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ABSTRACT
The Richtmyer-Meshkov (RM) instability is an interfacial instability between two Ñuids of di†erent

densities driven by shock waves and plays an important role in the studies of inertial conÐnement fusion
and supernova. So far, most of the studies are for RM unstable interfaces driven by weak or interme-
diate shocks in planar geometry. Some results are given for the weak shock case in cylindrical geometry.
For experiments conducted at Nova laser, the unstable material interface is accelerated by very strong
shocks. We also present scaling laws for the RM unstable interface driven by strong imploding and
exploding shocks.
Subject headings : hydrodynamics È instabilities È method : laboratory È shock waves

1. INTRODUCTION

The instability of a material interface under an acceler-
ation of an incident shock was predicted theoretically by
Richtmyer in 1960 (Richtmyer 1960). Ten years later,
Meshkov conÐrmed, experimentally, RichtmyerÏs predic-
tion (Meshkov 1970). Since then, this interfacial instability
is known as the Richtmyer-Meshkov (RM) instability. In
the Ðrst part of this paper, some results are presented for the
weak shock case (for more detailed results, see Zhang &
Graham 1998). We consider the perturbed circular material
interface driven by a circular shock wave for the single
mode RM instability in cylindrical geometry.

In plane geometry, there are two classes of RM unstable
systems : a shock wave collides with the material interface
from the light Ñuid phase to the heavy Ñuid phase, and vice
versa. In curved geometry, there are four classes. The Ðrst
class is a shock wave exploding from light Ñuid to heavy
Ñuid (light-exploding-heavy). The second class is a shock
wave imploding from light Ñuid to heavy Ñuid (light-
imploding-heavy). The second class is a shock wave implod-
ing from light Ñuid to heavy Ñuid (light-imploding-heavy).
The third class is a shock wave exploding from heavy Ñuid
to light Ñuid (heavy-exploding-light). The fourth class is a
shock wave imploding from heavy Ñuid to light Ñuid
(heavy-imploding-light). These four classes are sketched in
Figures 1aÈ1d, respectively. This classiÐcation can also be
used for the RM instability in spherical geometry. In Figure
1, as well as in other Ðgures, only the results in the Ðrst
quadrant are shown. The general features of the develop-
ment of the RM interface in cylindrical geometry are the
following. When an incident shock collides with the
material interface, it bifurcates into a transmitted shock and
a reÑected wave. This is the bifurcation stage, or the shock-
contact interaction stage. At the end of the interaction
stage, both the transmitted shock and the reÑected wave
detach from the material interface. One wave propagates
away from the center (or origin), and for an open space, the
outgoing wave will not interact with the material interface
again. The other wave propagates toward the center (or

origin). Accelerated by incident shock, the material interface
becomes unstable and Ðngers grow to form bubbles and
spikes. Later, the wave that moved toward the center reÑec-
ts back from the origin. As the reÑected wave propagates
from the origin, it collides with the material interface again,
which is known as reshock. A second bifurcation occurs.
Thus, the occurrence of reshock is unavoidable in curved
geometry. In Figure 2, the features for a system in class 3
(heavy-exploding-light) are demonstrated. The initial
material interface is sinusoidal. Figure 2a is the initial con-
Ðguration. Figure 2b is the refraction process (bifurcation
stage). The incident shock wave has collided with the
material interface and immediately bifurcates into a trans-
mitted shock wave and a reÑected wave. For class 3, the
reÑected wave is a rarefaction. It is important to note that
the shock-contact collision will cause the initial pertur-
bation amplitude, a, to decrease. In Figure 2c the wave
bifurcation process is over, all the waves have detached
from the material interface. A reÑected rarefaction wave
propagates toward the origin, and a transmitted shock pro-
pagates outward. Note that for Figure 2aÈ2c, the region
shown is an enlarged version. In Figure 2d the system
develops into the nonlinear Ðngers shown. The curve
labeled RTE is the trailing edge of the reÑected rarefaction
wave. The heavy Ñuid has deeply penetrated the light Ñuid
forming spikes. The light Ñuid has surrounded the heavy
Ñuid forming bubbles. The Ñattened mushroom capped
spike and the secondary shoulders on the Ðngers have been
produced by the e†ects of the Kelvin-Helmholtz instability
at the tips and the shoulders. A comparison of the shape of
the material interface in Figure 2c with the initial interface
shape given in Figure 2a, shows that the Ðngers are
inverted. This phenomenon is known as phase inversion
and is expected when a shock collides with a material inter-
face from a heavy Ñuid phase to a light Ñuid phase (Yang et
al. 1994).

