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ABSTRACT
The thermodynamics of the di†use, X-rayÈemitting gas in clusters of galaxies is determined by gravita-

tional processes associated with infalling gas, shock heating and adiabatic compression, and non-
gravitational processes such as heating by supernovae, stellar winds, activity in central galactic nuclei,
and radiative cooling. The e†ect of gravitational processes on the thermodynamics of the intracluster
medium (ICM) can be expressed in terms of the ICM entropy. The entropy is a convenient variable as
long as cooling is negligible, since it remains constant during the phase of adiabatic compression during
accretion into the potential well, and it shows a single steplike increase during shock heating. Obser-
vations indicate that nongravitational processes also play a key role in determining the distribution of
entropy in the ICM. In particular, an entropy excess with respect to that produced by purely gravita-
tional processes has been recently detected in the centers of low-temperature systems. This type of
entropy excess is believed to be responsible for many other properties of local X-ray clusters, including
the L -T relation and the Ñat density cores in clusters and groups.

In this paper we assume that the entropy excess is present in the intergalactic medium (IGM) baryons
before the gas is accreted by the dark matter halos and reaches high densities. We use a generalized
spherical model to compute the X-ray properties of groups and clusters for a range of initial entropy
levels in the IGM and for a range of mass scales, cosmic epochs, and background cosmologies. In partic-
ular, we follow the formation of adiabatic cores during the Ðrst stages of the gravitational collapse and
the subsequent evolution of the central entropy due to radiative energy loss. The model predicts the
statistical properties of the cluster population at a given epoch and also allows study of the evolution of
single X-ray halos as a function of their age.

We Ðnd that the statistical properties of the X-ray clusters strongly depend on the value of the initial
background entropy. Assuming a constant, uniform value for the background entropy, the present-day
X-ray data are well Ðtted for the following range of values of the adiabatic constant : K

*
4

ergs cm2 g~5@3 for clusters with average temperatures kT [ 2 keV andkB T /km
p
o2@3\ (0.4^ 0.1) ] 1034

ergs cm2 g~5@3 for groups and clusters with average temperatures keV.K
*

\ (0.2^ 0.1) ] 1034 kB T \ 2
These values correspond to di†erent excess energy per particle of keV. ThekB T º 0.1(K

*
/0.4] 1034)

dependence of on the mass scale can be well reproduced by an epoch-dependent external entropy :K
*the relation ergs cm2 g~5@3 Ðts the data over the whole temperature range.K

*
\ 0.8(1] z)~1] 1034

The model can be extended to include internal heating, but in this case the energy budget required to Ðt
the X-ray properties would be much higher. Observations of both local and distant clusters can be used
to trace the distribution and the evolution of the entropy in the cosmic baryons and to constrain the
typical epoch and the source of the heating processes. The X-ray satellites Chandra and XMM can add
to our knowledge of the history of the cosmic baryons, already derived from the high-redshift, low-
density gas observed in the QSO absorption-line clouds, by imaging the hot, higher density plasma
observed in groups and clusters of galaxies.
Subject headings : cosmology : theory È galaxies : clusters : general È hydrodynamics È X-rays : galaxies

1. INTRODUCTION

Clusters of galaxies are the largest virialized objects in the
universe and are usually considered a canonical data set for
testing cosmology. They are the largest collections of
di†use, highly ionized baryons that are directly observable
in X-rays mostly through thermal bremsstrahlung emission.
The strong dependence of X-ray emission on density L P o2
allows one to select clusters and deÐne complete samples
much better than in the optical band.

X-ray observations of cluster number counts, luminosity
functions, and temperature distributions indicate little
apparent evolution in clusters back to redshifts as high as
D0.7 (e.g., Henry 1997, 2000 ; Rosati et al. 1998 ; Schindler

1 Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34131 Trieste,
Italy.

2000), with the exception of very high luminosity objects or
very high redshifts (Gioia et al. 1990 ; Rosati et al. 2000).
This set of results provides one of the strongest challenges
to high-density cosmological models in which cluster evolu-
tion is expected to be detectable even at redshifts as low as
z^ 0.3. However, these tests are highly dependent on the
thermodynamic evolution of the intracluster medium (ICM)
(e.g., see Borgani et al. 1999 and references therein ; Bower
1997). The best-Ðt cosmological parameters are degenerate
with the phenomenological parameters used to describe the
evolutionary properties of the ICM. In fact, the di†use
baryons in clusters do not simply follow the dark matter, as
would be the case if they were driven only by gravity as in
self-similar models (Kaiser 1986). SigniÐcant e†orts have
been devoted recently to building a physical model for the
ICM including an energy scale at which baryons and dark
matter e†ectively decouple and the self-similarity is broken.
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The presence of a minimum entropy in the precollapse
intergalactic medium (IGM) has been advocated for some
time as a way to break the self-similar behavior naturally
(Kaiser 1991 ; Evrard & Henry 1991). Such an extra
entropy is the key ingredient in reproducing the observed
luminosity-temperature relation L P T n with n ^ 3 (David
et al. 1993 ; Mushotzky & Scharf 1997 ; Allen & Fabian
1998 ; Arnaud & Evrard 1999 ; Markevitch 1998), which is
at variance with the self-similar prediction L P T 2. Such an
entropy minimum bends the relation from self-similar
L P T 2 behavior at very large scales (D1015 toward aM

_
)

steeper slope on the scale of groups (D1013È1014 M
_
),

which is actually observed (Ponman et al. 1996 ; Helsdon &
Ponman 2000). The average L P T 3 relationship is essen-
tially produced by the Ñattening of the density distribution
in the cores of the X-ray halos ; such cores grow larger as the
mass scale decreases, and the luminosity steepens further on
the scale of groups, where the gas is only adiabatically com-
pressed (see Balogh, Babul, & Patton 1999 ; Cavaliere,
Menci, & Tozzi 1997, hereafter CMT97; Cavaliere, Menci,
& Tozzi 1999).

The picture has been reinforced by the net change
observed in the chemical properties and the spatial distribu-
tion of the ICM on the scale of groups, below the observed
temperature of 1 keV (Renzini 1997, 1999) where the e†ects
of the entropy excess are expected to be strongest. Another
piece of evidence can be obtained from the observed mass-
temperature relation (see Horner, Mushotzky, & Scharf
1999). Recently, an excess of entropy (with respect to the
self-similar scaling) has been directly detected in the central
regions of small clusters with temperatures between 1 and 3
keV (Ponman, Cannon, & Navarro 1999, hereafter PCN99;
see also Lloyd-Davies, Ponman, & Cannon 2000), pointing
to the role of the entropy as the key ingredient determining
the di†erent properties of clusters and groups.

Independent hints come from the extragalactic X-ray
background : without a substantial entropy injection at
early epochs, its level and correlation function would exceed
the observed limits, as a result of the widespread cooling
phenomena that would radiate most of the gravitational
energy of the collapsing baryons in the soft X-ray band (Pen
1999 ; Wu, Fabian, & Nulsen 2000b).

However, even if there are many hints pointing toward a
comprehensive picture, there is a large uncertainty on the
amount of extra energy that e†ectively generates the
entropy excess. It can be shown that it is the Ðnal entropy
distribution that determines both the spatial distribution of
the ICM and its evolutionary properties, irrespective of the
total energy released in the past. A given entropy level can
be reached through di†erent thermodynamic histories, so
that it is not possible to relate the ICM properties directly
to a given energy excess without knowing the detailed
physics of the heating processes. As we will show in this
paper, the Ðrst question to answer is not how much energy
has been released in the ICM, but rather, what is the
sequence of adiabats through which the baryons evolve?

It is difficult to predict a priori the entropy excess of the
cosmic baryons, since most of the processes regulating
nuclear activity, star and galaxy formation, and the transfer
of energy to the surrounding baryons are out of reach of
present-day techniques. Thus, at present there is no general
consensus on the production mechanism of such extra
entropy. For example, it is not clear whether the entropy
minimum has been established in the IGM before it has

been accreted (the external scenario) or in the high-density
ICM after accretion (the internal scenario). A di†erent
energy budget is required in the two di†erent scenarios : a
few tenths of a keV per particle are needed if the entropy is
generated early enough to keep the baryons on a high
adiabat, which prevents them from reaching high densities
and cooling massively ; much higher energy excess ([1 keV
per particle) is required if the entropy is generated later,
when the cooling process is eventually already widespread
and most of the gas is already at high densities (Tozzi,
Scharf, & Norman 2000, hereafter TSN00).

The external scenario, which we will assume as a refer-
ence model, is provided by a ubiquitous entropy Ñoor in the
di†use gas, which is entirely due to nongravitational pro-
cesses and is assumed to be in place before the onset of
gravitational collapse of massive halos. The initial extra
entropy is ine†ective in large-mass systems, where most of
the entropy is due to strong shocks, but is more important
in smaller mass systems, where the entropy production via
shocks is strongly reduced. Eventually a large part of the
baryons are merely adiabatically compressed and retain full
memory of the initial entropy level. The nongravitational
origin of the excess entropy is crucial, since its level is inde-
pendent of the mass scale and it breaks the self-similarity,
while gravitational processes always scale self-similarly with
mass.

We present a detailed model to relate the thermodynamic
properties of the ICM in groups and clusters of galaxies to
an initial entropy excess in the IGM, taking into account
the transition between the adiabatic and the shock regime
in the growth of X-rayÈemitting halos. The e†ect of radi-
ative cooling is also included. We show that, despite the
many complexities involved, the entropy is always a conve-
nient synthetic quantity to describe the thermodynamic
history of the cosmic baryons at least on the scale of groups
and clusters. In particular, we show that in many circum-
stances the entropy track of a shell of baryons being accret-
ed onto dark matter halos goes through three major
regimes : (1) adiabatic compression, during which both
heating and cooling are negligible and the entropy is con-
stant ; (2) steplike discontinuities due to gravitationally
induced shocks ; and (3) slow decrease when cooling
becomes efficient for baryons in the inner regions of large
halos. The entropy jump, the onset of cooling, and the Ðnal
spatial distribution of the ICM depend on the initial
entropy. Such an external, initial entropy level can be recon-
structed from the observation of a large number of distant
clusters or from the spatially and spectrally resolved proÐles
of nearby halos (see TSN00). Even if the knowledge of the
entropy does not resolve the details of the underlying
heating history and determine unambiguously the energy
budget, the combination of data in the X-ray band with
data in the optical and infrared bands can help to identify
the major source of heating. In principle, this allows a
detailed reconstruction of the energetic processes that a†ect
the cosmic baryons over a wide range of scales and cosmic
epochs.

The paper is organized as follows. In ° 2 we establish a
one-to-one correspondence between the entropy level and
the distribution of the ICM in halos in equilibrium. In ° 3
we present a generalized spherical infall model to follow the
entropy track of each shell. In ° 4 we derive the average
density and temperature proÐles and the related global
properties such as luminosity, emission-weighted tem-
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perature, and core radius, as a function of mass scale, cos-
mology, epoch, and dark matter proÐle. In ° 5 we widen the
parameter space and investigate a time-dependent back-
ground entropy to show how the evolution in the entropy
reÑects in the X-ray properties of clusters of galaxies. In ° 6
we discuss the limitation of the present approach. Finally,
our conclusions and future perspectives are presented in ° 7.

2. ICM THERMODYNAMICS : ENTROPY

The position, density, and temperature of each shell in
hydrostatic equilibrium in a given dark matter halo (whose
average properties are determined by its total virialized
mass at the epoch of observation can be unam-M0 z0)biguously recovered once the Ðnal entropy proÐle is known.
Assuming a spherical mass distribution, the equation of
hydrostatic equilibrium for di†use baryons in the potential
well is

1
o

dp
dx

\ [C
m(\x)

x2 , (1)

where the radius x, the pressure p, and the density o refer to
the baryons and are normalized to the respective values at
the last accreted shell at while m is the total massz\ z0,proÐle normalized to the total virialized mass. Explicitly,

andx 4R/R
s
, p 4 P/P

s
, o \ o

B
/o

s
, m(\x)4M(\x)/M0.Since dark matter and baryons are distributed di†erently,

we write The constant isM(\x)\MDM(\x) ] M
B
(\x).

where is the proton mass, G isC\[GM0 km
p
/R

s
kB T

s
, m

pthe gravitational constant, is the Boltzmann constant,kBand k is the molecular weight of the plasma (we will assume
k ^ 0.59 for a primordial IGM). is the temperature of theT

slast accreted baryonic shell. In the following we will refer to
the values of the last accreted shell as the shock value, even
in the limit of a vanishingly small shock. We assume that
hydrodynamic equilibrium is instantaneously established
after each accretion event.

