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ABSTRACT
Size-selective concentration of particles in a weakly turbulent protoplanetary nebula may be

responsible for the initial collection of chondrules and other constituents into primitive body precursors.
This paper presents the main elements of this process of turbulent concentration. In the terrestrial planet
region, both the characteristic size and size distribution of chondrules are explained. ““ Fluffier ÏÏ particles
would be concentrated in nebula regions that were at a lower gas density and/or more intensely turbu-
lent. The spatial distribution of concentrated particle density obeys multifractal scaling, suggesting a
close tie to the turbulent cascade process. This scaling behavior allows predictions of the probability
distributions for concentration in the protoplanetary nebula to be made. Large concentration factors
([105) are readily obtained, implying that numerous zones of particle density signiÐcantly exceeding the
gas density could exist. If most of the available solids were actually in chondrule-sized particles, the
ensuing particle mass density would become so large that the feedback e†ects on gas turbulence due to
mass loading could no longer be neglected. This paper describes the process, presenting its basic ele-
ments and some implications, without including the e†ects of mass loading.
Subject headings : planetary systems È solar system: formation È stars : formation

1. BACKGROUND AND INTRODUCTION

Primitive (unmelted) chondritic meteorites are composed
in large part of millimeter-sized, once-molten silicate par-
ticles (chondrules) and metallic grains out of mineralogical
equilibrium with each other. Many chondrites contain
inclusions of refractory minerals that have been dated as the
oldest objects formed in the solar system (MacPherson et al.
1989, 1995). The chemical, isotopic, mineralogical, and pet-
rographic properties of individual chondrules themselves
imply that independent entities were melted by some ““ Ñash
heating ÏÏ event in the gaseous protoplanetary nebula, and
remained molten for fairly short times (less than 1 hr ; Jones
et al. 2000). Chondrules are diverse in chemistry but are
narrowly size-sorted (Grossman et al. 1989 ; Brearley &
Jones 1999), apparently by their aerodynamic cross section
(Dodd 1976 ; Skinner & Leenhouts 1991 ; Keubler et al.
1999) ; the least mechanically evolved pieces in chondrites
have the appearance of being gently brought together
(Metzler et al. 1992) and subsequently compacted to solid
density. Various hypotheses have been advanced to explain
these properties (see, e.g., Boss 1996, Hewins, Jones, & Scott
1996, Hewins 1997, Connolly & Love 1998, and Jones et al.
2000 for recent general reviews and discussion), but the
puzzle remains unsolved. The fact that many primitive
meteorites are composed of up to 70%È80% chondrules by
volume (Grossman et al. 1989) implies that the chondrule
formation and accumulation processes were of widespread
and signiÐcant importance in the very earliest stages of the
accretion of the asteroidal objects which provide the parent
bodies for these primitive meteorites. Since the terrestrial
planets apparently formed from various proportions of
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known meteorite types, one expects that the process
extended beyond the current asteroid belt and that under-
standing these early stages is important for understanding
planetary accretion overall. These stages of circumstellar
disk evolution relate to regions and epochs when the parti-
culate opacity is high, but when some particle growth has
occurredÈand are thus also of great interest for study at
infrared and millimeter wavelengths.

Prior work (Dubrulle, Sterzik, & MorÐll 1995 ; Cuzzi,
Dobrovolskis, & Hogan 1996, hereafter CDH96) has
pointed out that, unless the turbulent kinetic energy in the
nebula gas is vanishingly small (see ° 2), chondrule-sized
particles are unable to settle individually to the nebula mid-
plane, where most growth to planetesimal size must occur.
Instead, CDH96 proposed that, following their initial
melting, and throughout multiple recurrences of similar
heating events (Wasson 1996 ; Connolly & Love 1998 ;
Desch & Cuzzi 2000), chondrules pursue an extended free-
Ñoating existence under plausible conditions of nebula gas
density and turbulent intensity in the terrestrial planet
region, successively encountering zones of varying concen-
tration enhancement (° 5.1), until by chance they encounter
an unusually dense zone where they might physically
coalesce into much more massive, but still not solid, entities.
In a second stage, such entitiesÈdense clusters of
particlesÈmight have enough coherence to resist dis-
ruption as they settle to the midplane, or to be collected in a
di†erent process into the cores of the largest eddies
(discussed below) for subsequent accumulation into plan-
etesimals. Or, dense zones may only provide environments
of enhanced collisional accumulation of chondrules. The
second stage remains unstudied and qualitative ; here we
focus on the Ðrst stage.

The process of interest is known as preferential concentra-
tion or turbulent concentration (TC). The nature of this
process is that isotropic, homogeneous, three-dimensional
turbulence provides numerous Ñuid zones of low vorticity
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and high strain in which particles having a narrowly deÐned
range of aerodynamic properties can be signiÐcantly, but
usually brieÑy, concentrated (discussed further below). This
somewhat counterintuitive e†ect was Ðrst alluded to theo-
retically (Maxey 1987), subsequently demonstrated numeri-
cally (Squires & Eaton 1990, 1991 ; Wang & Maxey 1993),
and recently demonstrated experimentally as well (Fessler,
Kulick, & Eaton 1994 ; for a review see Eaton & Fessler
1994). The concentration factor C is the ratio of the local
particle density to its global average. In numerical studies to
date (Squires & Eaton 1990, 1991 ; CDH96; Hogan, Cuzzi,
& Dobrovolskis 1999), turbulence with Reynolds numbers
of 102È103 contains dense zones where the concentration
factors C reach 40È300 for optimally concentrated particles.
We extended numerical studies of this e†ect and applied
scaling relationships to predict its behavior under protopla-
netary nebula conditions (CDH96: Cuzzi et al. 1998). We
found that under canonical inner nebula conditions, par-
ticles with the size and density of chondrules would be opti-
mally concentrated. Here we show that the process is easily
generalized to a wide range of Ñuffier particles in lower
density regions of the nebula (° 3).

We note that TC is a quite di†erent process than the
superÐcially similar e†ect in which far larger (meter-and-
larger radius) particles with stopping times comparable to
or larger than the eddy times of the largest eddies (with eddy
times comparable to the orbit period) can accumulate near
the centers of such eddies (Barge & Sommeria 1995 ; Tanga
et al. 1996 ; Bracco et al. 1999). Klahr & Henning (1997)
showed concentration of millimeter-sized particles within
large, slow, two-dimensional circulation patterns (not turb-
ulent eddies). However, unless these slow circulation pat-
terns represent the primary kinetic energy reservoir of the
(non-Keplerian) Ñuid motions, concentration of such small
particles will not occur. That is, if the nebula turbulence has
a normal three-dimensional cascade with its energy peak
at spatial and temporal scales that are a small fraction
of the nebula scale height and orbital period (as nor-
mally implied by turbulent ““ a-models ÏÏ described in ° 2),
chondrule-sized particles will di†use faster than they can be
concentrated by such large, slow circulation patterns. For
example, numerical calculations by Supulver & Lin (2000),
which modeled eddy motions on a wide ““ inertial range ÏÏ of
spatial and temporal scales, as well as our own calculations,
show that chondrule-sized particles do not accumulate in
large eddies for two reasons : Ðrst, their trajectories are
mixed by the smaller eddies, and second, ““ real ÏÏ eddies in
homogeneous turbulenceÈeven the largest onesÈdissipate
within a single overturn time. Under these circumstances
(assumed in this paper), millimeter-sized particles would be
nearly uniformly dispersed by three-dimensional turbu-
lence, as one would naively expect for such small particles
that are trapped to nearly all Ñuid parcels, if it were not for
the role of turbulent concentration as described herein. The
true energy spectrum and dimensionality of nebula turbu-
lence is, however, not currently understood, and is the
subject of several active research tasks.