The general features of the RM unstable system in the
Ðrst, the second and the fourth classes are similar to the one
shown in Figure 2. When the incident shock travels from a
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FIG. 1.ÈA classiÐcation of RM unstable systems in curved geometry. (a) Class 1 : an incident shock propagates outward from a light Ñuid toward a heavy
Ñuid, (light-exploding-heavy). (b) Class 2 : an incident shock propagates inward from a light Ñuid toward a heavy Ñuid, (light-imploding-heavy). (c) Class 3 : an
incident shock propagates outward from a heavy Ñuid toward a light Ñuid, (heavy-exploding-light). (b) Class 4 : an incident shock propagates inward from a
heavy Ñuid toward a light Ñuid (heavy-imploding-light).

light Ñuid to a heavy Ñuid (class 1 and class 2), the reÑected
wave is a shock wave ; and the phenomenon of phase inver-
sion does not occur unless the shock is very strong.

The method of front tracking (Chern et al. 1986) has been
used in our numerical simulations. Front tracking is an

adaptive computational method where a low-dimensional,
moving grid is embedded in a high-dimensional Ðxed grid.
The low-dimensional, moving grid is Ðtted to and moves
dynamically with, the discontinuity fronts in the Ñow, such
as the material interface, where the density is discontinuous,

FIG. 2.ÈA schematic showing the general features of the RM instability in cylindrical geometry. The heavier gas is located behind the contact
discontinuity. Part (a), (b), and (c) have been enlarged. (a) initial conditions ; (b) refraction process ; (c) reÑected rarefaction moving radially toward origin,
transmitted shock moving radially outward, deÑected contact (phase inverted) ; (d) nonlinear Ðnger growth, spikes of heavy Ñuid penetrate lighter Ñuid,
bubbles of light Ñuid surround heavy Ñuid.

FIG. 3.ÈData for class 2 (light-imploding-heavy). A shock of Mach number 1.2 implodes from air to Figure contains reshock at phaseSF6. t8 \ 3.25,
inversion between and and after phase inversion growth rate. (a) Perturbation growth rate vs. time. (b) Perturbation amplitude a(t) vs.t8 \ 3.25 t8 \ 4.1, a5 (t)
time.
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FIG. 4.ÈEvolution of material interface for class 2 at 2.0, 3.9, and 4.2. The Ðgure shows : (upper left) interface after bifurcation, reÑected shockt8 \ 0.27,
(RS) moves radially inward, transmitted shock (TS) moves radially outward ; (upper right) RS exited computational domain, TS about to enter origin ; (lower
left) TS bounced back from origin and reshocked the material interface, causing phase inversion ; and (lower right) nonlinear Ðnger growth at late time, with
completed phase inversion.

or the shock interface, where the pressure is discontinuous.
In these studies, a front can also be the leading or trailing
edges of a rarefaction wave. The front tracking method uses
the exact mathematical property, known as the Riemann
problem solution, to advance the position of the discontin-
uity interface and to update the physical quantities on each
side of the interface. See Chern et al. (1986) for further
details of the front tracking method and its implementation.

2. THE NONLINEAR GROWTH RATES

The growth rate of the Ðngers at a RM unstable material
interface in the nonlinear regime is one of the most impor-
tant physical quantities. In this section, we present the

results from the numerical study of this growth rate for class
2 (light-imploding-heavy). The qualitative understanding in
this section is applicable to Ðngers in spherical geometry as
well. The numerical results from four di†erent classes can be
found in Zhang & Graham (1998).