We deÐne the adiabat (following theK 4 kB T /km
p
o
B
c~1

notation of Balogh et al. 1999), where S P ln (K) is the
entropy and c is the microscopic adiabatic index, which is

for a monoatomic gas. Using the perfect gas equation,c\ 53we can write the density in terms of pressure and entropy
normalized to the value at the last accreted shell, with each
shell scaled to the corresponding adiabat : o \ p1@ck~1@c,
where Substituting in equation (1), the equi-k 4 K(x)/K

s
.

librium pressure proÐle is rewritten as

dp
dx

\ [Cp1@ck~1@c m(\x)
x2 . (2)

The above expression allows us to calculate the thermody-
namic properties of a hydrostatic distribution of gas when
the adiabat proÐle K(x) is known. The main di†erence from
the usual solutions of the hydrostatic equilibrium equation
is that there is no need to assume a polytropic index, since
each shell already sits on its adiabat, which is determined by
its previous history, and the correspondence between
density and temperature is unambiguous.

The problem reduces to Ðnding the proper adiabat of
each infalling shell or the entropy as a function of the acc-
reted baryons, since the baryonic mass included in a given
shell is constant with time. This procedure is convenient
when applied to clusters of galaxies because the entropy is
conserved for the majority of the time. In fact, the dynamic
history of a shell of gas can be described in three steps : (1)

adiabatic compression during the infall, (2) shock heating at
the accretion, and (3) compression within the potential well
due to further growth of the halo. The entropy is therefore
constant during the Ðrst and third phase, and the jump at
the shock is the most important feature needed to recon-
struct the Ðnal proÐle. Cooling introduces further complex-
ity because for the inner, higher density shells, the radiative
loss becomes important, changing substantially the Ðnal
adiabats with respect to the initial value. However, as we
will see later, the cooling can be included in the above
picture, as long as the initial adiabat is not too low.

To begin with, we focus on the most important event in
the entropy history of each shell : the accretion epoch. To
calculate the value of K immediately after the accretion
shock, we need to estimate both the density and the tem-
perature of each shell after shock heating eventually raised
the adiabat from the external value to the postaccretion
value If a shock does not occur, the baryons are onlyK

i
(x).

adiabatically compressed and are accreted with the same
adiabat. To determine whether a shell is shocked or not
during accretion, we build a spherical infall model for the
baryons, generalized for di†erent cosmologies and epochs.

3. A GENERALIZED SPHERICAL MODEL

In the framework of the hierarchical clustering scenario,
the baryons are accreted along with the dark matter during
the process of gravitational collapse. An expanding accre-
tion shock at the interface of the inner hydrostatic gas with
a cooler, adiabatically compressed, external medium,
located approximately at the virial radius of the cluster, is a
long-standing prediction from such gravitationally driven
models (see the one-dimensional models of Bertschinger
1985 ; Ryu & Kang 1997 ; Knight & Ponman 1997 ; Taki-
zawa & Mineshige 1998 ; and see the three-dimensional
numerical simulations of Evrard 1990 ; Roettiger, Burns, &
Loken 1993 ; Metzler & Evrard 1994 ; Bryan & Norman
1998 ; Abadi, Bower, & Navarro 2000). Because of the
growth of the total virialized mass, the baryons accreted
later experience larger shocks, and the resulting entropy
proÐle is always growing outward. Such gravitationally
driven models predict X-ray properties that scale self-
similarly with mass and fail to reproduce the X-ray obser-
vations of clusters.

A nonnegligible value of the background entropy is
needed in order to break the self-similarity. In fact, an initial
adiabat will prevent shocks occurring below a given mass
scale. We now discuss the external scenario in which an
initial adiabat is imprinted on all the di†use IGM atK

*some epoch prior to the formation of the dark matter
potential wells. We refer to as to the backgroundK

*entropy established in the IGM by nongravitational pro-
cesses before the baryons are accreted.

3.1. Accretion and Shock Conditions
The most prominent feature of the entropy history of

each shell is the discontinuity at the accretion shock. To
calculate the discontinuity, we need to know the preshock
density and the temperature that the infalling gas reaches
moving along the initial adiabat before accretion. ThenK

*we calculate the postshock temperature and density using
mass, momentum, and energy conservation, in the limit of
complete thermalization of the kinetic energy of the gas.

The Ðrst important quantity is the infall velocity Thev
i
.

dependence of on the total mass enclosed by the shell canv
i
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be written as

v
i
2
2

\ vff2
2

] *W [ c
s
2

c[ 1
] c

s
2

c[ 1
Aota

o
e

Bc~1
, (3)

where is the density at turnaround, is the gas externalota o
edensity, is the sound speed (hereafter c\c

s
\ (cK

*
o
e
c~1)1@2

both calculated at the accretion radius and is the53), R
s
, vfffree-fall velocity of a particle containing always the same

amount of mass during the infall. Equation (3) is a gener-
alized version of the Bernoulli equation for an adiabatic,
spherically symmetrical accretion (Bondi 1952). The last
quantity can be written as

vff2
2

4
GM
R

s
[ GM

Rta
, (4)

where M is the total mass initially included by the baryonic
shell. The term *W is the contribution added to tovff2/2
obtain the total work done by the gravitational potential on
the baryonic shell, from the turnaround radius, to theRta,accretion radius, including the e†ect of the time-varyingR

s
,

enclosed mass. To evaluate this term, it is strictly necessary
to solve the trajectory of each baryonic shell. However, we
can make the simplifying assumption that the amount of
dark matter enclosed by each shell is a monotonically
growing function of time from the mass enclosed at turn-
around to the Ðnal mass enclosed at the shock radius. The
term *W is estimated in Appendix A, and the uncertainty
on it turns out to be approximately 10%È30%. We show
later that this error is not important in determining the
transition scale between the shock and the adiabatic regime.

The other two terms proportional to describe thec
s
2

energy needed to compress the gas. In fact, because of the
nonnegligible value of in the infalling IGM, part of theK

*gravitational energy goes into internal energy in an amount
proportional to the square of the sound speed in the exter-
nal IGM at the epoch of accretion, so that in general v

i
\

The compression term carries an increasing fraction ofvff.the potential energy when the mass of the system is lower
or, since the sound speed is proportional to when theK

*
1@2,

entropy is higher. The fourth term on the right-hand side of
equation (3) results from the initial condition for av

i
\ 0

gas shell at the turnaround radius, when the gas had a
density and it is assumed to be at the same contrast ofotathe dark matter. The epoch of turnaround is assumed to be
half of the infall epoch.

Of course, to solve equation (3) we need to evaluate o
e
.

To do this, we Ðrst note that the knowledge of both the
external density and the infall velocity gives the net infall
accretion rate of baryonic matter through the surface
deÐned by the shock radius. Then, we make the assumption
that the growth rate of the total virialized mass is pro-M0
portional to the growth rate of the thermalized baryonic
mass Here is the average total mass accretion rate asM0

B
. M0

predicted in the hierarchical clustering scenario. This means
that all the baryons that initially were in the same Lagrang-
ian volume of the mass that is currently virialized have
been accreted. The proportionality constant is simply the
average mass fraction of baryons in di†use form so thatf

B
,

at each epoch the fraction of accreted baryons (with respect
to the total baryons accreted at is equal to the frac-z\ z0)tion of the accreted matter to the total virialized mass at the
same Ðnal epoch. This does not imply that the baryons are
in the same volume; they are distributed in a volume typi-

cally larger than that of the accreted dark matter. This
occurs especially in the adiabatic regime, when the baryons
have too high a temperature to sink into the potential well
and thus the accretion radius is signiÐcantly larger than the
virial one. The constraint on the mass accretion rate trans-
lates into the relation

M0
B
\ f

B
M0 \ o

e
4nR

S
2
A
v
i
] dR

S
dt
B

, (5)

where is given for a particular cosmological model (seeM0
° 3.3). We can derive as a function of and then theo

e
v
i
,

external temperature is kB T
e
\km

p
K

*
o
e
2@3.

The condition determines if the shell is shocked. Inv
i
[ c

sthe frame of the infalling gas the shock expands with a
velocity In the case of a shock, we assume thatv

i
] dR

S
/dt.

all the kinetic energy of the infalling gas is thermalized (i.e.,
the postshock velocity in the rest frame of thevps \ 0
cluster) and obtain for the postshock temperature (Landau
& Lifshitz 1959 ; Cavaliere, Menci, & Tozzi 1998)

kB T
i
\ km

p
v
i
2

3
C(1] J1 ] v)2

4
] 7

10
v

[ 3
20

v2
(1] J1 ] v)2

D
, (6)

where v4 15kB T
e
/4km

p
v
i
2.

The postshock density is then where g is theo
i
\ go

e
,

shock compression factor, which depends on the postshock
temperature, and the external temperature, and isT

i
, T

e
,

given by (see CMT97)

g \ 2
A
1 [ T

e
T
i

B
]
C
4
A
1 [ T

e
T
i

B2] T
e

T
i

D1@2
. (7)

If the gas is shocked, we calculate the new adiabat K
i
\

of the baryonic shell after accretion. If thekB T
i
/km

p
o
i
2@3

infalling velocity is smaller than the sound speed in the
external IGM and the shock does not occur, the gas is
accreted adiabatically, and therefore the postaccretion
adiabat is the initial one which is all we need toK

i
\K

*
,

solve for the Ðnal equilibrium.
Thus, using equations (3), (6), and (7), we are able to

associate with each shell, including a mass of baryons,M
Bits postshock adiabat For a given object, theK

i
(M

B
).

adiabat of the infalling shells initially will be sinceK
i
\ K

*
,

for sufficiently low velocities the shocks are suppressed. As
the total mass grows, the velocities of the infalling shells rise
approximately as more rapidly than the soundv

i
P M1@3,

speed (which in general decreases with epoch, since c
s
P

and eventually a shock regime begins. Ino
e
1@3P 1 ] z),

Figure 1 the transition between the two regimes is shown as
a function of the accreted mass for a given initial adiabat

As it is shown in the Ðrst panel, the maximum uncer-K
*
.

tainty in the infalling velocity, grows toward the adia-v
i
,

batic regime, but it does not introduce a large error in the
transition scale, since the infall velocity falls steeply below

The rapid increase of both the infall and the free-fallc
s
.

velocity at the transition occurs because the gravitational
energy becomes sufficient to overcome the pressure support,
and the accretion radius moves from a relatively distant
position to a position very close to the virial radius. Clearly,
the presence of a larger further delays the onset of theK

*shock-heating regime, inhibiting adiabatic accretion for the
majority of the baryons, especially in small-mass systems.



No. 1, 2001 EVOLUTION OF X-RAY CLUSTERS 67

FIG. 1.ÈThick solid line shows the infall velocity computed at the shock radius of each baryonic shell as a function of the virialized mass (normalized tov
ithe Ðnal value). The uncertainties in are shown by dotted lines. Here we assumed (left panels) and ergs cm2 g~5@3 (right panels) inv

i
K

*
\ 0.2 K

*
\ 0.4] 1034

a low-density Ñat cosmology (see Table 1), for a Ðnal mass at z\ 0 of 1015 and 1014 h ~1 The thin solid line shows the free-fall velocity at the()0\ 0.3) M
_

.
position of the shock, while the dashed line shows the sound speed computed in the gas external to the shock. When the accretion process is entirelyc

s
v
i
\ c

s
,

adiabatic. The dot-dashed line shows the asymptotic behavior vP m1@3, which is reproduced in the strong shock regime, when the shock radius is close to the
virial radius.

