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ABSTRACT. Many active galactic nuclei (AGNs) exhibit a highly variable luminosity. Some AGNs also
show a pronounced time delay between variations seen in their optical continuum and in their emission
lines. In e†ect, the emission lines are light echoes of the continuum. This light-travel time delay provides a
characteristic radius of the region producing the emission lines. The cross-correlation function (CCF) is the
standard tool used to measure the time lag between the continuum and line variations. For the few
well-sampled AGNs, the lag is D1È100 days, depending upon which line is used and the luminosity of the
AGN. In the best sampled AGN, NGC 5548, the Hb lag shows year-to-year changes, ranging from D8.7 to
D22.9 days over a span of 8 years. In this paper it is demonstrated that, in the context of AGN variability
studies, the lag estimate using the CCF is biased too low and subject to a large variance. Thus the
year-to-year changes of the measured lag in NGC 5548 do not necessarily imply changes in the AGN
structure. The bias and large variance are consequences of Ðnite-duration sampling and the dominance of
long timescale trends in the light curves, not of noise or irregular sampling. Lag estimates can be substan-
tially improved by removing low-frequency power from the light curves prior to computing the CCF.

1. INTRODUCTION

Active galactic nuclei (AGNs) often exhibit variable lumi-
nosity. In several highly variable AGNs, the observed
UV/optical emission-line Ñuxes are well correlated with the
continuum variations, but with a time delay (e.g., Peterson
1988 ; Ulrich, Maraschi, & Urry 1997). In e†ect, the line
emission is a light echo of the photoionizing continuum.
For Seyfert 1 galaxies, the well-measured time delays
(““ lags ÏÏ) range from D1 to 80 days, and depend on which
emission line is observed (the higher ionization lines
respond more quickly to continuum variations than do
lower ionization lines ; see, e.g., Clavel et al. 1991 ; Peterson
et al. 1998b). The observed time delay gives a characteristic
timescale that, under reasonable assumptions (i.e., the lines
are responding to photoionization, the observed continuum
closely mimics the photoionizing continuum, and the light-
travel timescale is the most relevant timescale), provides a
characteristic length scale (see, e.g., Peterson 1988, 1993).
Thus the observed lag between AGN continuum and
emission-line light curves gives a measure of the size of the
line-producing region, i.e., the broad-line region (BLR).
Note that these length scales correspond to angular scales
of microarcseconds on the sky, so ““ echo mapping ÏÏ studies
o†er the potential for extremely high spatial resolution
studies of AGN (e.g., the proceedings by Peterson and by
Horne in Gondhalekar, Horne, & Peterson 1994).

The Seyfert galaxy NGC 5548 has been the target of
several variability studies and has been intensely monitored
for several years (e.g., Peterson et al. 1999). Of particular
interest are the time lag determinations for the Hb emission
line with respect to the optical continuum. The lag (as
deÐned by the peak of the cross-correlation function) ranges
from D8.7 to D22.9 days over a span of 8 years (1989È1996)
with an rms scatter of 4.5 days (Peterson et al. 1999).

These variations have been interpreted as evidence for
real structural changes in the BLR, due either to physical
changes of the ensemble of BLR clouds or to changes in the
photoionizing radiation Ðeld (e.g., Wanders & Peterson
1996). The dynamical timescale for the BLR,
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D

c] lag
line width

,

is on the order of a few years, so changes in the BLR struc-
ture on this timescale is a realistic possibility.

However, there is considerable difficulty in determining
the lag from AGN time series, in particular, because (i) the
data are short in duration compared to the timescales of
interest and (ii) the data are usually not equally sampled.
Previous studies have investigated the issue of noisy and
poorly sampled data, e.g., see the summary in Koen (1994).
Several di†erent methods for computing the cross-
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correlation function (CCF) have been constructed : the
interpolated CCF (ICCF; e.g., Gaskell & Peterson 1987),
the discrete CCF method (DCF; Edelson & Krolik 1988),
the inverse Fourier transform of the discrete power spec-
trum (Scargle 1989), and the Z-transform CCF (Alexander
1997). In addition, methods other than the CCF have been
used to measure time lags, e.g., optimal reconstruction via
minimizing s2 (Press, Rybicki, & Hewitt 1992) or a para-
metric approach (i.e., modeling the light curves as random
walks ; Koen 1994). For comparisons of the DCF and ICCF
methods, see e.g., LitchÐeld, Robson, & Hughes (1995),
White & Peterson (1994), and Santos-Rodr•� guez-Pascual,
Lleo, & Clavel (1989). Simulations have shown that these
methods can provide reasonably accurate determinations of
the lag under sampling and noise conditions similar to the
actual observations (e.g., Peterson et al. 1998a ; White &
Peterson 1994 ; Koratkar & Gaskell 1991b). Hence the
changing Hb lag in NGC 5548 seems quite real.

In this paper we consider two additional sources of
““ error ÏÏ in the CCF lag determinations, which to our know-
ledge have not been fully addressed in the astronomical
literature. The Ðrst is a bias inherent in the deÐnition of the
CCF such that, on average, the computed CCF lag is not
the true lag. The second error is concerned with gross
changes in the CCF due to changes in the autocorrelation
function (ACF) of the continuum. These changes in the
ACF are not real, in that the underlying physical process
generating the continuum variations have not changed ;
they are simply statistical Ñuctuations inherent in any Ðnite
realization of a stochastic process.

In ° 2 we deÐne the ACF, the CCF, and the transfer
function and examine the relationships between them in the
AGN echo mapping context. Several aspects of the CCF are
examined in ° 3, and at the risk of being overly pedagogical,
we present this material in detail because they are crucial to
the interpretation and usefulness of the CCF. In particular,
the bias inherent in the deÐnition of the CCF and the error
in the lag determination are highlighted. To illustrate and
quantify these ““ problems ÏÏ with the CCF, simulations tai-
lored to match the characteristics of the Hb observations of
NGC 5548 are presented in ° 4. The simulations clearly
show the bias and large variance present in the CCF. Addi-
tional simulations are also presented to (1) explore a wider
range in parameter space, (2) help quantify the amount of
bias and variance, and (3) illustrate how the bias and
variance can be reduced by removing low-frequency trends
from the light curves. We conclude with a discussion of our
results in ° 5.

2. THE ACF, CCF, AND TRANSFER FUNCTION

2.1. The Standard DeÐnitions of the ACF and CCF
The ACF and CCF are standard tools of time series

analysis (e.g., Jenkins & Watts 1969 ; Box, Jenkins, &

Reinsel 1994 ; ChatÐeld 1996 ; Wall 1996). The CCF, some-
times called the serial correlation function, quantiÐes the
amount of similarity or correlation between two time series
as a function of the time shift (i.e., the delay or ““ lag ÏÏ)
between the two time series. The ACF measures the simi-
larity of a single time series to a delayed version of itself.

The standard deÐnition of the CCF of two time series x
i
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e.g., Jenkins & Watt 1969 ; ChatÐeld 1996). The ACF is
similarly deÐned, with itself in place of (Note : forx

i
y
i
.

negative lags, simply interchange x and y.)
It will be helpful to express the CCF more succinctly, and

we will use the continuous deÐnition to do so :

CCF(q) \
P

x(t)y(t ] q)dt , (2)

ACF(q) \
P

x(t)x(t ] q)dt . (3)

It should be explicitly stated that we use equations (2) and
(3) only as shorthand representations of equation (1), as the
discrete and continuous CCF are not the same. Also note
that in this nomenclature and are by deÐnition zero andx6 y6
the light curves have been normalized to unity variance.

2.2. The Transfer Function W

AGN broad emission line light curves are not simply
delayed copies of the continuum light curves. This can be
understood as a geometrical e†ect, as Ðrst pointed out by
Blandford & McKee (1982) : the line-emitting region
extends over a large volume of space, so the light-travel time
across the BLR is signiÐcant. The integrated line light curve
thus appears as a delayed and blurred version of the contin-
uum light curve.

