electromagnetic wave by a black hole or neutron
star(s) underlies the burst phenomenon, that the gamma
rays are generated by dissipative processes in the wave, and
that the X-ray and lower frequency emission is produced at
an outer shock front (Usov 1992, 1994 ; Blackman & Yi
1998). The calculations we present can be rescaled to this
situation and may o†er a mechanism for accelerating the
wind to the very high Lorentz factors required before dissi-
pation sets in.

The paper is organized as follows : In ° 2 we describe the
problem as formulated by Coroniti (1990) and Michel
(1994), present estimates of the e†ect of reconnection, and
explain in physical terms the reasons for our new result. The
perturbation method we employ is a short-wavelength
approximation, which uses as a small parameter the ratio of
the radius of the light cylinder to the actual radius. This is
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presented in outline in ° 3, relegating most of the algebra to
the Appendix but pointing out the di†erences between our
method and that of Coroniti (1990). An analytic asymptotic
solution to the system is given in ° 4, followed by results of a
numerical integration of the equations and a discussion of
the limitations of our approach. Finally, in ° 5 we sum-
marize our conclusions and their implications, especially for
our understanding of the Crab Nebula.

2. THE STRIPED WIND

Despite the presence of a plasma, the total power lost by
a rotating magnetized neutron star may be estimated using
the formula for a magnetic dipole rotating in a vacuum
(Gunn & Ostriker 1969 ; Michel 1982). However, the pres-
ence of plasma changes the physical picture signiÐcantly ;
for example, even an axisymmetric rotator surrounded by
plasma loses energy by driving a plasma wind, in contrast
to an aligned magnetic dipole in a vacuum. Furthermore,
although a strong vacuum electromagnetic wave readily
loses energy to particles (Ostriker & Gunn 1969 ; Asseo,
Kennel, & Pellat 1978 ; Melatos & Melrose 1996), the pres-
ence of plasma is likely to prevent the formation of such
waves and restrict dissipation to shock fronts or regions in
which the magnetic Ðeld undergoes reconnection.

In the case of an oblique rotator, the energy lost in the
wind can be regarded as shared between an axisymmetric
component of the Poynting Ñux and one due to MHD
waves, the ratio being determined by the angle between the
magnetic and rotational axes. Michel (1971) pointed out
that such waves, which have a phase speed less than that of
light, should evolve into regions of cold magnetically domi-
nated plasma separated by very narrow, hot current sheets.
The formation of this pattern may be imagined as follows :
In the axisymmetric case, a current sheet separates the two
hemispheres with opposite polarity beyond the light cylin-
der. As the obliquity increases, this sheet begins to oscillate
about the equatorial plane because the Ðeld line at a given
radius alternates in direction with the frequency of rotation,
being connected to a di†erent magnetic pole every half-
period. Such a picture is observed in solar wind. In a quasi-
radial Ñow the amplitude of these oscillations grows linearly
with the radius, and at large distances one can imagine
locally quasi-spherical current sheets following each
another and separating the stripes of magnetized plasma
with opposite polarity. Coroniti (1990) called this picture a
striped wind. Recently, Bogovalov (1999) has found an exact
solution for the oblique split monopole case, which has
precisely this structure.

It was noticed by Usov (1975) and Michel (1982) that
these waves must decay at large distances, since the current
required to sustain them falls o† as r~1. This is slower than
the fallo† in the available number of charge carriers, which
goes as r~2. Coroniti (1990) considered the reconnection
process in a striped wind and came to the same conclusion.
In the case of a highly oblique rotator, both Coroniti and
Michel agreed that the MHD wind of the Crab pulsar could
be transformed by this mechanism from one dominated by
Poynting Ñux to one dominated by particle kinetic-energy
Ñux well within the radius of the termination shock.

The pulsar wind beyond the light cylinder is quasi-
spherical (Chiueh et al 1998 ; Bogovalov & Tsinganos 1999),
and, as the magnetic Ðeld is predominantly toroidal, it
scales roughly as
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where G cm~3 is the magnetic moment of thek \ 1030k30star and P is given in seconds. The density n in the quasi-
spherical Ñow, measured in the rest frame of the star,
decreases approximately as
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since in a steady, spherical, relativistic Ñow r2nv is constant
and the speed v is close to c. The density is conveniently
normalized by the Goldreich-Julian charge density oGJ :
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where i is the multiplicity coefficient. This quantity is rather
uncertain but generally expected to be large : i D 103È104
(Arons 1983).