Our emphasis in testing these concepts has been to
compare our predictions with the properties of easily identi-
Ðed and studied chondrules and chondrites. For instance,
we have now studied the size distribution of preferentially
concentrated particles in detail, and found it to be insensi-
tive to, or independent of, Reynolds number (Hogan &

Cuzzi 2000) ; here we show that this predicted size distribu-
tion is in very good agreement with a typical chondrule size
distribution (° 4).

While C does increase systematically with increasing
Reynolds number (CDH96), our prior estimates of concen-
trations at nebula Reynolds numbers, which are plausibly
far larger than those accessible to numerical modeling, had
required sizeable extrapolations. We have more recently
shown that the spatial structure of the concentrated particle
density Ðeld is a multifractal that has Reynolds-numberÈ
independent properties (Hogan et al. 1999) and here will use
this result to provide a Ðrmer basis for predictions under
nebula conditions. The Reynolds-number independence of
key elements of TC is critical, as it frees our predictions
from the risk of sizeable extrapolations (° 5).

The evolution of extremely dense clumps, within which
interparticle collisions might entrap particles (CDH96),
remains unstudied and will require a better understanding
of the behavior of turbulent concentration when the particle
mass density exceeds that of the gas and of particle ensem-
bles whose density is large enough to a†ect the gas Ñow
properties. In ° 6 we discuss this important e†ect.

2. TURBULENCE AND TURBULENT

CONCENTRATION (TC)
Homogeneous, isotropic, three-dimensional turbulence is

characterized by a cascade of energy through a range of
scales, known as the inertial range, from the largest (or
integral) spatial scale L , having associated velocity to theV

L
,

smallest (or Kolmogorov) scale, g, where it is dissipated
(Tennekes & Lumley 1972 ; Hinze 1975). The intensity of the
turbulence is characterized by the Reynolds number, which
can be written Re4 (L /g)4@3. Since dissipation occurs pri-
marily on the small scales where molecular viscosity comes
into play, more energetic (higher Re) Ñows can drive turbu-
lence through a wider inertial range, to smaller g, for any
given viscosity.

Re is ordinarily deÐned as where is theRe\ L V
L
/l

m
, l

mmolecular viscosity ; Re here is the ratio of transport by
macroscopic motions to that by molecular motions. This
deÐnition combines the velocity and length scales into a
turbulent viscosity The Reynolds stresses that appear inl

T
.

angular momentum transport equations are often modeled
by this sort of turbulent viscosity (the ““ a model ÏÏ of
Shakura & Sunyaev 1973). However, in a Keplerian disk,
the mere existence of turbulent motions (turbulent kinetic
energy, leading to di†usivity of scalars) does not necessarily
imply viscous transport of angular momentum (by a Rey-
nolds stress, or torque, acting as a positive turbulent vis-
cosity ; Prinn 1990). This distinction is related to the
possibility that the on-diagonal and o†-diagonal terms of
the stress tensor might have very di†erent relative strengths
in Keplerian disks than in more familiar turbulent environ-
ments (Kato & Yoshizawa 1997). While astrophysical ““ a-
models ÏÏ of protoplanetary disks emphasize turbulent
viscosity in its angular momentum transport role, TC isl

Tmore closely related to scalar di†usivity, or turbulent
kinetic energy per unit mass density k. Therefore, we dis-
tinguish two types of the familiar astrophysical a. We Ðrst
discuss the familiar Shakura-Sunyaev prescription, which
deÐnes the turbulent viscosity as where c is thel

T
\ al cH,

sound speed and H is the vertical scale height.
Without external drivers, the overall nebula is likely to be
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in a regime of Rossby number of order unity,Ro4)
L
/)0where is the largest eddy frequency and is the orbital)

L
)0frequency. We thus rewrite in terms of these fundamentall

Tproperties :

l
T

\ L V
L
\ L2)

L
(\ V

L
2/)

L
)\ al cH

\ al H2)0(\ al c2/)0) ; (1)

thus

L \ HJal
A)0
)

L

B1@2
, V

L
\ cJal

A)
L

)0

B1@2
. (2)

In equation (1) above, the basic expression isl
T

\ L V
Lrewritten to decouple L and resulting in two separateV

L
,

expressions that both contain the large eddy frequency )
L(third and fourth terms) and can separately be equated to

their a-model counterparts, which both contain the orbit
frequency (sixth and seventh terms, respectively).)0Primary reliance on frequencies as a way of separating the
length and velocity scales is physically justiÐed in a rotating
system. We then set equal the third and sixth (fourth and
seventh) terms in equation (1), which are the functional
equivalents of each other, to get L and separately and inV

Lparallel (eq. [2]). With the expectation that Coriolis forces
will maintain the frequencies of the largest truly turbulent
eddies (those that participate in the turbulent cascade), )

L
,

at values no smaller than, but probably comparable to, the
local orbital frequency we Ðnd that and)0, V

L
\ cJa lOccasionally it is assumed that L B H (e.g.,L \HJal .

MorÐll 1985), but this implies and thusV
L
\ l

T
/L \ calan implausible situation)

L
\ V

L
/L \ cal/H \ al )0> )0,for genuine turbulence. The distinction is important for us,

as we need to scale turbulent velocities and length scales
independently. The important point is that the scaling
parameter is ““ shared ÏÏ by the length and velocity scales,alrather than being associated with one or the other.

A scaling analysis cannot establish whether Ñuid motions
with arbitrary L and do in fact provide a positive Rey-V

Lnolds stress or ““ turbulent viscosity ÏÏ given by their product ;
conversely, estimates of the magnitude of and L from anV

Lobserved turbulent viscosity and associated as above,l
T

al,may misrepresent their actual magnitudes. This is because
certain types of spatial correlations between ““ random ÏÏ
Ñuid motions are needed to provide a positive Reynolds
stress, or turbulent viscosity, and this may not occur in
systems that are strongly inÑuenced by rotation or other-
wise strongly perturbed (Prinn 1990 ; Kato & Yoshizawa
1997).

Another approach to determining is based on theV
Lturbulent kinetic energy per unit mass k and an associated

or The mere presencea
k
: k \ 32V

L
24 12ak

c2, V
L
\ cJa

k
/3.

of turbulent Ñuid motions with is suffi-k 4 a
k
c2/2 \ 3V

L
2/2

cient to produce turbulent concentration, with no addi-
tional uncertainties about the degree and sign of the corre-
lation between orthogonal components of the Ñuid motions
as in (Prinn 1990). While this deÐnition provides noalinsight into the turbulent length scale L , we presume by
analogy to the above argument that WithL \HJa

k
.

regard to the nebula, where properties are uncertain, we
suppress the factor of (e†ectively ignoring the distinc-J3
tion between a single component of and its magnitude)V

Land approximate the turbulent Reynolds number of the
nebula by Angular momentum may still beRe\ a

k
cH/l

m
.

transported by a turbulent viscosity butl
T

\ al cH,

whether or not is peripheral to this work (Kato &al Ba
kYoshizawa [1997] Ðnd that al\ a

k
).