At this stage, if we neglect further changes in the entropy,
the adiabat in the Ðnal position is simply andK(x)\ K

iequation (2) can be solved easily without any further steps.
However, for the inner shells, radiative cooling becomes
important and the calculation of the Ðnal adiabat requires
solving equation (2) at di†erent epochs, as explained in the
following subsection.

3.2. T he E†ect of Radiative Cooling
Each shell of gas is continuously changing its adiabat as a

result of cooling and heating processes. In particular, the
Ðrst baryonic shells that are accreted drain into the inner,
higher density regions of halos as the total virialized mass
grows and their cooling times become small enough to start
cooling processes. As a result, the Ðnal adiabat of these
baryonic shells will be lower than that at the accretion
epoch, and eventually part of the gas leaves the di†use,
emitting phase and sinks into the center.

We can model the cooling assuming a homogeneous,
single-temperature distribution (Fabian & Nulsen 1977 ;
Mathews & Bregman 1978) ; in this case the energy equa-

tion can be formally written as

d
dt

[ln (K)]\ [ 1
qcool(K)

, (8)

where the cooling time is deÐned asqcool

qcool 4
3
2

kB T
"net

o
B

km
p

, (9)

and therefore it depends on K through T , and Hereo
B
, "net.is the cooling rate including free-free and line emission"net(see Sutherland & Dopita 1993).

It is well known that cooling is a runaway process, and
the solution of equation (8) would require the computation
of the equilibrium proÐle at many di†erent epochs. Since we
still want to have the beneÐt of a relatively fast computa-
tion, much faster than a full hydrodynamic simulation, we
tackle the problem choosing a medium resolution in time
(*t ^ 0.3 Gyr) and solving equation (8) within *t for every
shell with an analytic approximation. This is possible if we
assume that the cooling process is isobaric within *t, in
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order to express both density and temperature as a function
of the adiabat K only. The pressure is updated at each time
step, following the new equilibrium conÐguration. An inter-
mediate step is to approximate the cooling function, "net,with an analytic function of the temperature. In this way the
change in the adiabat within *t can be derived as the inte-
gral of an analytic function, as described in Appendix B.

When the cooling times become very short in the center
of the halo, part of the gas may eventually cool in a single
time step *t (i.e., its entropy drops to zero). In this case, the
gas is removed from the di†use, emitting phase and is
included in a gravitational term as if it is all accumulated in
the very center. At this level, we do not implement more
sophisticated multiphase models, which can be important
for the detailed emissivity distribution in cooling Ñows.
However, we can follow the steepening of the baryonic
density in the center as the radiative cooling becomes effi-
cient and compute the corresponding amount of baryons
that drop out from the di†use phase. We stress the fact that
we are able to follow the complex cooling processes with
good accuracy by virtue of the initial entropy level. The
background entropy, in fact, delays and possibly inhibits
the onset of strong cooling Ñows. Our model breaks down
in the limit of small initial entropy, where the cooling catas-
trophe occurs.

The evolution of the adiabat as a function of cosmic
epoch for some given shells is plotted in Figure 2. The out-
ermost shells are accreted at later epochs. They are strongly
shocked and reach a high adiabat and Ðnd equilibrium at
large radii and low densities. Consequently, the cooling
times are always large, and the adiabat K stays almost con-
stant after the accretion. Conversely, inner shells are more
a†ected by cooling for two reasons : they reach much higher
densities (being in the central regions) and they have more
time to cool since they are accreted much earlier. Even-

FIG. 2.ÈThe evolution of the adiabat K for three baryonic shells is
shown as a function of cosmic epoch t ("CDM cosmology, for a Ðnal mass
of 1015 h~1 ergs cm2 g~5@3). The inner shells containM

_
, K

*
\ 0.3] 1034

1% of the total baryons, the second 10%, and the third 50%. The sharp
discontinuity, increasing for outer shells, occurs at the shock.

tually, the very inner shells reach very low entropy, corre-
sponding to extremely high densities and very short cooling
times, and they rapidly cool and drop out of the di†use
phase.

The calculation without the inclusion of cooling would be
much simpler, since the Ðnal adiabat would be the accretion
value for all the shells, and the hydrostatic equilibriumK

iwould be solved only once (at the Ðnal epoch However,z0).solving the equilibrium at several epochs allows us to follow
the evolution of the X-ray properties for each (average) dark
matter halo. In Figure 3 the evolution of temperature and
luminosity for three objects of 1015 (solid line), 1014 (dashed
line), and 1013 h~1 (dotted line) is shown for a constantM

_ergs cm2 g~5@3 in a "CDM cosmology. InK
*

\ 0.3] 1034
the third panel, the time evolution of the shock radius is
plotted for the same objects. The shock radius is normalized
to the virial radius at each epoch. It is possible to see how
the shock radius is close to the virial one for the largest halo
and relaxes in the last few gigayears when the mass accre-
tion slows down and the external pressure term correspond-
ingly decreases. The e†ect is more pronounced at lower
masses, where the internal pressure support is strong
enough to dominate the gravitational potential and the
external pressure term of the infalling gas.

In Figure 4 we plotted, for the same three Ðnal masses,
some relevant quantities averaged over the adiabatic cores,
deÐned as regions including the gas accreted during the
adiabatic regime. It is possible to see how the initial entropy

ergs cm2 g~5@3 introduces a large di†er-K
*

\ 0.3] 1034
ence in the central core as a function of mass. Central
densities are much higher for deeper potential wells. In
addition, the baryons in the center of massive clusters su†er
radiative losses, and the baryonic cores shrink to smaller
sizes and higher densities. In the second panel the average
entropy of the inner cores is shown. The decrease due to the

FIG. 3.ÈThe evolution of the total bolometric luminosity and of theL
xemission-weighted temperature is shown as a function of cosmic epochTewfor a Ðnal mass of 1015 (solid lines), 1014 (dotted lines), and 1013 h~1 M

_(dashed lines) for a "CDM cosmology, with a constant initial adiabat
ergs cm2 g~5@3. In the third panel the evolution of theK

*
\ 0.3] 1034

shock radius normalized to the virial radius at each epoch, is shown forR
s
,

the same halos.
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FIG. 4.ÈEvolution of the properties of the central adiabatic cores
shown as a function of cosmic epoch for a Ðnal mass of 1015 (solid lines),
1014 (dotted lines), and 1013 h~1 (dashed lines) for a "CDM cosmol-M

_ogy, with a constant initial adiabat ergs cm2 g~5@3. (a)K
*

\ 0.3] 1034
Average overdensity with respect to the critical value ; (b) average K ; (c)
average cooling time.

radiative cooling can reduce the initial entropy, especially in
the most massive halo. The decrease in the entropy is driven
by the decrease in the average cooling time shown in the
third panel. While the entropy is decreasing, the internal
energy of the gas is still rising as a result of the compres-
sional work done by the gravitational potential. However,
the trend of stronger cooling for larger masses is reversed in
the case of very small In fact, as long as there is nothingK

*
.

to prevent the baryons from cooling, the amount of radi-
ative losses is mainly set by the age of the halos.

3.3. Dark Matter Properties
In this section we brieÑy review the properties of the dark

matter halos that drive gravitationally the evolution of the
di†use baryons. In particular, we describe the mass proÐles
and the mass accretion rates in the framework of the hierar-
chical clustering scenario in universes dominated by cold
dark matter (CDM). However, the model can be generalized
to other cosmologies.

The boundary of a halo is the virial radius, deÐned as the
radius within which the average overdensity with respect to
the critical density is where for with a*

c
, *

c
\ 178 )0\ 1

mild dependence on (see, e.g., Eke et al. 1998). Analytical)0studies indicate simple power-law proÐles for the dark
matter, of the kind o P x~m, with (Gunn & Gott 1972 ;m \ 94Bertschinger 1985). Numerical works show a more complex
behavior, with a characteristic internal scale radius that
depends on the epoch and on the Ðnal mass (Navarro,
Frenk, & White 1997, hereafter NFW97; Moore et al. 1998).
A very general expression for the universal proÐle is

o \ o
c0

d
c

(cx/x
v
)l[1] (cx/x

v
)f]g

, (10)

where c is the mass-dependent concentration parameter of
the dark matter and is deÐned by requiring the averaged

c

density within with respect to the critical density to beR
VHere we used to be consistent with equation*

c
. x

v
4 R

v
/R

s(2) where the radius is normalized to Present calcu-R
s
.

lations di†er mainly in the inner regions, where NFW97
predict l\ 1, f\ 1, and g \ 2, while Moore et al. (1998)
have a steeper inner proÐle with l\ 1.5, f\ 1.5, and g \ 1.
From equation (10) the mass proÐles m(\r) entering equa-
tion (2) follow directly.

We will approximate the concentration parameter with
power laws, which turn out to be good approximations
(NFW97). The expressions used are described in Appendix
C. In general, the concentration parameter c depends on the
characteristic epoch of formation of the halo, which in turn
depends on cosmology, perturbation spectrum, andM0, z0(see NFW97). This is because the dark matter remembers the
epoch when each shell was accreted, even if the shell cross-
ing tends to erase such dynamical memory. For example, in
a standard CDM universe groups tend to have a larger
concentration (c^ 8) being formed at higher epochs when
the average density was higher, while clusters, being
younger, have a lower concentration (c^ 6). At higher red-
shifts the concentration parameters are generally lower,
since the di†erence in epoch (and thus in typical density)
between formation and the observation epochs isz0reduced. These trends will be included in our calculations.

The accretion processes in groups and clusters show con-
siderable scatter, as observed in numerical simulations and
Monte Carlo realizations of hierarchical clustering based
on the extended Press & Schechter (PS) formula (Press &
Schechter 1974 ; Bond et al. 1991 ; Bower 1991 ; Lacey &
Cole 1993). However, we are interested in the mass history
of typical halos, each of them labeled by the Ðnal mass M0and the Ðnal (observation) epoch for a given cosmology.z0,The natural way to proceed is to average over many realiza-
tions of the mass history of the main progenitor, deÐned as
the most massive halo participating in every mass accretion
event along the merger tree of a single object. We run 1000
Monte Carlo simulations of the mass history of the main
progenitor for di†erent Ðnal masses and di†erent ÐnalM0redshifts and in the two cosmologies dis-z0 (z0 \ 0 z0\ 1)
cussed below (tCDM and "CDM). We Ðnd that the average
mass growth of the main progenitor can be approximated
within a few percent by a parabola in the log (m)Èlog (1 ] z)
space :

m(z) \
A 1 ] z
1 ] z0

B~KB`A log *(1`z)@(1`z0)+L
, (11)

where A and B depend on cosmology, and EquationM0, z0.(11) is used to determine the accretion epoch of each bary-
onic shell after equation (5) and thus to compute its density,

at the accretion shock.o
e
,
The dispersion in the proÐles and in the accretion process

is likely to introduce some dispersion in the resulting X-ray
properties and is expected to explain partially the intrinsic
scatter observed in the L -T relation. The intrinsic scatter in
the emission is certainly due also to the presence of cooling
Ñows (Allen & Fabian 1998 ; Arnaud & Evrard 1999), which
in turn can be a†ected by both the dynamical and the
heating history of the gas. For these reasons, we focus on
typical halos averaging over many di†erent realizations and
considering the accretion of baryons as a smooth and con-
tinuous process. These assumptions clearly break down in
the case of massive merger events (see discussion in ° 6).
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4. RESULTS

Here we present the X-ray properties of groups and clus-
ters of galaxies in the case of a constant and homogeneous

in the external IGM. Our reference calculation will be aK
*Ñat, low-density cold dark matter universe ("CDM), which

is currently preferred on the basis of the measurements of
the expansion rate of the universe from high-z supernovae
(SNe) (Riess et al. 1998), from the cosmic microwave back-
ground (see Lange et al. 2000 ; Balbi et al. 2000), and of the
observation of a high baryonic fraction h~1.5 infobs[ 0.06
clusters (see Ettori & Fabian 1999), which is consistent with
standard nucleosynthesis if (White et al. 1993). The)0\ 0.3
baryonic density is assumed to be h~2 (Burles &)

B
\ 0.02

Tytler 1999a, 1999b), consistent with the standard primor-
dial nucleosynthesis scenario. From the di†use, X-rayÈ
emitting component, we exclude a fraction that is assumed
to be locked in stars since the beginning and is chosen to be
20% of the total baryons in halos (independent of the mass
scales and epoch, i.e., we assume a constant efficiency of star
formation). The fraction of baryons cooled in the center
instead is computed at each epoch and subtracted from the
di†use, X-rayÈemitting phase. For comparison, we will also
discuss a tilted cold dark matter universe (tCDM), where we
are forced to adopt a baryonic density h~2, larger)

B
\ 0.04

than the standard value, in order to be consistent with the
observed baryonic fraction. The details for the two uni-
verses are shown in Table 1. The values for A and B in the
two universes are determined with a s2 Ðtting of the average
mass histories with equation (11) and are reported in Table
2.