The reÑected wave is a shock unless the incident shock is
very strong. We study the growth rate, the amplitude, and
the shape of the material interface. There is a signiÐcant
phenomena that occurs for class 2 at the time of reshock. In
the imploding case, the initial incident shock wave travels
from a light Ñuid into a heavy Ñuid. After bifurcation the
transmitted shock is traveling through a heavy Ñuid. It
bounces back from the origin through this heavy Ñuid
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toward a light Ñuid as in class 3 ; therefore, at reshock there
is a phase inversion. Figure 3 shows the growth rate versus
time and the perturbation amplitude versus time. A weak
shock of Mach number 1.2 travels from air to ThereSF6.
are n \ 12 Ðngers for the full (circular) domain. The initial
position of the material interface is located at the dimen-
sionless radius of 1, and the initial perturbation amplitude is
0.033. The evolution of the interface is shown at four times
during the simulation in Figure 4.

The initial conÐguration can be seen in Figure 1b. The
upper left frame of Figure 4 shown herein is after the inci-
dent shock has refracted through the material interface and
corresponds to The transmitted shock travels radi-t8 \ 0.27.
ally in toward the origin (or center), and the reÑected shock
moves radially outward. Note the secondary waves behind
the reÑected shock. Again at a much earlier time when the
transmitted shock and the reÑected shock were closer to the
material interface, the secondary waves behind them
impinged on the material interface causing the Ðrst slight
dip in the growth rate graph at The implosion of thet8 \ 0.5.
incident shock causes the material interface to move toward
the origin at the early stage of the development of the Ðnger
growth and continues to do so until the transmitted shock

has bounced back from the origin. This can be seen in the
upper right frame of Figure 4 By the reÑec-(t8 \ 2.0). t8 \ 2.0,
ted shock has exited the computational domain, and the
transmitted shock is about to converge at the origin. Since
the wavelength decreases as the material interface moves
inward, the growth rate in the imploding case is higher than
that in the plane geometry. This can be easily understood
from the fact that the linear growth rate in plane geometry
is inversely proportional to the wave length. As the material
interface moves closer to the origin, the velocity decreases.
The slow down of the velocity Ðeld causes the slow down of
the growth of the Ðngers at intermediate times (1.6 ¹ t8 ¹
2.85).

Before the time of reshock, the bounced shock is propa-
gating from a heavy Ñuid to a light Ñuid and will cause a
phase inversion of the material interface upon reshock. The
reshock can be seen in the growth rate graph as the steep
vertical jump down at and the kink in the ampli-t8 \ 3.25
tude graph at the same time.

The bottom left frame of Figure 4 shows the interface a
short time after reshock, when the bifurcation process is
taking place. It can be seen that the transmitted shock is
nestled between the peaks, and the reÑected rarefaction

FIG. 5.ÈComparsion of the scales perturbation growth rate vs. scaled time for various Mach numbersÈnamely, M \ 1.2, 10, 15, 40, and 100. The dashed
curves are for M \ 1.2. The shocked Atwood number of the interface is A\ 0.67213.air6
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FIG. 6.ÈComparison of the perturbation amplitude vs. time for various Mach numbers, namely, M \ 10, 15, 40, and 100

is forming and beginning to move toward the origin. The
reÑected wave is a rarefaction in this case since the bounced
shock was traveling through a heavy Ñuid to a light Ñuid.

Again, the reshock in this case causes a phase inversion :
namely, the portion of Ñuid in one region which appears in
the Ðgure as valleys (and are bubbles of light Ñuid) and the
other portion of Ñuid which appears in the Ðgure as peaks
(and are spikes of heavy Ñuid) prior to reshock will start to
change positions after reshock and shock refraction. That is
to say, the valleys (bubbles) will become peaks (spikes) and
the peaks (spikes) will become valleys (bubbles). The process
of phase inversion due to reshock is demonstrated in the
bottom two frames of Figure 4. Note the e†ects of the
Kelvin-Helmholtz instability (shearing e†ects) acting on
the spikes, forming the beginning of the familiar mushroom
roll-ups (bottom right panel). The phase inversion process
can be seen in the growth rate (Fig. 3a) taking place from
the time of reshock at and continuing until approx-t8 \ 3.25
imately It can be seen in the amplitude graph att8 \ 4.1.
t8 \ 3.75.

