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ABSTRACT. Derivation of accurate polarization information about an astronomical target is a vital tool
for investigation of astrophysical processes. Use of large area detectors for imaging and spectroscopy has
become commonplace, and frequently such instruments o†er a polarization capability. Processing of polari-
metric data, however, is nontrivial, especially when the polarimeter is far from ideal. Here we present an
overview of the analysis procedures needed to properly process polarimetry data that comprise a series of
images of an object taken through a given set of polarizers, such as the imaging instruments on the Hubble
Space T elescope (HST ). The analysis can also be used for other types of polarization data, such as spectra.
We consider only linear polarization, not circular. The polarizers do not need to be perfect polarizers,
although it is important that their characteristics be well established. From an input data set of n intensities
(or, equivalently, Ñuxes) and their errors, assumed independent between observations, corresponding to a set
of observations through n polarizers (not necessarily identical or perfect), we show how to derive the Stokes
parameters and their covariance matrix both for the special case of n \ 3 and for general n.

We then discuss how to derive higher level parameters such as polarization degree and position angle and
their associated uncertainties and indicate ways to ““ debias ÏÏ the positive deÐnite polarization degree. We
present tests of our analysis using Monte Carlo simulations. Finally, we show the achievable accuracy for
various levels of polarization and signal-to-noise ratio for typical cases, which should be useful for obser-
vation design. The techniques allow accurate recovery of polarization information from several of the
instruments on board the HST as well as estimates of the uncertainties in the results.

1. INTRODUCTION

Astronomical observations of polarized light (used loosely for any electromagnetic radiation here) can often provide
important insights into physical processes which are relevant to the phenomena we study and maybe even to the origin of life
itself (Bailey et al. 1998). Polarization, a preferential direction of oscillation for the electromagnetic vector, can be induced
intrinsically through the radiation process itself (Collett 1993). An example of this is the exceptionally high degree of linear
polarization (henceforth polarization ; we do not consider circular polarization here) found in the synchrotron-emitting Crab
Nebula or the jet of M87 (see, e.g., Perlman et al. 1999). Polarization can also be introduced by the propagation of radiation
through a medium that itself has a preferred orientation. The most common example of this, perhaps, is the transmission of
light through dust grains aligned by Galactic magnetic Ðelds (Mathewson & Ford 1971 ; Axon & Ellis 1976). The third way in
which light can become polarized is through scattering by a medium. For example, in molecular clouds one frequently ““ sees ÏÏ
radiation that is scattered by dust in the vicinity of an object which is itself invisible due to extreme obscuration along the line
of sight to the observer (see, e.g., Gledhill, Chrysostomou, & Hough 1996). Scattered light is seen in the nuclear regions of
active galaxies (Antonucci & Miller 1985 ; Capetti et al. 1995) and from supernovae that erupted and are now gone, but where
light travel time delays allow us still to see the light echo of the original event (Sparks 1994 ; Schmidt et al. 1994 ; Sparks et al.
1999). In these cases, the polarization is enabling a precious opportunity in astronomy, namely, the ability to view a distant
target from another angle (see, e.g., Henney, Raga, & Axon 1994).

Often polarization observations are obtained of single point sources using exceedingly accurate, dedicated polarimeters
(see, e.g., Hough, Peacock, & Bailey 1991). For the interesting cases where the polarized light is extended, it is necessary to use
““ imaging polarimetry ÏÏ observations. In principle, polarization observations simply require the introduction of polarizing
optics before a camera. For example, Sparks et al. (1989, 1990) used four polarizing Ðlters placed in the collimated beam of the
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EFOSC camera at the European Southern Observatory. On the ground this technique may be hampered by atmospheric
variations, as transmission and point-spread function change between the multiple observations required to obtain the Stokes
parameters Q and U.

Traditionally this problem has been overcome by using dedicated two-beam polarimeters (see, e.g., Scarrott et al. 1983), in
combination with some kind of rotating retarding plate, so that a complete Stokes parameter set can be obtained at any one
time. In contrast with the removal of the atmospheric e†ects by such means, space-based imaging polarization observations
have almost exclusively used multiple polarizing Ðlters of various degrees of sophistication, so as to eliminate the potential
““ single point failure ÏÏ possible with rotating elements such as wave plates. The exceedingly stable observational environment
essentially eliminates the need for simultaneous acquisition of the complete Stokes parameter set.

Examples include the three double Rochon prism polarizers (essentially perfect polarizers from 300 to 600 nm, but with
di†erent efficiencies shortward of 300 nm) housed in the Faint Object Camera (FOC) on board the Hubble Space T elescope
(HST ). Other HST instrumentation utilizing three polarizers oriented at di†erent position angles are the Near Infrared
Camera and Multi Object Spectrometer (NICMOS) and the Advanced Camera for Surveys (ACS), due to be launched around
the year 2000 (Ford et al. 1998). The Wide Field and Planetary Camera 2 (WFPC2) also has a polarization capability where
images can be taken with a variety of position angles at a variety of detector locations using a polarizing ““ quad ÏÏ Ðlter. In the
case of both WFPC2 and NICMOS, the polarimeters are far from perfect, either because of the poor polarizing characteristics
of the polarizing elements or because of misalignment from the ideal choice of position angles (0¡, 60¡, and 120¡ are ideal if
three observations are used). WFPC2 can be used with ““ partial rotations ÏÏ that are far from ideal, and NICMOS su†ers from
both polarizer inefficiencies and small angle misalignments.

Processing of such data with imperfect polarizers is a classic problem. Here we attempt to o†er a ““ top-to-bottom ÏÏ analysis
for the case of observations using n general polarizers (° 2), making full allowance for polarizer inefficiencies. We solve the
equations for the Stokes parameters in the general case of n potentially imperfect polarizers, including expressions for the
covariances of those parameters (° 3) for the special case of three polarizers and (° 4) for n. We proceed in ° 5 to derive
estimates of the polarization degree and position angle, using transformations of the Stokes parameters which lead to data
having a standard Rice distribution and which hence allow existing methods of debiasing the positive deÐnite polarization
degree to be applied (Simmons & Stewart 1985). We also use similar transformations that enable us to estimate the
uncertainties on these parameters (° 6). We present tests of the analysis, and graphs of achievable accuracy under various
circumstances in ° 7. These are intended for use in observational design. It transpires, not unexpectedly, that the achievable
accuracy is a function of the mean signal-to-noise ratio (S/N) times polarization degree, which we call g 4 pSS/NT, where
SS/NT is the average S/N per image.