4.1. Density and Temperature ProÐles
First, we discuss a simple case in which the cooling is not

included, so that the Ðnal adiabat K(x) is equal to the value
at the accretion, This case shows the e†ects of theK

i
.

entropy excess alone without the intervention of cooling
processes. In Figure 5 we show the resulting proÐles for
"CDM at redshift for an initial wherez0\ 0, K34\ 0.3,

is in units of 1034 ergs cm2 g~5@3. This value corre-K34 K
*sponds to a temperature keV atkB T

*
^ 1.5 ] 10~2(1 ] z)2

the ambient density. The dark matter is distributed accord-
ing to the NFW97 proÐle. Three Ðnal masses are shown:

TABLE 1

COSMOLOGICAL PARAMETERS

Model )
M

)" h n p8
tCDM . . . . . . . 1.0 0.0 0.5 0.8 0.55
"CDM . . . . . . 0.3 0.7 0.7 1.0 1.1

NOTE.ÈHere h is the Hubble constant in units of
100 km s~1 Mpc~1, is the amplitude of the Ñuctua-p8tions at the scale of 8 h~1 Mpc, and n is the primordial
spectral index.

1014, and 1013 h~1 The plotted proÐles areM0\ 1015, M
_

.
all normalized at the corresponding shock values in order
to show how the scaling behavior departs from self-
similarity. Note, however, that the density and temperature
values at the shock in physical units are very di†erent in the
three cases.

A characteristic feature is the Ñat density proÐle of isen-
tropic gas in the core, which is relatively larger at smaller
masses (dashed lines, Fig. 5a). Such cores are built in the
initial, high-redshift stages of the accretion process, when
the accretion is adiabatic since the infall velocities are small
and shocks do not occur. This regime is relatively more
extended going to lower masses. The pressure is more e†ec-
tive in pushing the baryons over a region larger than that of
the dark matter (Fig. 5c). All this information is synthesized
in the entropy proÐles : at larger radii the entropy rises since
the outer shells experience stronger shocks (Fig. 5d). Since
the entropy is normalized to the value at the shock radius,
the constant entropy Ñoor in the center appears di†erent at
di†erent masses. The slope of the entropy proÐle in the
shock-dominated regime is almost independent of the initial
value yielding d ln (K)/d ln x ^ 1.1 ; this value is close toK

*
,

the value 1.3 expected for the simple case of an isothermal
proÐle where the entropy is due only to shock heating and

The sharp knee in the entropy proÐle is due to theM
B
P r.

fact that the transition from adiabatic accretion to strong
shocks is very fast, and the intermediate shock regime vir-
tually does not exist, so that during the shock regime the
entropy is always dominated by shock heating. In contrast,
in the center, isentropic cores are clearly emerging. The
ratio of mass accreted adiabatically to the total baryonic
mass is correspondingly larger at lower mass scales (Fig. 5e).

Here we note that a departure from a power-law behav-
ior for the entropy proÐle has been observed in hydrody-
namical simulations where neither radiative cooling nor
extra entropy was included (see Frenk et al. 1999). This may
suggest that departures from a power-law behavior in the
entropy proÐle can also be originated by asphericity.

The temperature proÐles (Fig. 5b) do show mild gradients
in the regions where the gas has been shocked (variation less
than a factor of 3 between and while they showR

s
0.1R

s
),

considerable gradients when the entropy is constant, follow-
ing Part of the large gradient in the smallestT PK

*
o2@3.

system corresponds to very low luminosity regions, where
the gas is relaxed as a result of the very small pressure term.
These regions and the corresponding large temperature gra-
dients have never been observed. In fact, if we compute the
temperature gradient in the inner regions of halos with

h~1 we Ðnd an increase of about 2 within aM0\ 1013 M
_

,
radius of h~1 kpc, an e†ect hardly visible, e.g.,0.1R

S
^ 100

in the data by ROSAT .
A good quantity to characterize the properties of the

temperature proÐle is the e†ective polytropic index deÐned
by the relation In general, a family of polytropicp P ocp.

TABLE 2

COEFFICIENTS A AND B FOR THE MASS HISTORIES OF THE MAIN PROGENITORS

Model, z0 1012 h~1 M
_

1013 h~1 M
_

1014 h~1 M
_

1015 h~1 M
_

tCDM, z0\ 0 . . . . . . . 2.30È0.60 2.51È0.87 2.56È1.40 2.46È2.32
tCDM, z0\ 1 . . . . . . . 3.02È1.78 3.20È2.36 2.82È3.32 1.76È5.05
"CDM, z0\ 0 . . . . . . 1.50È0.12 1.86È0.18 2.14È0.46 2.38È0.94
"CDM, z0\ 1 . . . . . . 1.92È0.88 2.38È1.14 2.48È1.82 2.20È2.94
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FIG. 5.ÈProÐles of density, temperature, pressure, entropy, baryonic mass, and polytropic index as a function of the normalized radius forx 4 R/R
sclusters of di†erent mass (1015, 1014, and 1013 h~1 as labeled by the log of the mass) in "CDM at z\ 0. Each quantity is normalized with respect to theM

_corresponding value at the shock, in order to show departures from self-similarity. The external, initial adiabat is ergs cm2 g~5@3 constantK
*

\ 0.3] 1034
with mass scale and epoch. The dark matter proÐles are from NFW97. No cooling is assumed. The dashed lines are for baryons accreted adiabatically

while the solid lines are for the shocked gas.[K(x)\ K
*
],

relations can be used to describe the ICM and investigate
the energy budget underlying each polytropic family
(Loewenstein 2000). As a result of the combined action of
shock heating and adiabatic compression, the index isc

pfound to be between the adiabatic core and thec
p
^ 0.8È1.2

shock radius, roughly consistent with an isothermal tem-
perature proÐle [in the Ðgure we show the value of aver-c

paged over * log (x)\ 0.3]. In the adiabatic cores the
polytropic index is simply since all the gas is onc

p
\ c\ 53,

the same adiabat.
To elucidate how the breaking of self-similarity occurs, in

Figure 6 we show the same proÐles for a negligible value of
the external entropy, but without the inclusion of cooling.
This is what we call the self-similar case, which is di†erent
from the more realistic case of negligible entropy and the
inclusion of cooling, since cooling also alters the entropy
proÐle, as shown in ° 4.4. In the absence of an entropy Ñoor,
the proÐle K(x) always decreases at smaller radii and

exhibits a power-law behavior without any particular scale.
The only di†erences between groups and clusters are now
driven by the dark matter distributions. Despite the pres-
sure support, the gas essentially follows the dark matter,
and groups appear more concentrated than clusters,
reversing the trend of Figure 5.

In the case the cooling starts very early andK
*

^ 0
deeply a†ects the proÐles of massive clusters. The majority
of the initially di†use baryons cool in the center of small
halos, where, without an e†ective background entropy,
nothing prevents the baryons from cooling and the lumi-
nosity is dominated by the central regions. The cooling
selectively removes the lower entropy gas in the center of
lower mass objects, helping to create an entropy plateau at
the very center, but with the entropy entirely produced by
gravitational processes. This mechanism to create an
entropy plateau has been advocated by PCN99, but a large
amount of cooled baryons need to be accommodated in the
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FIG. 6.ÈSame as in Fig. 5 for "CDM, but with a negligible entropy and without the inclusion of cooling (self-similar case). All the gas is shocked. These
proÐles should be compared with Fig. 5, to point out how the negligible entropy excess makes the baryons follow the dark matter and produce an opposite
behavior for which the groups are more centrally concentrated than clusters, as predicted by NFW97. Note that the entropy proÐles are the same at all scales.

center. The strongest evidence for the presence of a back-
ground entropy at high z is given by the low fraction of
baryons in stars with respect to the total baryons available,
which implies a strong suppression of the cooling processes
especially in low-mass halos (see Prunet & Blanchard 1999).

Figure 7 shows the case with and with theK34\ 0.3
inclusion of cooling. This case can be considered a realistic,
complete scenario. As we shall see later, this value of the
background entropy gives a good Ðt to the L -T relation.
The inclusion of cooling introduced some change with
respect to Figure 5, especially in the very inner regions,
where the entropy evolved toward lower values. However,
the entropy excess in the center is still present (Fig. 5d).
Cores with constant density appear more peaked, but small
groups still show much Ñatter density proÐles with respect
to large clusters. The temperature proÐles are lower, and the
polytropic index is rapidly decreasing in the center.c

pFor a more comprehensive view, the di†erences in the
density proÐles can be expressed in terms of Ðtting parame-

ters b and after adopting a b-model (Cavaliere & Fuscor
cFemiano 1976). The results are shown in Figure 8. The bfitparameter is ^0.8 in "CDM at z\ 0 and about 0.6 at

z\ 1. The density proÐles are slightly steeper in the outer
regions at smaller masses. However, the most prominent
feature is the core radius, whose scaling departs from the
self-similar behavior RP M1@3 (dotted line) below 1 keV.
No signiÐcant di†erences are predicted in the tCDM uni-
verse. The Ñattening of the R-M or the R-T relation has
been clearly detected in the data and related to heating
processes by Mohr & Evrard (1997) ; note, however, that
they plotted an isophotal radius, which is a much better
deÐned quantity from the observational point of view.
Smaller cores are found at higher z, since all the linear
dimensions are reduced approximately by a factor (1] z).

We note that our results di†er from those found by Fujita
& Takahara (2000). In fact, their assumption of isother-
mality allows them to relate the b parameter directly to the
temperature of the external gas. This is no longer valid in



1

10

100

1000

No. 1, 2001 EVOLUTION OF X-RAY CLUSTERS 73

FIG. 7.ÈSame as in Fig. 5 for "CDM, but with the inclusion of cooling ; the external, initial adiabat is ergs cm2 g~5@3. Note in panel (d)K
*

\ 0.3] 1034
that the entropy plateau in the center has been partially erased by cooling. The polytropic indices are averaged over * log (x)\ 0.3.c

p

our model, where the entropy of the external gas a†ects the
dimension of the adiabatic core breaking the self-similarr

c
,

scaling, while yielding a b parameter independent of the
mass.

Finally, we note that our values of b are somewhat larger
than that observed in clusters (see Mohr, Mathiesen, &
Evrard 1999). This may be due to our Ðtting procedure,
which extends up to the shock radius. In fact, our proÐles
are steeper than a b-model at large radii, and the best Ðts
usually give larger b for larger cores in order to reproduce
the rapid steepening of the proÐles out of the core. The
outer regions are generally too weak to be detected in
ROSAT data, since their surface brightness is below 10~15
ergs s~1 cm~2 arcmin~2 (see TSN00). On the other hand,
such regions are expected to be efficiently detected in the
future Chandra and XMM data.