Blandford & McKee (1982) expressed the relationship
between the line emission L (t) and the continuum emission
C(t) as

L (t) \
P

C(t [ q)((q)dq . (4)

The geometry and responsivity of the gas is contained in the
““ transfer function ÏÏ (, and equation (4) simply states that
the line light curve is equal to the continuum light curve
convolved with the transfer function. The transfer function
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can be thought of as a ““ point spread function,ÏÏ an
““ impulse-response function,ÏÏ or a Ðlter of a linear moving
average process with the continuum as the driver (but note
that in this interpretation the continuum is not an uncor-
related white noise process). Only if ( is a delta function
will L (t) be an identical (but lagged) version of C(t). [Note :
we use the term ““ identical ÏÏ loosely here : we mean L (t) is
identical to C(t) within a scale factor and constant, allowing
for and a background contribution to both the/ (dqD 1
line and continuum. We also implicitly assume
((q\ 0)\ 0, i.e., ( is purely causal.] Recovering the trans-
fer function is a major goal of variability studies in AGNs,
as it contains information on the geometry and kinematics
of the BLR. The reader is referred to Horne (1994), Pijpers
& Wanders (1994), Krolik & Done (1995), Vio, Horne, &
Wamsteker (1994), and the proceedings in Gondhalekar,
Horne, & Peterson (1994) for a discussion of the transfer
function and inverting equation (4) to solve for (.

2.3. The Relationship between the ACF, CCF, and Transfer
Function

From the deÐnitions it can be shown (e.g., Koratkar &
Gaskell 1991a ; Penston 1991 ; Sparke 1993) that

CCF(q) \
P
~=

=
((q@)ACF

c
(q[ q@)dq@ , (5)

i.e., the CCF is equal to the transfer function convolved with
the ACF of the continuum. In this representation it
becomes clear that the theoretical CCF is identical to a
blurred version of the transfer function.

If the continuum light curve consists of a well-isolated
sharp pulse or, equivalently, its power spectrum is white,
then its is a delta function and the CCF is then identi-ACF

c
cal to (. In this circumstance the peak of the CCF will
occur at the same lag as the peak of (. More generally, the
ACF is a broad and even function, so the peak of the CCF
will not necessarily occur at the same lag as the peak in (.
The lag determined from the CCF should be considered
only a characteristic timescale.

Equation (5) concisely describes the fundamental issue we
address in this paper : the determination of the lag between
line and continuum light curves depends on both the shape
of the transfer function and the ACF of the continuum.
However, it is crucial to understand that equation (5) is
valid only in the inÐnite-duration limitÈfor Ðnite limits, it
is straightforward to show the equality is not true.

3. PRACTICAL ISSUES

Just as with Fourier analysis, the di†erence between the
mathematical CCF and the experimental (discrete and Ðnite

sampled) CCF can be large. Thus it is useful to examine
some of the details and practical issues concerning the com-
putation of the CCF, with emphasis on the AGN echo
mapping problem. Several of the issues discussed in this
section will be illustrated with simulations presented in ° 4.
Problems concerning unequal sampling have been dis-
cussed in the literature (see the references in the
introduction) and will not be repeated here.

3.1. General Aspects of the CCF

3.1.1. ““ Self-Correlation ÏÏ
The individual points in the ACF and CCF are highly

correlated with themselves, i.e., neighboring points are not
independent (a derivation can be found in Jenkins & Watts
1969). In general, the neighboring values in the ACF/CCF
are more correlated with themselves than neighboring
values in the original time series (Jenkins & Watts 1969). It
is important to be aware of this ““ self-correlation ÏÏ in the
interpretation of the ACF/CCF because trends in the
ACF/CCF are long-lived ; e.g., it can take a surprisingly
long time for the ACF/CCF to decay from a peak. This can
also lead to spurious large values of the CCF, especially for
time series whose ACFs contain intrinsically broad peaksÈ
see, e.g., Figures 1È4 in Koen (1994).

3.1.2. Bias

The CCF as deÐned in equation (1) has the peculiar pro-
perty that the summation in the numerator goes from i\ 1
to N [ k, but the normalization is 1/N, not 1(N [ k). This
normalization is chosen primarily because the variance of
the CCF is then reduced ; i.e., the sample CCF is a better
estimator of the true CCF in the mean square error sense
when the 1/N normalization is used (Jenkins & Watts 1969).
This normalization also guarantees that the CCF is always
bounded by ^1, and the autocorrelation matrix is positive
semideÐnite so that the ACF and power spectrum are
Fourier transform pairsÈthe Wiener-Khinchin theorem
(e.g., Jenkins & Watts 1969). However, the 1/N normal-
ization means that equation (1) is only an asymptotically
unbiased estimator of the correlation function, and its use
introduces a well-known bias toward zero (e.g., Kendall
1954 ; Marriott & Pope 1954 ; Otnes & Enochson 1978 ;
ChatÐeld 1996). This bias grows worse with increasing lag
and results in a triangular-shaped reduction of the CCF and
hence underestimates the lag of the peak of the CCF. The
trade-o† between the bias and variance in an estimator is a
common problem in statistics : often one must choose
between precision (low variance) and accuracy (low bias).
For the CCF, the bias goes as 1/N while the variance goes
as 1/N1@2 ; this is why reducing the bias has not been treated
with equal importance as reducing the variance (Tjostheim
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& Paulsen 1983). It is argued that in most cases N ? 1 and
k > N, so one can tolerate a small bias to achieve a large the
reduction in variance. Furthermore, equation (1) is
extremely simple to compute. For these reasons the 1/N
normalization has gained predominance.

In the case of AGN variability, however, the ACFs are
intrinsically broad and the lags of interest are usually a
substantial fraction of the duration of the observations,
hence this bias can lead to a signiÐcant underestimation of
the lag. As Scargle (1989) points out, this bias can be devas-
tating. One could simply replace the 1/N term with
1/(N [ k), but then the CCF has the very undesirable pro-
perty that it can exceed unity. Indeed, it is likely to exceed
unity because of the self-correlation in the CCF; the ACF at
k \ 0 is forced by deÐnition to be exactly 1, so because of
self-correlation the value of the AGN ACF at k \ 1 will
tend to be close to 1 as well, and so on for many lags. As
shown by Marriott & Pope (1954) and by Kendall (1954),
the bias in the estimated ACF at lag q depends, in general,
on the value on the true ACF at lags q and earlier, a conse-
quence of the strong self-correlation. Because of this, the
bias cannot be removed a priori and the simple 1/(N [ k)
attempt at bias correction will in general fail.

In his method for coping with unequally sampled data,
Scargle (1989) suggests renormalizing the ACF with the
ACF of the sampling pattern, which will remove both the
e†ects of this bias as well as the e†ects of irregular sampling.
Scargle notes that this correction is on average equivalent
to replacing 1/N term with 1/(N [ k), and so it also allows
values of the CCF to exceed unity.

We Ðnd that in practice, the 1/(N [ k) normalization has
the side e†ect of boosting noise at large lags, but even worse,
the shape of the ACF can be modiÐed, and peaks in the
CCF at can be shifted to longer lags. This is totallyqD 0
unacceptable for our purposes, and so this proposed renor-
malization is rejected.

To the best of our knowledge, most of the e†ort in
reducing the bias in the CCF as given in equation (1) has
been motivated by the desire to accurately determine the
Yule-Walker Ðlter coefficients of a stochastic moving
average (or autoregressive) process. These Ðlter coefficients
can be determined from the ACF and, in particular, the Ðrst
few lags of the ACF. Since this usually corresponds to
k > N, a ““ better ÏÏ deÐnition of the ACF has not been
sought and instead bias corrections have been developed to
treat the speciÐc problem of determining the Ðlter coeffi-
cients (e.g., Kendall 1954 ; Tjostheim & Paulsen 1983 ; Mar-
riott & Pope 1954). In their noteworthy analysis,
Sutherland, Weisskopf, & Kahn (1978) address the question
of bias speciÐcally for the ACF in the case of a noisy and
Ðnite-length shot-noise light curve, and, in particular, they
derive a ““ partially unbiased ÏÏ deÐnition for the ACF. They
show that in addition to the bias that is present in the
noise-free case, there is an additional reduction of the ACF

due to noise ; this comes about because the normalization of
the ACF depends on the variance of the light curve, and in
the presence of noise, the variance itself is biased too high.
Thus the value of CCF depends on the signal-to-noise ratio
(S/N) of the data. The motivation for their work was to
deduce the correlation time constant for the shot noise in
Cyg X-1. They show that this can be deduced in an
unbiased fashion from the ratio of the ACF at lags k \ 1
and k \ 2. It is not obvious that their partially unbiased
ACF, suitable for small lags, is applicable to the CCF at
large lags, but this is a topic worth pursuing.