Secondary shocks also form in this simulation and pro-
pagate radially outward. They reshock the material inter-
face before the main reshock caused by the wave bounced
back from the origin. This is seen in the slight bump on

Figure 3a in the time interval which is just2.85\ t8 \ 3.1,
before the reshock.

Finally, at a much later time, the nonlinear Ðnger growth
has formed into the full bubbles of light Ñuid and spikes of
heavy Ñuid with the caps at the Ðngers as previously
described, and the phase inversion is completed (see the
bottom right frame of Fig. 4). One can also see the second
transmitted shock, this time moving away from the origin.
There is a signiÐcant amount of wave interaction inside the
region between the reshocked material interface and the
reÑected rarefaction. The highly nonlinear activity there
accounts for the series of reshocks (or oscillations) seen in
Figure 3a at t8 [ 4.18.

3. STRONG SHOCKS

The study of Richtmyer-Meshkov instabilities has
attracted many researchers in recent years, due to the fact
that this instability plays an important role in inertial con-
Ðnement fusion and supernova. Experimental studies of the
RM unstable interface driven by strong shocks (Mach
[ 20) have been achieved (Dimonte, Frerking, & Schneider
1996). With the rapid advances in computing technology,
direct numerical simulation has become popular. It pro-
vides us with a new way to study RM unstable systems.
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Most of the numerical studies of the RM unstable system
have been and are being performed in planar geometry and
for incident shocks with small or intermediate Mach
number. At this time, we consider the RM unstable interface
driven by strong shocks in cylindrical geometry and estab-
lish an important scaling law. This scaling law will allow
researchers to signiÐcantly reduce the number of experi-
ments and numerical simulations required in the study of
RM unstable interfaces driven by strong shocks.

How will the incident shock strength a†ect the develop-
ment of RM instability? In general, the stronger the inci-
dent shock is, the faster the material interface will be
accelerated and the faster the transmitted shock and reÑec-
ted rarefaction wave travel. The phenomena of reshock will
occur at an earlier time for systems accelerated by strong
shocks. Therefore, dimensional units are not appropriate
for studying the scaling behavior of RM unstable system
driven by strong shocks. In order to reveal the scaling
behavior of RM unstable systems, we introduce the follow-
ing scaled dimensionless quantities :

r8 \ r
R0

, v8 \ v
W

i
, t8 \ W

i
t

R0
.

Here is the mean radius of the initial material interfaceR0at t \ 0, and is the speed of the incident shock. In theseW
i

scaled dimensionless units, the initial location of the
material interface is given by Herer8 \ 1 ] a8 0 cos (m/).

is a dimensionless perturbation amplitude, anda8 0\ a0/R0is a dimensional perturbation amplitude.a0The size of the mixing zone between the light and heavy
Ñuids, i.e., the radial distance of the peaks and valleys along
the material interface is a very important quantity for the
RM unstable system. We deÐne the overall growth rate and
the amplitude of the RM unstable interface in cylindrical
geometry as

v\ (r5max[ r5min)/2 and a \ (rmax [ rmin)/2 ,

respectively. Then the scaled dimensionless overall growth
rate and amplitude are given by

v\ (r5max [ r5min)/2W
i

and a \ (rmax[ rmin)/2R0 ,

respectively.
Figure 5 shows the perturbation growth rate for all four

classes. For all simulations the light Ñuid is air and the
heavy Ñuid is The results for the growth rate of the RMSF6.interface driven by an incident shock of Mach number
M \ 1.2, 10, 15, 40, and 100 are superimposed in Figure 5
and are shown in terms of scaled velocity and scaled time.
The numerical simulations are conducted at a dimension-
less grid spacing At this*x8 \ *y8 \ *x/R0\ 0.0042.