We do not present an exhaustive account of the e†ects of non-Gaussian statistics on the input data, although we do
compare Poisson uncertainties to Gaussian using simulations. Nor do we devote time to ““ instrumental polarization,ÏÏ which
should be taken out after derivation of the Stokes parameters (Tinbergen 1996 ; Biretta & McMaster 1997). Additionally, we
do not take into account mismatches between point-spread functions from polarizer to polarizer, and we assume the
polarizers have been well characterized and properly calibrated.

2. INPUT DATA AND ASSUMPTIONS, CHARACTERISTICS OF POLARIZERS

2.1. Linearly Polarized Light
There are numerous sources of reference for a detailed introduction to polarimetry, e.g., Tinbergen (1996). Here we give

only a brief outline of the basics, and only for linearly polarized light.
Linearly polarized light requires measurement of three quantities to characterize it fully. These can be expressed in a variety

of ways. They are the total intensity of the light I, the degree of polarization p, and the position angle of polarization h.
Frequently used, and essential in this work, are the Stokes parameters (I, Q, U), which may be thought of as an
““ intermediate ÏÏ stage between the input data and the solution of polarization quantities. These quantities are related through

Q\ Ip cos 2h , U \ Ip sin 2h ,

or the other way around,

p \ (Q2] U2)1@2
I

, h \ 1
2

tan~1
AU
Q
B

.

1999 PASP, 111 :1298È1315



1300 SPARKS & AXON

Note that these are all intrinsic properties of the source of radiation and should not be confused with the properties of the
polarizing elements.

2.2. Polarizing Element Characteristics

A linearly polarizing element also requires three quantities to characterize its behavior or response fully. These are
essentially its efficiency as a polarizer (i.e., the ability to reject and accept polarized light of perpendicular and parallel
orientations), its overall throughput, in particular to unpolarized light, and the position angle of the polarizer. There are a
variety of conventions commonly used to present these three quantitiesÈfor example, they can be expressed as the character-
istics of a single polarizing element or as the properties of a pair of elements in series. Mazzuca et al. (1998) o†er conversions
between three such conventions.

Here, we adopt the convention that the output intensity of a beam with input Stokes parameters (I, Q, U) passing through
a polarizing element is given by

I
k
\ 1

2
t
k
[I] v

k
(cos 2/

k
Q] sin 2/

k
U)] , (1)

where the subscript k anticipates that the polarizing element is the kth of a series, t is related to the throughput to unpolarized
light, v is the efficiency of the polarizer, and / is the position angle of the polarizer. Mazzuca et al. (1998) give the conversions
between this characterization of polarizing elements and two others. For example, with three perfect polarizers at optimal
orientation, we could have 60¡, 120¡). This would be a good approximation to the FOCt

k
\ 1, v

k
\ 1, (/1, /2, /3) \ (0¡,

polarizers mentioned above. Another example is a perfectly bad polarizer, e.g., a piece of high-quality glass, where we would
have and the values can be anything (since v is zero). This example is not absurd : in the case of n polarizers oft

k
\ 2, v

k
\ 0, /

k
arbitrary characteristics, discussed below in ° 4, it may be used to include as part of the observing sequence a direct
observation of the target without any polarizing element in beam. Then the formula below will allow this additional
observation to form part of the derivation of polarization quantities to maximize the obtainable S/N.

2.3. Input Data and Assumptions

We assume that we have made a set of n observations of a source, each using a polarizing element of arbitrary but known
characteristics. This could include observations without any polarizer or repeat observations with the same polarizer.
However, at least three observations must be made using polarizers of di†erent characteristics to allow solution for the three
unknowns in the description of the polarization of the incoming light. Let the measured intensity through the kth polarizer be

as above.I
k
,
We assume that each observation is independent of the other observations. This is expected to be the case in most instances.

Note that it does not necessarily imply that the derived Stokes parameters will be independent of one another.
We also require that the uncertainty associated with the measurement be known, which we denote as Our errorI

k
p
k
.

analysis will assume p is normally distributed, for the analytic work, and we include Poisson distributed in the Monte Carlo
simulations.

3. THE CASE OF THREE POLARIZERS

3.1. Solution of Linear Equations
The minimum number of polarization observations required to determine the three unknowns represented by the Stokes

parameters is obviously three. With a high demand on time and desire for efficient observing, this has driven the normal
imaging polarization observing mode for HST , at least, to be three polarizers at approximately 60¡ orientation with respect to
one another. The FOC uses double Rochon prisms with exceptionally good polarizing characteristics, oriented close to a 60¡
spacing from one another (Nota et al. 1996). These prisms can be used in combination with other optical elements to allow
polarization to be measured at di†erent wavelengths. The NICMOS has two sets of three polarizers that cannot be used in
combination with other optical elements. One set is for the shorter wavelengths and the other for the longer wavelengths.
These polarizers do not have the characteristics of perfect polarizers, having lowered efficiency and nonoptimal orientations.
However, with appropriate characterization they may still be used to excellent e†ect (Hines 1998). The ACS is also expected to
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possess two sets of three polarizers. These comprise polaroid material with one set optimized for use in the blue and the other
for use in the red. It will be possible to use these polarizers in conjunction with other optical elements.

WFPC2 requires a more complex set of observations (Biretta & McMaster 1997) and may be considered appropriate to the
general case discussed in ° 4 below, while HST Space Telescope Imaging Spectrograph does not have a polarization
capability.

Equation (1) above with k in the range 1È3 gives three equations for the three unknowns, (I, Q, U). To be quite clear, we
write

I1\ 1
2

t1[I] v1(cos 2/1Q] sin 2/1 U)] , (1a)

I2\ 1
2

t2[I] v2(cos 2/2Q] sin 2/2 U)] , (1b)

I3\ 1
2

t3[I] v3(cos 2/3Q] sin 2/3 U)] . (1c)

This straightforward linear system may be explicitly solved (see, e.g., Hines 1998) to yield

(I, Q, U) \ A
(

t

:

t

t

I1
I2
I3

)

t

;

t

t
, (2)

or to introduce a minor simpliÐcation

(I, Q, U) \ B
(

t

:

t

t

I1*
I2*
I3*

)

t

;

t

t
, (3)

where (i.e., the matrix A is the matrix B with rows divided by and the matrix B is given byI
k
* \ I

k
/(0.5t

k
) 0.5t

k
)

B\
(

t

:

t

t

v2 v3 sin (2/3[ 2/2) v1 v3 sin (2/1[ 2/3) v1 v2 sin (2/2[ 2/1)
v2 sin 2/2[ v3 sin 2/3 v3 sin 2/3 [ v1 sin 2/1 v1 sin 2/1[ v2 sin 2/2
v3 cos 2/3[ v2 cos 2/2 v1 cos 2/1 [ v3 cos 2/3 v2 cos 2/2[ v1 cos 2/1

)

t

;

t

t
/) , (4)

where

)\ v1 v2 sin (2/2[ 2/1) ] v2 v3 sin (2/3[ 2/2) ] v1 v3 sin (2/1[ 2/3) .