Another possible method to reduce the bias in the ACF is
to use the ““ jackknife ÏÏ or Quenouille method (see, e.g.,
ChatÐeld 1996) : whereACF@ \ 2ACF[ 12(ACF1] ACF2),

is the ACF of the Ðrst half of the data set andACF1 ACF2
is the ACF of the latter half. The bias in ACF@ is reduced
from order 1/N to 1/N2. Although this reduces the length of
the already too short AGN time series by a factor of 2, it
does allow one to check the stationarity assumption
between the two halves. While we have not investigated this
bias correction method, it is worth consideration in future
studies.

3.1.3. Peak or Centroid?

The peak of the CCF gives the lag where the two time
series are most highly linearly correlated. Yet the peak of
the CCF need not correspond to the peak of the transfer
function (Èindeed, the transfer function may not have a
well-deÐned peak at all. The peak of the AGN line-
continuum CCF tends to correspond to where the line echo
response is most coherent, i.e., the innermost region of the
BLR, and hence can underestimate the BLR size (e.g.,
Gaskell & Sparke 1986 ; Edelson & Krolik 1988 ; Robinson
& 1990 ; and especially et al. 1992).Pe� rez Pe� rez

To avoid the uncertainty in the interpretation of the peak
of the CCF, the centroid (center of gravity) of the CCF is
often quoted. In the inÐnite-duration limit, the centroid of
the CCF corresponds to the centroid of ( (e.g., Penston
1991 ; Koratkar & Gaskell 1991a).1 As Penston points out,
this is intuitively obvious because the ACF is an even func-
tion and the CCF is the convolution of ( and the ACF. The
lag determined from the centroid of the CCF is therefore
sometimes preferred over the peak lag (e.g., Peterson et al.
1998a) because it is more easily interpreted as the
responsivity-weighted radius of the BLR. Thus it has
become common practice to quote both the peak and cen-
troid of the CCF when making lag estimations.

However, the centroid su†ers from three serious Ñaws.
First, the centroid of the CCF based on Ðnite-duration light
curves is not identically the centroid of (. This follows

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 The end result is correct, but the derivation contains an error.
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directly from the fact that the sample CCF is not identically
the sample ACF convolved with ( ; i.e., equation (5) is true
only in the inÐnite-duration case. The best that can be
hoped for is that the centroid of the CCF is approximately
the same as the centroid of ( if the durations of the light
curves are much longer then the lag. Second, the centroid is
poorly deÐned. Obviously not all points in the CCF should
be used to deÐne the centroid, only those near the peak
should be included. So some threshold is arbitrarily set, and
the value of the centroid can depend very strongly on what
threshold is chosen (see Koratkar & Gaskell 1991a, 1991b).
Third, because the centroid integrates over a range of values
of the CCF, it is more sensitive to the bias inherent in the
CCF than the peak. Thus the centroid underestimates the
lag more than the peak. This bias in the centroid then
negates the argument that the centroid gives a more charac-
teristic BLR size than the peak. The problems with using
the centroid to estimate the lag will be illustrated via the
simulations in ° 4, where it will be seen that the centroid of
the CCF generally fares worse than the peak2 (see also

et al. 1992).Pe� rez

3.1.4. The Removal of the Mean

The terms and in equation (1) are the mean values ofx6 y6
the entire light curves. For a stationary process, the sample
mean of all the data is clearly the best estimate for the mean.
But for a Ðnite-duration realization of a stochastic process,
this may not be the case. Scargle (1989) makes the point that
for positive deÐnite quantities (e.g., Ñuxes), removing the
sample mean is not always desirable. Instead, removing a
fraction of the mean may provide a better CCF estimate.
The question of what fraction to use depends upon the data
themselves, and experimentation (and judgment) is required
to Ðnd what fraction is optimal. One could in fact solve for
the mean as a free parameter (e.g., Press, Rybicki, & Hewitt
1992).

The standard deÐnition of the CCF (eq. [1]) implicitly
assumes the time series are stationary in their mean and
variance. To help fulÐll this requirement, one can
““ prewhiten ÏÏ the data by (a) removing a linear (or higher
order) Ðt or (b) applying a di†erencing operator to the data.
In the latter case, the data to be analyzed are derived from
di†erences of successive pairs of the light curve : x

i
@4 x

i
The di†erencing operator is in fact a high-pass[ x

i~1.
Ðlter, and under high S/N conditions it is the preferred

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
2 A similar preference for the use of the CCF peak has been previously

shown by Wade & Horne (1998). In using spectroscopy to measure radial
velocities, they found that Ðtting a very narrow Gaussian to the peak of the
CCF gives a more reliable velocity estimate than Ðtting a broad Gaussian
to the CCF.

technique to remove trendsÈsee, e.g., Koen (1993, 1994).
Unfortunately, it fails in practice because the S/N of cur-
rently available UV/optical AGN variability data is too
low, and one is left mostly with noise.

3.1.5. The ““ Local ÏÏ CCF

An alternative deÐnition of the CCF in which only those
(N [ k) points that overlap at a given lag are(q

k
\ k*t)

used to determine the mean and standard deviations is

local CCF(q
k
) 4

[1/(N [ k)] ;
i/1N~k (x

i
[ x

*
)(y

i`k
[ y

*
)

M[1/(N [ k) ;
i/1N~k (x

i
[ x

*
)2]1@2N

]M[1/(N [ k) ;
i/k`1N (y

i
[ y

*
)2]1@2N

(6)

where

x
*

\ 1
N [ k

;
i/1

N~k
x
i
, y

*
\ 1

N [ k
;

i/k`1

N
y
i

are the means of and in the overlap interval. We referx
i

y
i

to this method of computing the CCF as the ““ local CCF ÏÏ
method. The local CCF naturally accounts for the 1/N
versus 1/(N [ k) problem because only those values of the
light curves which overlap at a lag k*t are included in the
determination of the mean and standard deviations. The
value of the CCF determined in this fashion is then identical
to the product-moment correlation coefficient, also known
as PearsonÏs r-statistic (see, e.g., Press et al. 1996 for a
discussion), and this is the method used by White & Peter-
son (1994). The simulations in ° 4 will demonstrate that
while the bias is not completely removed, this deÐnition
produces a CCF with far more desirable qualities. Notice
that in e†ect the local CCF method applies a varying high-
pass Ðlter to the data whose cuto† frequency depends on the
number of points in the time series at a particular lag (i.e.,
N [ k). Thus the local CCF handles data containing low-
frequency trends far better than the standard CCF. For
these reasons we prefer the local CCF over the standard
deÐnition (eq. [1]), but we caution that CCFs constructed in
this manner are for lag determinations only, as to our
knowledge the statistical properties and the relationship
between the local CCF and the (a) inverse Fourier trans-
form of the power spectrum or (b) coefficients of autoreg-
ressive (or moving average) (ARMA) processes has not been
investigated. Jenkins & Watts (1969) do not recommend the
local CCF for these reasons ; however, recovery of ARMA
coefficients and the power spectrum is not the goal of CCF
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analysis in the context of AGN echo studiesÈthe determi-
nation of an unbiased lag estimate is.

3.1.6. The CCF: An Intuitive Statistic ?

As Jenkins & Watts (1969) point out, it should be kept in
mind that the standard CCF as deÐned by equation (1) has
not in any way been proved to be the best possible estima-
tor. It is used primarily because it is an efficient, consistent
estimator with intuitive appeal. However, our intuition can
be grossly incorrect in cases when k is not >N. So we
should not consider equation (1) to be sacrosanct, and, in
particular, the ““ local ccf ÏÏ implementation largely reduces
the bias problems mentioned above, and in our simulations,
yielded results more akin to our expectations than the stan-
dard method.

The local CCF has an easy to understand interpretation
(see, e.g., Bevington & Robinson 1992) : For a given lag q

k
,

there are N [ k overlapping points. A least-squares
straight-line Ðt to the mean-subtracted values of y versus x
will yield some slope b. A nonzero slope suggests a corre-
lation. However, the value of b cannot be used as a measure
of the strength of the correlation because x and y could be
strongly correlated and yet have a small slope (e.g., if x
spanned many orders of magnitude more than y, the slope
would be small even if there were a perfect correlation).
Reversing the dependent and independent variables and
Ðtting a line to x versus y will give a slope b@. As with b,
a nonzero slope b@ implies a possible correlation. The
product bb@ is then a measure of the correlation strength,
independent of the slope of the relationship. The quantity
Jbb @4 r \ local CCF(q

k
).