4.2. T he E†ect of Cosmology and Dark Matter
From the considerations above, it is clear that the level of

the initial adiabat strongly a†ects the Ðnal properties of the
ICM and that, in principle, it is not necessary to invoke

substantial heating after the collapse, provided that K34^
0.3. The proÐles are a†ected also by changing the cosmo-
logical background, the epoch of observations, or the dark
matter proÐle. To show these variations, not directly related
to the entropy, in Figure 9 we plot the density and tem-
perature proÐles, along with the polytropic index, for a
typical massive cluster (0.6] 1015 h~1 correspondingM

_
,

to a virial temperature of keV), changing in turnkB T ^ 5
cosmology, epoch, and dark matter proÐle and comparing
them to the case with "CDM at z\ 0, NFW97 proÐle,

The cooling is included for all the cases.K34 \ 0.4.
A steeper dark matter proÐle (Moore et al. 1998) gives

higher gas densities in the center (dashed line, Fig. 9). The
temperature gradient is correspondingly larger. In any case

is always bounded between 0.9 and 1.2 outside the adia-c
pbatic core. In principle, observations can discriminate

between di†erent dark matter proÐles, and the observed
temperature proÐles (see Markevitch 1998) would favor
proÐles steeper than NFW97, but we recall that this minor
e†ect can be overwhelmed by changes in the entropy or by
the presence of substructure.
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parameter and the core radius as a function of the massFIG. 8.Èbfit r
cscale derived by Ðtting the predicted proÐles with a b-model. The initial

entropy is ergs cm2 g~5@3, constant with epoch, and theK
*

\ 0.3] 1034
cooling is included. The thick lines refer to z\ 0 and the thin lines to z\ 1.
The "CDM universe is shown with solid lines, while tCDM is shown with
dashed lines. A self-similar scaling radius (r P M1@3) is shown with a dotted
line for comparison.

At higher redshifts (here we focus on a typical value of
z\ 1, which is the nominal goal of the future X-ray surveys)
the adiabatic accretion is relatively more extended in time
during the lifetime of the object, and, for the same value of

FIG. 9.ÈThick solid lines show (a) the normalized density and (b) the
normalized temperature proÐles for a cluster of M \ 0.6] 1015 h~1 M

_keV) in "CDM starting from the external adiabat(kB T ^ 5 K
*

\ 0.4
ergs cm2 g~5@3 (cooling is included). For comparison, we show the] 1034

e†ect of changes in the dark matter proÐle from NFW97 to Moore et al.
1998 (dashed lines), of the epoch from z\ 0 to z\ 1 (dot-dashed lines), and
of cosmology from "CDM to tCDM (dotted line). In panel (c) the corre-
sponding polytropic indices are shown [averaged over * log (x) \ 0.3].c

p

the imprint of the background entropy is more evident.K
*
,

This is because virialized objects form at a total density
contrast that is almost constant with respect to the critical
density, and the baryons will consequently reach larger den-
sities before being accreted. These larger densities translate
into preshock temperatures larger approximately by a
factor (1 ] z)2, and thus in a larger sound speed c

s
P

(1] z). On average, the shock condition is harder to satisfy
since the infalling velocities scale only as v

i
P (1] z)1@2,

and, consequently, a larger number of baryons are accreted
adiabatically. The resulting density and temperature pro-
Ðles are Ñatter (dot-dashed line, Fig. 9). This e†ect adds
to the Ñattening of the total dark matter proÐle at high
redshift, as envisaged by NFW97. As we will see, this
mechanism is responsible for keeping the L -T relation
approximately constant with redshift.

The case for a tCDM cosmology at z\ 0 (dotted line, Fig.
9) shows Ñatter proÐles. This is easily understood if we
recall that the external density is proportional to the mass
accretion rate and that the mass accretion rates are higher
at z\ 0 in tCDM with respect to "CDM (similar to the
rates at z\ 1 in "CDM for objects of the same mass). In
general, the cosmology does not have a large e†ect on the
evolution of the L -T .

4.3. T he Shock Radius and the Baryonic Fraction
The boundaries of the emitting gas are given by the shock

radius of the last accreted shell, where there is a discontin-
uity between the inner hot gas and the outer cooler gas. The
outer unshocked gas gives also a contribution to the emis-
sion and can be detected in the outskirts of rich clusters
giving important information on the entropy level of the
external baryons (TSN00). It always gives a small contribu-
tion if compared to the total emission from the cluster, and
here it is neglected. For very small mass objects, the last
accretion radius is quite distant from the virial radius, in a
region of very low density and very low infall velocity. The
shocks are typically very weak, and the gravitational
entropy production is negligible. In such low-mass objects
the X-ray emission is expected to fade outward without
discontinuity.

The position of the last accreting shell is calculated
simply using mass conservation. In fact, following equation
(5), the total mass of di†use baryons involved in the cluster
collapse is equal to the mass included in the initial com-
oving region, after subtraction of the baryons inM

B
\ f

B
M,

stars and the cooled baryons in the center, which depend on
epoch and mass. Because of the di†erent distribution of the
baryons with respect to the dark matter, the ratio of the
shock to the virial radius is a function of epoch and of the
total mass accreted, as shown in Figure 3. In Figure 10a we
show the position of the Ðnal shock radius with respect to
the virial one at redshift At small masses, where thez0 \ 0.
gas distribution is Ñatter and more extended, the shock
radius can be ^2 times larger than the virial radius. In
other words, the external gas does not fall into the potential
well but is accumulated at large radii. At very high masses
the accretion rates are larger, and the pressure term can be
important, giving, for high-density universes, a shock radius
slightly smaller than the virial radius. The same happens at
higher redshift when the accretion rates are correspondingly
larger. In any case, for large-mass systems the shock radius
is expected to remain close to the virial radius of the cluster,
as was predicted in numerical simulations (see, e.g., Taki-
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FIG. 10.È(a) Ratio of the shock radius of the last accreted shell to the
virial radius as a function of the mass scale. (b) Baryonic fraction (with
respect to the universal baryonic fraction) within the virial radius as a
function of mass. The background entropy is ergs cm2K

*
\ 0.3] 1034

g~5@3 constant with epoch, and cooling is included. The thick lines refer to
z\ 0 and the thin lines to z\ 1. The "CDM universe is shown with solid
lines, while tCDM is shown with dashed lines.

zawa & Mineshige 1998). Slightly larger shock radii are
predicted for higher values of the background entropy.

Here the ratio of the mass in baryons within the shock
radius to the total mass within the virial radius is, by deÐni-
tion, always equal to the universal average baryonic frac-
tion. However, since the two radii are generally di†erent,
the observed baryonic fraction within the virial radius will
be a growing fraction of the mass scales. In Figure 10b the
baryonic fraction within the virial radius is shown as aR

vfunction of the total virialized mass. The largest variations
are between masses 1013 and 1014 h~1 roughly corre-M

_
,

sponding to temperatures below 1 keV at z\ 0. In any case,
any entropy excess, irrespective of the origin (external or
internal), always tends to pu† up the baryons with respect
to the dark matter (as observed in numerical simulations ;
see Pearce, Thomas, & Couchman 1994 ; Tittley & Couch-
man 2000). This reinforces the case for a low-density uni-
verse derived from the observed high ratio of baryonic to
total mass.

4.4. T he Energy Budget
An important quantity is the amount of nongravitational

energy per particle corresponding to The temperatureK
*
.

corresponding to a given adiabat is kBT ^3.2]10~2K34(1keV, where d is the overdensity with respect to] z
h
)2d2@3

the ambient density at and is the epoch of the heating.z
h

z
hThe assumption of an initial and homogeneous impliesK

*that the entropy of each shell must be in place at turn-
around. At this epoch the density of the shell is assumed to
be the background value. Thus, the minimum energy rel-
eased in the gas can be computed as

kB Tmin\ 3.2] 10~2K34
1

M0

P
0

M0
[1] zta(M)]2 dM . (12)

In the case of a "CDM universe we have kB Tmin^
keV with a small dependence on the Ðnal mass0.1(K34/0.4)

M0.As we have already discussed, starting from a high
adiabat is not the only way to prevent massive cooling,
since nongravitational heating in the center of the clusters
could help in reestablishing the entropy Ñoor. However, the
energy needed to reestablish the entropy Ñoor after accre-
tion is much higher than the energy needed to put the
baryons initially on the right adiabat. If the baryons are
heated preferentially at higher density, the excess energy is
higher by a factor d2@3. However, this is not the only reason
for a larger energetic budget. In fact, another advantage in
heating the gas at lower densities is that radiative cooling is
not able to reemit the energy on very short timescales.

To make a simple example without the cooling, if the
baryons are heated at z^ 0 when they are at an average
density contrast equal to 200, typical of virialization, we
would obtain keV. However, this value under-kB T ^ 0.3
estimates the real energy budget, since the density in the
center, where the entropy excess is expected, is much higher
than the average contrast, and z^ 0 is in any case too late
to inject the extra energy. A more realistic calculation for
the center of rich clusters can require more than 2 keV per
particle (see ° 7 and TSN00) to establish a density core and
eventually halt the cooling in the center. These arguments
show clearly how the same entropy level, which determines
all the X-ray emission properties, can be due to very di†er-
ent heating balances. In this respect, the distribution of
metallicity in the ICM may be useful in calculating the
actual amount of excess energy dumped into the baryons.

4.5. T he L uminosity-Temperature-Mass Relations and the
Entropy-Temperature Plot

We can derive the average relation between the bolo-
metric luminosity, the emission-weighted temperature, and
the total virialized mass. The bolometric luminosity over
the whole emitting volume deÐned by isR

s

L
x
\
P
0

Rsv(r)dV ergs s~1 , (13)

where v(r) is the emissivity per unit volume, including free-
free and line emission, expressed by

v\ n
e
n
i
"

N
ergs s~1 cm~3 , (14)

where and are the electron and ion density, respec-n
e

n
itively, and is the normalized cooling function depending"

Non temperature and metallicity (from Sutherland & Dopita
1993). We adopt a value of Z\ 0.3 as observed on theZ

_
,

scale of clusters keV). Such a value is currently(kB T [ 2
observed on the scale of groups with large uncertainties, as
a result of difficult line diagnostic and poor temperature
resolution (Renzini 1997 ; Buote 2000). However, since the
cooling function includes emission over a range of energies
wider than the usual X-ray bands, we cut the emission at
energies lower than 0.1 keV.

The emission-weighted temperature deÐned over the
entire emitting volume is

kB Tew 4
/0Rs kB T (r)v(r)dV

/0Rs v(r)dV
keV . (15)

The results are shown in Figures 11 and 12 for "CDM and
tCDM, respectively, for with the inclusion ofK34\ 0.3,
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FIG. 11.ÈRelation between bolometric luminosity and emission-
weighted temperature in "CDM. The entropy background is K

*
\ 0.3

ergs cm2 g~5@3 constant with epoch, and the cooling is included.] 1034
Data are from Arnaud & Evrard (1999 ; Ðlled squares), Allen & Fabian
(1998 ; empty triangles), and Ponman et al. (1996 ; empty squares). The
dashed lines refer to the self-similar case, while thick lines refer to z0\ 0
and thin lines to The lower thick solid line for keVz0\ 1. kB T ¹ 1.5
shows the L -T relation at z\ 0 deÐned within the projected radius of 100
h~1 kpc as in Ponman et al. (1996). The lower thick dot-dashed line shows
the same for ergs cm2 g~5@3.K

*
\ 0.2] 1034

cooling. The self-similar case is shown for comparison
(dashed line). Data are taken from Arnaud & Evrard (1999)
and Allen & Fabian (1998) for the clusters and from
Ponman et al. (1996) for the groups. An important issue

FIG. 12.ÈRelation between bolometric luminosity and emission-
weighted temperature in tCDM; notations as in Fig. 11. Note that we are
forced to use a baryonic density h~2, which is at least twice the)

B
\ 0.04

value from standard nucleosynthesis constraints. The lower thick line for
keV shows the L -T relation at z\ 0 deÐned within the project-kB T ¹ 1.5

ed radius of 100 h~1 kpc as in Ponman et al. (1996). Data are as in Fig. 11.

here is that the total luminosity emitted by all the accreted
gas (light curves, Figs. 11 and 12) overestimates the lumi-
nosities found by Ponman et al. (1996) at temperatures
below 1 keV. This is because the luminosities of the
observed groups are deÐned within the Ðxed projected
radius of 100 h~1 kpc. Therefore, we also calculated the
luminosity and the emission-weighted temperature per-
forming the integrals of equations (13) and (15) over the
cylindrical volume deÐned by the projected radius of 100
h~1 kpc. We show both the total luminosity, including all
the gas even at and the luminosity within 100 h~1R

s
?R

v
,

kpc. The lower values with respect to the global L -T rela-
tion are due to a factor of in luminosity due to the^13exclusion of the low surface brightness gas at radii larger
than 100 h~1 kpc, as well as the factor of ¹2 gained in the
emission-weighted temperature since only the inner regions,
with strong temperature gradients, are included. Thus, in
the simple scenario of an external the groups areK

*
,

expected to be surrounded by a large halo of surface bright-
ness ^10~16 ergs s~1 cm~2 arcmin~2. Its detection would
constitute an important test for the external entropy sce-
nario (TSN00).