The Poynting Ñux may be estimated as
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and the ratio of the Poynting Ñux to the kinetic-energy Ñux,
called the magnetization parameter p, is

p \ W
mc3cn . (6)

At the light cylinder this quantity takes on the value

p
L
\ u

L
2c

L
i)

(7)

\ 1.3] 107 k30
c
L
iP2 , (8)

where is the gyrofrequency at the light cylin-u
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der. The ratio is large for all pulsars. For example, inu
L
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the case of the Crab pulsar, where we havek30B 5, u
L
/)B

1011.
The speed of a fast magnetosonic wave propagating per-

pendicular to the magnetic Ðeld in a magnetically domi-
nated plasma corresponds to a Lorentz factor cfms\ p1@2
(e.g., Kirk & Du†y 1999). In pulsar models, plasma is
ejected at Lorentz factors of 102È103, which is higher than

for most pulsars. In the case of the Crab pulsar,cmfshowever, these values correspond to a speedtrans-Alfve� nic
at the light cylinder. At some point beyond the(c

L
Dp

L
1@2)

light cylinder, but before the onset of dissipation, we expect
the wind to establish a supersonic ideal MHD Ñow, in
which the value of p and c are constant. In the following,
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these values are indicated by the subscript ““ L ,ÏÏ even
though, strictly speaking, they may not be achieved at the
light cylinder itself. Using the above estimates, we then Ðnd
that, for the Crab pulsar, i \ 104 corresponds to p

L
B 3

and At the light cylinder almost all the] 104 c
L
B 200.

energy is carried by the electromagnetic Ðeld. If this energy
were completely transferred from Poynting Ñux into plasma
kinetic energy, the Lorentz factor would attain the value

cmax \ c
L
p
L

\ u
L

2i)
. (9)

However, a cold, radial MHD wind does not accelerate
because the outwardly directed pressure gradient arising
from the gradient of the magnetic Ðeld is exactly balanced
by the inwardly directed tension force exerted by the curved
toroidal Ðeld lines. In the absence of dissipation, the energy
Ñux remains locked in the Ðeld as Poynting Ñux.

The idealized radial structure of the wind and embedded
current sheets corresponding to the Ðeld of a perpendicular
split monopole are shown in Figure 1. In the proper plasma
frame the current density I@ (current per unit length in the
toroidal direction) is, according to AmpereÏs law,

I@\ cB@
2n

. (10)

Here and in the following discussion we use primed values
to indicate quantities in the proper plasma frame, e.g.,
B@\ B/c, n@\ n/c, etc. Usov (1975) and Michel (1982)
noticed that the current in equation (10) cannot be main-
tained to an arbitrarily large radius ; since the proper
current density cannot exceed en@c and the width of the
sheet is less than half a wavelength, one can easily seenr

L
,

from equations (1), (3), and (4) that the striped wind cannot
exist beyond the radius

rmax \ nicr
L

, (11)

(see also Melatos & Melrose 1996). When the velocity of the
current carriers approaches the speed of light, an anom-

FIG. 1.ÈIdealized picture of a pulsar wind driven by a rotating, perpen-
dicular, split-monopole magnetic Ðeld, showing the magnetic Ðeld, B (solid
line), particle density n (dashed line) and plasma pressure p (dotted line) as
functions of the phase variable with origin at an arbitrary posi-/\ r/r

L
,

tion in the outer part of the wind The magnetic Ðeld and density(r ? r
L
).

are constant between the current sheets, which are shown as shaded
regions. Within the sheets, we assume a zero-magnetic Ðeld and constant
density.

alous resistance arises and the alternating magnetic Ðeld
dissipates by heating the plasma. Coroniti (1990) considered
the dissipation as reconnection through the current sheet,
whose minimum thickness he took to be equal to the
Larmor radius that a thermal particle of the hot plasma in
the sheet would have if it entered the cold magnetized part
of the wind. In terms of the fraction * of a wavelength 2nrLoccupied by the two current sheets, this condition reads

*[
T @

ncrL eB@
, (12)

where T @ is the characteristic ““ temperature ÏÏ of the particles
in the sheet, in energy units. Taking into account that the
sheet is in pressure equilibrium,

n@T @ \ B@2
8n

, (13)

one can easily see that the current density j@\ en@c, so that
CoronitiÏs condition is, to within a factor of the order of
unity, the same as that of Michel (1994).

If, initially, a fraction a of the plasma is concentrated in
the sheets, dissipation begins at a radius Forr1\ armax.the sheet width exceeds the limiting value of equationr \ r1(12), the current carriers remain nonrelativistic, the conduc-
tivity is very high, and reconnection does not proceed. For

however, the current carriers become relativistic, anr [ r1,anomalous resistivity arises, and reconnection brings
energy and plasma into the sheet until, eventually, all the
magnetic Ñux is destroyed at the radius r \ rmax.Both Michel and Coroniti estimated the radius byrmaxsubstituting into equation (11) the initial Lorentz factor c

L
.

The corresponding value is large compared to the light
cylinder radius. For the Crab pulsar, it is of the order of

which is, nevertheless, still well within the radius of107r
L
,

the standing shock However, as we show below,r
s
B 109r

L
.

the Ñow accelerates as reconnection proceeds. Basically, this
is because the hot plasma continues to exert an outwardly
directed pressure gradient, but the compensating inwardly
directed tension force is absent. Equivalently, it is clear that
the hot plasma performs work during the radial expansion,
and this appears as an acceleration of the wind. In an accel-
erating wind, most of the energy is released when the
Lorentz factor of the Ñow is roughly at its maximum value,
given by equation (9). The corresponding radius is

rmax\ nicmax rL

\ nu
L

2)
r
L

(14)

\ 2 ] 1017 k30
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.