Despite the apparent intuitive appeal of using the CCF to
detect a correlation, a few caveats and comments are in
order : (i) Equation (1) deÐnes a linear correlation coefficient
between two series. The restriction to a linear correlation is
arbitrary, and a nonlinear analysis may prove fruitful.
(ii) The use of nonparametric correlation tests (such as
SpearmanÏs rank-order correlation) may be of value (see
Press et al. 1996) since they tend to be more robust. (iii) Our
intuition is based on the abstract mathematical case of
inÐnite-duration time series, and this can be grossly mis-
leading.

3.1.7. Finite-Duration Sampling

Flagrant violations of our intuition about the ACF/CCF
can occur if the duration of the light curves are Ðnite. The
problem is particularly serious in the AGN context because
the lags of interest are often a sizeable fraction of the total
duration of the light curves.

In theory, the CCF should be the convolution of the ACF
and the transfer function (. But even in the absence of noise
and with ideal sampling this will often not even be approx-
imately true. Leaving aside the e†ects of bias in the standard

CCF deÐnition, the major cause of the di†erence between
the expected and measured CCF is due to changes in the
observed ACF. For any Ðnite realizations of a stochastic
process, the ACFs will not be exactly the same, even if the
underlying generating process is unchanged. The usual
interpretation of the CCF demands stationarity in the mean
and variance, but this is in general unlikely for Ðnite-
duration observations generated from a stochastic process,
and, in particular, AGN light curves have red power spectra
and are far from being stationary on year-to-year time-
scales. As a consequence, the ACFs can vary from epoch to
epoch, and with it the CCF lags, despite no real physical
changes in the emission producing mechanism (either the
continuum source or BLR). To help mitigate this e†ect,
low-frequency power in the data should be removed, or if
the data S/Ns allow, a di†erencing operator should be
applied. In ° 4.2 simulations will show the improvements in
the CCF lag determination that can result by removing
low-frequency trends and softening the edge e†ects in the
Ðnite light curves.

3.2. The Errors in the Lag Determination

Real data have Ðnite time resolution, contain noise, may
be unequally sampled, and have Ðnite duration. The e†ects
of Ðnite sampling rate are not a problem provided the data
are not undersampled, and the e†ects of noise and unequal
sampling have been discussed extensively in the astronomi-
cal literature, e.g., White & Peterson (1994), Maoz & Netzer
(1989), Peterson et al. (1998a), and references therein. Simu-
lations have shown that the CCF can be satisfactorily
recovered under a wide range of realistic sampling and
noise conditions. However, the e†ects of bias and Ðnite-
duration observations have not be properly appreciated
when considering the errors in the lag determination.

Ignoring bias for the moment, there are two distinct
sources of error : (1) external errors due to observational
noise and irregular sampling and (2) internal errors due to
the random nature of the light curves. Finite-duration sam-
pling of the light curves brings about the latter source of
error. It is independent of observational noise or the sam-
pling pattern.

Maoz & Netzer (1989) estimated the errors on the CCF
by producing a set of simulated line and continuum light
curves with random sampling and noise, then constructed a
““ cross-correlation peak distribution ÏÏ (CCPD) histogram
showing the spread in lags of the peak. From the CCPD
one can measure the mean (or median or mode) and the
associated uncertainty on the lag for the chosen model. For
their continuum time series they used either an interpolated
version of the Peterson et al. (1985) Akn 120 light curve or
the Clavel et al. (1987) NGC 4151 light curve. So in fact
identical parent continuum light curves were used for each
of their two sets of simulations. The CCPD clearly shows a

1999 PASP, 111 :1347È1366



CCF LAGS IN AGNs 1353

large spread in the determinations of the lag, but this spread
shows only the e†ects of the sampling and observational
noise.

The White & Peterson (1994) analysis is more general in
that the continuum light curves are not identical ; instead
they have a power-law power density spectrum (PDS) of
either P( f )P f ~2.5 or P f ~1.8, motivated by the power
spectra of NGC 5548 (Clavel et al. 1991) and NGC 3783
(Reichert et al. 1994), respectively. However, although the
continuum light curves are di†erent in each realization, they
all have very similar ACFs (since by deÐnition they have
identical PDS and the Weiner-Khinchin theorem states that
the PDS and ACF are Fourier pairs). The scatter in their
CCPD is therefore dominated by observational noise and
irregular and sparse sampling and do not realistically
include Ðnite sampling-induced changes in the ACF.3

In their pioneering work, Gaskell & Peterson (1987) do
indeed take into consideration the changes in the ACF,
since their simulated continuum light curves were generated
using a Ðrst-order autoregressive model (e.g., see Jenkins &
Watts 1969). In fact, their Figure 12 shows the problems
mentioned in the previous section : bias in the correlation
coefficient (height of the peak of the CCF) and bias in the
position of the peak of the CCF (toward too small lags).
However, the emphasis of their work was to highlight their
interpolation method for coping with irregular, sparse sam-
pling and observational noise, and they neglected the issues
we investigate here.

The more recent analysis of CCF uncertainties by Peter-
son et al. (1998a) attempts to generate a realistic CCPD
using a combined Monte Carlo and bootstrap method (see,
e.g., Press et al. 1996 for a discussion of the bootstrap
method). The Monte Carlo ““ Ñux randomization ÏÏ jitters the
observed data values by a random amount consistent with
the observational noise, while the bootstrap ““ random
subset selection ÏÏ picks subsets of the time series at random.
The authors conclude that the method produces estimates
of the errors that are generous, i.e., slightly larger than the
errors in the parent distribution. While their detection of a
wavelength-dependent lag in NGC 7469 seems irrefutable,
the analysis of the errors is only partially complete. In their
simulations, the method used to generate the light curves
was nearly identical to that in White & Peterson (1994), so
they do not precisely mimic reality in the construction of

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
3 Technical note : The construction scheme used by White & Peterson

(1994) to add backgrounds to the light curves (such that the fractional rms
matches the observed value of 0.32 for NGC 5548) results in a““Fvar ÏÏ

correlation between the intrinsic rms of the light curve and the amount of
observational noise added. The simulated noise is therefore not constant,
nor is it dependent on only the simulated Ñuxes ; it also depends on the
amount of intrinsic variability. This correlation may result in a slight
overestimate of the reliability of the lag determinations, since for contin-
uum light curves with small intrinsic Ñuctuations the observational noise is
reduced.

the parent CCPD distribution. The fact that the CCPD
generated via a Monte Carlo and bootstrap treatment of a
single light curve realization is larger than the parent
CCPD is comforting, but this may still underestimate the
true uncertainty in the lag.

Note that the Peterson et al. (1998a) implementation of
the bootstrap omits roughly 37% of the observed contin-
uum and line data pairs ; this can be avoided if one reverses
the order of the Monte Carlo Ñux and the bootstrap sam-
pling. By bootstrap sampling Ðrst, one can keep track of the
data pairs that are selected more than once and the error
bars on those points can be reduced accordingly, before the
data are jittered by the Monte Carlo method. This brings
the method more in line with the standard bootstrap tech-
nique (Efron 1983 ; Diaconis & Efron 1983), where in
essence the data are not omitted but, rather, a random
weighting is given to the pointsÈin the analysis, a weight of
zero is assigned to a datum if it is not chosen, and a weight
of n is assigned if that datum is selected n times. The process
is repeated many times, and in all cases the total number of
input values used is constant. Note that for data whose
error bars are roughly constant, it is the bootstrapping, not
the Monte Carlo step, that gives the correct error distribu-
tion, and for this reason the modiÐcation of the Peterson et
al. (1998a) technique is important. For the equal sampling
case with equal size error bars, Monte Carlo Ñux randomi-
zation alone can grossly underestimate the CCPD width.

The Monte Carlo plus bootstrap method as suggested by
Peterson et al. (1998a) and modiÐed to improve efficiency as
stated above appears to be the best way to estimate the
CCPD and hence the uncertainty of the lag for a given time
series. Yet if the continuum light curve is not at least weakly
stationary, knowing the uncertainty for a given realization
does not give a reliable estimate for the full range of scatter
in the determination of the lag. Even if the continuum gen-
erating process is stationary on long timescales, short obser-
vations may mimic nonstationarity. The fact that the
observed yearly mean Ñuxes from NGC 5548 are not consis-
tent with each other is evidence that the process is not
stationary over the timescales of interest, and so compari-
son of CCF from di†erent years is problematic.

Only if the ACFs from year to year are identical can the
changes in the lag be ascribed to changes in the transfer
function and hence changes in the BLR. In summary, even if
large and apparently signiÐcant changes in the lag are
observed, these do not necessarily imply changes in the
AGN/BLRÈthe changes may simply be due to Ðnite-length
observations.