In Figure 11 we also show the prediction for the lumi-
nosity within 100 h~1 kpc in the cases whichK34 \ 0.2,
turns out to give better Ðts for the groups. Thus, even if
clusters with keV seem to require akB T [ 2 K34 ^ 0.3È0.4,
lower value gives a better Ðt to the low end of theK

*
^ 0.2

L -T relation. As we will see below, this is conÐrmed by the
entropy-temperature relation.

It is clear how the presence of the background entropy
bends the L -T relation from the self-similar slope to an
average L P T 3. However, with this simple model it is diffi-
cult to reproduce the steepening below 1 keV. This is par-
tially due to inclusion of line emission, which prevents the
L -T relation from reaching the adiabatic slope L P T 5. In
fact, for a metallicity Z[ 0.1 the slope of the emissionZ

_curve between 0.3 and 1 keV is virtually zero, or even nega-
tive. In this case the asymptotic slope will be Ñatter than T 4.

The M-T relation at small masses is lower with respect to
the relation between mass and virial temperature (dashed
lines ; see eq. [2.2] in Eke et al. 1998), which is reproduced
by our self-similar case. The predicted M-T relation in
"CDM with is consistent with the recentK34 \ 0.4^ 0.2
Ðnding of Nevalainen, Markevitch, & Forman (2000). Note
that the values plotted in Figures 13 and 14 are rescaled to
the virial mass from the mass quoted in the paper, using the
corresponding NFW97 proÐle. The steepening of the tem-
perature proÐles in the adiabatic cores gives higher
emission-weighted temperatures, ^25% larger than the
corresponding virial temperatures for keV. ThiskB T \ 2
translates into an uncertainty of less than a factor of 2 in the
total mass (using the self-similar relation). The evolution is
similar to that of the self-similar case, and the di†erence in
slope is preserved. In the tCDM case, the M-T relation is
higher and gives a poor Ðt to the data of Nevalainen et al.
(2000).

The slope of the L -T relation is a†ected by di†erent
values of as shown in Figure 15 at z\ 0 in a "CDMK

*universe. Lower values gradually approach the self-similar
relation L P T 2. However, the self-similar scaling is never
reached in the limit as a result of the cooling catas-K

*
] 0,

trophe. We recall that our ability to include the cooling
processes in the cases presented here is due to the non-
negligible initial entropy level. If the coolingK34> 0.05,
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FIG. 13.ÈRelation between virial mass and emission-weighted tem-
perature in "CDM; data from Nevalainen et al. (2000). The entropy back-
ground is ergs cm2 g~5@3 constant with epoch, and theK

*
\ 0.3] 1034

cooling is included. The dashed lines refer to the self-similar case, while
thick lines refer to and thin lines to Note that the mass hasz0\ 0 z0\ 1.
been rescaled from to the virial value using the correspondingM500NFW97 proÐle.

processes are too strong and our computation scheme
becomes inadequate. The M-T relation is less a†ected by
changes in (see Fig. 16).K

*All of the above physics inÑuences the relation between
the central entropy (measured at a radius and ther \ 0.1R

v
)

temperature, as shown in PCN99. The emergence of the
entropy Ñoor at small scales (low temperatures) is directly

FIG. 14.ÈRelation between emission-weighted temperature and virial
mass in tCDM. The entropy background is ergs cm2K

*
\ 0.3] 1034

g~5@3 constant with epoch, and the cooling is included. The dashed lines
refer to the self-similar case, while thick lines refer to and thin linesz0\ 0
to Data are as in Fig. 13.z0\ 1.

FIG. 15.ÈThin lines show the L -T relation at z\ 0 in "CDM for
di†erent values of the initial adiabat (background entropy). Top to bottom:

0.2, 0.3, 0.4, 0.5, and 0.6] 1034 ergs cm2 g~5@3. The thick seg-K
*

\ 0.1,
ments show the prediction limited to the inner 100 h~1 kpc for K

*
\ 0.2,

0.3, and 0.4 ] 1034 ergs cm2 g~5@3. Data are as in Fig. 11.

seen as a departure from the self-similar expectations,
shown as a dashed line in Figure 17.2 Note that in this case
the adiabat is deÐned di†erently, using the electron density
instead of the mass density : keV cm2. TheK

P
4 kB T /n

e
2@3

relation between the two deÐnitions is K
P
\ 0.95] 103K34.In this respect, the value observed should be considered

2 The entropy is computed using the predicted local value of the tem-
perature at very similar values are obtained using the emission-r \ 0.1R

v
;

weighted temperature as e†ectively used in PCN99.

FIG. 16.ÈM-T relation "CDM for di†erent values of the initial
adiabat : 0.4, and 0.6 ] 1034 ergs cm2 g~5@3 (dashed, solid, andK

*
\ 0.2,

dotted lines, respectively). Data are as in Fig. 13.
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FIG. 17.ÈRelation between central entropy deÐned as in PCN99 as
at as a function of the local temperature T (r) for "CDMT /n

e
2@3 r \ 0.1R

v
,

at redshift z\ 0 for di†erent values of the background entropy K
*

\ 0.4,
0.3, 0.2, and 0.1] 1034 ergs cm2 g~5@3 (top to bottom). Data are from
PCN99. The dashed line is the self-similar case from N-body simulations,
after PCN99.

indicative of the average entropy in the center of the halos.
The entropy Ñoor is clearly matched at for 0.1\kB T \ 2

In particular, reproduce both theK34 \ 0.4. K34\ 0.2È0.3
L -T and K-T relations over the whole temperature range.

5. THE ENTROPY HISTORY OF THE UNIVERSE AND THE

X-RAY EVOLUTION OF CLUSTERS

From the above results, it is clear that a signiÐcant back-
ground entropy, present in the IGM before the forma-S

*
,

tion of large dark matter halos a†ects the X-ray properties
of groups and clusters and can explain many scaling
properties. However, the assumption of a uniform Ñoor of
entropy for all the baryons could be too simplistic. As we
showed, the data seem to require a growing value of atK

*larger mass scales : for keV andK34 ^ 0.2 kB T \ 2 K34^
0.4 for keV. In terms of physical mechanisms, it iskB T [ 2
reasonable to expect that is correlated with higherS

*density regions where star formation or nuclear activity
preferentially occurs. For example, if the excess entropy is
linked to star formation processes, an entropy excess should
be observed in the di†use baryons expelled by galaxies at
high redshift. The distribution of entropy should follow the
light distribution and should show a dependence on cosmic
time that parallels the birth of the Ðrst stars and QSOs. This
topic can be addressed not only with X-ray observations
but also with the UV and optical investigation of the low-
density baryons detected, e.g., as Lya clouds. Here we will
discuss in greater detail the scenario with a uniform external
entropy, but relaxing the assumption of a constant K

*
.

We already know that the IGM that is observed in high-z
Lya clouds generally shows an entropy level lower than that
observed in the centers of groups. An approximate relation
derived from the observations is KLya \ (1.2^ 0.5)10~2
(1] z)~1] 1034 ergs g~5@3 cm2 (extrapolated from Fig. 10b
in Ricotti, Gnedin, & Shull 2000 ; see also Schaye et al.
1999). Thus, the ratio of the value observed in the centerKgr

of the groups to that observed in Lya is about Kgr/KLyaº10(1] z). This may indicate that the ICM baryons undergo
substantial heating with respect to the baryons observed in
Lya or, possibly, that the baryons seen in Lya clouds are
not the same baryons that will be later accreted in clusters.
Furthermore, the chemical properties of the IGM seen in
the Lya forest are clearly di†erent from those of the ICM in
clusters, showing that the ICM was a†ected by star forma-
tion processes and chemical enrichment to a larger extent
with respect to the Lya clouds, with a commensurate
amount of entropy production. In this respect, it will be
interesting to observe the tenuous gas being accreted in the
outskirts of nearby, large clusters, but not yet shocked, or at
large radii in small groups, and compare it with the gas
observed in di†erent environments at di†erent cosmic
epochs. Such observations would complement the investi-
gation of the entropy excess as observed in nearby and
distant clusters.

As expected, the evolution of the background entropy
a†ects both the evolution and the shape of the L -T relation.
We already emphasized the fact that the uncertainty in the
evolution of the L -T -M relations reÑects on the uncertainty
in the derivation of cosmological parameters from the
cluster abundance evolution. The L -M relation is, in fact,
the link between the cluster mass function (predictable for a
given cosmology with numerical or analytical calculation)
and the observed X-ray luminosity distribution. The com-
plexities due to the evolution in the luminosity are only
partially avoided when directly using the temperature. In
fact, selection e†ects for Ñux-limited samples add to the
evolution of the emission-weighted temperatures (see Eke et
al. 1998).

If the minimum background entropy is kept constantS
*at every epoch, the evolution of the L -T relation is essen-

tially frozen, or mildly negative, even at redshifts as high as
z\ 1, as already shown in Figures 11 and 12. The evolution
of L at Ðxed is negative especially at small temperature.TewThis global behavior is in agreement with the claim for null
evolution of the L -T at redshift z^ 0.4 (Mushotzky &
Scharf 1997). A nonevolving L -T relation, suggested also by
the present data on the luminosity function at high redshifts
(z[ 0.5), would strengthen a low-density, eventually Ñat
universe (see Borgani et al. 1999).

We can investigate how the evolution of the L -T is
a†ected if the background entropy evolves substantially
with epoch. In Figures 18 and 19 we assumed K34(z)\ 0.8
(1] z)~1, which is an evolution that parallels the one
observed in the Lya clouds. In this scenario, objects
observed at redshift z\ 1 have accreted most of their bary-
onic mass when the entropy was lower and thus mostly in
the shock regime. This allows the cooling to start earlier
and be more efficient. As a net result, the L -T and K-T
relations at z\ 1 are higher with respect to the predictions
of the constant scenario. However, the positive evolu-K

*tion is about a factor of 2, much less than the intrinsic
scatter, and very difficult to observe. Such a positive evolu-
tion is too small to reconcile a critical universe with the
observed high-redshift luminosity function. As a further
comment, we recall that the large discrepancy between the
average level of entropy seen in Lya clouds and that
observed in the center of groups implies that the Lya gas is
not the same or that the heating rate is much steeper than
this. We therefore adopt this entropy evolution as a refer-
ence case.
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FIG. 18.ÈRelation between bolometric luminosity and emission-
weighted temperature in "CDM assuming an evolving entropy K

*
\ 0.8

(1] z)~1] 1034 ergs cm2 g~5@3. The thick line for keV showskB T ¹ 1.5
the L -T relation at z\ 0 deÐned within the projected radius of 100 h~1
kpc as in Ponman et al. (1996). The dashed lines refer to the self-similar
case, while thick lines refer to and thin lines to Data are as inz0\ 0 z0\ 1.
Fig. 11.

