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ABSTRACT

We present absorption-line strengths on the Lick/IDS line-strength system of 381 galaxies and 38
globular clusters in the 4000-6400 A region. All galaxies were observed at Lick Observatory between
1972 and 1984 with the Cassegrain Image Dissector Scanner spectrograph, which makes this study one
of the largest homogeneous collections of galaxy spectral line data to date. We also present a catalog of
nuclear velocity dispersions used to correct the absorption-line strengths onto the stellar Lick/IDS
system. Extensive discussion of both random and systematic errors of the Lick/IDS system is provided.
Indices are seen to fall into three families: a-element-like indices (including CN, Mg, Na D, and TiO,)
that correlate positively with velocity dispersion; Fe-like indices (including Ca, the G band, TiO,, and all
Fe indices) that correlate only weakly with velocity dispersion and the « indices; and Hpf that anti-
correlates with both velocity dispersion and the o indices. C,4668 seems to be intermediate between the
o and Fe groups. These groupings probably represent different element abundance families with different

nucleosynthesis histories.

Subject headings: galaxies: abundances — galaxies: nuclei — galaxies: star clusters —

galaxies: stellar content

1. INTRODUCTION

This paper is the sixth in a series describing a two-decade
long effort to comprehend the stellar populations of early-
type galaxies. Previous papers in this series have defined the
Lick/IDS absorption-line index system, presented obser-
vations of globular clusters and stars, and derived
absorption-line index fitting functions (Burstein et al. 1984;
Faber et al. 1985; Burstein, Faber, & Gonzalez 1986;
Gorgas et al. 1993). Worthey et al. (1994; hereafter Paper V)
expanded the original 11-index system to 21 indices and
presented the complete library of stellar data. Other papers
utilizing this database presented preliminary galaxy Mg,
strengths (Burstein et al. 1988; Faber et al. 1989), galaxy
velocity dispersions (Faber & Jackson 1976; Davies et al.
1987; Dalle Ore et al. 1991), comparisons of morphological
disturbances with absorption-line strengths (Schweizer et al.
1990), and preliminary comparisons of galaxy absorption-
line strengths with models (Worthey, Faber, & Gonzalez
1992; Worthey 1992, 1994; Faber et al. 1995; Worthey,
Trager, & Faber 1996; Trager 1997).
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The Lick/IDS system has also been used extensively by
other authors. Galaxy and globular cluster line strengths on
this system have been published by, among others,
Efstathiou & Gorgas (1985); Couture & Hardy (1988);
Thomsen & Baum (1989); Gorgas, Efstathiou, & Aragon-
Salamanca (1990); Bender & Surma (1992); Davidge (1992);
Guzman et al. (1992); Gonzélez (1993); Davies, Sadler, &
Peletier (1993); Carollo, Danziger, & Buson (1993); de
Souza, Barbuy, & dos Anjos (1993); Gregg (1994); Cardiel,
Gorgas, & Aragon-Salamanca (1995); Fisher, Franx, &
Ilingworth (1995, 1996); Bender, Zeigler, & Bruzual (1996);
Gorgas et al. (1997); Jorgensen (1997); Vazdekis et al.
(1997); Kuntschner & Davies (1997); and Mehlert et al.
(1998). Much theoretical and empirical calibration of the
Lick/IDS absorption-line strengths of stars (particularly
Mg,) has also been pursued by, e.g., Gulati, Malagnini, &
Morossi (1991, 1993); Barbuy, Erdelyi-Mendes, & Milone
(1992); Barbuy (1994); McQuitty et al. (1994); Borges et al.
(1995); Chavez, Malagnini, & Morossi (1995); Tripicco &
Bell (1995); and Casuso et al. (1996). The Lick/IDS indices
of the stellar populations of composite systems have been
modeled by, e.g., Aragon, Gorgas, & Rego (1987); Couture
& Hardy (1990); Buzzoni, Gariboldi, & Mantegazza (1992);
Buzzoni, Mantegazza, & Gariboldi (1994); Matteucci
(1994); Buzzoni (1995); Weiss, Peletier, & Matteucci (1995);
Tantalo et al. (1996); Bressan, Chiosi & Tantalo (1996);
Bruzual & Charlot (1996); de Freitas Pacheco (1996);
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Vazdekis et al. (1996); Greggio (1997); and Mdller, Fritze—
von Alvenleben, & Fricke (1997). We also point out the
ongoing efforts of Rose and colleagues to study old stellar
populations using high-resolution absorption-line strengths
in the blue (Rose 1985a, 1985b, 1985¢c, 1994; Rose & Tri-
picco 1986; Rose, Stetson, & Tripicco 1987; Bower et al.
1990; Caldwell et al. 1993, 1996; Rose et al. 1994; Leonardi
& Rose 1996; Caldwell & Rose 1997), and those of Brodie,
Huchra, and colleagues to study extragalactic globular
cluster systems using a spectrophotometric index system in
the red (Brodie & Huchra 1990, 1991; Huchra, Kent, &
Brodie 1991; Perelmuter, Brodie, & Huchra 1995; Huchra
et al. 1996).