3.2. Associated Covariance Matrix

If each of the measurements has an associated variance of then the covariance matrix for the (I, Q, U) vector is givenI
k

p
k
2,

by

p
ij
2 \ ;

k
A

ik
A

jk
p
k
2 . (5)

This is a sum of coefficients times variances of the input observables. For example, the variance on Q is obtained by setting
i\ j\ 2 and summing over k. More explicitly,

p
I
2\ A112 p12] A122 p22] A132 p32 , p

Q
2 \A212 p12] A222 p22] A232 p32 , p

U
2 \A312 p12] A322 p22] A332 p32 .
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The covariance terms of the matrix give information on the expected dependencies of the derived Stokes parameters on one
another. Another way to express this covariance is through the more familiar (linear, Pearson) correlation coefficient (which
lies between 0 and 1 in absolute value for zero to perfect correlation), where is the covariance between vectorR

ij
\ p

ij
2/p

i
p
j
, p

ij
2

elements i and j. As above, we have the covariances

p
IQ
2 \ A11 A21 p12] A12A22 p22] A13A23 p32 ,

p
IU
2 \ A11 A31 p12] A12A32 p22] A13A33 p32 ,

p
QU
2 \A21 A31 p12] A22A32 p22] A23 A33 p32 .

The variances are obviously essential in a proper error analysis, and the covariances will also be used in order to derive
estimates of the higher level quantities such as polarization degree from the Stokes parameters. For perfect polarizers oriented
at 60¡ to one another, the covariances are close to zero. If the polarizers are perfect and the uncertainties on each observation
are all equal, then the covariances are zero, otherwise a small covariance is introduced because of the di†erent weighting of
each observation.

4. THE CASE OF n POLARIZERS

We now turn to the case of n polarizers and derive an analogous solution. Note the obvious : we still seek only three
unknowns, and hence the associated covariance matrix is still a 3 ] 3 matrix as above. We will adopt a maximum likelihood
approach, which is equivalent to a least-squares minimization.

Suppose the true underlying values of the Stokes parameters of the source are (I, Q, U). Then we would expect to observe a
mean intensity through the kth polarizer of as in equation (1) :I

k
@

I
k
@ \ 1

2
t
k
[I] v

k
(cos 2/

k
Q] sin 2/

k
U)] . (6)

Hence the likelihood of observing a particular value given an underlying mean of isI
k
, I

k
@ ,

o
k
\ 1

J2np
k

e~(Ik~Ik{)2@2pk2 ,

and hence the likelihood of observing a set of n values isMI
k
N

o \ o1 o2 . . . o
n

, o \ o0 exp
C
[ (I1[ I1@ )2

2p12
[ (I2[ I2@ )2

2p22
[ (I3[ I3@ )2

2p32
[ . . .

D
,

where is a constant. Maximizing the likelihood function o is equivalent to minimizing the absolute value of the exponent,o0
which is a sum of normalized deviations from the mean value. That is, the ““ least-squares ÏÏ estimate. Hence the problem
becomes minimize

s2 \ 1
2

;
k

(I
k
[ I

k
@ )2

p
k
2 . (7)

The values of can be substituted into equation (7) from equation (6), and minimization of s2 is obtained by taking partialI
k
@

derivatives with respect to each of I, Q, U in turn and equating to zero. Algebraic manipulation leads to a set of three
equations

;
I
k
t
k

p
k
2 \ 1

2
;

t
k
2

p
k
2 I] 1

2
;

t
k
2 v

k
cos 2/

k
p
k
2 Q] 1

2
;

t
k
2 v

k
sin 2/

k
p
k
2 U ,

1999 PASP, 111 :1298È1315



PANORAMIC POLARIMETRY DATA ANALYSIS 1303

;
I
k
t
k
v
k

cos 2/
k

p
k
2 \ 1

2
;

t
k
2 v

k
cos 2/

k
p
k
2 I] 1

2
;

t
k
2 v

k
2 cos2 2/

k
p
k
2 Q] 1

2
;

t
k
2 v

k
2 sin 2/

k
cos 2/

k
p
k
2 U ,

;
I
k
t
k
v
k

sin 2/
k

p
k
2 \ 1

2
;

t
k
2 v

k
sin 2/

k
p
k
2 I] 1

2
;

t
k
2 v

k
2 sin 2/

k
cos 2/

k
p
k
2 Q] 1

2
;

t
k
2 v

k
2 sin2 2/

k
p
k
2 U ,

where ; denotes a sum over index k of the n polarizer observations. In other words, again we have a set of three equations in
three unknowns. It is very similar in form to the set of three equations for the three-polarizer case solved above and, in fact, is
identical if we deÐne a set of ““ e†ective three-polarizer characteristics ÏÏ using these weighted sums.

That is, the three terms on the left hand side of the equals signs can be used as in equation (1) above. Label these(I1, I2, I3)
new parameters as to get the new three-component vector of e†ective measurements :I

k
@@,

I1@@ \ ;
I
k
t
k

p
k
2 , I2@@\ ;

I
k
t
k
v
k

cos 2/
k

p
k
2 , I3@@\ ;

I
k
t
k
v
k

sin 2/
k

p
k
2 .