In the case of the Crab pulsar, which signiÐ-rmaxB 1011r
L
,

cantly exceeds the radius of the standing shock, so that only
a small fraction of the wave energy is converted into particle
energy before the plasma arrives at this shock front.

3. EQUATIONS

3.1. L ocal Structure of the Wave
The striped wind described ° 2 can be regarded as an

MHD wind containing an entropy wave, which moves
together with the plasma. At large distances the wave con-
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sists locally of spherical current sheets separating cold, mag-
netized stripes of plasma with opposing polarity (see Fig. 1).
To Ðnd the evolution of this wave, we use a two-timescale
perturbation approach, assuming that the timescale on
which it evolves, i.e., the timescale on which the reconnec-
tion sheet grows, is much longer than the period P of the
wave. Details of this method are presented in the Appendix.
Here we restrict ourselves to the most important steps in the
argument.

In the cold magnetized part of the wind the magnetic Ðeld
B, which is toroidal, is constant on the fast timescale and the
plasma pressure vanishes. The plasma density in then

c
@ (n

clabratory frame) is also constant on the fast timescale. In the
hot sheet, the magnetic Ðeld vanishes, and the pressure p@ is
constant on the fast timescale, as is the plasma density n

h
@ ,

which, in contrast to previous treatments, is not constrained
to equal In the plasma frame the entire pattern is at rest,n

c
@ .

but the plasma speed v and the corresponding Lorentz
factor c change on the slow timescale as the wave evolves. In
the cold part of the wind the magnetic Ðeld is frozen into the
plasma, so that in spherical polar coordinates we can write
for the slow evolution in radius

d
rd
A B
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c

B
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(see eq. [A33]). Although the method is strictly valid only
for we normalize the quantities in the wind to theirr ? r

L
,

value at Using equation (4) and interpreting ther \ r
L
.

multiplicity factor as referring to the density of electron/
positron pairs outside the current sheets, this yields
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c
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Following Coroniti (1990), we assume that reconnection
keeps the sheet width equal to the limiting value given in
equations (12) and (A32). The condition that the cold and
hot parts of the Ñow are in pressure equilibrium (13) leads,
together with equation (16), to the relation

*\ rZc
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where a useful variable,
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c
@

n
h
@
\ n

c
n
h

, (18)

has been introduced. In his treatment, Coroniti (1990) set
to write his equation (16)Èthe counterpart of ourn

h
@ \ n

c
@

equation (17).
The remaining equations needed to describe the wave

evolution are those of conservation of particle number and
energy (equivalent to the equation of motion in the rela-
tivistic formulation) and the entropy equation. To zeroth
order in these conÐrm that the plasma speed equals ther

L
/r,

pattern speed, the hot and cold parts are in pressure equi-
librium, and the conÐguration shown in Figure 1 and
described above is stationary on the fast timescale.

3.2. T he Continuity Equation
The slow evolution of the system is obtained by averag-

ing over a wave period, which we denote by angle brackets.
Conservation of particle number (the continuity equation)

gives

Snvr2T \ constant . (19)

This equation is exact. In the short-wavelength approx-
imation one can replace the time average by a spatial one
because all slowly varying parameters are constants on the
scale of one wavelength. This immediately yields

vr2n
c
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(See eq. [A34], noting that in this section we use c and v to
refer to the zeroth-order quantities, denoted in the Appen-
dix by andc0 v0).

3.3. T he Energy Equation
After time averaging, the energy equation is
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w@c2v]EB
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Here w@ is the enthalpy density ; outside of the sheets w@\
whereas within themmn

c
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One can substitute for the electric Ðeld using] mn
h
@ c2).

E\ vB because, by assumption, E and B are nonzero only
outside the sheets, where the magnetic Ðeld is frozen into
the plasma.

Replacing once again in equation (21) the time average by
a spatial one yields

c2vr2
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4 C2\ constant (22)

(see eq. [A35]).
Coroniti (1990) did not use equation (21) in his analysis.

Instead, he assumed that the plasma both inside and
outside of the sheet is strictly stationary in the wave frame
so that the sheet edge moved through a constant density
plasma. This led him to set in equation (17) (ourn

h
@ \ n

c
@

numbering), thus reducing the number of unknowns. He
was then able to Ðnd an expression for the speed of the sheet
edge. However, such a picture violates energy conservation,
as is apparent from equation (21) ; the condition of pressure
equilibrium (p@\ B2/8nc2) means that a decrease in the
enthalpy Ñux in the magnetized part of the Ñow (\r2vB2/
4n) cannot be balanced by an increase in the enthalpy Ñux
in the sheet (\r2w@c2v\ 4r2p@c2v) unless there is a velocity
(and density) jump across the sheet edge.