Possible sources of k include forcing by ongoing infall
onto the disk in the very early stages (Cameron 1978 ; Prinn
1990), turbulent convection powered by release of gravita-
tional energy into heat as the disk evolves (Lin & Papaloi-
zou 1985 ; Cabot, Canuto, & Pollack 1987 ; Goldman &
Wandel 1994 ; Bell et al. 1997), enforced Keplerian di†eren-
tial rotation (Dubrulle 1993), and magnetorotational insta-
bility or MRI (Balbus & Hawley 1991, 1998). Typical
estimates of from these sources are D10~4 to 10~1, anda

kthus Re \ 108È1011.
However, uncertainties remain with all of the above

mechanisms. The infall stage lasts only a relatively short
fraction of the evolution lifetime of typical nebulae, and the
magnetorotational instability will not act in the dense inner
scale height of the disk where most of the mass and chon-
drules probably reside (Gammie 1996) and perhaps not
even high in the nebula (Desch 2000). The validity of con-
vection and di†erential rotation, acting by themselves, rests
on their uncertain ability to be self-sustaining. This requires
turbulence to be able to transport sufficient angular
momentum outwards that mass can evolve inwards, relea-
sing gravitational energy to be converted into turbulence.
Several studies (most recently Stone & Balbus 1996) found
that convective turbulence fails to produce outward angular
momentum transport (positive Reynolds stresses). How-
ever, some recent three-dimensional numerical studies,
which better capture large azimuthal structures, seem to
imply that it may in fact be able to do so (Klahr 2000a,
2000b). Of course, as grains accumulate, opacity decreases,
and thermal convection may weaken. Di†erential rotation
is free of this limitation (Dubrulle 1993), but numerical and
analytical arguments by Balbus, Hawley, & Stone (1996)
question di†erential rotation as a source for turbulence
based on the energetics and stability of Keplerian disks.
However, Richard, & Zahn (1999) have suggested, based on
laboratory analogues, that instability to turbulence in such
systems requires a higher Reynolds number than accessible
to current numerical models. Kato & Yoshizawa (1997)
have shown that Keplerian rotation probably does not pre-
clude some true turbulent viscosity (i.e., positive Reynolds
stress, or but as a much smaller fraction of theal[ 0),
ambient turbulent kinetic energy than under non-(a

k
)

Keplerian conditions. Thus, it also remains in doubt
whether turbulence driven by di†erential rotation alone can
be self-sustaining. Nonsteady situations might even need to
be considered.

In short, the source of angular momentum transport is
poorly understood, and it is not clear how disks evolve at
all. However, while we still do not understand the mecha-
nism that allows them to do so, protoplanetary disks are
observed to evolve with mass accretion rates in the range of

to 10~9 yr~1 (Hartmann et al. 1998) andM0 \ 10~7 M
_thus have an associated gravitational energy release rate per

unit area of 1952 ; Lynden-BellE0 grav\ 3GM
*

M0 /4nR3 (Lu� st
& Pringle 1974). Here G is the gravitational constant, isM

*the mass of the central star, and R is the distance from the
central star.

Turbulent kinetic energy is dissipated at a rate of approx-
imately where is the local gasE0

k
\ 2k)0 o

g
H \ k)0&, o

gdensity and If the gravitational energy is&\ 2o
g
H. E0 gravreleased where most of the mass resides, and converted into

mechanical turbulence with efficiency then for a disk inm
T
,

steady state with independent of radius, orM0 E0 grav mT
\E0

k
,
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3GM
*

M0 m
T

4nR3 \ k)0&\ a
k
c2)0&

2
. (3)

Substituting and)02\ GM
*
/R3 c\H)0,

a
k
\ 3M0 m

T
2ncH&

. (4)

For a typical ““ canonical ÏÏ nebula with H(R)\ 0.05 AU
(R/1 AU)5@4, c(R)\ 1.9] 105(R/1 AU)~1@4 cm s~1, and
&(R)\ 1700F(R/1 AU)~3@2g cm~2, with F being any
enhancement in mass over the ““ minimum mass ÏÏ nebula
density (Hayashi 1981 ; see also Cuzzi, Dobrovolskis, &
Champney 1993), then

a
k
B 1.3] 10~3

A R
1 AU

B1@2 M0
10~8 M

_
yr~1

m
T

F
. (5)

Some recent numerical calculations show to be at leastm
Tseveral percent (H. Klahr 1999, personal communication) ;

thus to 10~4 seems not to be out of the questiona
k
D 10~3

in the 2È3 AU region where meteorite parent bodies form.
Conversely, Dubrulle et al. (1995) have shown that, in order
for chondrule-sized particles to settle into a midplane layer
having a density approaching that of the gas (a layer of
thickness 10~2 to 10~3H), would need to be in the 10~8a

kto 10~10 range (see also CDH96). For to be this low,a
kequations (4) and (5) show that the conversion efficiency

into turbulence would need to be less than 10~5 for a disk
with yr~1. Thus, in this paper we simplyM0 \ 10~8 M

_presume the presence of nebula turbulence at a weak level
and explore the consequences. Henceforth, we identify the
nebula ““ a ÏÏ as and treat Re and its associated a as char-a

k
,

acterized by L and V
L
.

We assume the turbulence has a Kolmogorov-type iner-
tial range, within which each length scale l is characterized
by velocity (Tennekes & Lumley 1972 ;v(l)\ V

L
(l/L )1@3

CDH96) and eddy frequency u(l)\ v(l)/l\ )0(l/L )~2@3,
where the frequency of the largest eddy is setu(L )\ V

L
/L

equal to the local orbital frequency. Because the most)0,
interesting scales for particle concentrations are on the
order of g \ L Re~3@4> L , and even devi-L B HJa > H,
ations from isotropy due to rotation are not a major
concern. Particles smaller than the gas mean free path (i.e.,
smaller than several cm radius under nebula conditions) are
in the Epstein drag regime (Weidenschilling 1977), and have
a stopping time due to gas drag that is

t
s
\ ro

s
/co

g
, (6)

where r and are particle radius and internal density. Theo
sparticle Stokes number determines the particleSt

l
4 t

s
u(l)

response to eddies of a particular size and frequency ; pre-
vious studies have shown that the optimally concentrated
particles have (Eaton & Fessler 1994 ;Stg\ t

s
u(g)B 1

Hogan & Cuzzi 2000), that is, their stopping time is compa-
rable to the Kolmogorov eddy turnover time.

3. GENERALITY OF TURBULENT CONCENTRATION

Solving the relation under nebula condi-Stg \ t
s
u(g)\ 1

tions, CDH96 concluded that the optimally concentrated
particles in the terrestrial planet region of a minimum mass
nebula with a D 10~4 to 10~3 would have radius and
density comparable to those of chondrules. Here we gener-
alize TC to the entire range of nebula conditions. Using the

deÐnition for (eq. [6]) to rewrite the expression fort
s

Stg \
t
s
u(g) \ 1,

ro
s
\ co

g
t
s
\ co

g
tg \ co

g
)0(g/L )~2@3 \ co

g
)0Re1@2

\ co
g
l
m
1@2

)0(acH)1@2 . (7)

CDH96 Substituted where j isl
m

\ cj/2 \mH2
c/2o

g
pH2

,
the molecular mean free path, and g andmH2

\ 3.2] 10~24
cm2 are the mass and cross section of apH2

\ 5.7 ] 10~16
hydrogen molecule. However, their expression for j did not
include the Ðnite size or the Maxwellian velocity distribu-
tion of the gas molecules (see Kennard 1938, eq. [106d] and
[126b]), so their j was too large by a factor of 4J2.
Rearranging terms from equation (7) and correcting this
oversight, we Ðnd

ro
s
\
A mH2
16J2pH2

B1@2A&
a
B1@2

\ 6.3] 10~4
AF

a
B1@2A R

1 AU
B~3@4

g cm~2 , (8)

where is surface mass density at some distance&(R) \ 2o
g
H

in the nebula. In the last term we have adopted a canonical
radial dependence of &(R) \ 1700F(R/1 AU)~3@2 for a
““ minimum mass ÏÏ nebula, with F being some mass
enhancement factor. Protoplanetary nebula mass densities
inferred from millimeter continuum observations, while
subject to grain opacity uncertainties, are compatible with
these assumptions (Beckwith & Sargent 1991).