Assuming gives a good Ðt to theK34\ 0.8(1] z)~1
whole temperature range without requiring further depen-
dence on the mass scale. This is because the evolution
(1] z)~1 introduces by itself such a dependence. The cores
of intermediate-mass halos are assembled at z^ 1, for an
e†ective while low-mass objects buildK34(z\ 1)\ 0.4,
their cores at redshifts z^ 2È3, for Also,K34(z\ 3)\ 0.2.

FIG. 19.ÈM-T relation in "CDM assuming an evolving entropy
ergs cm2 g~5@3. The dashed lines refer to theK

*
\ 0.8(1] z)~1 ] 1034

self-similar case, while thick lines refer to and thin lines toz0\ 0 z0\ 1.
Data are as in Fig. 13.

an evolution as strong as provides a goodK34\ 3(1 ] z)~2
Ðt to the data.

6. DISCUSSION

The main limitation of this model is clearly the adopted
spherical symmetry and also the assumptions of isotropic
and continuous infall. In the real world, some of the
baryons are accreted in the form of smaller clumps and
substructure and Ñow along sheets and Ðlaments. The
spherical infall model used here does not include the e†ects
of larger and smaller scale perturbations. Moreover, there
are missing ingredients in the physics of baryons. We shall
brieÑy discuss them in turn.

The presence of large-scale structure is not expected to
a†ect strongly the accretion rates and, in general, the sta-
tistical properties of dark matter halos. In fact, the rates
used in this work are derived from the PS formalism, which
proves accurate within a few percent when compared to
N-body simulations that include large-scale structure (see,
e.g., Governato et al. 1998). However, an e†ect of the large-
scale structure that is of interest here could be the eventual
contribution to the initial entropy in the IGM due to
shocks occurring on large scales related to the formation of
Ðlaments. Hierarchical gravitational processes do not break
the self-similarity, but the anisotropic collapse can produce
widespread shocks that raise the average entropy level in
the IGM everywhere without being associated with the for-
mation of halos. The baryons that fall in the isotropic
potential wells at the intersection of sheets and Ðlaments
could be already heated by an amount that depends on the
power spectrum on large scales. This can break the self-
similarity of the baryons, assuming that the large-scale
heating is e†ective almost uniformly in the IGM.

Focusing on smaller scales, the presence of substructure
in the infalling matter necessarily introduces some stochas-
ticity in the accreting processes. The intrinsic scatter in the
density and the temperature of the accreted baryons trans-
lates into a scatter in the observational quantities (see, e.g.,
CMT97). The presence of substructures implies that some
gravitational energy is transferred to the baryons before
they are accreted into the main potential well and shocked
for the last time. However, the gravitationally produced
entropy on small scales is very di†erent from the above-
mentioned large-scale production. In fact, the mass dis-
tribution of satellite halos scales self-similarly with the total
mass of the Ðnal halo. Thus, the amount of entropy given to
the baryons in substructures scales with the Ðnal mass and
does not produce any break of self-similarity. This entropy
contribution can be included in the external entropy, K

*
,

without any distinguishing e†ect with respect to the mass
scale.

Another point related to the dark matter is the case of
very massive merger events, where a massive, disruptive
event is deÐned by the mass ratio of the merging halos being
larger than about 0.3 (see Roettiger, Stone, & Mushotzky
1998). In these cases it is likely that the ICM is strongly
stirred, and, if the look-back time of the event is less than 1
Gyr, the ICM is not even in hydrodynamical equilibrium at
the epoch of observation. Massive mergers can also create
situations of nonequilibrium ionization (see Ettori &
Fabian 1998 ; Takizawa 2000). It is clear that the model
cannot describe the population of such disturbed clusters.
In the PS formalism, the fraction of objects that are subject
to large merger events is a sensitive function of both the
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total virial mass and the observation epoch WeM0 z0.calculate that the expected number of major mergers in the
last gigayear is between 0.1 and 0.2 in tCDM and a factor of
2 lower in "CDM, at (for a mass range between 1015z0 \ 0
and 1013 h~1 However, such numbers grow to 1È0.5M

_
).

at in tCDM and 0.6È0.3 in "CDM. In this frame-z0\ 1
work, it is reasonable to expect that at z^ 1, a fraction
between and of the population of clusters has under-13 12gone a massive merger event with a look-back time less
than 1 Gyr. This has to be regarded as an intrinsic limi-
tation to statistical analyses of the population of high-
redshift clusters.

Other limitations come from the more complex physics of
baryons. An important issue is that the entropy in the
center may increase because shocks propagate in the inner
part of the halos as a result of infalling gas along Ðlaments
(A. Klypin 2000, private communication). We stress,
however, that in order to survive the outer shock and pro-
pagate in the very central part of the halo, the infalling
baryons should be compressed already. The presence of an
initial entropy level will inhibit the formation of dense knots
of gas at least on small scales, and thus inner shocks are
probably limited only to very massive mergers.

Another important component, which is not included in
the present model, is the momentum gained from the heated
gas, which can push part of the baryons out of the halos
without contributing to the average heating. This e†ect is
very difficult to model a priori. Its e†ect on the X-ray emis-
sion can be computed by including semianalytical models of
galaxy formation (see Menci & Cavaliere 2000).

Finally, gravitational e†ects of the baryons on the dark
matter proÐle are neglected. These can be important in the
very center, where the baryons can concentrate in the form
of cooled gas and contribute to density peaks that may
a†ect the X-ray emission (see Pearce et al. 2000 ; Lewis et al.
2000).

7. CONCLUSIONS

We have presented a detailed model to relate the X-ray
properties of di†use baryons in clusters of galaxies to the
entropy history of the cosmic baryons, after including adia-
batic compression, shock heating, and cooling. Our aim is
to build a useful tool to reconstruct the entropy history of
the universe from the observations of local and distant clus-
ters. In particular, a major goal is to identify and follow in
time the processes that generate the entropy excess. This
entropy excess is now probed by many observations and is
connected with many scaling properties of X-ray halos.
Even if a given entropy excess does not translate into a
unique heating history, the comparison of X-ray data with
observations in other bands may allow identiÐcation of the
major heating sources. Favored candidates are star forma-
tion processes and nuclear activity. At present, however,
neither the epoch nor the source of the related heating
process has been identiÐed.

In this paper we have limited the investigation to a sce-
nario in which the excess entropy is present since very high
z and is uniform throughout the IGM. A case with an exter-
nal entropy decreasing with redshift, mimicking the rise of a
population of heating sources, is also presented. In both the
constant and time-evolving cases, the scaling properties of
local clusters of galaxies are reproduced on a large range of
scales, with an appropriate choice of the free parameter K

*
.

The properties of distant X-ray halos are predicted to be

generally similar to properties of the local population, but
signiÐcant di†erences can actually be observed by the
present-day X-ray satellites, shedding light on the ther-
modynamics history of the ICM. We recall here the general
results on density and temperature proÐles, together with
the results on the evolution of the global X-ray properties,
especially luminosity and emission-weighted temperatures.

The bending of the L -T relation with respect to the self-
similar case L P T 2 is due to the Ñatter proÐles of the ICM
going from large- to small-mass halos. Good Ðts are
obtained for a background entropy in the range K

*
\ (0.2

^ 0.1)] 1034 ergs cm2 g~5@3 for keV andkB Tew\ 2 K
*

\
(0.4^ 0.1)] 1034 ergs cm2 g~5@3 for keV. ThiskB Tew [ 2
scale dependence can be introduced by an evolution in the
e†ective value of In particular,K

*
. K34 \ 0.8(1] z)~1

gives a good Ðt over the whole range of observed tem-
peratures.

The central regions of groups and clusters, which domi-
nate the X-ray emission, are formed during the initial stages
of accretion. In these early phases, if a signiÐcant back-
ground entropy is present, the accretion is adiabatic, and
the gas is compressed in a Ñat, low-density proÐle with steep
temperature gradients. This is relevant for the smallest
halos, where the gravity does not overcome the pressure
support of the baryons for the majority of the subsequent
accretion of gas. In clusters the infall velocities rapidly
become larger than the sound speed, and the shock regime
takes over. In the outer regions of clusters the entropy is
entirely due to gravitational processes, and the entropy
proÐle is a featureless power law approaching K P r1.1.

This mechanism is particularly efficient if cooling is
neglected. However, it is known that the cooling is an
important ingredient in the history of the ICM. The main
e†ect is that the isentropic cores expected in the constant
entropy scenario are partially erased by the process of
cooling. Still, if ergs cm2 g~5@3, the coolingK

*
[ 0.1] 1034

processes are signiÐcantly suppressed and the inner regions
of the halos keep the imprint of the initial entropy level.
Cooling processes appear again only in massive halos,
where the gravity dominates the energy of the system and
the excess entropy is no longer able to keep the gas at low
density. In the extreme case of negligible it is worthK

*
,

noting that the cooling processes alone would have a dra-
matic e†ect on both small- and large-mass halos. In small-
mass halos (1013 most of the gas is expected to coolM

_
)

and recombine, causing a central baryonic catastrophe.
Other important characteristics are found in the tem-

perature structure especially of smaller halos. Temperature
gradients are commonly expected both in clusters and in
groups. The polytropic index is predicted to be c

p
^ 0.9È1.2

in the region where the gas is shock-heated. The polytropic
index can be higher if the dark matter proÐle is centrally
peaked (e.g., with a power law with index approximately
[1.4 ; see Moore et al. 1998). Another relevant observable
(for local halos) is the position of the Ðnal shock radius,
which is expected to be close to the virial one at large-mass
scale, while it migrates to larger radii in small groups. In the
smallest halos, in fact, the shock is vanishingly small. As a
function of epoch, for a given object, the shock/accretion
radius is initially quite distant from the virial radius. It is
very close to the virial radius when the mass accretion rate
reaches its maximum and the shock regime is well devel-
oped. Eventually, the mass accretion rate decreases
(especially in the "CDM universe) and the shock radius
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relaxes again to larger positions. A consequence of the
above picture is that the ratio of the baryonic mass included
in the virial radius to the total mass is always lower but still
close to unity ; it can be signiÐcantly lower only for(13)
small-mass halos (corresponding to emission-weighted tem-
peratures of 0.3È1 keV).

It is remarkable that the simple presence of an initial
excess entropy in the di†use IGM can reproduce many of
the scaling properties of the observed X-ray halos, without
the contribution of any internal heating. It is interesting to
discuss the implications of this simple scenario for the ener-
getic budget and the past cosmic star formation history.
The minimum excess energy associated with an initial back-
ground entropy isK34

kB T ^ 0.1
AK34

0.4
B

keV , (16)

where the gas is assumed to be at the background density at
the epoch of the heating. However, we can speculate on the
energy budget when the entropy excess is generated after
the collapse, at much larger densities (the internal scenario).

Following PCN99, we can establish a relation between
the epoch of heating and the energy released. Under the
assumption that the heating process can be described with a
single epoch and a typical overdensity, we have

1 ] z
h
\
A kB T

h
3.2] 10~2K34

B1@2
d~1@3 , (17)

where is the average energy per particle released in thekBThIGM by nongravitational processes. If we adopt the conser-
vative scenario in which the gas is heated at a typical virial
density (d ^ 200), to have an entropy level in the range

ergs cm2 g~5@3, we obtainK
*

\ (0.4^ 0.2) ] 1034

1 ] z
h
^ (1.5^ 0.3)

A kB T
h

1 keV
B1@2

. (18)

Thus, if we want heating at z[ 1 in order to avoid the
overcooling catastrophe, the energy budget must be larger
than 1 keV per particle. The above estimate would give even
larger values after the inclusion of cooling. In fact, if the gas
is heated at high densities, most of the extra energy is likely
to be reemitted soon, and this would raise the energetic
budget for a given Ðnal entropy excess. In this respect, the
relation between the epoch of heating and the energy rel-
eased is strongly dependent on the physical process. Of
course, a scenario in which the extra entropy is provided by
the contributions of several di†erent sources, active at dif-
ferent epochs, is a likely possibility. In this perspective, the
measure of metallicities as a function of the entropy of the
baryons in di†erent systems, from Lya clouds to rich clus-
ters, may be useful in determining whether the excess
entropy is linked to star formation processes.