3.4. T he Entropy Equation
The entropy equation requires more care. Following

equation (21) of Coroniti (1990) and setting the ratio of
speciÐc heats to 4/3, we write for the full nonlinear equa-
tion :

3
dp@
dt

[ 4
p@
n@

dn@
dt

\
A
E[ v

c
B
B

j (23)

(see eq. [A4]), where the convective derivative d/dt 4 L/
Lt ] vL/Lr. The right-hand side of this equation, when
multiplied by c, is the rate of entropy generation in the rest
frame of the plasma, which moves with speed v. In the limit
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of a sharp transition between the magnetized and
unmagnetized parts of the Ñow, the entropy generation term
is the product of two singular functions : one for the current
and another for the electric Ðeld in the plasma frame. To
Ðnd the slow evolution of the wave, it is essential to perform
the averaging process before inserting this speciÐc represen-
tation, which is not well deÐned at the point at which
entropy is generated. In moving from his equations (21) to
(22), Coroniti overlooked this point. As a consequence of
this, and of the incorrect expression for the expansion speed
of the sheets, he came to the erroneous conclusion (in his
eq. [26]) that the wave Lorentz factor remains almost con-
stant during reconnection.

Following the averaging procedure described in the
Appendix (eqs. [A27]È[A30]), we Ðnd that (see eq. [A37])
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L
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This equation may be integrated, using the equations of
continuity (20) and Ñux freezing (16) :

(1È3Z)n
c
@ r34 C3 \ constant (25)

(see eqs. [A38]È[A42]).
The system thus consists of Ðve algebraic equations (16),

(17), (20), (22) , and (25) for the Ðve slowly varying unknown
functions of radius : Z, B@, *, and c.n

c
@ ,

4. RESULTS

4.1. Asymptotic Solution
A general solution to this system is difficult to Ðnd, and

the most straightforward way to generate a numerical solu-
tion is to revert to integrating the di†erential forms of the
continuity, energy, and entropy equations. However, it is
possible to extract analytically an asymptotic solution,
valid for *, c~2, and which is just the regime wep

L
~1> 1,

are interested in.
As can be checked a posteriori, the quantity is ann

c
@ r3

increasing function of r, so that, according to equation (25),
Z] 1/3 as r ] O. DeÐning, in accordance with equation
(7),

p
L
\
AB@2/4n
mn

c
@ c2
B
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we can use the continuity equation (20) to rewrite the
energy equation (22) as
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L
) . (27)

Here we have assumed the initial thickness of the current
sheet is vanishingly small. This is reasonable, since before
the onset of reconnection the plasma in the sheet expands
adiabatically and cools, causing the sheet width to decrease.
To the lowest order in the small parameters, this equation
(27), together with equation (16) and the continuity equa-
tion (20), yield the same result :

cr2n
c
@ \ C1 , (28)

so that the system is nearly degenerate. Expanding the
equations to next order and eliminating the leading term

gives
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At large radius Z] 1/3 and for a Ñowsuper-Alfve� nic (c?
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which agrees with our estimate that the maximum value of c
given in equation (9) is attained at the radius of equa-rmaxtion (14), where *D 1. Note that this solution is indepen-
dent of the actual value of which enters only as a scalingc

L
,

factor for c.
4.2. Numerical Solution

Three physical parameters determine the cold radial
MHD wind of a pulsar in the absence of reconnection. They
are the values at the light cylinder of the magnetization
parameter Lorentz factor and the ratio of the particlep

L
, c

L
,

gyrofrequency to the rotation period These areu
L
/).

related to the multiplicity parameter i by equation (7). In
the presence of reconnection, the same three parameters
also uniquely specify the asymptotic solution at large radius
equations (30)È(33). However, the full solution requires one
additional initial condition, which is the fraction a of
plasma that is initially present in the current sheets. This
quantity determines the radius at which reconnection starts,
which formally is the position at which we impose the initial
condition *\ 0. The perturbation analysis presented above
is valid when this radius is large compared to r

L
.

To investigate the dependence of the solutions on this
initial condition, we have solved the system by integrating
numerically the three equations continuity, energy and
entropy written in di†erential form: equations (A34), (A35),
and (A37). The results are shown in Figure 2 for parameters
appropriate for the Crab pulsar : p

L
\ 3 ] 104, c

L
\ 200

so that the wind is initially supersonic), and([p
L
1@2,

The multiplicity parameter for these parame-u
L
/)\ 1011.

ters is i \ 8 ] 103. Solutions for three di†erent initial con-
ditions are shown, corresponding to starting points for
reconnection at 10, 103, and Superposed on these105r

L
.

solutions is the analytic asymptotic solution. For all values
of the initial condition, the asymptotic solution is
approached rapidly and followed closely until *D 1. The
termination shock in the wind of the Crab pulsar is thought
to lie at roughly At this point *D 0.01, and ther

s
B 109r

L
.

energy Ñux is still dominated by Poynting Ñux.