Returning to the issue of bias, the standard CCF will
underestimate the lag on average, and this bias will not be
included in the uncertainty estimatesÈit is a systematic
error. Even with sufficient sampling and no noise, the
CCPD is skewed toward smaller lags, and this bias becomes
worse as the duration of the light curves decreases. The
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CCPDs shown by Maoz & Netzer (1989) and by Netzer &
Peterson (1997) do not show this skew because they used a
speciÐc continuum ACF shape then resample it ; there is a
bias in their CCPD, but it is nearly the same for each of
their simulations. The local CCF method reduces the bias,
but it is still present.

There are a number of examples in the literature that
show the presence of the bias, e.g., the CCPDs in LitchÐeld
et al. (1995) clearly show a bias toward underestimating the
lag in both the (local) interpolated CCF method and in the
discrete correlation function. LitchÐeld et al. (1995) attrib-
uted this bias to the asymmetric shape of their simulated
blazar single-Ñare light curves (rise time much shorter than
decay time), but it is in fact a general property of the CCF.
The bias can also be see in Table 1 (col. [6]) of White &
Peterson (1994) in which the results of Monte Carlo simula-
tions show that the peak of the CCF usually occurs at
slightly smaller lags than the true lag.4 Another example of
the presence of the bias can be seen in the Monte Carlo tests
listed in Table 2 (col. [2]) of Peterson et al. (1998a) and the
corresponding skewed CCPD shown in their Figure 1. This
Ðgure also illustrates that while the CCF centroid distribu-
tion can be more strongly peaked than the CCF peak dis-
tribution, it is also more heavily skewedÈit has a higher
precision, but lower accuracy. Unfortunately, it is difficult
to assess the amount of bias present in real data since it
depends on the true shape of the CCF; i.e., we need to know
the true ACF and the true (Èthe broader either of these,
the worse the bias. Simulations are required to estimate the
bias present in the lag determination, and this then becomes
model dependent.

4. SIMULATIONS

There is no doubt that the lag of the centroid (or peak) of
the CCF for the NGC 5548 Hb light curve is changing from
year to year. The question is, do these changes indicate that
the transfer function ( is changing, or do the changes
merely reÑect the changing ACF due to Ðnite-duration sam-
pling? To answer this question and to illustrate the points
made in ° 3, we performed the following simulations.

4.1. Construction of the Simulations

In this investigation we consider only equally sampled
data ; this way we cleanly separate the e†ects due to unequal

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
4 Technical note : For the cases in White & PetersonÏs Table 1 with

anisotropic BLR cloud emission, i.e., the anisotropy factor A\ 1, the
values quoted for the true expected lag refer to the centroid of the CCF.
However, for the simulations it was the peak of the CCF that was mea-
sured. For these asymmetric right triangle-shaped transfer functions, the
centroid and peak values are very di†erent. So the comparisons for cases
with A\ 1 are only approximately valid, and the bias cannot be readily
noticed.

sampling and those due to changes in the ACF. We con-
struct the simulations such that the changes in the observed
ACFs are due to the Ðnite length of the light curve, not due
to intrinsic changes in the AGN continuum-generating
process, although this would have the same e†ect.

To simulate the observed continuum, we created a time
series from a simple power-law power density spectrum
[PDS with P( f ) P f a] with index a \ [2 and random
phases. A value of a D [2 to [3 for the UV continuum in
NGC 5548 has been determined by Krolik et al. (1991), so
a \ [2 is a reasonable choice, although we emphasize that
this is a convenient parameterization for pedagogical pur-
poses, not to be overinterpreted as a true representation of
the AGN light curve. This artiÐcial time series has zero
mean and spans 10 years in time with 1 day sampling.

To simulate the observed continuum light curve C, the
time series is normalized to give an intrinsic rms variability
of 2.0 (in units of 10~15 ergs s~1 cm~2 and a constantA� ~1),
value is added so the average continuum level is 10.0.
Gaussian distributed white noise with a standard deviation
of 0.333 is then added to mimic observational noise.

A Gaussian centered at q\ 20 days with width p \ 6
days was chosen for the transfer function (. This form of
the transfer function is motivated by the appearance of the
observed Hb transfer function in NGC 5548 (Horne, Welsh,
& Peterson 1991 ; Peterson et al. 1994), although we stress
that the conclusions derived from this choice of ( are true
in general. In fact, because this ( has a well-deÐned peak,
unlike, say, a thick spherical BLR transfer function, our
simulations present a somewhat optimistic case because the
resultant CCF should have a relatively sharp peak.

The line light curve L is generated by convolving the
original noise-free and zero-mean C with (. The line light
curve is then scaled to give an rms value of 1.5 (in units of
10~13 ergs s~1 cm~2) and a constant of 7.5 is added. Gauss-
ian distributed white noise with a standard deviation of 0.30
is then added to the line light curves to mimic observational
noise. The parameters are summarized in Table 1, along
with the actual observed values for NGC 5548 from Peter-
son et al. (1999). Figure 1 shows a typical 10 year long
simulated continuum light curve, along with its local ACF
and PDS.5 The local CCF between the simulated contin-
uum and line light curve for the entire 10 year period is also
shown.

The light curve is then broken into 10 isolated segments,
each 300 days long. Each of these segments corresponds to
a seasonÏs worth of simulated AGN data. Note that each
continuum light curve is independentÈthe mean, the rms
variability, the ACF, and the PDS are not Ðxed. Figure 2

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
5 Technical note : all PDS were computed using linearly detrended and

Welch tapered light curves. The two lowest frequency bins were not used in
the Ðt to the PDS.
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TABLE 1

SIMULATION PARAMETERS

SIMULATIONS NGC 5548a

PARAMETER Continuumb Hbc Continuumb Hbc

Mean Ñux . . . . . . . . . . . . . . . . . 10.0 7.5 9.35 ^ 1.86 7.56 ^ 1.53
Intrinsic rms Ñux . . . . . . . . . 2.0 1.5 D1.82 D1.50
Fvar (%) . . . . . . . . . . . . . . . . . . . . 20 20 19.5 19.9
Observational noise . . . . . . 0.333 0.30 D0.33 D0.28

a Derived from Peterson et al. 1999.
b Continuum Ñuxes are in units of 10~15 ergs s~1 cm2 A� ~1.
c Hb line Ñuxes are in units of 10~13 ergs s~1 cm2.

shows the PDS and CCFs for Ðve seasons extracted from
the light curve in Figure 1. Notice the large changes in
shape and lag of the CCFs in these examples, all of which
were taken from the same parent light curve. Also notice the
di†erences between the standard and local CCFs.

To build up a statistical number of realizations, the above
construction process was repeated 100 times, yielding 1000
seasons of independent simulated continuum and line light
curves. The standard and local methods were used to
compute the CCF for each of the 1000 pairs of light curves.
Both the peak of the CCF and the centroid position were
recorded ; as in Peterson et al. (1999), only values of the
CCF that lie above 0.8 times the maximum r-value were
used in the centroid determination.

4.2. Simulation Results
4.2.1. The Local Standard CCF¿ersus

Figures 3 and 4 show the peak lag values for each of the
1000 trials, along with their CCPD, i.e., a histogram of the
lag values. Results from the local CCF method (Fig. 3) and
the standard CCF deÐnition (Fig. 4) are shown. The
superiority of the local method is immediately evident.
These Ðgures also illustrate two points : (1) there is a down-
ward bias in the CCF, so that the average or median value
underestimates the true lag of 20 days ; (2) the scatter of the
CCF peaks is very large.

In Figure 5, eight di†erent CCPD are shown, each
resulting from a di†erent method of computing the lag, but
all from the same 1000 pairs of light curves. On the left, the
peak and centroid lags are shown for the local and standard
CCF methods. The right panels show the same but for light
curves that have had a linear Ðt subtracted prior to comput-
ing the CCF. This Ðgure reveals several features : all CCPD
show a downward bias, and this bias is very severe for the
standard CCF method ; the centroid distributions are more
susceptible to bias than the peak distributions ; the linear
detrending greatly improves the standard method, but only
slightly improves the local method (because the local
method inherently contains a high-pass Ðlter). The large

number of CCFs that peak at zero delay in the standard
CCF is due to trends in those seasonÏs light curves : a strong
linear trend in both continuum and line light curves will
dominate the CCF. Linear detrending of each seasonÏs light
curves is therefore highly beneÐcial.