This relationship is shown in Figure 1 for several di†erent
typical locations and two di†erent nebula masses. The
range of for most chondrules (Ch), obtained using dataro

sin Grossman et al. (1989), is mapped along the line for
R\ 2.5 AU, and indicates the range of a required to con-
centrate them selectively. Higher values of a (more intense
turbulence) select smaller and/or lower density particles. In
both cases, porous aggregates (PA), having considerably
lower radius-density product than chondrules, can be opti-
mally concentrated at the low gas densities that characterize
the outer planet region or low density regions high above
the nebula midplane. Such porous objects are easily pro-
duced because the low relative velocities in turbulence of
both porous, low-density aggregates, and their constituent
monomers, lead to large sticking efficiency and minimal
disruption (Weidenschilling & Cuzzi 1993 ; Chokshi, Tieil-
ens, & Hollenbach 1993 ; Dominik & Tielens 1997). It has
also been suggested that extremely low-density, intensely
turbulent regions may concentrate tiny grains or very
Ñu†y aggregates (FA) (Wood 1998). TC may thus have
been ubiquitous, helping to initiate the formation of
““ cometesimals ÏÏ from porous grain aggregates at 10È30 AU
or speeding the accretion of dust particles at high elevations
(low gas densities) even in the terrestrial planet region.

However, textural evidence might be difficult to obtain
from this regime ; subsequent compaction would obliterate
evidence for any preferred size or density of easily squashed
Ñu†y constituents. Chondrules and their parent chondrites,
by nature of their availability and unique, persistent tex-
tures, provide the most obvious initial testing ground for
turbulent concentration.
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FIG. 1.ÈOptimal particle radius-density product for turbulent con-ro
scentration as a function of a at various locations in a typical solar nebula

(converted from the optimal Stokes number using nominal nebulaStg \ 1
gas density and local rotation rate). The power-law results are labeled by
the appropriate distance from the Sun in AU. (a) Minimum mass nebula
(F\ 1) ; solid silicate particles with chondrule sizes and densities (Ch)
have the range which would indicate the shaded range ofro

s
B 0.015È0.15,

a at 2.5 AU. Smaller gas densities at larger distances from the sun concen-
trate smaller products (porous aggregates or PA) and even ““ Ñuffier ÏÏro

sd \ 2 fractal aggregates (FA) or their monomers, for any a. (b) Somewhat
di†erent results obtained assuming an enhanced surface mass density
F\ 10 times higher than the minimum mass requirement.

4. CONCENTRATED PARTICLE SIZE DISTRIBUTION

If dense clusters of particles are precursors of primitive
bodies in any way, the relative abundance as a function of
Stokes number for particles in dense regions shouldStgshow some correspondence to the distributions found in
chondrites. To further compare the predictions of TC with
meteorite evidence, we have recently determined the
detailed form of the size distribution of selectively concen-
trated particles (Hogan & Cuzzi 2000). Numerical simula-
tions were performed with homogeneous, isotropic,
incompressible three-dimensional turbulence at three Rey-
nolds numbers Re\ 62, 246, and 765 (these values di†er
from those given in Hogan et al. 1999 because we now
adopt the more correct deÐnition of as one component ofV

Lthe turbulent velocity rather than its magnitude). The par-
ticles can be given arbitrary aerodynamic stopping times t

s
;

their motions respond only to gas drag and are integrated
in the spatial domain. Feedback by the particles onto the
gas is not incorporated. The computationally intensive cal-
culations are run on 16 Cray C90 cpus at Ames Research
Center. Simulations were initiated with uniform spatial dis-

tributions of particles, themselves uniformly distributed in
stopping time over the range and the relativeStg\ 0.1È6,
equilibrium abundance of particles was studied as a func-
tion of and C. In the large-C limit of interest, the shapeStgof the relative abundance distribution was found toA(Stg)be independent of both C and Re and only very weakly
dependent on the spatial binning assumed (relative to g)
(Hogan & Cuzzi 2000). Thus, we believe the numerical
results should be valid as a prediction of the size distribu-
tion in dense particle concentrations under nebula condi-
tions. The theoretical results are adequately Ðtted by a
lognormal distribution over the core range Stg\ 0.5È2.0.

We compared our predictions with binned relative abun-
dance data for chondrules disaggregated from one carbon-
aceous and four ordinary chondrites (Paque & Cuzzi 1997,
2000, in preparation ; Cuzzi, Hogan, & Paque 1999). While
a few ostensibly similar data sets exist in the literature (e.g.,
Hughes 1978 ; Eisenhour 1996 ; Rubin & Grossman 1987),
they generally rely on radii measured microscopically from
thin sections of meteorites, or even from disaggregated
chondrules, and adopt some average chondrule density o

s
.

However, recall from equation (6) that the aerodynamic
stopping time which selects particles for TC or any othert

s
,

aerodynamic sorting process, depends on the product ro
sfor each object. Data for these meteorites imply that merely

measuring the chondrule radius distribution and assuming
some mean density will slightly, but noticeably, misrepre-
sent the distribution because of chondrule-to-chondrulero

sdensity variations (Cuzzi et al. 1999).
In Figure 2 we compare the particle abundance shape

function A(St) from our numerical simulations (Hogan &
Cuzzi 2000) with the meteorite data. The meteorite histo-
grams were Ðtted by lognormal functions and aligned hori-
zontally with the predicted histogram by assuming that the
optimally concentrated particle size-density product corre-
sponds to We conclude that TC by itself canStg\ 1.
explain the very narrow chondrule size distribution, what-
ever the chondrule formation process may have produced.
There is evidence that both larger and smaller chondrules
were created ; TC would predict that these nonoptimally
sized particles were simply not concentrated to a sufficient
degree for eventual incorporation into meteorites unless
they were swept up into chondrule rims (if originally
smaller) or broken to the proper size (if originally larger).
Some particles of arbitrary size will always appear just by
accident, perhaps captured by a dense cluster ; parent body
processes will confuse the situation further.

5. PROBABILITY DISTRIBUTIONS AND MULTIFRACTALS

As mentioned earlier, our numerical results (CDH96) are
obtained at Re that are 6 orders of magnitude smaller than
plausible nebula Re. Thus, it is very important to under-
stand the Re-scaling of TC properties in detail. We believe
this has become possible using a connection between TC
and the Re-independent scaling properties of fractals, which
are rooted in the properties of the turbulent cascade itself
(Hogan et al. 1999 ; henceforth HCD99). Fractals and multi-
fractals are readily associated with cascade processes. Turb-
ulence (and speciÐcally its inertial range) is the archetype of
a cascade process (Tennekes & Lumley 1972 ; Meneveau &
Sreenivasan 1987, 1991), and considerable attention has
been devoted to multifractals in turbulence (Frisch & Parisi
1985 ; Mandelbrot 1989).