Similarly, we can deÐne a three-component vector of e†ective transmittances :

t1@@\ ;
t
k
2

p
k
2 , t2@@\ ;

t
k
2 v

k
cos 2/

k
p
k
2 , t3@@\ ;

t
k
2 v

k
sin 2/

k
p
k
2 ,

a vector of e†ective efficiencies :

v1@@\
1

;t
k
2/p

k
2
SA

;
t
k
2

p
k
2 v

k
cos 2/

k

B2]
A
;

t
k
2

p
k
2 v

k
sin 2/

k

B2
,

v2@@\
1

;t
k
2 v

k
cos 2/

k
/p

k
2
SA

;
t
k
2

p
k
2 v

k
2 cos2 2/

k

B2]
A
;

t
k
2

p
k
2 v

k
2 sin 2/

k
cos 2/

k

B2
,

v3@@\
1

;t
k
2 v

k
sin 2/

k
/p

k
2
SA

;
t
k
2

p
k
2 v

k
2 sin 2/

k
cos 2/

k

B2]
A
;

t
k
2

p
k
2 v

k
2 sin2 2/

k

B2
,

and a vector of e†ective ““ position angles ÏÏ :

/1@@ \ 1
2

tan~1
A
;

t
k
2

p
k
2 v

k
sin 2/

k

N
;

t
k
2

p
k
2 v

k
cos 2/

k

B
,

/2@@ \ 1
2

tan~1
A
;

t
k
2

p
k
2 v

k
2 sin 2/

k
cos 2/

k

N
;

t
k
2

p
k
2 v

k
2 cos2 2/

k

B
,

/3@@ \ 1
2

tan~1
A
;

t
k
2

p
k
2 v

k
2 sin2 2/

k

N
;

t
k
2

p
k
2 v

k
2 sin 2/

k
cos 2/

k

B
.

By making these substitutions, the solution given by equations (3) and (4) can be used immediately. Although they appear
somewhat messy, in fact, there are rather few sums over terms and the coding is straightforward. That is, a set of observations
with n polarizers can be made equivalent to a set of observations through three polarizers.

In the actual case of n \ 3, it can also be shown that the maximum likelihood or least-squares solution is identical to the
direct matrix inversion used for the three-polarizer case.

The error analysis (i.e., derivation of the covariance matrix) also follows from this analysis. Returning to the original
maximum likelihood formalism, the curvature matrix of s2 with respect to (I, Q, U) can be calculated by di†erentiating
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equation (7) twice this time to obtain

L2s2
LI2 \ ;

t
k
2

4p
k
2 ,

L2s2
LQ2 \ ;

t
k
2

4p
k
2 v

k
2 cos2 2/

k
,

L2s2
LU2 \ ;

t
k
2

4p
k
2 v

k
2 sin2 2/

k
;

L2s2
LILQ

\ L2s2
LQLI

\ ;
t
k
2

4p
k
2 v

k
cos 2/

k
,

L2s2
LILU

\ L2s2
LULI

\ ;
t
k
2

4p
k
2 v

k
sin 2/

k
,

L2s2
LQLU

\ L2s2
LULQ

\ ;
t
k
2

4p
k
2 v

k
2 sin 2/

k
cos 2/

k
.

Casting in matrix form,

C\

(

t

:

t

t

t

t

t

t

L2s2
LI2

L2s2
LILQ

L2s2
LILU

L2s2
LQLI

L2s2
LQ2

L2s2
LQLU

L2s2
LULI

L2s2
LULQ

L2s2
LU2

)

t

;

t

t

t

t

t

t

. (8)

Then the covariance matrix of the solution to this system is the inverse of C. While in principle that matrix could be
calculated analytically, it is probably easier to carry out the matrix inversion numerically having Ðrst evaluated the various
sums of terms required.

5. DEBIASING PROCEDURE FOR POLARIZED FLUX

At this point, we conclude our analysis of derivation of the Stokes parameters from a set of input observations, a crucial
Ðrst stage in polarization analysis. We have shown how to obtain the solution for the Stokes parameters in all cases and how
to calculate the associated covariance matrix appropriate to that solution. We now wish to use this information to derive the
polarization degree and position angle of polarization. We assume that as input we have the Stokes parameters and their
covariance matrix. The number of observations and their individual measurements and errors no longer enter the problem.

5.1. Geometric Visualization

If one makes repeated observations of a polarized light source, then, subject to the above assumptions, the derived Stokes
parameters will form a cloud of points in (I, Q, U)-space. For the moment, just consider the (Q, U)-plane. The distribution of
points will have a mean value which approaches the underlying intrinsic of the source. They will scatter(Q0, U0)-values
around that mean value as a bivariate normal distribution, with dispersion in the Q-axis of and in the U-axis by Inp

Q
p
U
.

general, the data points will be correlated, with a correlation coefficient given by

R
QU

\ p
QU
2

p
Q

p
U

\ v
QU

Jv
Q

v
U

,

where is the covariance between Q and U and are the variances of Q and U. The dispersion of the points and theirv
QU

v
Q
, v

U
correlation depends on the S/N of the data and the characteristics of the polarizers. Figure 1 illustrates.

Estimation of the polarized Ñux Ip is equivalent to estimating the length of the radius vector from the origin to the center of
the distribution and estimation of the polarization position angle h is equivalent to measuring the polar angle 2h of(Q0, U0),
that vector from the Q-axis. It is well known that simply using the individual measurements and taking(Q

i
, U

i
) (Q

i
2] U

i
2)1@2

as the estimate of the radius results in a biased estimate, since the positive deÐnite sum of squares always causes random
deviations to add statistically to the result. This is most easily seen if the true center of the distribution lies at the origin, i.e.,
the source is unpolarized. All measurements of radius from the origin give positive values (see, e.g., Serkowski 1958 ; Wardle &
Kronberg 1974 ; Simmons & Stewart 1985 ; Clarke & Stewart 1986).
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FIG. 1.ÈSketch of possible distribution of repeated measurements in the (Q, U)-plane, with correlations that might arise from use of imperfect polarizers

Here, we show that by rotating and rescaling using the covariance matrix, the Stokes parameters can be transformed
into uncorrelated, unit-variance normally distributed data, for which the distribution of radii obeys the Rice distribution,
F(p, where is the zero-order Bessel function, using the notation of Simmons & Stewart (1985),p0)\ pe~*(p2`p02)@2+I0(pp0), I0
and p and are the observed and true degrees of polarization, that is, and Note thatp0 p \ (Q

i
2] U

i
2)1@2 p0\ (Q02] U02)1@2.

while conceptually the underlying distribution of the data is described in these ways, in practice for panoramic polarization
measurement we seldom have more than one or a few measurements within the distribution.

Given data in this standardized form, a choice of estimators and techniques is available to correct for the positive deÐnite
bias. Here, for our Monte Carlo simulations, we use the mean of the distribution, as in Serkowski (1958). Simmons & Stewart
(1985) advocate the use of the maximum likelihood estimator, while Wardle & Kronberg (1974) propose the use of the
distribution peak. All three of these are given as tables in the Appendix.

An interesting property of the bivariate normal distribution is that even in the presence of correlation between the
variables, the projected dispersions do not involve the correlation and are given by the usual and We will use this inp

Q
p
U
.

rescaling the variables and, again, later in our error estimation.