The simulations described above are optimistic in several
regards : (i) the light curves are equally sampled with no
gaps, (ii) the observational noise-induced scatter in Ñuxes
are purely independent and Gaussian, (iii) the transfer func-
tion has a well-deÐned peak, and (iv) the duration of the
light curves are 15 times longer than the lag of the peak of
the transfer function. As a result, the conclusions drawn
from these simulations are robustÈmore realistic simula-
tions would show a larger scatter.

It was noticed that on occasion, the line ACF was nar-
rower than the continuum ACF. This has sometimes been
seen in AGN light curves and suggests that ( contains
negative values or is nonlinear (see the discussion by Sparke
1992). However, it can simply be a side e†ect of Ðnite-
duration sampling.

4.2.2. The Eþects of the Continuum Power Spectrum
““ Color ÏÏ

To test the sensitivity to the assumed PDS power-law
exponent a, we carried out simulations using parent contin-
uum light curves with a 1/f and 1/f 3 PDS. The peaks of the
local CCFs were determined, after the light curves had
linear trends removed. The results are shown in Figures 6
and 7, where it is clear that the scatter in the lags depends
strongly on the value of a. This is because the width of the
ACF is sensitive to a : redder PDS (more negative a) have
broader ACFs. As stated in equation (5), the ideal CCF is
identical to the transfer function ( convolved with the
ACF, so a broad ACF yields a broad CCF whose peak is
poorly deÐned. The consequence is that the redder the con-
tinuum Ñuctuations, the more the ability to infer properties
of ( from the measured CCF degrades. These simulation
can be compared with the three model CCFs shown in
Figure 4 of Edelson & Krolik (1988), where redder contin-
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FIG. 1.ÈTop: Simulated optical continuum light curve spanning 10 years. The simulation was designed to closely match the observed characteristics of
NGC 5548 in terms of variability amplitude, observational noise, and an intrinsic f ~2 power-law power spectrum. Five di†erent 300 day long observing
seasons are marked. Bottom left : The power density spectrum of the light curve shown in the top panel, with a power-law plus white noise Ðt. Bottom right :
The ““ local ÏÏ CCF of the simulated observed continuum light curve shown in the upper panel and line light curve (not shown). The transfer function used to
generate the line light curve is a Gaussian centered at 20 days and with a width of p \ 6 days. Also shown is the continuum ACF (dotted line).

uum light curves yield a stronger correlation, but contain
less structure and hence less information.

The above claim that the CCF peak should be more
easily measured for whiter PDS leads to an apparent con-
tradiction. The transfer function acts similarly to a low-pass
Ðlter, hence high-frequency variations present in the contin-
uum are averaged out and are not seen in line light curve.
The thicker the BLR, the more the high frequencies are lost.

This suggests that a continuum light curve dominated by
low frequencies, i.e., a very red PDS, would provide a better
““ driver ÏÏ for echo mapping. Indeed, this e†ect is seen by
White & Peterson (1994) in their CCPD comparisons using
1/f 1.8 and 1/f 2.5 simulated continuum light curves. The
contradiction is resolved by noting that the S/N of typical
AGN variability data is rather low, hence noise in the light
curves is important. For continuum light curves with equal
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FIG. 2.ÈContinuum power spectra and CCFs for the Ðve seasons of simulated data marked in Fig. 1. The Ðt and measured power-law index a for each of
the power spectra are given. Both the local CCF (dark line) and standard CCF (light line) are shown. The lags as determined by the peak and the centroid of
the local CCF are quoted (the centroid value is in parentheses). Note the di†erences between the seasons, despite all being derived from the single continuum
parent light curve shown in Fig. 1. Also note the rather extreme di†erences between the local and standard CCFs.

intrinsic rms variability but di†erent PDS power-law
slopes, the deleterious e†ect of white noise is more pro-
nounced for whiter PDS. In other words, the S/N is time-
scale dependent : low-frequency variations have e†ectively a
higher S/N than high-frequency variations. Since convolu-
tion with the transfer function preserves low-frequency
power, continuum light curves with redder PDS yield CCFs
that are less sensitive to noise. However, one cannot escape
the fact that a very red PDS continuum will have a very
broad ACF and CCF, making its peak and centroid deter-
minations difficult. For high S/N data, a whiter PDS will
enable a richer echo mapping analysis.

4.2.3. The Duration of the Light Curves

As the duration of the time series increases, one expects
the reliability of CCF lag determination to improve. To
quantify this behavior, Figure 8 shows the mean and
median lag values plotted as a function of the length of the
hypothetical observing campaign. Five curves are drawn,
corresponding to the mean and median for the peaks and
centroids of the local CCFs, and the median of the peaks

using the standard CCF method. As before, 1000 simula-
tions were used to determine the mean and median, and
these simulations were identical in all respects except for the
number of points. While all the distributions encompass the
true value within ^1 p, they are all biased too low. For
simulations that match the characteristics of the obser-
vations of NGC 5548, the lag is underestimated by D5%
using the local CCF method. From this Ðgure it is clear that
the median is a far better statistic than the mean. This is
because large outliers are not rare.

For light curves of 150È300 days duration, the median
bias in the local CCFs is roughly 5%È10%. For shorter
duration light curves, the bias and variance increase
rapidly : for 100 day long time light curves the bias is D10%
and for 50 day long light curves the bias grows to D25%.
For light curves this short the huge uncertainty in the lag
makes a single estimate almost meaningless. For compari-
son, the standard CCF method produces signiÐcantly more
biased values : even with 300 day long light curves the bias is
D25%.

The commonly held belief that the time series used to
compute the CCF should be at least 4 times longer than the
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FIG. 3.ÈThe results of 1000 measurements of the CCF lag based on simulations designed to match the optical continuum and Hb light curves of NGC
5548. The left-hand panel shows the individual lag determinations, using the peak of the ““ local ÏÏ CCF to determine the lag. The true simulated lag is 20 days ;
the mean and median of the distribution is shown by the dotted and dashed lines. The right-hand panel shows a histogram of the lag distribution. Note the
biasÈthe distribution is biased too low.

FIG. 4.ÈSame as for Fig. 3, except the standard CCF was used. Notice the much larger scatter in the distribution and the far worse bias. This spike at zero
lag is due to the presence of low-frequency power dominating the light curves.
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FIG. 5.ÈThe four panels show the CCF distributions based on di†erent methods. The darker line shows the distribution of the peaks of the CCF, the
lighter line is based on the centroids. The upper panels show the CCF computed using the ““ local ÏÏ deÐnition, while the lower panels are based on the
standard CCF. The left-hand panels use the light curves with the mean removed prior to computing the CCFs ; the right-hand panels used light curves that
had a linear Ðt removed prior to computing the CCFs. In all cases, the exact same light curves were used. Notice the superior quality of the local CCF
method. Linearly detrending the light curves improves the standard CCF signiÐcantly, but it is still not as good as the local method. In all cases, a bias
toward too small a lag is present.

lags of interest, and preferably D10 times longer, is illus-
trated in this Ðgure. As the light curves lengthen, the lags
only asymptotically approach the unbiased value. Extend-
ing a 200 day long light curve by 100 days does not decrease
the bias nearly as much as extending a 100 day long light
curve by the same amount. Once the light curves exceed
about 10 times the lag, increasing the S/N of the data leads
to more signiÐcant improvements then extending the dura-
tion of the light curves.

4.2.4. The Signal-to-Noise Ratio

The previous simulations were all based on a line S/N of
5, mimicking the NGC 5548 Hb observations. S/N is
deÐned here as the ratio of intrinsic line rms variations to
the simulated observational noise per datumÈsee Table 1
for the numerical values. To quantify the e†ects of a change
in S/N, Figure 9 shows the median of the CCPD for S/N
values of 2.5, 5, and 10, plotted as functions of the duration
of the light curves. For this Ðgure, lag is deÐned as the peak
of the local CCF. Both the line S/N and the continuum S/N

were boosted by the same factors, achieved in realization by
reducing the amount of added simulated observational
noise.

As expected, the higher the S/N, the smaller the bias, and
more importantly, the smaller the variance about the
median. From this Ðgure it can be deduced that under
certain conditions, doubling the S/N of the individual
observations can be as signiÐcant as doubling the duration
of the light curves.