A working deÐnition of a fractal is a structure that is
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FIG. 2.ÈComparison of the size-density distributions of chondrules disaggregated from four ordinary chondrites (solid symbols ; J. Paque & J. N. Cuzzi
2000, in preparation) with the theoretically determined, Re-independent, shape distribution for the relative abundance of particles concentrated in turbulence
as a function of (open symbols ; Hogan & Cuzzi 2000).Stg

generated by sequential application of a scale-invariant rule
on regularly decreasing spatial scales. Simple fractals
with constant (but noninteger) dimension are invariant to
changes in scale, and result from rules that produce a binary
distribution of the local density (say, either 0 or 1). Exam-
ples of these are the Cantor set or the Sierpinski gasket
(Mandelbrot 1989), in which segments of a line, or portions
of a plane, are simply removed without changing the sur-
rounding values. Their average density, as a function of
scale v, may be written as with dimensiono(v)\o0 v~d
d \ 0.63 (between a point and a line) and d \ 1.52 (between
a line and a plane), respectively.

In contrast, multifractals result from application of rules
(or probability distributions of rules) in which the local
measure is changed, while conserving the total measure, by
unequal repartitioning of the content of a bin into subbins
of regularly decreasing spatial scale. For example, it is easily
seen that partitioning some quantity into the two halves of
a bin with unequal proportions (say 0.7 and 0.3) raises the
mean density in the Ðrst half and decreases it in the second.

Repetition of this rule produces some bins that become ever
denser with decreasing scale, and others that become ever
less denseÈwith all combinations in between. The ensuing
spatial distribution has no well-deÐned local value in the
limit of diminishing bin size ; that is, the local values are
spatially spiky, ““ intermittent ÏÏ, or ““ singular ÏÏ (Meneveau &
Sreenivasan [1987] present a short and readable discussion
of cascade processes and multifractals). The spatial distribu-
tions of multifractals are, however, predictable in a sta-
tistical sense, using probability distribution functions
(PDFs) that are derived directly from their dimensions. For
instance, dissipation of turbulent kinetic energy, which
occurs on the Kolmogorov spatial scale, is not spatially
uniform but has the spatial distribution of a mutifractal
(Chhabra et al. 1989).

In multifractals, the dimension varies with the value of
the measure. In our case, the measure is particle concentra-
tion factor C, which is the ratio of the local particle volume
density to its global average value. The fractional probabil-
ity of a particle lying in a bin which contains particlesP

i
N

i
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out of total particles is deÐned asN
p

P
i
\ N

i
/N

p
4 vai,

where v4 bin size/domain size. The scaling index a can be
viewed as a local dimension for P over some relevant range
of scales. The associated concentration factor C

i
4

where is the volume of a bin and v is the(N
i
/v

i
)/(N

p
/v), v

itotal volume of the domain ; thus C
i
\ (N

i
/N

p
)/(v

i
/v) \

Expressing the bin size, or scale, as some(vai/v3)\ vai~3.
multiple B of g, and the domain size in units of the integral
scale as DL , we Ðnd the domain normalized bin size to be
v\ Bg/DL \ (B/D)Re~3@44 1/R, where we have also used
the inertial range relationship g \ L Re~3@4. Thus,
C\R3~a, or

a \ 3 [ ln C
lnR

. (9)

The normalized PDF for a is usually written as a fractional
volume where the important functionF

v
(a)\ o(a)v3~f(a),

f (a), called the singularity spectrum (Halsey et al. 1986 ;
Chhabra et al. 1989 ; Mandelbrot 1989), plays the role of a
dimension for F(a). The prefactor function o(a) is only
weakly dependent on scale, and can be approximated as

(Chhabra et al. 1989). The function f (a) is discussedJlnR
more in the next subsection.

We deÐne the PDF as the volume fraction occupiedF
v
(C)

by bins having concentration factor within (C, C] dC),
with Transforming vari-/

Cmin
Cmax F

v
(C)dC\ /

amax
amin F(a)da 4 1.

ables and their PDFs, we get

F
v
(C)\ F(a)

K da
dC
K
\ o(a)Rf(a)~3

C lnR
B

Rf(a)~3
CJ lnR

. (10)

The fraction of particles occupying bins within (C,
C] dC) is deÐned as and both andF

p
(C)\CF

v
(C), F

v
(C)

have cumulative versions andF
p
(C) F

v
([C)\ /

C
= F

v
(C)dC,

For a stationary, ergodic process,F
p
([C)\ /

C
= F

p
(C)dC.

one expects that the fraction of particles having C at any
given time is identical to the fraction of time spent[F

p
(C)]

in regions of concentration C by a typical particle, deÐned
as Below, this is conÐrmed numerically.F

t
(C).

5.1. Numerical Results at L ow Re
5.1.1. PDFs for Concentration

Using the methodology of Chhabra et al. (1989), we have
shown that the spatial distribution of optimally concen-
trated particles is a multifractal, and that its singu-(Stg \ 1)
larity spectrum f (a) is invariant over more than an order of
magnitude from Re\ 62 to Re\ 765 (HCD99, who
actually give Taylor microscale Reynolds numbers Rej \
(15Re)1@2\ 40È140). This Re-invariance for f (a) is seen only
when binning is done on some fundamental Ñow-relative
scale such as a multiple of the Kolmogorov scale g. The
function f (a) is found by applying weighted binning tech-
niques to the distribution of interest (Chhabra et al. 1989 ;
HCD99), and depends on both D and BÈthat is, on the
number of integral scales sampled as well as on the binning
scale. Careful reassessment of di†erent deÐnitions of the
integral scale (see Hinze 1975, chap. 2) has led us to values
slightly smaller than those published by HCD99, implying
that the computational domain appropriate for our f (a) is
9L on a side. Our results for f (a) relative to this domain are
shown in Figure 3 (HCD99). The sets with error bars are
““ quenched,ÏÏ or averaged over samples each DL in extent.
The fact that there is no less than one cell in each sample

FIG. 3.ÈSingularity spectra f (a) for particle concentration (solid
symbols), for bin sizes of 2, 4, and 8 g, along with error bars representing
deviations across many snapshots. The similar looking singularity spec-
trum for dissipation (open symbols) is from Meneveau & Sreenivasan
(1987). Also shown (dashed curve) is our annealed f (a) for 2g binning,
covering C values that occur less than once per computational domain
(and thus extends to negative values). Figure adapted from HCD99.

found at maximum concentration results inCmax \R3~amin
for these sets. This can be seen by setting thef (amin) \ 0

product of either or and the normalized domainF
v
(a) F

v
(C)

volume R3 equal to unity, after allowing for the fact that the
are di†erential functions of their arguments by multi-F

vplying them by or respectively.amin Cmax,Information about higher (less probable) concentrations
than are typically found in a volume DL on a side must
come from analyzing a large number of realizations of each
sample and determining an ““ annealed ÏÏ average, where