5.2. Stokes Parameter Transformations

The bivariate Gaussian g(x, y) is given by

g(x, y)\ 1

2np
x
p
y
J1 [ R2

exp
G
[ 1

2(1[ R2)
C(x [ x0)2

p
x
2 ] (y [ y0)2

p
y
2 [ 2R

(x [ x0)(y [ y0)
p
x
p
y

DH
,

where R is the usual correlation coefficient between the two variables. For our example, Q4 x, U 4 y and p
Q

4 p
x
, p

U
4 p

y
,

R\p
QU
2 /p

Q
p
U
.
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We can eliminate the correlation in these data by rotating the axes through an angle f@ given by

f@\ 1
2

tan~1
A2Rp

Q
p
U

p
Q
2 [ p

U
2
B

to coordinates (x@, y@), say. The correlation coefficient becomes zero (rotating to the principal axes of the distribution). For
completeness, for an arbitrary rotation through angle f,

R@\ [sin 2f(p
y
2[ p

x
2) ] 2Rp

x
p
y

cos 2f]/2p
x
@ p

y
@ ,

x@\ x cos f] y sin f , y@ \ y cos f[ x sin f .

In those coordinates, the dispersions in x@ and y@ are given by

p
x
@2 \ p

x
2 cos2 f] p

y
2 sin2 f] Rp

x
p
y

sin 2f , p
y
@2\ p

x
2 sin2 f] p

y
2 cos2 f[ Rp

x
p
y

sin 2f .

Then, rescaling the coordinates according to

x@@\ x@/p
x
@ , y@@\ y@/p

y
@ ,

we have a set of data points whose underlying distribution has unit variance in both axes and no correlation between the
variables.

This simpliÐes the bias estimation problem, since we are now in well-trodden territory. The estimates of radii follow the
Rice distribution, above, and given the standardized nature of the new variables, the chosen correction function can be
evaluated once and for all and used as a lookup table. Hereafter, we sketch the subsequent analysis and refer the reader to
Clarke & Stewart (1986) for much more detail.

As our estimate of the bias, we adopt the mean correction that would be appropriate if our measurement were at the
distribution center (Serkowski 1958) :

r
c
@@\ r@@[ b(r@@) , where b \ 1

2n
P

Jx2] y2 exp
G

[ 1
2

[(x [ x0)2] (y [ y0)2]
H
dxdy [ Jx02] y02 .

The function b is tabulated in the Appendix. Serkowski (1958) gives an analytic expression using conÑuent hypergeometric
functions, with his v\ 1. Wardle & Kronberg (1974) use the maximum value of the probability distribution rather than the
mean, the mean requiring a rather larger bias correction, while Simmons & Stewart (1985) advocate a maximum likelihood
correction. At large S/N all of these corrections approach b(x) B (1] x2)1@2[ x.

In these rotated and rescaled coordinates, we take the observed polar angle as our estimate of the actual polar angle, which
is unbiased since the distribution is symmetric either side of the mean radius vector.

Hence we have a corrected radius vector and a polar angle m \ tan~1 (y@@/x@@). Running backward now throughr
c
@@

manipulations equivalent to the transformations above, i.e., scaling and rotating by the factors and angle above, we derive our
Ðnal estimate of the polarized Ñux and position angle :

x
c
@@\ r

c
@@ cos m , y

c
@@\ r

c
@@ sin m , x

c
@ \ x

c
@@ p

x
@ , y

c
@ \ y

c
@@ p

y
@ , x

c
\ x

c
@ cos f[ y

c
@ sin f , y

c
\ x

c
@ sin f] y

c
@ cos f ,

and Ðnally,

Ip
c
\ Jx

c
2 ] y

c
2 , h

c
\ 1

2
tan~1 (y

c
/x

c
) .

Although this may sound complex, in fact, once given the covariance matrix, which we showed how to derive in the Ðrst half
of the paper, and the function b, which can be tabulated, the operations are quite straightforward manipulations of the data.
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6. ERROR ESTIMATION FOR POLARIZED FLUX AND POSITION ANGLE

Returning to Figure 1, we visualize the problem to hand as estimation of the center of the (Q, U) distribution, its radius (the
polarized Ñux), and polar angle (twice the position angle). As noted above, even in the presence of correlation in the data the
bivariate normal distribution projects onto a simple one-dimensional normal distribution. We exploit this property to
estimate the uncertainty in polarized Ñux by projecting the distribution onto the radius vector, and the uncertainty on the
position angle is obtained in a similar way by projecting the distribution onto the tangent to the radius vector, a procedure
analogous to that of Clarke & Stewart (1986).

Explicitly, if the radius vector is at an angle t to the Q-axis, and if the dispersions projected onto the Q- and U-axes are,
respectively, and and if the correlation coefficient between Q and U is R (p and R from the covariance matrix), then thep

Q
p
U
,

dispersions along the radius vector and tangent are, respectively,

p
r
2\ p

Q
2 cos2 t] p

U
2 sin2 t] Rp

Q
p
U

sin 2t , p
t
2\ p

Q
2 sin2 t] p

U
2 cos2 t[ Rp

Q
p
U

sin 2t .

We can use our estimate directly as an estimate of the uncertainty on the polarized Ñux, Ip, and the uncertainty on thep
r

derived polar angle will be leading to The corresponding uncertainty on the degree of polarization pp
t
/(Ip), p(h)\ 0.5p

t
/(Ip).

we take as p
r
/I.

7. MONTE CARLO SIMULATION

7.1. Setup Procedures
In order to check for consistency in approach, to test the efficacy of the debiasing procedure, and to validate the error

formulae, a series of Monte Carlo simulations were run for the case of three perfect polarizers.
A single run required speciÐcation of the underlying polarization and position angle, along with the appropriate character-

ization of polarizers (assumed known). First, the underlying or correct value of the triplet was calculated. These(I1, I2, I3)
represent the underlying error-free observables. To simulate actual observations, we allow an uncertainty on each com-p

i
ponent and draw typically 1000 trials at random from either a normal or Poisson distribution. Each trial represents a
simulated observation which can be processed through the formalism above to estimate polarization, position angle, and so
on. The dispersion of simulated measurements can, for example, be compared with the mean dispersion resulting from the
analytic expressions.

Simulations were calculated for a range of intrinsic polarization degree and S/N in the data. Given that lower S/N data are
needed to measure higher polarizations, it seems reasonable to compare derived accuracies to the parameter g 4 pSS/NT.
This is done below in ° 7.4.