4.2.5. The Eþects of Detrending

In °° 3.1.4, 3.1.7, and 4.2.1 it was stated that ““ detrending ÏÏ
or removing low-frequency power from the light curves can
improve CCF lag determinations. Figure 10 explicitly
shows this e†ect. Plotted are the median values of the 1000
CCF simulations versus the order of the polynomial used to
remove trends from the light curves (order 0 \ mean, order
1 \ linear, order 2\ quadratic, etc.). The detrending was
accomplished by least-squares Ðtting a polynomial to the
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FIG. 6.ÈThe results of 500 measurements of the CCF lag based on simulations using a f ~1 power-law power spectrum. The same noise and sampling was
used as with the simulations shown in Fig. 3. The smaller scatter is due to more information content and narrower ACF in this ““ whiter ÏÏ continuum light
curve, not to less noise.

FIG. 7.ÈThe results of 500 measurements of the CCF lag based on simulations using a f ~3 power-law power spectrum. Compare with Figs. 3 and 6, but
note the change of scaleÈthe vertical scale is 4 times larger. The very large scatter in lags is due to the lack of rapid variations in this ““ redder ÏÏ continuum
light curve and, hence, a very broad ACF and CCF.
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FIG. 8.ÈThe local CCF lag plotted as a function of the duration of the light curves. Shown are the median and mean values of the peak and centroid of the
1000 simulations. The true lag is 20 days. The error bars represent the 68% limits of the distributions. As expected, the bias and variance decrease with
increasing duration of the observations. The bias is still D5% even with a duration 15 times the lag. The Ðgure also shows that the median values are less
biased than the mean values. For comparison, the median of the peak values of the standard CCF is also shown.

FIG. 9.ÈThe median value of the local CCF lags are plotted against the duration of the observing campaign for three di†erent values of S/N. The S/N is
deÐned as the intrinsic rms variations divided by the observational noise per point for the line light curve. S/N \ 5 approximates the NGC 5548 Hb case.
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FIG. 10.ÈThe median CCF peak and centroid lags for di†erent amounts of detrending. For order\ 0 only the mean has been removed ; for order\ 1 a
linear trend is removed ; for order\ 2 a quadratic trend is removed, etc. The error bars represent the 68% limits of the local peak CCPD. Moderate
detrending greatly improves the standard CCF estimates, while the local CCF is not substantially improved. For large amounts of detrending, the variance in
the CCF rapidly grows, negating the reductions in bias.

entire light curve for the observing season (300 days in all
cases) then subtracting o† the polynomial prior to comput-
ing the CCF. In all cases identical light curves were used
(with a line S/N\ 5). For clarity, only the error bars for the
median lag computed with the local CCF are shown. In
general, as the order of the polynomial increases, the bias in
the CCF decreases.

For the standard method, simply removing a linear trend
can result in a substantially better estimate of the lag. Sig-
niÐcant additional improvements can be made by going to a
third- or fourth-order polynomial. However, for higher
orders, the variance increases, o†setting the beneÐts of
detrending.

The beneÐcial e†ect of detrending is more pronounced
for the standard CCF method than for the local method
because the local method intrinsically contains a
detrending-like Ðlter (see ° 3.1.5). Nevertheless, the local
method also beneÐts from low-order polynomial detrending
of the light curves. (The apparent degrading of the local
CCF median when going from no detrending to linear
detrending is a statistical event. More typically, the median
value with no detrending is equal to or worse than with
linear detrending.) Figure 10 again illustrates that the local
CCF outperforms the standard CCF and that the peak is a
better (less biased) estimator than the centroid. However,

the local CCF is more noisy than the standard CCF, partic-
ularly at large lags, and this grows worse with higher order
detrending.6

Conceptually, detrending works for the following reason :
AGN light curves have a red power spectrum, so most of
the signal in the light curves are contained in the lowest
frequencies. However, these low frequencies are the most
poorly sampled in the light curve : there is only one mea-
surement of the lowest Fourier frequency, two of the second
lowest frequency, and so on. Because of the small number of
samples, statistical Ñuctuations are very important. This is
in contrast to the high-frequency power, where there are
many samples, but the observational noise is large (or even
dominant). Detrending the light curves with polynomials
applies a smooth and gently rolling high-pass Ðlter.7 The

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
6 In the situation where outliers become common at the largest lags the

median is no longer a good statistic to use to characterize the CCPD, since
it depends on the limits of where the lags are computed (i.e., the median
becomes sensitive to the endpoints of the interval over which the CCF is
computed). A better statistic would be the mode or the center of a narrow
Gaussian Ðt to the distribution.

7 For equally sampled data a sharp, well-deÐned high-pass Ðlter could
be applied in the Fourier domain, but for unequally sampled data working
in the Fourier domain is problematic.
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CCF will no longer be dominated by poorly sampled low
frequencies and hence less prone to random Ñuctuations.
The scatter in the CCF is therefore reduced. Another way to
think of it is that the detrending sharpens the ACFs, and
since the CCF is approximately the ACF convolved with
the (, the CCF sharpens up.

To understand why detrending reduces bias, one must
realize that the CCF is extremely efficient at Ðnding the lag
if the time series PDS are white ; otherwise the CCF can give
poor results. For example, if the time series contains a trend
then for a long time interval, the data will tend to be above
(or below) the mean. Thus the data values are not randomly
distributed about the mean ; instead, they are highly corre-
lated on long timescales. This correlation will dominate the
CCF and the peak of the CCF will occur at (or near) zero
lag. Thus there is a bias toward small lags if there is any
low-frequency power in the time series. For example, the
peak of the standard CCF will occur at zero lag for any two
linear light curves. Unless the deviations from the straight
lines are large, the CCF will tend to peak at zero lag.

AGN light curves are dominated by low-frequency
power, hence the CCF will be biased toward too small lags
unless the data are ““ prewhitened.ÏÏ8 Detrending the light
curves via polynomials is one way of removing low-
frequency power ; other methods include subtracting o†
splines or a moving average, applying a di†erencing oper-
ation (see, e.g., ChatÐeld 1996), or directly multiplying by a
high-pass Ðlter in the Fourier domain. Since AGN light
curves are red, it is clear that some form of prewhitening
should be carried out.

What order polynomial should be used to detrend the
light curves? The answer depends on the characteristics of
the data : the redder (more negative a) the power spectra, the
more detrending is required ; the lower the S/N, the less
detrending can be tolerated. AGN light curves have power
at all observed frequencies, so there will always be linear
and other low-frequency trends, independent of the dura-
tion of the light curve. The minimum order of the detrend-
ing polynomial is therefore insensitive to the length of the
light curve : a linear trend should always be removed. A
crude estimate for the maximum order can be made as
follows. A polynomial of order M has at most M zeroes, so
it removes power on timescales greater than D2T /(M [ 1),
where T is the duration of the time series. For a reliable
CCF estimate, a light curve with a duration of 5È10 times
the lag timescale is necessary. This gives a polynomial of
order where is the lag expectedM D (0.4È0.5) ] T /q(, q(
for the given transfer function. If the S/N is poor, the

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
8 Determining radial velocity shifts of lines in a Ñux spectrum does not

su†er as much bias because the power spectrum of the Ñux spectrum is
mostly white. Nevertheless, any trends in the continuum must be removed
or the resulting radial velocities will be biased.

maximum-order polynomial for detrending will be less than
this.

When the light curves are heavily detrended, much of the
intrinsic signal in the data is removed, leaving lower and
lower S/N data for the CCF to work with. The lag of the
peaks of the CCFs will therefore not necessarily converge
with increasing detrending. In the extreme limit where the
Ðltering leaves only the observational white noise, the ACF
again will peak at zero lag because of correlated noise
between the continuum and line observations (since they
are both measured from the same spectrum). So while the
detrending removes bias, it also increases the variance, and
in extreme limits it reintroduces a bias. For this reason,
large amounts of detrending is not beneÐcial. The technique
of di†erencing the data (see ° 3.1.4) removes all low-
frequency trends and hence is not a viable option for data
that is not of exceptionally high S/N.

The strong recommendation that results from this work
is that removal of low-frequency trends in the light curves
can signiÐcantly improve the reliability of the CCF lag
determinations. Removal of a linear trend is essential ;
removal of a cubic or quartic trend is recommended ; higher
orders may be useful if the correlation remains strong
enough to provide an unambiguous determination of the
peak. In practice, one should compute and compare the
CCF for progressively larger amounts of detrending.