4.3. Validity of the Solutions
The range of validity of our treatment is limited by two

factors. According to our solutions, the temperature in the
current sheets decreases outward. The expression used for
the gyroradius in equations (17) and (A32) assumes
T [ mc2, as does the choice for the ratio of speciÐccü \ 4/3
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FIG. 2.ÈResults of a numerical integration the system of eqs. (A34), (A35), and (A37) for three di†erent initial conditions, superposed on the analytic
asymptotic solution (dashed line). The parameters used are those appropriate for the Crab pulsar : and Plotted are thep

L
\ 3 ] 104, c

L
\ 200, u

L
/)\ 1011.

temperature T in the hot sheet, in units of mc2, the fraction a of particles in the sheet the Lorentz factor of the Ñow c, and the fraction*n
h
@ /[*n

h
@ ] (1[ *)n

c
@],

of a wavelength occupied by the sheets *, as functions of the radius in units of the light cylinder radius. The initial conditions correspond to reconnection
starting at (solid line), 103 (dotted line) and 105 (dash-dotted line). In the Crab pulsar the termination shock is located atr/r

L
\ 10 log (r/r

L
)B 9.

heats. This is not the case at very large radius and the range
of validity is therefore restricted to

c\
cmax
6

. (34)

At the upper end of this range, *\ 1/18, so the assumption
*> 1 is still valid. The corresponding radius isr2

r2\ nu
L

18)
r
L
\ 106k30

P2 r
L

. (35)

At this point, the fraction of the Poynting Ñux transferred to
the plasma is still small. For the Crab pulsar, one obtains
(see Fig. 2) which already exceeds the radius ofr2B 1010r

L
,

the standing shock. Thus, our treatment is valid up to the
shock front, before which reconnection is indeed ine†ective
in the wind of this pulsar.

The second limitation concerns the assumption that the
dissipation proceeds sufficiently quickly to keep the sheet
thickness equal to the minimum value given by equation
(12). This assumption holds, provided the proper propaga-

tion time, r/(cc), exceeds the Larmor period. Because the
sheet width is equal to the Larmor radius, this condition,

r
c
[ 4n2*cr

L
(36)

is equivalent, to within a factor of the order of unity, to the
condition that pressure equilibrium within the sheet has
time to be established. Substituting equation (31) and
Z\ 1/3, one Ðnds

c \ c
M

\ 3i . (37)

If the Ñow accelerates only up to the point wherecmax[ c
M

,
after which no further dissipation can occur. Thisc\ c

M
,

regime arises for

i \
Su

L
6)

(38)

\ 2 ] 103 Jk30
P

, (39)
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or, alternatively,

cmax\ p
L
c
L
[
S3u

L
2)

(40)

\ 6 ] 103
Sk30

P
. (41)

Otherwise, acceleration continues, and the Ñow can, in prin-
ciple, reach unless it encounters a shock front.cmax,In the case of a pulsar moving through the interstellar
medium, one can estimate the position of the termination
shock by equating the magnetic pressure to the ram pres-
sure of the medium:

B
L
2

8n
Ar

L
r
B2\ oV 2 , (42)

where o is the density of the interstellar medium and V the
velocity of the pulsar through it. Taking V \ 100 km s~1
and a particle density of 1 cm~3, one obtains

rs \ 7 ] 1014 k30
P2 cm . (43)

Comparing this with the expression for equation (14),rmax,one sees that the Ñow remains Poynting dominated up to
the termination shock for all but the millisecond pulsars.

5. CONCLUSIONS

We have examined the fate of a wave generated in a
pulsar wind by the rotating, magnetized neutron star. This
wave is built from the oscillating equatorial current sheet,
which at large distances, may be considered locally as a
sequence of spherical current sheets separated in radius by
the distance As was suggested by Usov (1975) andnr

L
.

Michel (1982), the wave decays because the particle-number
density eventually becomes insufficient to maintain the
necessary current. Dissipation begins when the velocity of
the current carriers reaches the speed of light or, almost
equivalently, when the sheet width becomes equal to the
Larmor radius (Coroniti 1990 ; Michel 1994). The dissi-
pation process may be considered as reconnection of
oppositely directed magnetic Ðelds (Coroniti 1990). In the
proper plasma frame, plasma from the intersheet space
slowly moves towards the sheet, which slowly expands,
absorbing more plasma and magnetic energy. The distance
at which the wave decays completely is proportional to the
Lorentz factor c of the Ñow (eq. [9]), as found by Michel
and Coroniti. In this formula, however, they inserted the

initial Lorentz factor, cD 100È1000, and concluded that in
the case of the Crab pulsar the wave decays well before the
wind reaches the termination shock.

We Ðnd that the Ñow accelerates during the dissipation
process. The reason is that in the freely expanding Ñow, hot
plasma in the current sheet performs work on the Ñow. The
restraining magnetic-tension force is released by reconnec-
tion, but the accelerating pressure gradient remains. As a
result, most of the magnetic energy is dissipated when the
Ñow has accelerated to a Lorentz factor that is of the same
order as the maximal one. For the Crab pulsar, the corre-
sponding distance is well beyond the standing shock, so we
conclude that the wave does not dissipate before entering
the shock. Using a simple estimate of the location of the
termination shock for other isolated pulsars, we Ðnd that
this conclusion holds for all except those of a millisecond
period. In the Appendix we show that our result applies not
only to the singular current sheet structure discussed by
Coroniti (1990) but also to a more general smooth distribu-
tion of current and magnetic Ðeld.