The assumption of an initial excess entropy uniformly
di†used in the IGM o†ers new perspectives in the approach
not only to cluster formation but also to galaxy formation.

Such an entropy background, once established, may a†ect
the star formation itself, since the cooling processes on all
scales are virtually inhibited. This is the mechanism that is
expected to solve the cooling catastrophe (see White & Rees
1978 ; Blanchard, Valls-Gabaud, & Mamon 1992 ; Prunet &
Blanchard 1999), and in this view X-ray clusters and
galaxy formation processes are intimately related. Current
attempts to model ab initio the physics of the heating
process and then link the entropy history of the cosmic
baryons to galaxy formation must include the well-known
plethora of ingredients that have already been mentioned
several times : feedback from star formation processes and
SNe explosions, radiative and mechanical heating from
active galactic nuclei, radiative heating from hard X-ray
background, and gravitational heating on large-scale Ðla-
ments (see Menci & Cavaliere 2000 ; Valageas & Silk 2000 ;
Wu, Fabian, & Nulsen 2000a ; Madau & Efstathiou 1999 ;
Cen & Ostriker 1999). Such di†erent scenarios allow for
di†erent entropy histories of the universe, determining both
the spatial distribution and the evolution of the entropy in
the di†use gas.

A promising strategy for the near future is to look
directly for the distribution of the entropy in the ICM
(TSN00). A direct consequence of assuming a uniform
entropy everywhere in the gas is that the groups are
expected to be surrounded by large halos of low surface
brightness gas, spread out over radii much larger than the
virial radius of dark matter halos. This low-density gas may
have been missed by observations with the ROSAT satellite
but can be detected by the XMM satellite. Its emission can
enhance the total luminosity of the groups by more than a
factor of 3, including the lowest energy bins of ^0.1 keV.
Another promising observational channel is the absorption
from metals in the gas seen against bright X-ray or UV
sources. If the source of the background entropy is star
formation, signiÐcant pollution by metals is expected.

The model presented here is to be considered a useful tool
to interpret the observations of high-redshift clusters, which
will be provided especially by the Chandra and XMM satel-
lites. Our aim is to build a solid link between the thermody-
namics of the di†use cosmic baryons and the emitting
properties of X-ray halos, in order to be able to reconstruct
the entropy history of the universe, at high and low red-
shifts, from spectral and imaging X-ray observations. This
will help in understanding the source of the entropy excess
and the time evolution of the corresponding heating
process.
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for discussions and continuous encouragement. We thank
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ESO Garching for hospitality during the completion of this
work. This work has been supported by NASA grant NAG
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APPENDIX A

THE INFALL VELOCITY

We Ðnd upper and lower limits for the infall velocity of the accreted baryonic shells computed with equation (3). The last
two terms of equation (3) depend on the densities of the shell at accretion and at turnaround The values of the two(o

e
) (ota).
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densities are derived requiring conservation of mass and assuming that baryons and dark matter are still not decoupled at
turnaround. In particular, the exact value of depends on the validity of equation (5), which is based on the assumption thato

ethe total baryonic mass accreted at every epoch is where is the universal baryonic fraction. Such an assumption canf
B
M

v
, f

Bbe tested with numerical simulations and will not be discussed here.
We focus on the numerical uncertainty in the estimate of the term *W . The total work per unit baryonic mass done by the

gravitational potential on the baryonic shell is

W 4
P
Rta

Rs GM(\r)
r2 dr , (A1)

where the integral is computed along the trajectory r(t). If the total mass within the shell were constant, the solution would be
simply

W \ vff2
2

4
AGMta

R
S

[ GMta
Rta

B
, (A2)

where is the total mass initially contained in the turnaround radius The free-fall velocity refers to a test particleMta Rta. vfffalling from turnaround to the shock radius, experiencing a gravitational force always from the same amount of matter.
However, the actual mass enclosed by a given baryonic shell will depend on time. We can write

M(\r)\ [ f
B
] (1[ f

B
)Y (t)]Mta , (A3)

since the baryonic mass inside the shell is constant, but the amount of dark matter can change by a time-dependent factor
Y (t). The complete solution can now be formally written as

W \ vff2
2

] *W \ vff2
2

[ GMta
rta

P
Rta

Rs [ f
B
] (1[ f

B
)Y (t) [ 1]

r2 dr . (A4)

At this point we note that the amount of mass that is included in a given baryonic shell along its trajectory is always larger
than the initial mass since the collisionless shells of dark matter fall faster than the baryonic shells, which, instead, areMta,pressure supported. Here we neglect the shell crossing and the detailed behavior in time, but we recall that we want the
solution only at the accretion radius, which usually occurs just inside the most external caustic of the dark matter (see the
self-similar model of Bertschinger 1985). Thus, we can safely assume that the total mass can only grow inside the baryonic
shell. The mass excess can be described with a generic power-law dependence on the actual*M/Mta\ [ f

B
] (1 [ f

B
)Y (t) [ 1]

position r(t) of the kind

f
B
] (1[ f

B
)Y (t)[ 1 \ [ f

B
] (1[ f

B
)Y

s
[ 1]

G
1 [

Cr(t)
rta

DaHC
1 [

A r
s

rta

BaD~1
, (A5)

where a [ 0 and is the value at the accretion. To calculate we must know the dark matter density proÐle at radii largerY
s

Y
s
,

than the virial radius. We do not propose a speciÐc model here ; instead, we simply use the density proÐle as computed in
Bertschinger (1985) as a reasonable approximation at radii larger than the virial one. We can substitute equation (A5) in
equation (A4) and integrate, obtaining an estimate of W as a function of a. To eliminate the dependence on a, we take the limit
for small and large values of a, to obtain the upper and lower values for *W :

*W \ [ f
B
] (1[ f

B
)(Y

s
[ 1)]

GMta
rta

GC1 [ x
s

x
s

] ln (x
s
) ] 1 [ x

s
ln (x

s
)x

s

D
^
C1 [ x

s
x
s

[ ln (x
s
) ] 1 [ x

s
ln (x

s
)x

s

DH
. (A6)

The last term in equation (A6) bounds the possible values for *W , assuming a monotonic increase of the total mass enclosed
by the infalling shell. The upper and lower values turn out to be between 10% and 30% during the mass history of a given
halo and are plotted in Figure 1 as dotted lines. This reÑects our error in computing the infall velocities of the baryonic shells.
The uncertainty in the infall velocities does not strongly a†ect the mass scale at which the adiabatic/shock transition occurs,
since the dependence of on the accreted mass is very steep when shocks begin to appear. This e†ect is related to the fastv

imigration of the accretion radius from to (see Fig. 3).^2R
v

^R
v

APPENDIX B

COOLING PROCESSES

Here we discuss how to compute the e†ect of the radiative cooling on each baryonic shell. The treatment of the cooling is
complex and constitutes the largest uncertainty in modeling the X-ray emission from clusters in present-day numerical
simulations, since the predicted luminosity of the central region can heavily depend on the adopted resolution (see, e.g.,
Suginohara & Ostriker 1998).

There is of course no difficulty in solving equation (8) as long as where *t is the time resolution. However, theqcool[ *t,
time resolution needed increases dramatically when the density increases and since the cooling is a runawayqcoolD *t,
process. Since our calculation is based on a sequence of hydrostatic equilibria and we do not want to end up with a heavy
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TABLE 3

PARAMETERS FOR THE COOLING FUNCTION (EQ. [B4])

Metallicity
(Z

_
) C1 C2 C3

0 . . . . . . . . . . . 1.19 ] 10~4 6.3 ] 10~2 1.9 ] 10~2
0.1 . . . . . . . . . 2.8 ] 10~3 5.8 ] 10~2 4] 10~2
0.3 . . . . . . . . . 8.6 ] 10~3 5.8 ] 10~2 6.3 ] 10~2

NOTE.ÈThe units for are 10~22 ergs cm3 s~1 keV~a,C1the units for are 10~22 ergs cm3 s~1 keV~b, and the unitsC2for are 10~22 ergs cm3 s~1.C3

computation e†ort, we propose to use a reasonable time step (of the order of few tenths of gigayears) and solve analytically the
energy equation (8) for each shell within each time step. To do this, we Ðrst assume that the cooling proceeds isobarically
within *t and compute the new value of the pressure after each step to take into account the new equilibrium positions of each
shell.

If the pressure is constant for each shell within *t, the density can be expressed as a function of the adiabat K only, to give

o \ p1@ck~1@c , (B1)

where and the variables are assumed to be normalized to the shock values as usual. The temperature is thenc\ 53
t \ k1@cp(c~1)@c . (B2)

Following Sutherland & Dopita (1993), we deÐne the normalized cooling function where is the electron"
N

4"net ne
n
i
, n

enumber density and is the ion number density. For an average metallicity Z\ 0.3 we can approximaten
i

Z
_

n
e
n
i
\

The cooling time now can be expressed as a function of the adiabat K and the normalized cooling function0.704(o
B
/m

p
)2. "

N
:

qcool^ 2.13
kT

s0 m
p

ko
s0

k2@cp(c~2)@c"
N
~1 , (B3)

where the subscript ““ s0 ÏÏ refers to the value at the shock. To write an analytic expression, we approximate with a"
Npolynomial form:

"
N

\ C1(kT )a] C2(kT )b ] C3 , (B4)

where the exponents take the values a \ [1.7 and b \ 0.5. The constants depend on the assumed metallicity and are chosen
as in Table 3 in order to reproduce the cooling function of Sutherland & Dopita (1993) within a few percent in the energy
range keV.kB T [ 0.03

Thus, using the canonical value the cooling time can be written asc\ 53,

qcool\ Cq Ts0
k6@5p~1@5

C1T so
a k3a@5p2a@5 ]C2 T

so
b k3b@5p2b@5]C3

. (B5)

The constant factorizes out the terms that depend on the shock condition and can be written asCq
Cq \ 1.62] 102[ f

B
(1[ fcool[ f

*
)h2(z)d

so
g
s0]~1 Gyr keV~1 , (B6)

where is the overdensity with respect to the critical density at redshift z, is the temperature at the shock, and is thed
s0 T

s0 g
s0compression factor at the shock ; and are the fraction of baryons cooled in the center and the fraction of baryons lockedfcool f

*into stars, respectively.
Equation (8) can be recast in terms of the adiabat K only, and the Ðnal adiabat can be recovered implicitly from thek

fsolution in the Ðnite time step *t (expressed in gigayears) :

*t \ Cq Ts0
P
ki

kf
dk

k1@5p~1@5
C1 T

so
a k3a@5p2a@5 ]C2 T

so
b k3b@5p2b@5]C3

4 F(k
i
, k

f
) . (B7)

In particular, the condition determines if a shell with initial entropy cools completely within *t. At eachF(k
i
,0)\ *t k

iepoch, the region comprised within the largest shell for which is included in the cooled fraction and excludedF(k
i
,0)\ *t fcoolfrom the di†use, emitting phase.

APPENDIX C

CONCENTRATION PARAMETERS

The concentration parameters of the dark matter proÐles depend on epoch and cosmology, as shown in the numerical
works of NFW97 or analytical models (see, e.g., Lokas 1999). A general trend is that lower mass halos are more centrally
concentrated than high-mass halos by virtue of the higher redshift of formation. For the same reason, halos of the same virial
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mass but observed at higher redshifts are less concentrated, since the di†erence in the average density at the formation and at
the observation is smaller with respect to low-redshift halos. The mass dependence of the concentration parameter, however,
can be well approximated with power laws that change slightly as a function of epoch and cosmology. In this paper we used
the following approximations :

c\ 8.5M15~0.086 ("CDM, z\ 0) , (C1)

c\ 5.4M15~0.070 ("CDM, z\ 1) , (C2)

c\ 5.5M15~0.070 (tCDM, z\ 0) , (C3)

c\ 4.4M15~0.046 (tCDM, z\ 1) , (C4)

where h~1M15 4M/1015 M
_

.
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