7.2. Validation of the Error Analysis

Figure 2 shows the dispersion of calculated Stokes parameters in the simulations compared with the mean of the analyti-
cally calculated dispersions. Each plotted point represents 1000 random simulated observations for a single set of input
polarization parameters. There are 150 di†erent combinations of polarization parameters corresponding to the 150 plotted
points. The analytic formulae work well for the variances and covariances of the Stokes parameters. Essentially identical
results are found for Gaussian and Poisson statistics, except that in the Gaussian case all uncertainties are the same and the
covariances go to zero, while for Poisson statistics (shown) a nonzero covariance arises from the di†erent uncertainties on
each observation.

Figure 3 shows the dispersions of calculated polarization degree and position angle compared with the mean of the
analytically calculated uncertainty. Again, the agreement is quite good.

7.3. E†ectiveness of the Debiasing Technique

Figures 4 and 5 show the (derived/true) polarization versus g for the raw polarization measurement (no debiasing) and with
the debiasing correction, respectively. The debiasing scheme is e†ective in restoring symmetry to the calculated polarization
distribution. For values of g [ 10.0 approximately, the debiasing correction becomes small. For example, if the source is
polarized 1%, then this corresponds to an S/N per image of 1000. Another example is that the bias reaches D20% of the true
polarization for g D 1.4. Therefore, for a source polarized 5%, we would su†er signiÐcant bias error if the S/N per image is less
than D30.
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FIG. 2.ÈComparison of variances ““ observed ÏÏ from the Monte Carlo simulations compared with the mean of the calculated variances. Each plotted point
represents 1000 random simulated observations, here using Poisson statistics. The comparison lines have unit slope and zero intercept.

7.4. Application to Observation Design and Achievable Accuracies

Given that lower S/N data are needed to measure higher polarizations to a given accuracy (i.e., we require much higher S/N
to measure a polarization level of 0.01% to 30% accuracy than we do to measure a source polarized 50% to 30% accuracy),
we compare derived accuracies to g 4 pSS/NT, where SS/NT is the average S/N per image. Figures 6 and 7 show the results of
that exercise for the Monte Carlo simulations described above (i.e., three perfect polarizers at optimal orientation).

As expected, the accuracy obtainable is simply a function of this one parameter, for all intents and purposes. In particular
the error on the polarization degree is almost just the inverse of the S/N. An excellent Ðt to the data shown in Figure 6 is

log10 (p
p
/p)\ [0.102[ 0.9898log10 (pSS/NT

i
) ,

where is the average S/N of the three input images. Similarly,SS/NT
i

log10 ph \ 1.415[ 1.068log10 (pSS/NT
i
)

gives an accurate estimate of the uncertainties to be expected in derived position angle. These comparison lines are included
on the plots.

For example, if one wishes to measure a source whose polarization is anticipated to be in the vicinity of 10%, p B 0.1, and if
one would like a measurement of the degree of polarization good to 20% (i.e., then an SS/NT per image of B40 isp

p
B 0.02),

required.
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FIG. 3.ÈComparison of variances ““ observed ÏÏ from the Monte Carlo simulations compared with the mean of the calculated variances for the debiased
polarization degree and position angle, for each of Poisson and Gaussian statistics. The comparison lines have unit slope and zero intercept.

FIG. 4.ÈCalculated polarization ratio (output divided by input) as a function of polarization times average S/N per image in the absence of any biasing
correction. For Figs. 4È7, the crosses are for uniform Gaussian uncertainties and the diamonds are for Poisson statistics.
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FIG. 5.ÈCalculated polarization ratio (output divided by input) as a function of polarization times average S/N per image with biasing correction

FIG. 6.ÈFractional uncertainty in derived polarization as a function of pSS/NT for three perfect polarizers. Comparison line is as given in the text.
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FIG. 7.ÈUncertainty in derived position angle (degrees) as a function of pSS/NT for three perfect polarizers. The Ñattening at low pSS/NT is due to the
position angle becoming essentially undeÐned, that is, uniformly distributed within 180¡ expressed as a standard deviation. Comparison line is as given in the
text.

FIG. 8.ÈFractional uncertainty in derived polarization as a function of pSS/NT for the NICMOS short-wavelength polarizers assuming Gaussian
statistics. Comparison line is for perfect polarizers.
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FIG. 9.ÈUncertainty in derived position angle (degrees) as a function of pSS/NT assuming Gaussian statistics. The Ñattening at low pSS/NT is as in Fig. 7.
Comparison line is for perfect polarizers.

As another example, suppose the source is highly polarized, with p B 0.3 (a 30% polarization), to get an accuracy in
position angle of polarization of then an SS/NT per image of 8 is required.ph B 10¡,

To obtain a feeling for the amount by which these plots are sensitive to the polarizer characteristics, we also ran a
simulation set using uniform Gaussian uncertainties, as above, but this time using the measured characteristics of the
NICMOS short-wavelength polarizers (Hines 1998 ; or see the NICMOS section of the STScI Web site3). Figures 8 and 9
show these plots for the NICMOS short-wavelength polarizers using the same comparison lines as for the perfect polarizers.
As can be seen, the dispersion in both polarization degree and position angle is o†set by close to 0.3 in or a factor of 2log10 ,
degradation in performance compared with perfect polarizers, as quantiÐed by the uncertainty in observed polarization
degree and position angle.

8. CONCLUSIONS

We have presented a rather thorough analysis of the classical problem of observing a source through a general set of
polarizing Ðlters and using that information to deduce the corresponding levels of polarization, particularly in the case where
the suite of polarizing elements is not perfect.

We have shown that observations with a set of any n polarizers can be expressed as an equivalent set of three-polarizer
observations. Formulae have been presented for the variances and covariances of all linear polarization parameters, including
the Stokes parameters, degree of polarization, and position angle. Knowledge of the uncertainties in the input data is essential.
A way to debias the positive deÐnite polarization degree based on knowledge of the covariances of the Stokes parameters has
been o†ered.

Monte Carlo simulations for the three-polarizer case have been carried out using a variety of input assumptions. Finally,
we have shown how these results might be incorporated into experimental design and observational proposals.

The treatment presented here enables accurate recovery of the Stokes parameters from the imperfect WFPC2 and
NICMOS polarimeters on HST , for example, and is also applicable to the analysis of polarization data from the Advanced
Camera for Surveys.