Exactly how the wind energy dissipates remains a
mystery, not only in the case of pulsars, but also in the
closely related models proposed for gamma-ray bursts
(Usov 1992, 1994 ; Blackman & Yi 1998). At present, one
can only speculate that dissipation might be possible in a
combination of shocks and current sheets at the position of
the bright equatorial X-ray torus observed in the Crab
pulsar (Brinkmann, Aschenbach, & Langmeier 1985). If the
Crab pulsar is an oblique rather than a perpendicular
rotator, a signiÐcant part of the energy Ñux at high latitudes
is transferred by the axisymmetric part of the Poynting Ñux,
which cannot dissipate by reconnection. It has been sug-
gested that the release of this energy may be triggered by the
kink instability (Lyubarsky 1992 ; Begelman 1998) giving
rise to the jetlike structure observed in the Crab Nebula,
orientated, presumably, along the rotation axis of the pulsar
(Hester et al. 1995). Thus, the idea that dissipation of the
axisymmetric component and the wave component of the
Poynting Ñux is fundamentally di†erent has both obser-
vational and theoretical support. Current sheets are not
expected to be responsible for the former. We have demon-
strated in this paper that they also cannot be responsible for
the latter until the pulsar wind encounters the termination
shock.

Y. L. thanks the Max-Planck-Institut Kernphysik forfu� r
support under their international visitor program.

APPENDIX A

EQUATIONS OF ENTROPY-WAVE EVOLUTION IN THE TWO-TIMESCALE APPROXIMATION

A1. MHD EQUATIONS

Consider a nonsteady, axially symmetric, radial MHD wind. In spherical coordinates, the electromagnetic Ðelds, Ñuid
velocity, and current density in the laboratory frame are B \ B(r, E \ E(r, j \ j(r, and the proper (i.e.,t)rü , t)hü , ¿\ v(r, t)rü , t)hü ,
in the Ñuid rest frame) energy density, pressure, temperature (in energy units), and number density are e@(r, t), p@(r, t) T @(r, t), and
n@(r, t).

Then the equations of MHD are that of continuity :

L
Lt

(cn@) ] 1
r2

L
Lr

(r2cvn@) \ 0 , (A1)
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(where c\ 1/[1[ (v2/c2)]1@2), the energy equation (zeroth component of the divergence of the stress-energy tensor) :

L
Lt

(T 00) ] 1
r2

L
Lr

(r2T 01) \ 0 , (A2)

where

T 00\ (e@] p@)c2[ p@] E2] B2
8n

T 01\ (e@] p@)c2v] EBc
4n

, (A3)

the entropy equation :

1
cü [ 1

Adp@
dt

[ cü p@
n@

dn@
dt
B

\
A
E[ v

c
B
B

j , (A4)

[where d/dt 4 (L/Lt)] (vL/Lr) and is the ratio of speciÐc heats] and the two Maxwell equations :cü

1
r

L
Lr

(rB) ] 1
c

LE
Lt

] 4n
c

j \ 0 (A5)

(AmpereÏs law) and

1
r

L
Lr

(rE) ] 1
c

LB
Lt

\ 0 (A6)

(FaradayÏs law). The system is completed by OhmÏs law:

j \ p
c
c
A
E[ v

c
B
B

, (A7)

the ideal gas law:

p@\ n@T @ , (A8)

and an equation of state, for which we select

p@\ (cü [ 1)(e@[ n@mc2) , (A9)

where m is the (mean) particle rest mass. In the following discussion we will take as appropriate for a relativistic gas.cü \ 4/3
Eliminating n@ from equation (A4) using the equation of continuity equation (A1) we Ðnd

4p@
Lc
Lt

] 3c
Lp@
Lt

] 4p@
r2

L
Lr

(r2cv) ] 3vc
Lp@
Lr

\ c
A
E[ v

c
B
B

j . (A10)

In the limit of a relativistic gas, e@] 3p@, the set of equations (A2), (A10), (A5), and (A6) is then independent of n@, which appears
only in the continuity equation (A1).

A2. PERTURBATIVE SOLUTION

To solve these equations, we exploit the two timescales present in the problem. The fast timescale is that of the pulsar
rotation period We assume that the initial conditions in the wind close to the star have period P and that attfast\ P4 2n/).
any Ðxed radius all quantities vary with this period. At a distance of a few light-cylinder radii we assume that the(r

L
4 c/)),

wind has settled down into an almost stationary pattern in which the Ñuid speed does not vary on the fast timescale, although
the density, pressure, and especially the magnetic Ðeld do so. Our initial conditions at this distance, therefore, constitute an
entropy wave comoving with the Ñuid. The wave evolves on the slow timescale, which is the expansion timescale of the wind

For we have conditions suitable for a two-timescale expansion, i.e., The general procedure istslow D rP/r
L
. r ? r

L
, tfast> tslow.