4.2.6. The Eþects of Tapering

Tapering (also called ““ windowing ÏÏ) a time series is
common practice in Fourier analysis (see, e.g., Jenkins &
Watts 1968 ; Press et al. 1996). Tapering helps compensate
for ““ end e†ects ÏÏ of a Ðnite-duration time series : a sampled
time series can be thought of as the product of two time
series : the ““ true ÏÏ inÐnite-duration time series and a time
series whose value is unity during the data acquisition inter-
val and zero elsewhere. The multiplication of the true time
series with this sampling function is identical to convolution
of the Fourier transform of the true time series with the
Fourier transform of a boxcar. The result is that the Fourier
transform is broadened by convolution with a sinc function.
The broadening results in ““ leakage ÏÏ of power from one
frequency into other frequency bins. Tapering the light
curves consists of multiplying the light curves with a func-
tion that slowly goes from zero to unity and back over the
duration of the experiment. The new time series has
““ softer ÏÏ edges that produce a Fourier transform with less
leakage. For time series that have a red power spectra, the
leakage of power from low frequencies to higher frequencies
is signiÐcant and possibly even dominant at if the intrinsic
PDS is redder than 1/f 2. Because of the equivalence of the
CCF with its discrete Fourier transform counterpart,
reducing leakage from low to high frequencies should
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improve the CCF lag estimate. The red PDS of AGN light
curves means leakage is signiÐcant and suggests that taper-
ing the light curves can have a beneÐcial e†ect.

To explore the possible beneÐts of tapering, simulations
were carried out using light curves that were detrended and
tapered prior to computing the CCF.

The taper was applied in two ways : (1) a global taper,
applied once to the entire light curve ; (2) a local taper,
applied to each overlapping segment pair. The global taper
is more akin to what is used to reduce spectral leakage ; the
local taper forces the same taper to be applied independent
of lag.

The results indicate that tapering does on average
improve the reliability of the CCF lag estimate. However,
the e†ect is small compared to the e†ect produced by
detrending. As expected, the greater the amount of detrend-
ing, the less e†ect the tapering had. The two di†erent
methods of tapering (global and local) produced similar
results for small lags ; the di†erences were much less than
the variance in the estimates of the lag. For globally tapered
light curves, the local and standard methods of computing
the CCF gave very similar results for small lags.

For large lags, the global taper signiÐcantly reduces the
amplitude of the CCF. This has two e†ects : (1) it greatly
reduces the number of outliers in the CCPD; (2) it intro-
duced a strong bias against Ðnding a correlation at a large
lag. Provided the light curves are long compared to the true
lag (something that is not known a priori), the latter e†ect is
not serious. In summary, tapering does have a beneÐcial
e†ect, and the beneÐts are not very sensitive to the speciÐc
method of tapering (or taper shape), but the e†ect of
detrending is far more important. In practice, one should
compute the CCF several ways : using the standard and
local method, di†erent amounts of detrending, and with and
without tapering.

5. DISCUSSION AND CONCLUSION

We have discussed some properties of the CCF, speciÐ-
cally in the AGN echo mapping context. The two main
issues we address are (1) the bias in the CCF and (2) the
uncertainties in the CCF lag determinations. Both of these
stem from Ðnite-duration sampling of the light curves, not
irregular/sparse sampling or observational noise. Bias can
also be introduced if low-frequency power dominates the
light curves. Since AGN light curves have a red power spec-
trum, this second source of bias is also present.

Because of the bias problem the CCF fails on average to
reproduce the correct lag. The bias is inherent in the deÐni-
tion of the standard CCF itself and depends strongly on the
ratio of the intrinsic (true) lag to the duration of the
observed light curves and also the sharpness of the contin-

uum ACF and transfer function. Unfortunately, the amount
of bias cannot be determined from the data themselves ; i.e.,
one needs to know the true CCF in order to calculate the
bias. As a result, exact corrections are impossible and simu-
lations are required to estimate the statistical size of the
bias. However, much of the bias can be removed by simply
detrending (and to a lesser extent tapering) the light curves.

The impact on AGN variability studies is that the stan-
dard CCF tends to underestimate the true time lag, there-
fore the derived characteristic radius for the BLR is
underestimated. From simulations designed to mimic the
well-sampled light curves of NGC 5548, the estimated lag is
too low by D 5%È10%; for more poorly sampled light
curves the bias can be much larger. This bias amplitude is
based on using the ““ local ÏÏ CCF method, in which the
means and standard deviations used to calculate the CCF
are determined using only those parts of the light curves
that overlap at for a given lag. We Ðnd that the local CCF
gives superior results compared to the standard deÐnition
of the CCF, where the bias can be 3 times larger. Although
the size of the bias is relatively small compared to the intrin-
sic uncertainty in the measured lags of many AGN, as the
quality of the data continues to improve, the bias will not be
negligible and its e†ect should not be ignored.

We also Ðnd that the lag of the centroid of the CCF does
not yield a more accurate representation of the BLR size
because (1) it is more heavily biased than the peak of the
CCF; (2) unlike the inÐnite case, the centroid of the sample
CCF does not necessarily correspond to the centroid of the
transfer function.

It has been observed that the Hb lag in NGC 5548
changes from year to year (Peterson et al. 1999), and this
can be interpreted in several ways. The variations can be
attributed to the AGN itself, e.g., the BLR structure may be
evolving, or the illumination of the BLR by the photoion-
izing source may be changing (Wanders & Peterson 1996),
or the engine producing the continuum variability is chang-
ing such that the continuum ACF is variable. However, an
alternate explanation is simply that the changing CCF lag is
due to Ðnite-duration sampling of the light curves. Simula-
tions that mimic the optical continuum and Hb obser-
vations of NGC 5548 demonstrate that, even with perfect
sampling and with a transfer function that has a well-
deÐned peak, the scatter in measured CCF lags is large.
Thus the scatter in the observed Hb lags in NGC 5548 can
be attributed to Ðnite-duration sampling of a random
process.

Observations have shown that AGN Ñux time series are
not stationary on timescales spanning several observing
seasons ; i.e., the means and variances of the light curves do
not remain constant from year to year. Since the continuum
variability properties are not constant (in particular, the
ACFs), one cannot use the observed CCFs to unam-
biguously deduce changes in the transfer function.
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It is of course possible that the changing lag is intrinsic to
the AGN, but we have shown that the scatter in the lags are
also consistent with the interpretation of being a conse-
quence of Ðnite-duration sampling of a random walkÈlike
process. Our simulations produce a distribution of lags that
is as wide as the observed scatter. Given that the artiÐcial
data were oversampled, equally sampled, had perfectly
known noise characteristics and a transfer function with a
well-deÐned peak, the results of the simulations are highly
robust.

To determine whether the observed lag variations are
intrinsic to the AGN, one needs to show that a realistic
simulation produces a narrower scatter in lag distribution
than what is observed or that yearly changes in the lags are
not random. Given that much longer observing runs than
what has already been obtained for NGC 5548 are not
feasible, the resolution of the question of the signiÐcance of
the changing lags will demand new data with much higher
S/N. This would substantially tighten the scatter in the
simulated lag distributions, while its e†ect on the observed
scatter depends on if the variations are intrinsic or not.
Also, a better understanding of the continuum variability
characteristics such as the power spectrum power-law expo-
nent a would allow more realistic simulations. As we have
shown, the scatter in the simulated lag distribution depends
strongly on the power-law slope of the power spectrum. In
this regard, a Fourier analysis of the long-term NGC 5548
continuum light curve is warranted.

Finally, enumerated below are some practical suggestions
that can improve the reliability of CCF lag determinations
in AGN: (1) Detrending the light curves produces far more
reliable CCFs. Linear detrending is required, and higher
order detrending can be beneÐcial if the S/N is high. (2) The

peak of the CCF gives a more reliable lag estimate than the
centroid. (3) Tapering the light curves also has a beneÐcial
e†ect, although not as signiÐcant as detrending. (4) The
““ local CCF ÏÏ is less biased and therefore gives better results
than the standard CCF, especially for small lags. However,
if the light curves are detrended and tapered, the advantage
the local CCF has over the standard CCF is small. If simu-
lations are used to estimate uncertainties in the lag esti-
mates, then (5) the median of the CCPD is more reliable
than the mean or mode for light curves that are not too
heavily detrended ; (6) an improvement of the
bootstrap]Monte Carlo method (Peterson et al. 1998a) as
described in ° 3.2 should be used. However, simulations of
this nature can yield only an estimate of the uncertainty of
the lag for that particular sample of light curve. Without an
understanding of the true ACF itself (not the sample ACF),
estimates based on resampling or perturbing the observed
sample light curves can underestimate the variability of the
lag.
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