(e.g., Chhabra & Sreenivasan 1991). Thef (amin) \ 0
annealed version (dashed curve in Fig. 3), also binned by 2g,
is well Ðtted by the function f (a) \ [12.414] 89.659/
a [ 132.01/a2, for We have restricted our-a [ amin\ 2.0.
selves to 2g binning for the present to preserve good
statistics ; smaller binning scales sample a deeper cascade
and will generate large C values with higher probability.
The three sets of f (a) in Figure 3, as binned over 2, 4, and 8 g
illustrate the multifractal or ““ singular ÏÏ nature of the dis-
tribution. For any given Re, smaller a values correspond to
larger C values (eq. [9]), and larger values of f (a) imply
larger The smaller or larger f (a) for seenF

v
. amin, a [ aminfor the smaller binning scales implies that, averaged over a

bin, smaller binning scales retain large C far more com-
monly than larger binning scales. That is, as the scale is
reduced, no asymptotic or well-deÐned limiting local value
is reached. Also shown in Figure 3 is the singularity spec-
trum for dissipation of turbulent kinetic energy (open
symbols), which is scale-independent. The agreement
between this spectrum and that for particle density binned
at the 2g scale is intriguing. The deviation between our
spectra (solid symbols and dashed line) and that for dissi-
pation seen toward the right hand side (large a) is due to
incomplete sampling of very low particle density regions in
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our particle density simulations because of memory limi-
tations on the number of particles we can follow. Dissi-
pation, being a continuously varying function, is not subject
to this e†ect. For this reason, was less well deÐnedF

v
([C)

than which, by deÐnition as a particle rather thanF
p
([C),

volume fraction, is always fully characterized. In any case,
our primary interest is in the zones of high concentration
(small a).

As a check on the method (subtle normalization issues
are discussed in Chhabra et al. 1989), an average f (a),
obtained from our calculations at all three Re values was
used to calculate at each of our three Re values, forF

p
([C)

comparison with the distributions determinedF
p
([C)

directly from numerical results (HCD99). As shown in
Figure 4, the single f (a) does quite well at predicting

at all three Re, even though they all subtendedF
p
([C)

slightly di†erent numbers of integral scales. For any C,
increases with Re and thus R. This may be puzzlingF

p
([C)

after only a quick inspection of equation (10), since f (a) [ 3
is always negative (Fig. 3). However, for a Ðxed C, a(C)
increases with R (eq. [ 9]), and thus f (a) also increases (Fig.
3), so the exponent in equation (10) becomes less negative.
Since any function is more sensitive to its exponent (here
f (a)[ 3) than to its base (here R), eq. [10] implies F

v
([C)

and thus increase with R.F
p
([C)

5.1.2. Particle T ime Histories

The particle time histories are of interest in their own
right and illustrate how particles experience a Ñuctuating
background concentration as they wander through the
Ñuid. Figure 5 illustrates histories for several randomly
chosen particles. The particles are moving at roughly con-

FIG. 4.ÈProbability distribution functions (PDFÏs) for the fraction
of particles lying in regions with concentration factor greater than C

or, equivalently, the fraction of time spent by any particle in[F
p
([C)],

such regions The three sets of points are binned directly from[F
t
([C)].

our numerical simulations ; the associated curves are calculated from a
single averaged f (a) obtained from all three values of Re (dashed curve in
Fig. 3). As discussed in ° 5.2, the curves without points use the same f (a) to
predict PDFÏs at the larger Re corresponding to four plausible nebula a
values : 10~2 (solid line), 10~3 (long-dashed line), 10~4 (short dashed line),
and 10~5 (dotted line).

FIG. 5.ÈAmbient concentration encountered by four di†erent particles
moving in three-dimensional turbulence, as a function of time (measured in
large eddy turnover times LET\ u(L )~1), without feedback onto the gas.
These may also be regarded as a longer history for a single particle. Note
how denser regions are encountered less frequently.

stant space velocity (approximately the velocity of theV
Llargest eddies, since they are trapped to nearly all eddies),

and repeatedly encounter zones of di†erent density with
little noticeable e†ect on their velocity (their stopping time
is much longer than the clump transit time In theseg/V

L
).

simulations, where no particle interactions are computed,
the particles pass through the dense zones and continue
their evolution. The dense zones per se persist for times
much longer than the passage time of a single particle
(CDH96; She, Jackson, & Orzag 1990). The more numer-
ous, lower density zones are encountered more frequently,
and the rare, very high density zones less frequently. This
time history, essentially a (convoluted) one-dimensional
path through the computational volume, has the same
““ intermittent ÏÏ or spiky structure as seen for dissipation
(see, e.g., Meneveau & Sreenivasan 1987 ; Chhabra et al.
1989).

From simulations such as these, we have validated the
ergodic assumption that the fraction (spatiallyF

p
([C)

averaged over all particles at several snapshots in time) is
equal to the fraction of time spent by a given parti-F

t
([C)

cle in regions denser than C (temporally averaged over
extended trajectories for a few particles). The comparison is
shown in Figure 6. A ““ random walk ÏÏ calculation does not
accurately reÑect this behavior ; the particles are not moving
randomly through the volume and encountering dense
zones with probability given by their volume fraction ;
rather, particle trajectories are ““ attracted ÏÏ to the dense
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FIG. 6.ÈComparison of from binned data in several snapshotsF
p
([C)

(squares ; temporal realizations) containing all particles (as in Fig. 4), with
(triangles), calculated from extended time histories of 16 di†erentF

t
([C)

particles (as in Fig. 5).

zones, or, probably more physically, repelled from the
sparse, complementary eddy zones. This behavior is cor-
rectly captured using F

p
(C).

5.2. Predictions for Nebula Re
The properties of multifractals make it much easier for us

to predict nebula properties than merely making extrapo-
lations from Re values we have studied numerically. In the
multifractal context, equation (10), and the Re-indepen-
dence of f (a), suggest identiÐcation of f (a) with the level-
independent ““ rule,ÏÏ and RP L /g \ Re3@4 with the number
of steps in the cascade. As Re increases, the inertial range (or
number of eddy bifurcations) between L and g also
increases. The cascade model described by Meneveau &
Sreenivasan (1987), mentioned at the beginning of this
section, is a speciÐc case of the binomial cascade discussed
by Mandelbrot (1989) ; all provide insight as to how higher
C result from a deeper cascade with more steps. Mathemati-
cally, equations (9) and (10) show how high C values
become more likely.

If f (a) is indeed a Re-independent, universal function for
optimally concentrated particles, we can then(Stg \ 1)
predict PDFÏs for any Re (i.e., any given nebula a) using
equation (10). Several lines of argument support the
assumption of a level-independent and Re-independent
““ rule.ÏÏ First, our own numerical experiments directly show
f (a) to be Re-independent over an order of magnitude in Re
(Fig. 3). A second line of argument relates particle concen-
tration to other well-known Re-independent properties.
Dissipation of k is physically connected to particle concen-
tration through their mutual preference for the Kolmogo-
rov scale and by the fact that the shapes of the singularity
spectra for dissipation, and for particle concentration
binned at close to the Kolmogorov scale, are similar (Fig. 3 ;

HCD99). The singularity spectrum of dissipation has
already been connected to the turbulent cascade process
(Meneveau & Sreenivasan 1987). Thus, turbulent concen-
tration is probably also closely related to the turbulent
cascade process. The turbulent cascade is known to have
Re-independent properties in the inertial range. For
instance, the f (a) for dissipation has been shown to be Re-
independentÈfrom numerical work at ReD 100, including
our own, through laboratory experiments with Re D 104, to
experimental studies of the atmospheric boundary layer
with ReD 106 (Chhabra et al. 1989 ; Hosogawa & Yama-
moto 1990). Furthermore, it has been directly demonstrated
from analysis of observations of dissipation in large Re
turbulence that the probability distribution of ““ partition
factors ÏÏ or ““ multipliers ÏÏ is independent of level within the
inertial range (Sreenivasan & Stolovitsky 1995). Based on
these arguments, we believe and presume that the particle
concentration singularity spectrum f (a) remains Re-
independent in turbulent cascades with far larger values of
Re than those of our numerical experiments. Given this
invariance, we can predict nebula conditions more con-
Ðdently than from extrapolation alone, as was done by
CDH96.