(1) transform to fast and slow independent variables, (2) expand the dependent variables, (3) collect and solve the zeroth-order
equations, and (4) collect the Ðrst-order equations and demand that the secular terms they contain vanish (Nayfeh 1973).

First, we deÐne a fast phase variable

/\ )
C
t [
P
0

r dr@
vw(r@)

D
, (A11)

where is the speed of the pattern, which is to be determined. We now change variables from (r, t) to (/, R), where thev
w
(r)

dimensionless ““ slow ÏÏ variable is deÐned as

R\ er/r
L

, (A12)
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with e > 1 and RD 1. In terms of the new variables, we Ðnd for the continuity equation (A1) :

L
L/

(cn@)[ 1
vw

L
L/

(cvn@) ] e
R2

L
LR

(R2cvn@) \ 0 , (A13)

the energy equation (A2) :

LT 00
L/

[ 1
vw

LT 01
L/

] e
R2

L
LR

(R2T 01) \ 0 , (A14)

the modiÐed entropy equation (A10) :

eqn4p@
Lc
L/

] 3c
Lp@
L/

[ 4
p@
vw

L
L/

(cv) [ 3
cv
vw

Lp@
L/

] 4ep@
R2

L
LR

(R2cv) ] 3ecv
Lp@
LR

\ 1
)

c(E[ vB) j , (A15)

AmpereÏs equation (A5) :

LE
L/

[ 1
vw

LB
L/

] e
R

L
LR

(RB) ] 4n
)

j \ 0 , (A16)

and FaradayÏs equation (A6) :

LB
L/

[ 1
vw

LE
L/

] e
R

L
LR

(RE) \ 0 . (A17)

In these equations we have expressed all velocities in units of the speed of light (v] cv, etc.).
We now expand the dependent variables, noting that for an entropy wave the zeroth-order velocity is independent of the

phase :

v\ v0(R) ] ev1(/, R)

n@\ n0@ (/, R) ] en1@ (/, R)

p@\ p0@ (/, R) ] ep1@ (/, R), etc . (A18)

Substituting and collecting terms of order e0, we Ðnd from the continuity equation (A13) that for a nonuniform wind (one in
which is a function of /)c0 n0

v
w

\ v0(R) . (A19)

The Maxwell equations (A17) and (A16) then lead to

LB0
L/

\ 4nc02 v0
)

j0 . (A20)

From FaradayÏs law (A17), it then follows that the quantity is independent of /. Furthermore, in order to describeE0[ v0 B0a wave with both a reconnection zone and a region in which ideal MHD holds it follows from OhmÏs law (eq. [A7])(p
c
] O),

that this quantity must be zero :

E0\ v0B0 . (A21)

The energy equation (A14) yields the pressure balance condition :

L
L/
A
p0@ ] B02

8nc02
B

\ 0 . (A22)

Finally, using equations (A19) and (A21), it can be seen that the entropy equation (A15) is satisÐed identically to zeroth order.
To the Ðrst order in e, we have for the continuity, energy and Maxwell equations :

c0
v0

L
L/

(n0@ v1) \
1
R2

L
LR

(R2c0 v0 n0@ )

L
L/
A 1
v0

T 101[ T 100
B

\ L
L/
C
p1@ ] v1 c02

v0

A
e0@ ] p0@

B
] B0

4nc02 v0
E1
D

(A23)

\ 1
R2

L
LR

(R2T 001) (A24)

L
L/
A
E1[ 1

v0
B1
B

\ [ 1
R

L
LR

(RB0) [
4n
)

j1 (A25)

L
L/
A
B1[ 1

v0
E1
B

\ [ 1
R

L
LR

(Rv0B0) . (A26)
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In the entropy equation one may substitute for the zeroth-order current using equation (A20) to Ðnd

4c0
v0

L
L/

(p0@ v1)]
1

4nc0 v0
(E1 [ v0B1)

LB0
L/

\ 4p0@
R2

L
LR

(R2c0 v0) ] 3c0 v0
Lp0@
LR

. (A27)

The equations governing the evolution of the zeroth-order quantities on the slow scale are given in the usual manner by
imposing nonsecular behavior on the Ðrst-order equations (Nayfeh 1973). This ensures that the Ðrst-order quantities do not
grow to dominate the zeroth-order terms of the expansion within wave periods. As frequently happens, the imposition0(r/r

L
)

of these regularity conditions suffices to determine the slow variation of the zeroth-order quantities. Consider, for example,
equation (A23), which is a linear, inhomogeneous equation for The right-hand side, by construction, is a periodic functionv1.of /. Therefore, will grow with / unless the integral of the right-hand side over a complete period vanishes. Applying thesev1considerations also to equation (A24) leads to the conditions

L
LR
A
R2c0 v0

P
0

2n
d/n0@

B
\ 0

L
LR
A
R2
P
0

2n
d/T 001

B
\ L

LR
G
R2c02 v0

CP
0

2n
d/
A
e0@ ] p0@ ] B02

4nc02
BDH

(A28)

\ 0 . (A29)

Equation (A25) is needed only if the Ðrst-order current is required, and equation (A26) yields only the conservation of the
phase-integrated Ñux. Equation (A27) is integrated by parts to give, using (A26) :