FIG. 7.ÈEvolution of the interfaces for class 2 (light-imploding-heavy), where Mach number 10, 15, 40, and 100 are superimposed at 0.83, 1.0, 1.3t8 \ 0.57,
(upper left, upper right, lower left, lower right, respectively). The incident shock has bifurcated into a transmitted shock moving radially toward the origin and
a reÑected shock moving radially away from the origin. In terms of scaled time, the interfaces driven by di†erent Mach number (M º 10) coincide and
demonstrate a scaling law.
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resolution, the numerical solution is no longer sensitive to
the grid size. The initial (preshocked) dimensionless pertur-
bation amplitude is In Figure 6 we show thea/R0\ 0.033.
corresponding scaled dimensionless perturbation amplitude
as a function of the scaled time. Figures 5 and 6 showed that
in the imploding (exploding) case, once the Mach number of
the incident shock is larger than 15 (40), the scaled quan-
tities are no longer sensitive to the incident shock strength.
Therefore, RM unstable systems driven by strong shocks
satisfy a nice scaling law. Let be the growth rate of av

M1
(t)

RM unstable interface driven by a strong shock of Mach
number where both v and t are dimensional quantities.M1,Then the overall growth rate, for a RM unstablev

M2
(t),

interface driven by a strong shock of Mach number canM2be obtained from by the scaling relation :v
M1

(t)

v
M2

(t)\ M1
M2

v
M1
AM1
M2

t
B

. (1)

Similarly, the following scaling relation holds for the ampli-
tudes :

a
M2

(t)\ a
M1
AM1
M2

t
B

. (2)

The results shown in Figures 5 and 6 are for the overall
growth rate and amplitude of the RM unstable interface,
which are global features. Will the shape of the interface

also satisfy a scaling law? Our numerical simulations
showed that it indeed does. In Figure 7, we superimpose the
shapes of the Class 2 RM unstable interfaces driven by
strong shocks of Mach number, M \ 10, 15, 40, and 100.
The inner and outer curves in Figure 7 are transmitted and
reÑected shock waves, respectively, and the curves between
them are the material interfaces. The snapshots of the inter-
faces at four di†erent times 0.83, 1.0, and 1.3 aret8 \ 0.57,
shown in Figure 7. It is obvious from Figure 7 that the
following scaling law holds for the shape of the unstable
interface :

R
M2

\ R
M1
AM1
M2

t
B

. (3)

Here R represents the location for the material interface, the
shock waves or rarefaction wave. For comparison, the
shape of the unstable material interface driven by a weak
shock of Mach number 1.2 is shown in Figure 8 at the same
scaled times. By comparing Figure 7 with Figure 8, we con-
clude that the shape of RM unstable interface driven by
strong shocks and that driven by weak shocks are quite
di†erent. Therefore, the scaling law presented above does
not hold for RM unstable interfaces driven by weak shocks.

The preshocked Atwood number between air and isSF6A\ 0.67213. To further conÐrm the scaling laws given by
equations (1)È(3), we present the results for the system in
class 2 with preshocked Atwood number A\ 0.33333 in

FIG. 8.ÈEvolution of the interface for class 2 (light-imploding-heavy) for Mach number 1.2. The frames shown in this Ðgure are at the same dimensionless
time as in Fig. 7. Note that the shape of the interface is quite di†erent from those in Fig. 7. Therefore, the scaling law does not hold for weak shocks.
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FIG. 9.ÈComparison of the scaled growth rate and the scaled perturbation growth rate vs. scaled time for Mach numbers M \ 10 and 15. Here the
preshocked Atwood number is A\ 0.33333.

Figure 9. The adiabatic exponents of the two Ñuids are the
same as those of air and Figure 9 shows that theSF6.scaling laws are indeed satisÐed once the Mach number is
larger than 10.

The scaling relations presented in this letter are impor-
tant for studying the RM unstable systems driven by strong
shocks (for a more detailed study, see Zhang & Graham
1998). It allows us to obtain the results for all strong shocks
by conducting only one strong shock experiment or by per-
forming one strong shock numerical simulation in that
family. We have checked that this scaling relation also holds
for RM unstable interfaces driven by strong shocks in

planar geometry. We believe that this relation should hold
in spherical geometry as well. We further speculate that this
scaling law also holds for multimode RM unstable systems
driven by strong shocks.
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