We obtain PDFÏs at Re which are much larger than
directly accessible values by containing the Re-dependence
purely within R\ DL /Bg \ (D/B)Re3@4. As argued at the
beginning of this section, the f (a) is associated with a certain
D and B, which we interpret as being the DB 9 and B\ 2
implicit in our f (a) (° 5.1.1). The nebula R is then only
dependent on Re and easily determined for any turbulent a
as R\ 1/v\ DL /Bg \ (D/B)Re3@4 B 4.5Re3@4. Recalling

(° 3),l
m

\mH2
c/2o

g
pH2

R\ 4.5
AacH

l
m

B3@4\ 4.5
A a&
mH2

/pH2

B3@4

\ 7 ] 105
A &
430 g cm~2

B3@4A a
10~4

B3@4
. (11)

Also shown in Figure 4 are predictions of F
p
([C)\

for four values of nebula a, using equations (10) andF
t
([C)

(11). Based on these predictions, particles spendStg\ 1
about 1%È10% of their time in regions with C[ 103 under
nebula conditions at di†erent a. All curves in Figure 4
assume a minimum mass nebula (&\ 430 g cm2 at 2.5 AU),
but mass enhancement by some factor F would play a role
similar to a (see also ° 3).

6. IMPLICATIONS AND DISCUSSION

6.1. Regions of Moderately High Density
For concentration factors leading to at least asoch/oglarge as unity, particle mass loading might start to a†ect the

““ partition rules ÏÏ and change the statistics of the cascade.
Nevertheless, several interesting e†ects can result from con-
centrations less than this possible limit. If the region in
question has an average mass density in solids of o

p
\

(at, say, 400 K; Pollack et al. 1994),fsol og
\ 5 [ 8] 10~3o

gand some fraction of this amount is in chondrule-fch\ 1
sized particles (recalling that other particle sizes are not
susceptible to TC), it is clear that C as large as at( fsol fch)~1,
least several hundred (for remains free of massfch\ 1),
loading concerns. If far larger C are allowed. Thefch > 1,
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point is that, depending on C can get quite largefsol fch,without violating the mass loading caveat.
While most of the volume of the nebula is characterized

by C\ 100, Figure 4 shows that chondrules in the nebula
spend a signiÐcant fraction of their time residing in regions
where the particle density is enhanced by a factor of
C[ 100. These results might help us understand why some
chondrule types seem to have been heated under unusually
oxidizing conditions (e.g., Rubin, Fegely, & Brett 1989),
which has been attributed to vaporization of a large
ambient density of solidsÈenhanced by several orders of
magnitude over solarÈas part of the chondrule formation
process (note, however, that it is not universally accepted
that the chondrule oxidation state information necessarily
implies a large background abundance of oxygen ; Gross-
man 1989).

Several proposed chondrule melting processesÈshock
waves (Hood & Kring 1996 ; Connolly & Love 1998) or
lightning bolts (Desch & Cuzzi 2000 ; Desch 2000)Èare
envisioned to occur ubiquitously within the region of the
nebula in which we propose TC operates to sort the chon-
drules after their formation (for reviews of candidate chon-
drule melting processes in general see Grossman 1989,
MorÐll, Spruit, & Levy 1993, Boss 1996, and Jones et al.
2000). SpeciÐcally, Desch & Cuzzi (2000) showed that TC
itself is an enabling factor in generation of nebula lightning.
They found that the optimal conditions for energetic light-
ning bolts are found in 1000 km regions with CD 100È
especially if the nebula were denser than ““minimum
mass ÏÏ(FD 10). Either lightning or shock wavesÈheating
dense zones where the background density of solids is large
(see Hood & Horanyi 1993 ; Hood & Kring 1996 ; Connolly
& Love 1998)Ècould elevate the local oxygen abundance
by evaporating some part of the solids. However, TC does
not concentrate ““ Ðne dust ÏÏÈonly chondrule-sized
particlesÈso signiÐcant local volatilization of some chon-
drules, or the surfaces thereof, would be implied. Whether
this is consistent with mineralogical signatures which are
seen in the survivors would be useful to address in the
future.

6.2. Encounters with Very Dense Regions
The scenario of CDH96 suggested in a qualitative way

that TC could lead to stable, if low-density, clusters or
clumps of chondrules as direct precursors of planetesimals.
We delineate the logic of this argument, using the PDFÏs
derived in ° 5, and then discuss the difficulties with the
original scenario.

The PDFÏs can be combined with the particle velocity
through space to calculate the ““ encounter time ÏÏ of aV

p
Tencchondrule with a region of arbitrary C, using a duty cycle

argument. The fraction of time spent by a typical
chondrule-size particle in clumps with concentration
greater than C, whereF

t
([C)B tin([C)/toutB tin([C)/Tenc,is the time spent traversing a bin with con-tin([C)> Tenccentration greater than C (° 5.1.2). Thus, for bins of dimen-

sion 2g and particle velocity soV
p
, tin([C)\ 2g/V

p
, TencB\ \tin([C)/F

t
([C) tin([C)/F

p
([C) (2g/V

p
)1/F

p
([C),

and the encounter rate is We have1/Tenc\ (V
p
/2g)F

p
([C).

veriÐed numerically that, as expected for particles with
stopping times much shorter than the overturn time oft

sthe largest eddies is nearly identical to the typical)0~1, V
pturbulent gas velocity et al. 1980 ;J2k B cJa (Vo� lk

Markievicz, Mizuno, & 1991).Vo� lk

We may calculate the encounter rate (and time) with a
cloud so dense that a particle becomes entrapped with its
neighbors and possibly removed from further free circula-
tion. Normally, as seen in Figure 5, particles traverse dense
regions without incident, because their gas drag stopping
time is longer than their transit time (CDH96). An entrap-
ment threshold occurs if interparticle collisions can prevent
particles from passing through a cloud ; this implies a
critical cloud optical depth of unity, deÐning a criticalqcollFor small, dense 2g-sized clumps,Ccoll. qcoll\ 1 \

where is the average2gCcoll(och/m)n(2r)2, och\ fsol fch o
g(unconcentrated) chondrule mass density, atfsol B 5 ] 10~3

400 K is the fractional mass in solids, is the fraction offchsolids in chondrules, and m and r are chondrule mass and
radius. Then

CcollB 33ro
s
/go

g
fch B

4 ] 105
fch

A10~4F
a

B1@4
. (12)

In the Ðnal expression above, we have substituted the Ðrst
expression of equation (8) for the product since thero

s
,

value of this product for optimally concentrated particles is
constrained by nebula conditions (° 3). We substituted the
general expression for (D0.5g \ L Re3@4\ (H/a)1@4(l

m
/c)3@4

km (10~4/a)1@4 ), and assumed other nominal parameters at
2.5 AU (&\ 430 g cm~2, c\ 1.5] 105 cm s~1).