P
0

2n
d/p0@

4
R2

L
LR

(R2c0 v0)] 3c0 v0
L

LR
P
0

2n
d/p0@ \ [ 1

4nc0R
P
0

2n
d/B0

L
LR

(Rv0B0) . (A30)

A3. APPLICATION TO THE STRIPED WIND

For the striped wind (Fig. 1), the zeroth-order solution is

4
5
6

0
0
n0@ \ n

h
@ (R)

p0@ \ p@(R)
B0\ 0

7
8
9

0
0 for 0\ /\ n*(R) and n \/\ n[1] *(R)]

4
5
6

0
0
n0@ \ n

c
@ (R)

p0@ \ 0
B0\ B(R)

7
8
9

0
0 for n*\ /\ n ,

4
5
6

0
0

n0@ \ n
c
@ (R)

p0@ \ 0
B0 \ [B(R)

7
8
9

0
0 for n[1] *(R)]\ /\ 2n

together with the condition of pressure equilibrium between the hot and cold layers :

p@\ B2
8nc02

\ B@2
8n

. (A31)

CoronitiÏs estimate of the thickness of the neutral sheet gives

*(R) \ p@(R))
n
h
@ (R)enB(R)v0(R)

(A32)

and the ideal MHD condition outside the sheet implies Ñux freezing there :

L
LR
C B(R)
Rc0(R)n

c
@ (R)
D

\ 0 . (A33)

This latter relation follows formally by using the Ðrst-order form of the ideal MHD condition : inE1\ v0B1] v1B0FaradayÏs equation (A26) together with the continuity equation (A23) and the fact that in our present conÐguration andB0 n0are independent of / outside of the sheet.
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The Ðve unknowns obey, in addition, equations (A28), (A29), and (A30). In the case of equations (A28) and (A29) the
integration over / may be performed immediately to give :

L
LR

MR2c0 v0[(1 [ *)n
c
@ ] *n

h
@]N\ 0 (A34)

L
LR
G
R2c02 v0mc2

C
(1[ *)n

c
@ ] *n

h
@
D

] 2R2c02 v0(1] *)
B@2
8n
H

\ 0 (A35)

(eq. [20] and [22]). The left-hand side of equation (A30) is also straightforwardly integrated. On the right-hand side, however,
we Ðrst rewrite the integration in terms of B02 :

4*p0@
R2

L
LR

(R2c0 v0)] 3c0 v0
L

LR
(*p0@ ) \ [ 1

4nc0R
P
0

2n
d/
CRv0

2
LB02
LR

] B02
L

LR
(Rv0)

D
. (A36)

Now the integration over / can be performed unambiguously to give, using equation (A31)

4*B@2
R2

L
LR

(R2c0 v0)] 3c0 v0
L

LR
(*B@2) ] v0

c0

L
LR

[c02(1[ *)B@2]] 2c0 B@2(1[ *)
R

L
LR

(Rv0) \ 0 . (A37)

To integrate the entropy equation (A37), we Ðrst multiplying it by and combine terms with and without * to ÐndR2c0 v0

4c0 v0
d

dR
(R2v0 c0*B@2)[ 2c0 vR

d
dR

(Rv0 c0 *B@2) ] d
dR

(R2v02 c02 B@2) \ 0 . (A38)

The last term appears to be of zeroth order in *, but, because of the continuity equation (A34), it is in fact of Ðrst order.
Substituting for B@ using the Ñux freezing condition of equations (A33), this term can be reduced to

2R2v0 c0 n
c
@

d
dR

(R2v0 c0 n
c
@ ) \ 2R2v0 c0 n

c
@

d
dR

[R2v0 c0*(n
c
@ [ n

h
@ )] , (A39)

where the continuity equation (A34) was used. Returning to equation (A38), and using the substitution

v0 c0 *\ RZ
4ni

, (A40)

where Z is deÐned in equation (18), one Ðnds

2Rn
c
@
dZ
dR

] 3n
c
@ (3Z[ 1)] (3Z[ 1)R

dn
c
@

dR
\ 0 , (A41)

which integrates to

(1[ 3Z)2@3R3n
c
@ \ constant . (A42)

The striped wind shown in Figure 1 is a particular (and singular) idealization of a wind containing cold magnetized parts of
opposite polarity separated by hot sheets. More generally, we can envisage an idealization in which and are alln0@ , B0 p0@continuous functions of /. First, assume and take on the constant values B and outside of the sheets. From theB0 n0@ n

c
@

condition of pressure balance

B2\ B02(/) ] 8nc02 p0@ (/) . (A43)

DeÐning the e†ective sheet width as

*\ 8nc02
B2

P
0

2n d/
2n

p0@ (/) (A44)

and the average particle density within the sheet vian
h
@

(n
h
@ [ n

c
@ )*\

P
0

2n d/
2n

[n0@ (/) [ n
c
@] , (A45)

we Ðnd, from equations (A28)È(A30) a system of equations that is identical to those obeyed in the singular idealization.
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