The full IDS database contains absorption-line strengths
of 381 galaxies, 38 globular clusters, and 460 stars based on
7417 spectra observed in the 4000-6400 A region. Here, we
present final IDS index strengths for galaxies and globular
clusters. All were observed at Lick Observatory between
1972 and 1984 with the Cassegrain Image Dissector
Scanner spectrograph, which makes this study one of the
largest homogeneous collections of galaxy spectral line data
to date.

This paper begins by describing the method of measuring
Lick/IDS absorption-line strengths in § 2. Section 3 presents
a discussion of uncertainties in these measurements. As
early-type galaxies typically have significant internal
motions, § 4 derives the corrections needed to bring the
galaxies to a common zero velocity-dispersion system and
the additional uncertainties incurred by this correction.
Section 4 also presents the velocity dispersions themselves
and a first discussion of “families” of absorption-line
indices according to each index’s behavior with velocity
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dispersion. Section 5 illustrates remaining levels of suspect-
ed systematic errors and compares to previously published
values. Finally, § 6 presents final mean corrected indices and
their associated errors for the entire sample.

This paper plus Paper V (for the stellar data) together
contain the sum total of all observations on the Lick/IDS
system. Previously published data on galaxies and globular
clusters are superseded by the values given here. Table 1
presents published papers containing IDS data, the index
data presented in those papers, the index measurement
method, and the run corrections applied (terms are
explained in §§ 2 and 5).

The complete tables in this paper and individual spectra
for all Lick/IDS stellar, globular cluster, and galaxy obser-
vations are available electronically from the Astrophysical
Data Center (http://adc.gsfc.nasa.gov/adc.html). The com-
plete versions of the long tables (Tables 4 and 7-10) are also
presented in the electronic edition of the Astrophysical
Journal Supplement Series.

2. ABSORPTION-LINE MEASUREMENTS

A general introduction to the Image Dissector Scanner
(IDS) is given by Robinson & Wampler (1972), and further
relevant details are found in Faber & Jackson (1976),
Burstein et al. (1984), and Faber et al. (1985). A discussion of
signal-to-noise ratio and the noise power spectrum is pre-
sented in Faber & Jackson (1976) and Dalle Ore et al.
(1991).

Briefly, spectra were obtained between 1972 and 1984
using the red-sensitive IDS and Cassegrain spectrograph on
the 3 m Shane Telescope at Lick Observatory. The spectra
cover roughly 4000—6400 A and have a resolution of about

TABLE 1
PUBLISHED IDS DATA

Paper Number of Indices Method Run Corrections
1 (4] 3) (©)
A. Galaxies and Globular Clusters

Burstein et al. 1984 globulars ..................... 11 E All indices
Davies et al. 1987 .....oooiiiiiiiiiiiiiiiiaaa, {Mg,>* E Yes
Burstein et al. 1988 .........cooviviniiiininininnnns (Mg, *® E Yes
Worthey, et al. 1992 ..........cooiiiiiiiiiiiiann... Mg,, Fe5270, Fe5335 A Mg, only
This paper:

GalaXies ....vveiiiiii e 21 A Molecular bands only

Globulars, low-velocity galaxies®............... 21 A All indices

B. Stars

Faber et al. 1985 K giants ...............cceoeentt 11 E All indices
Burstein et al. 1986 ...........c.ocoviiiiiiiiiiinin. Fe5270, Fe5335 E All indices
Gorgas et al. 1993 G dwarfs.................oeee 11 E All indices
Worthey et al. 1994:

Previously published K giants, G dwarfs....... 11 E All indices

+10 A All indices
All other Stars ..........coooeviiiiiiiiieiinennn.n. 21 A All indices

Notes.—Col. (1): Reference. Col. (2): Number of indices published: 11 = original 11 Lick/IDS indices of Burstein et
al. 1984; 21 = all Lick/IDS indices (see Table 2); +10 = new indices presented in Worthey et al. 1994; (Mg,) =
“average” Mg, index described in Davies et al. 1987; see § 5.2. Col. (3): Index measurement method: E = “eye” (see
Burstein et al. 1984); A = AUTOINDEX (see text). Col. (4): Run corrections are determined by zero-pointing K giant
standard star observations to the standard system determined by the same nine standard stars (see Faber et al. 1985).

For further discussion of the system, see § 5.1.

* The (Mg, ) index is a weighted mean of Mg, and Mg,. See § 5.2.
® There is an error in the (Mg, index for NGC 3115 in Table 3 of Burstein et al. 1988; the correct value is
{Mg,> = 0.330. Note that the (Mg, » values in Table 3 of Burstein et al. 1988 are from Davies et al. 1987, without the

aperture correction of Davies et al.

© Galaxies with cz < 300 km s~ 1.
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9 A (about 30% higher at the ends of the region), although
this varied slightly from run to run. Most spectra of galaxy
nuclei were taken through a spectrograph entrance aperture
of 174 by 4", with a second aperture for sky subtraction
located 21” or 35” away. Object and sky were chopped
between these apertures in such a way as to equalize the
time spent in each. Long-slit observations of galaxies (of
width 174 and various lengths) and spatial scans of globular
clusters and galaxies were also taken and have equivalent
resolution to the nuclear data. Larger aperture observations
of galaxies with wider slits (typically off-nucleus obser-
vations or dwarf galaxies) were also taken and calibrated
separately. These wide-slit observations have lower spectral
resolution. Helium, neon, mercury, and (in later
observations) cadmium lamps provided wavelength cali-
brations at the beginning and end of every night. Global
shifts and stretches of the wavelength scale of up to 3 A per
observation could occur owing to instrument flexure and
variable stray magnetic fields. Spectra were not fluxed but
rather were divided by a quartz-iodide tungsten lamp, the
energy distribution of which was made more constant with
wavelength by “rocking” the dispersion grating in a repro-
ducible, systematic manner. Line-strength standard stars
(detailed in Paper V) were observed nightly to ensure a
calibration of the system. A sampling of low- to high-
quality galaxy nuclei spectra are shown in Figure 1. For
display purposes, these spectra have been flattened by a
fifth-order polynomial fit. However, all measurements of
line strengths were made on the original, unflattened
spectra.
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2.1. The Lick/IDS System

The Lick/IDS absorption-line index system is fully
described in Paper V. We present a summary here and point
out changes to the system caused by measuring galaxies
with significant systemic velocities and velocity dispersions.
Absorption-line strengths are measured in the Lick/IDS
system by “indices,” where a central “feature” bandpass is
flanked to the blue and red by “pseudocontinuum ” band-
passes. The choice of bandpasses is dictated by three needs:
proximity to the feature, less absorption in the continuum
regions than in the central bandpass, and maximum insensi-
tivity to velocity-dispersion broadening. While the last
point is unnecessary when measuring stars, in the case of
galaxies it is crucial, and it sets a minimum length for the
pseudocontinuum bandpasses. The sidebands are called
“pseudocontinua” because the resolution of the Lick/IDS
system does not allow the measurement of “true” continua
in late-type stars or in most galaxies.