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
3 See the STScI Web site at http ://www.stsci.edu.
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We are grateful to Dean Hines for discussions on polarization analysis strategy, particularly with regard to the NICMOS
polarization calibration.

APPENDIX

ESTIMATORS AND TECHNIQUES

Tabulation of the bias function for unit-variance uncorrelated observations giving the mean bias that would be measured if
the true underlying vector length were Hence, to debias, the corrected radius where is the observedr0. r

c
\ robs[ b, robs

radius, or in this case transformed polarization, and b is the function tabulated. At small S/N the mean bias function
approaches (n/2)1@2, and at large S/N it approaches b B (1] x2)1@2[ x (see Table A1). Tables A2 and A3 give the equivalent
correction functions using the Wardle & Kronberg (1974) distribution peak and Simmons & Stewart (1985) maximum
likelihood estimators for completeness. We omit the below-zero thresholding issues discussed by those authors.

TABLE A1

MEAN BIAS FUNCTION FOR TRANSFORMED POLARIZATION OBSERVATIONS

r0 b r0 b r0 b r0 b

0.000 . . . . . . 1.2533 2.500 . . . . . . 0.2112 5.000 . . . . . . 0.1011 7.500 . . . . . . 0.0670
0.100 . . . . . . 1.1564 2.600 . . . . . . 0.2021 5.100 . . . . . . 0.0990 7.600 . . . . . . 0.0661
0.200 . . . . . . 1.0658 2.700 . . . . . . 0.1938 5.200 . . . . . . 0.0971 7.700 . . . . . . 0.0652
0.300 . . . . . . 0.9813 2.800 . . . . . . 0.1861 5.300 . . . . . . 0.0952 7.800 . . . . . . 0.0644
0.400 . . . . . . 0.9029 2.900 . . . . . . 0.1791 5.400 . . . . . . 0.0934 7.900 . . . . . . 0.0636
0.500 . . . . . . 0.8304 3.000 . . . . . . 0.1726 5.500 . . . . . . 0.0917 8.000 . . . . . . 0.0628
0.600 . . . . . . 0.7636 3.100 . . . . . . 0.1666 5.600 . . . . . . 0.0900 8.100 . . . . . . 0.0620
0.700 . . . . . . 0.7023 3.200 . . . . . . 0.1610 5.700 . . . . . . 0.0884 8.200 . . . . . . 0.0612
0.800 . . . . . . 0.6462 3.300 . . . . . . 0.1557 5.800 . . . . . . 0.0869 8.300 . . . . . . 0.0605
0.900 . . . . . . 0.5951 3.400 . . . . . . 0.1509 5.900 . . . . . . 0.0854 8.400 . . . . . . 0.0597
1.000 . . . . . . 0.5486 3.500 . . . . . . 0.1463 6.000 . . . . . . 0.0839 8.500 . . . . . . 0.0590
1.100 . . . . . . 0.5064 3.600 . . . . . . 0.1420 6.100 . . . . . . 0.0826 8.600 . . . . . . 0.0583
1.200 . . . . . . 0.4683 3.700 . . . . . . 0.1380 6.200 . . . . . . 0.0812 8.700 . . . . . . 0.0577
1.300 . . . . . . 0.4339 3.800 . . . . . . 0.1342 6.300 . . . . . . 0.0799 8.800 . . . . . . 0.0570
1.400 . . . . . . 0.4028 3.900 . . . . . . 0.1306 6.400 . . . . . . 0.0786 8.900 . . . . . . 0.0564
1.500 . . . . . . 0.3749 4.000 . . . . . . 0.1272 6.500 . . . . . . 0.0774 9.000 . . . . . . 0.0557
1.600 . . . . . . 0.3498 4.100 . . . . . . 0.1240 6.600 . . . . . . 0.0762 9.100 . . . . . . 0.0551
1.700 . . . . . . 0.3273 4.200 . . . . . . 0.1209 6.700 . . . . . . 0.0751 9.200 . . . . . . 0.0545
1.800 . . . . . . 0.3070 4.300 . . . . . . 0.1180 6.800 . . . . . . 0.0739 9.300 . . . . . . 0.0539
1.900 . . . . . . 0.2888 4.400 . . . . . . 0.1152 6.900 . . . . . . 0.0729 9.400 . . . . . . 0.0534
2.000 . . . . . . 0.2724 4.500 . . . . . . 0.1126 7.000 . . . . . . 0.0718 9.500 . . . . . . 0.0528
2.100 . . . . . . 0.2576 4.600 . . . . . . 0.1101 7.100 . . . . . . 0.0708 9.600 . . . . . . 0.0522
2.200 . . . . . . 0.2442 4.700 . . . . . . 0.1077 7.200 . . . . . . 0.0698 9.700 . . . . . . 0.0517
2.300 . . . . . . 0.2321 4.800 . . . . . . 0.1054 7.300 . . . . . . 0.0688 9.800 . . . . . . 0.0512
2.400 . . . . . . 0.2212 4.900 . . . . . . 0.1032 7.400 . . . . . . 0.0679 9.900 . . . . . . 0.0506