For nominal, minimum mass nebula parameters,
assuming and using the PDFÏs we have in handfchB 1,
(binned at 2g scales), we Ðnd that varies between 103Tencyears for a \ 10~2 to 108 years for a \ 10~4. The encounter
times are sensitive to nebula parameters adopted and would
decrease for smaller binning (e.g., by B\ 1), or enhanced
nebula densities (F[ 1). This quantiÐes the length of time
chondrules spend freely wandering before encountering a
region in which they are certain to undergo collisions. We
suggested earlier that such an encounter at Tenc(Ccoll)removes the chondrule from further circulation by entrap-
ping it with others in the dense cluster. Alternately, such
dense zones might merely provide a large increase in the
collisional aggregation rate of optimally sized particles. In
fact, if chondrules or groups of chondrules undergo col-
lisional aggregation at low relative velocities (and particles
of chondrule size always have low relative velocities in turb-
ulence [Weidenschilling & Cuzzi 1993 ; Markievicz et al.
1991]), they may form fractal aggregates with mass pro-
portional to radius squared (Weidenschilling & Cuzzi 1993 ;
Beckwith et al. 2000). The average density of such aggre-
gates is inversely proportional to their bounding ““ radius,ÏÏ
so they retain the same stopping time as their individual
components (individual chondrules), and can continue to
participate in TC.

However, before this line of thought can be pursued
much further, mass loading (discussed in the next section)
must be assessed. Depending on their linear extent, the opti-
cally thick clouds described above can reach a mass density
orders of magnitude larger than that of the gas, which
would probably invalidate our assumption of no feedback.
In general, for a clump of mass density composed ofochchondrules of radius r and density o

s
,

och\ ro
s
qcoll

3Bg
, or

och
o
g

\ ro
s

3Bgo
g
for qcoll\ 1 . (13)

In deriving equation (13) we have expressed the linear size
of a cluster as Bg. For g D 0.5 km (10~4/a)1@4 and o

g
\ 1.1



506 CUZZI ET AL. Vol. 546

FIG. 7.ÈVariation of with a (for cluster optical depth unity) foroch/ogthe same nebula regions as shown in Fig. 1. The power-law results are
labeled by the appropriate distance from the Sun in AU. Regions with
more severe turbulence (larger a) select smaller particles for concentration
which, having larger area per unit mass, can be concentrated to qcollwithout reaching such large mass loading ratios as under more ““ nominal ÏÏ
conditions as shown in Fig. 1.

] 10~10 g cm~3, the particle density exceeds for10o
gclusters smaller than (60È600/F) kmÈabout (100Èqcoll\ 1

1000/F)g for in the normal range for chondrulesro
sB0.02È0.2 (Fig. 1).

6.3. L imitations due to High Mass L oading :
The cascade process model is only valid as long as no

new physics emerges at some step in the cascade to change
the partition factors, as represented globally by f (a), appli-
cable to subsequent steps in the cascade. However, applica-
tion of the expressions above for optically thick clusters of
scale 2g implies While these high concentra-och/og

D 3000.
tions literally relate to regions comparable to g in size,
where there is no turbulence to damp, the cascade that is
needed to produce such a cluster must have extended to
larger sizes in the surrounding ““ penumbra ÏÏ where the par-
ticle density, while lower, might still be large enough to
damp turbulent motions. We have made some preliminary
calculations of f (a) from low-Re numerical simulations
having average mass loading (deÐned as the ratio of particle
mass density to gas mass density) on the order of unity.
Even here, turbulent concentration persists (to local regions
with particle mass density more than 30 times the gas mass
density), but the f (a) is altered in the sense that high C
values have a lower probability. For comparison, unloaded
simulations at this Re result in The magnitude ofCmaxB 60.
the mass loading e†ect is approximately equal and opposite
to that of decreasing the bin size from 2g to g. Clearly, this
e†ect must be better quantiÐed before more speciÐc predic-
tions of and chondrule accumulation timescales can beTencmade. Even for small a D 10~3, the mass loading regime of
questionable validity is not a large one (note that eq. [13])
above showed that regions of size 300g, or 100È300 km, are

probably within the range of validity) ; however, it is cer-
tainly an interesting one. If we combine equations (7) or (8)
and (13), we obtain

och
o
g

\
A mH2
4J2pH2

B1@2A 1

3J2Bg
BA H

ao
g

B1@2
, (14)

which shows that regions which are denser and/or have
more intense turbulence (higher a), such as may have char-
acterized the very early evolutionary stages of the nebula,
are less prone to mass loading difficulties. That is, they
provide at lower Figure 7 shows that condi-qcoll\ 1 och/og

.
tions at 1AU (gas density g cm~3), with a D 10~2o

g
D 10~9

to 10~1, provide with Full treatmentqcoll\ 1 och/og
\ 100.

of a wider parameter space, allowance for mass loading and
other binning scales B, and connection to hypotheses for
chondrule formation (Desch & Cuzzi 2000) and dust
rimming (Cuzzi et al. 1999 ; MorÐll & Durisen 1998) that are
tied to TC, will be treated in subsequent publications.

7. DISCUSSION

Turbulent concentration promises to provide another
tool for our planetesimal construction toolkit. Nominal
nebula conditions, including weak turbulence, lead to con-
centration factors large enough to concentrate chondrule-
sized particles to densities greatly exceeding the nominal
nebula average. The presence of such dense regions might
help us understand some aspects of chondrule formation.
Generalization of the physics shows that Ñu†y aggregates
would also be subject to turbulent concentration, but in
nebula regions where the gas density is lower and/or the
turbulent intensity higher than expected for the terrestrial
planet region. If TC is a key aspect of the primary accretion
of planetesimals, any chondrules formed or transported to
low-density, outer solar system regimes might only have
escaped incorporation into planetesimals to a greater
degree than in the terrestrial planet region. The size dis-
tributions produced by turbulent concentration are in very
good agreement with those found in primitive chondrites ;
however, the fact that most primitive meteorites contain
ample evidence for abrasion, fragmentation, and other
mechanical processes, which may well have continued long
after the nebula gas vanished and aerodynamic processes
became irrelevant, warns us that we should not expect any
single process to explain all properties of even ““ primitive ÏÏ
meteorites.

The spatial distributions of concentrated chondrules
under nebula conditions can be predicted using the multi-
fractal properties of turbulent concentration. Because of the
Re-independent properties of the process, these predictions
are far stronger than mere extrapolations to high Re.
Various timescales of interest can then be estimated, includ-
ing the timescale in which a chondrule encounters a cluster
so dense that it is entrapped. However, preliminary esti-
mates of timescales for simple accumulation by entrapment
in unusually dense clusters are comfortably shorter than
nebula lifetimes only for higher a values than those which
best explain chondrule size-density products.

Mass loading is expected to change the nature of the
process at some point in the cascade where the concentrated
particle density becomes comparable to, or greater than,
that of the gas. Depending on the mass fraction in solid
““ chondrules,ÏÏ this might imply concentration factors as
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small as 102Èor possibly far larger. Mass loading has not
yet been quantitatively treated, but it seems it will inevitably
increase the encounter timescales by decreasing the abun-
dance of very dense clusters. Perhaps turbulent concentra-
tion only augments collisional accumulation for optimally
sized particles.

The evolution of dense clusters in the presence of mass
loading and the vertical component of solar gravity
deserves study (e.g., Wang & Maxey 1993). Do clusters
retain their identity or disperse? Would they be compacted
or dispersed by settling, by collisions with other dense clus-
ters en route to, or within the midplane, or by shock waves
in the nebula? Perhaps only clusters formed near the mid-
plane avoid the dispersion due to settling.
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