Table 2 presents the bandpasses of the 21 Lick/IDS
absorption-line indices and the features measured by these
indices. The wavelengths have been further refined since
Paper V through cross-correlation with more accurate
CCD spectra taken by G. W. Indices 1-8 have been cor-
rected by 1.25 A, and indices 17-21 have been corrected by
1.75 A. Uncertainties of 0.3 A are still present in these
bandpass definitions, but such shifts produce negligible
changes in the measured indices. Systemic velocities of the
galaxies sometimes caused the reddest absorption features
to fall outside the wavelength range of the observation, and

NGC 6051 G=854

|. NGC 4486B G=1103

F, (relative)

NGC 1700 G=1504

NGC 4551

G=2004

NGC 3610

G=3000

NGC 4377 G=4077

M32 G=10106

4500 5000

A

5500 6000

4500 5000

A

5500 6000

Fi1G. 1.—Selection of IDS spectra covering a range of S/N. Spectra are labelled with their name and goodness G (see§ 3).
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TABLE 2

INDEX DEFINITIONS

j Name Index Bandpass Pseudocontinua Units Measures® Error® Notes
1) ()] ©)] @) ©) 6 M ®)

1....... CN, 4142.125-4177.125 4080.125-4117.625 mag C, N, (O) 0.018 1,2
4244.125-4284.125

2. CN, 4142.125-4177.125 4083.875-4096.375 mag C, N, (O) 0.019 1,2
4244.125-4284.125 .

3. Cad227 4222.250-4234.750 4211.000-4219.750 A Ca, (O) 0.25 1
4241.000-4251.000 .

4....... G4300 4281.375-4316.375 4266.375-4282.625 A C, (0) 0.33 1
4318.875-4335.125

St Fe4383 4369.125-4420.375 4359.125-4370.375 A Fe, C, (Mg) 0.46 1
4442 .875-4455.375 .

6....... Cad455 4452.125-4474.625 4445.875-4454.625 A (Fe), (C), Cr 0.22 1
4477.125-4492.125 .

Tnn... Fe4531 4514.250-4559.250 4504.250-4514.250 A Ti, (Si) 0.37 1
4560.500-4579.250

8....... C,4668 4634.000-4720.250 4611.500-4630.250 A C, (0), (Si) 0.57 1,3
4742.750-4756.500

9., Hp 4847.875-4876.625 4827.875-4847.875 A Hp, Mg) 0.19
4876.625-4891.625 .

10...... Fe5015 4977.750-5054.000 4946.500-4977.750 A (Mg), Ti, Fe 0.41
5054.000-5065.250

11...... Mg, 5069.125-5134.125 4895.125-4957.625 mag C, Mg, (0), (Fe) 0.006 3
5301.125-5366.125

12...... Mg, 5154.125-5196.625 4895.125-4957.625 mag Mg, C, (Fe), (O) 0.007
5301.125-5366.125 )

13...... Mgb 5160.125-5192.625 5142.625-5161.375 A Mg, (C), (Cr) 0.20
5191.375-5206.375 B

14...... Fe5270 5245.650-5285.650 5233.150-5248.150 A Fe, C, (Mg) 0.24
5285.650-5318.150

15...... Fe5335 5312.125-5352.125 5304.625-5315.875 A Fe, (C), Mg), Cr 0.22
5353.375-5363.375 N

16...... Fe5406 5387.500-5415.000 5376.250-5387.500 A Fe 0.18
5415.000-5425.000 )

17...... Fe5709 5696.625-5720.375 5672.875-5696.625 A (C), Fe 0.16 1
5722.875-5736.625

18...... Fe5782 5776.625-5796.625 5765.375-5775.375 A Cr 0.19 1
5797.875-5811.625

19...... Na D 5876.875-5909.375 5860.625-5875.625 A Na, C, Mg) 0.21 1
5922.125-5948.125

20...... TiO, 5936.625-5994.125 5816.625-5849.125 mag C 0.006 1,4
6038.625-6103.625