1999 PASP, 111 :1298È1315



1314 SPARKS & AXON

TABLE A2

WARDLE & KRONBERG (1974) BIAS FUNCTION FOR TRANSFORMED POLARIZATION OBSERVATIONS

r0 b r0 b r0 b r0 b

0.000 . . . . . . 1.0000 2.500 . . . . . . 0.1783 5.000 . . . . . . 0.0971 7.500 . . . . . . 0.0658
0.100 . . . . . . 0.9025 2.600 . . . . . . 0.1729 5.100 . . . . . . 0.0953 7.600 . . . . . . 0.0650
0.200 . . . . . . 0.8101 2.700 . . . . . . 0.1678 5.200 . . . . . . 0.0936 7.700 . . . . . . 0.0641
0.300 . . . . . . 0.7230 2.800 . . . . . . 0.1629 5.300 . . . . . . 0.0919 7.800 . . . . . . 0.0633
0.400 . . . . . . 0.6416 2.900 . . . . . . 0.1582 5.400 . . . . . . 0.0903 7.900 . . . . . . 0.0625
0.500 . . . . . . 0.5665 3.000 . . . . . . 0.1538 5.500 . . . . . . 0.0887 8.000 . . . . . . 0.0618
0.600 . . . . . . 0.4982 3.100 . . . . . . 0.1496 5.600 . . . . . . 0.0872 8.100 . . . . . . 0.0610
0.700 . . . . . . 0.4377 3.200 . . . . . . 0.1456 5.700 . . . . . . 0.0857 8.200 . . . . . . 0.0603
0.800 . . . . . . 0.3857 3.300 . . . . . . 0.1417 5.800 . . . . . . 0.0843 8.300 . . . . . . 0.0596
0.900 . . . . . . 0.3428 3.400 . . . . . . 0.1381 5.900 . . . . . . 0.0830 8.400 . . . . . . 0.0589
1.000 . . . . . . 0.3091 3.500 . . . . . . 0.1346 6.000 . . . . . . 0.0816 8.500 . . . . . . 0.0582
1.100 . . . . . . 0.2843 3.600 . . . . . . 0.1313 6.100 . . . . . . 0.0804 8.600 . . . . . . 0.0576
1.200 . . . . . . 0.2668 3.700 . . . . . . 0.1281 6.200 . . . . . . 0.0791 8.700 . . . . . . 0.0569
1.300 . . . . . . 0.2548 3.800 . . . . . . 0.1251 6.300 . . . . . . 0.0779 8.800 . . . . . . 0.0563
1.400 . . . . . . 0.2462 3.900 . . . . . . 0.1222 6.400 . . . . . . 0.0767 8.900 . . . . . . 0.0557
1.500 . . . . . . 0.2394 4.000 . . . . . . 0.1194 6.500 . . . . . . 0.0756 9.000 . . . . . . 0.0551
1.600 . . . . . . 0.2333 4.100 . . . . . . 0.1168 6.600 . . . . . . 0.0745 9.100 . . . . . . 0.0545
1.700 . . . . . . 0.2273 4.200 . . . . . . 0.1142 6.700 . . . . . . 0.0734 9.200 . . . . . . 0.0539
1.800 . . . . . . 0.2212 4.300 . . . . . . 0.1118 6.800 . . . . . . 0.0724
1.900 . . . . . . 0.2149 4.400 . . . . . . 0.1094 6.900 . . . . . . 0.0713
2.000 . . . . . . 0.2085 4.500 . . . . . . 0.1071 7.000 . . . . . . 0.0704
2.100 . . . . . . 0.2021 4.600 . . . . . . 0.1050 7.100 . . . . . . 0.0694
2.200 . . . . . . . . . . . .0.1959 4.700 . . . . . . 0.1029 7.200 . . . . . . 0.0685
2.300 . . . . . . 0.1898 4.800 . . . . . . 0.1009 7.300 . . . . . . 0.0675
2.400 . . . . . . 0.1839 4.900 . . . . . . 0.0990 7.400 . . . . . . 0.0667

TABLE A3

MAXIMUM LIKELIHOOD BIAS FUNCTION FOR TRANSFORMED POLARIZATION OBSERVATIONS

r0 b r0 b r0 b r0 b

0.000 . . . . . . 1.4142 2.500 . . . . . . 0.2089 5.000 . . . . . . 0.1010 7.500 . . . . . . 0.0670
0.100 . . . . . . 1.3160 2.600 . . . . . . 0.2001 5.100 . . . . . . 0.0990 7.600 . . . . . . 0.0661
0.200 . . . . . . 1.2213 2.700 . . . . . . 0.1921 5.200 . . . . . . 0.0971 7.700 . . . . . . 0.0652
0.300 . . . . . . 1.1303 2.800 . . . . . . 0.1847 5.300 . . . . . . 0.0952 7.800 . . . . . . 0.0644
0.400 . . . . . . 1.0430 2.900 . . . . . . 0.1779 5.400 . . . . . . 0.0934 7.900 . . . . . . 0.0635
0.500 . . . . . . 0.9595 3.000 . . . . . . 0.1716 5.500 . . . . . . 0.0917 8.000 . . . . . . 0.0627
0.600 . . . . . . 0.8802 3.100 . . . . . . 0.1657 5.600 . . . . . . 0.0900 8.100 . . . . . . 0.0620
0.700 . . . . . . 0.8052 3.200 . . . . . . 0.1603 5.700 . . . . . . 0.0884 8.200 . . . . . . 0.0612
0.800 . . . . . . 0.7347 3.300 . . . . . . 0.1552 5.800 . . . . . . 0.0869 8.300 . . . . . . 0.0605
0.900 . . . . . . 0.6690 3.400 . . . . . . 0.1504 5.900 . . . . . . 0.0854 8.400 . . . . . . 0.0597
1.000 . . . . . . 0.6083 3.500 . . . . . . 0.1459 6.000 . . . . . . 0.0839 8.500 . . . . . . 0.0590
1.100 . . . . . . 0.5528 3.600 . . . . . . 0.1417 6.100 . . . . . . 0.0825 8.600 . . . . . . 0.0583
1.200 . . . . . . 0.5027 3.700 . . . . . . 0.1377 6.200 . . . . . . 0.0812 8.700 . . . . . . 0.0577
1.300 . . . . . . 0.4580 3.800 . . . . . . 0.1339 6.300 . . . . . . 0.0799 8.800 . . . . . . 0.0570
1.400 . . . . . . 0.4184 3.900 . . . . . . 0.1304 6.400 . . . . . . 0.0786 8.900 . . . . . . 0.0563
1.500 . . . . . . 0.3839 4.000 . . . . . . 0.1270 6.500 . . . . . . 0.0774 9.000 . . . . . . 0.0557
1.600 . . . . . . 0.3539 4.100 . . . . . . 0.1238 6.600 . . . . . . 0.0762 9.100 . . . . . . 0.0551
1.700 . . . . . . 0.3279 4.200 . . . . . . 0.1208 6.700 . . . . . . 0.0750 9.200 . . . . . . 0.0545
1.800 . . . . . . 0.3055 4.300 . . . . . . 0.1179 6.800 . . . . . . 0.0739 9.300 . . . . . . 0.0539
1.900 . . . . . . 0.2860 4.400 . . . . . . 0.1151 6.900 . . . . . . 0.0728 9.400 . . . . . . 0.0533
2.000 . . . . . . 0.2690 4.500 . . . . . . 0.1125 7.000 . . . . . . 0.0718
2.100 . . . . . . 0.2541 4.600 . . . . . . 0.1100 7.100 . . . . . . 0.0708
2.200 . . . . . . 0.2409 4.700 . . . . . . 0.1076 7.200 . . . . . . 0.0698
2.300 . . . . . . 0.2291 4.800 . . . . . . 0.1053 7.300 . . . . . . 0.0688
2.400 . . . . . . 0.2185 4.900 . . . . . . 0.1031 7.400 . . . . . . 0.0679
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