21...... TiO, 6189.625-6272.125 6066.625-6141.625 mag C,V,Sc 0.005 1,4

6372.625-6415.125

Notes.—(1) Wavelength definition has been refined. See text. (2) C, N are dominant as CN. (3) C is dominant as C,. (4)
TiO appears at MO and cooler.
* Dominant species; species in parentheses control index in a negative sense (index weakens as abundance grows). See
Tripicco & Bell 1995 and Worthey 1996.
b Standard star error. See text.
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the starting wavelength of the spectra also varied some-
what. Occasionally other effects prevented the measurement
of particular indices, including bubbles in the immersion oil
of the IDS, exceptionally strong galaxy emission, or poorly
subtracted night sky lines (see § 6 for a complete list). As a
result, not all indices are measured for all galaxies.

The Lick/IDS index system was nominally designed to
include six different molecular bands [CN4150, the G band
(CH), MgH, MgH + Mg b, and two TiO bands] plus 14
different blends of atomic absorption lines. The CN, index,
introduced in Paper V, is a variant of the original CN,
index with a shorter blue sideband to avoid Hé. Along with
the higher order Balmer lines presented in Worthey & Otta-
viani (1997), we believe we have extracted all of the useful
absorption features from the Lick/IDS stellar and galaxy
spectra.

We note here the recent work of Tripicco & Bell (1995),
who modeled the Lick/IDS system using synthetic stellar
spectra. They found that many of the Lick/IDS indices do

not in fact measure the abundances of the elements for
which they were named. Column (6) of Table 2 describes
their results, in order of the most significant contributing
element. To retain conformity with previously published
studies, we have chosen not to rename most of the Lick/IDS
indices for their primary contributor. However, following
Worthey et al. (1996), we have renamed the Fe4668 index
C,4668.

2.2. Index Measurements

Index measurements from the Lick/IDS galaxy spectra
are problematic owing to unpredictable wavelength shifts
and stretches (of order 1-3 A) and also from the (sometimes
unknown) systemic radial velocities of the galaxies them-
selves. Indices were measured automatically using the
program AUTOINDEX written by J. J. Gonzalez and G.
Worthey. This program begins by locating Na D (centroid
assumed at 5894 A) and the G band (centroid assumed at
4306 A) or, for a few galaxies with very strong Balmer lines,
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Hy (centroid assumed at 4340 A). It then removes any
global wavelength shift and stretch, including the effects of
the systemic velocity. Local wavelength shifts at each index
are calculated by cross-correlating the galaxy spectrum
with a template spectrum in the region around each index.
For galaxies, a KO giant template is generally used, but
occasionally an F5 dwarf template is used for galaxies with
very strong Balmer lines.

Once each index is centered, it is measured following the
scheme outlined in Paper V. The mean height in each of the
two pseudocontinuum regions is determined on either side
of the feature bandpass, and a straight line is drawn through
the midpoint of each one. The difference in flux between this
line and the observed spectrum within the feature bandpass
determines the index. For narrow features, the indices are
expressed in angstroms of equivalent width; for broad
molecular bands, in magnitudes. Specifically, the average
pseudocontinuum flux level is

Fp= f Fdifs — 1), )

where A, and A, are the wavelength limits of the pseudocon-
tinuum sideband. If F, represents the straight line connect-
ing the midpoints of the blue and red pseudocontinuum
levels, an equivalent width is then

A2 F
EW = f (1 - l)dz , )
A1 FC/I

where F, is the observed flux per unit wavelength and 1,
and 1, are the wavelength limits of the feature passband.
Similarly, an index measured in magnitudes is

Mag = —2.5 log PR 7. di|. 3)
2 1 A1 Ci

As explained in Paper V, the above AUTOINDEX defi-
nitions differ slightly from those used in Burstein et al.
(1984) and Faber et al. (1985) for the original 11 IDS indices.
In the original scheme, the continuum was taken to be a
horizontal line over the feature bandpass, at the level F,
taken at the midpoint of the bandpass. This flat rather than
sloping continuum induces small, systematic shifts in the
feature strengths, as described in further detail in § 5. For
now it is sufficient to note that slight additive corrections
have been applied to the new indices to preserve agreement
with the older published data. These corrections are dis-
cussed in § 5 and are always quite small.

Run corrections for the galaxies also differ from those
described for stars in Paper V. Stars always have nearly
zero velocities, and their features occupy the same IDS
channels on a given run. It was therefore found to be advan-
tageous to apply small additive corrections to all indices to
correct for small variations in continuum shape and/or
resolution for that run. Galaxies, however, occupy different
channels owing their varying radial velocities, which makes
the stellar-derived continuum shape corrections invalid.
Hence, the following scheme was adopted, according to the
velocity offset of a galaxy from the stars: globular clusters
and galaxies with cz <300 km s~! (ie, Local Group
galaxies) had stellar run corrections applied for all indices;
galaxies with 300 < cz < 10,000 km s~ ! had stellar run cor-
rections applied only to the broad molecular indices mea-
sured in magnitudes; and galaxies with ¢z > 10,000 km s !
had no run corrections applied.
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3. ERROR ESTIMATION

The errors of the IDS indices are due partly to photon
statistics and partly to the fact that the flat-field calibration
of the IDS had limited accuracy. A thorough knowledge of
the errors is essential to the proper use of these data. The
error estimates derived here will be used in later papers to
simulate the absorption-line data and to test the signifi-
cance of any conclusions.

The IDS was not a true photon-counting detector. This
makes estimation of uncertainties difficult, as the errors are
not strictly photon-counting statistics. We present in this
section a brief overview of the steps required to derive rea-
sonable error estimates for galaxy Lick/IDS index measure-
ments. A complete discussion of the error estimates
presented here may be found in Trager (1997).

In the IDS, light from the spectrograph fell on a series of
three image-tube photocathodes, which amplified the signal
by about 10°. The amplified light fell on a phosphor screen,
which held the light long enough for an image dissector to
scan and digitize the image before it faded (Robinson &
Wampler 1972). Each incident photon produced a burst of
typically seven to 10 detected photons covering ~9 A
(seven channels) in the digitized scan. Uncertainties in the
spectra arise from three sources: (1) input photon shot
noise, (2) the statistics of the amplification process, and (3)
flat-fielding errors. This last noise source is due to the move-
ment of the spectrum of the first photocathode, caused by
instrument flexure, and movement of the amplified spec-
trum, caused by stray magnetic fields affecting the magneti-
cally focused image-tubes and image dissector. As a result,
flat-field spectra taken at different telescope locations and
position angles do not divide perfectly but rather show low-
level undulations a few channels wide.

The effect of these three noise sources on the power spec-
trum is discussed in Dalle Ore et al. (1991), Paper V, and
Trager (1997). At low frequencies the noise is dominated by
flat-fielding errors (at high counts) and photon shot-noise
and the statistics of the IDS burst amplification process (at
low counts). At high frequencies the noise is dominated by
flat-fielding errors (very high counts) and photon statistics
(low and moderate counts). The resultant power spectrum
changes shape with count level, as shown schematically by
Trager (1997). In galaxy spectra, photon statistics tend to be
the overall dominant noise source, as opposed to the stellar
spectra (Paper V) and the galaxy spectra with the highest
signal-to-noise ratios (e.g., M31 and M32), in which flat-
fielding errors dominate.

The net result is that the high-frequency noise is a good
measure of photon statistics except at very high count
levels, where flat-fielding errors begin to dominate. Paper V
therefore defined a “goodness parameter” that measures
the noise power at high frequencies. For each spectrum, a
Fourier transform was taken of the 256 channels starting at
5519 A in the rest frame, a region relatively free of spectral
lines. The average power at high spatial frequencies was
measured and then divided by the power at zero frequency.
The square root of this ratio is a measure of photon noise,
and its inverse is defined to be the goodness G.

G is defined such that, if all noise were photon statistics, G
would be exactly proportional to ¢~ *. The constant of pro-
portionality is unknown a priori (it depends on the average
number of detected photons per burst, which is not well
known) but can be determined empirically by comparing to
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errors derived from multiply observed data. At high count
levels, G saturates (bottoms out) owing to the influence of
flat-field errors, and the relation of G to ¢~ ! becomes non-
linear. This curvature can also be determined empirically
from multiply observed objects.

The empirical calibration proceeds as follows. Because G
scales as ¢~ ! for poor data, it should average quadratically
for multiple observations, and thus we compute the good-
ness {G), of a single, typical observation of galaxy k as

1
(@ =5 Y G @

where G, , is the goodness of each individual spectrum and
N is the number of observations of galaxy k. {G), would be
the goodness of each single observation of galaxy k if all
observations were of equal quality. All galaxies with three
or more observations had average goodnesses computed by
equation (4). The same galaxies also had mean standard
deviations computed for each of the 16 Lick/IDS indices
between the G band and Na D (in the spectral range of
virtually all galaxies). The average total error gror, of
galaxy k averaged over these 16 indices is calculated as

1 19 /5.\2
O-%OT,k = E Z <_Jk> s 5)
j

=4 \Og;j

where j is the IDS index number (Table 2), o is the stan-
dard deviation per observation of index j for galaxy k, and
o,;is the standard star error of index j (Table 2). Thus ooy

is the average error in units of the standard star error for a
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typical single observation of galaxy k. It is an external error
determined from multiple, independent observations of the
same object.

To determine a preliminary scaling of total error with
goodness, individual total errors g1y , Were plotted against
average goodnesses (G), (Fig. 2). There is a reasonably
tight relation between the two with the expected trend. The
slope is —1 in the low-signal limit, where photon statistics
dominate, and flattens out in the high-signal limit, where
flat-fielding errors dominate. The solid curve is a least-
squares fit to the equation o3y, = a{G); * + b:

2561?
Otork = <<T>k> +(0.94) . (6)

Equation (6) is assumed to hold for each individual
observation, with {G), replaced by G;,. Weighted mean
indices for multiply observed galaxy k are calculated as

N N
<Ijk> = _Z,llijk/o-%OT,i,k/.Zl I/G%OT,i,k s (7

where i represents an individual observation, j represents a
given index, and oror;; is now derived from G, using

equation (6).
Finally, the error of each mean index j is taken to be
1
Ojx = ﬁ Otot,k X Osj » (®)

where N is the number of observations of galaxy k, o ; is the
standard star error, and the mean error of galaxy k for all

[
6 —
4 —
o
b —
D
2 L
2 —
07
\\\‘\\\‘\\\‘ \‘\\\‘\\\‘\\\‘\
2.6 2.8 3 3.2 3.4 3.6 3.8 4
log <G>,

F1G. 2—Preliminary calibration of the independently determined error ooy, With goodness (G),. The size of the galaxy labels is proportional to the
number of observations. The middle of the label is the location of the point. The relation flattens at high {G), owing to flat-fielding errors. The solid line is a
least-squares linear fit to the relation 67y , = a{G); > + b (see § 3).



No. 1, 1998
TABLE 3
Lick/IDS ERROR RESCALINGS?
G93 IDS-IDS Adopted
j Name Rescaling Rescaling Rescaling
1....... CN1 s . 0.92
2. CN2 e e 0.92
3o Ca4227 . . 0.92
4....... G4300 s . 0.92
5t Fe4383 1.11 1.11
6....... Cad455 . 0.87 0.87
Tennn. Fe4531 . 0.90 0.90
8.t C,4668 e e 0.92
9nnn. Hp 0.95 . 0.95
10...... Fe 5015 1.05 1.05
11...... Mg, . 0.92
12...... Mg, . . 0.92
13...... Mg b 0.94 e 0.94
14...... Fei5270 0.75 e 0.75
15...... Fe5335 0.95 . 0.95
16...... Fe5406 0.88 - 0.88
17...... Fe5709 . 0.94 0.94
18...... Fe5782 . 0.81 0.81
19...... Na D . e 0.92
20...... TiO, . . 0.92
21...... TiO, . . 0.92

* These corrections adjust the assumed standard star errors in
Table 2 to produce the correct mean error level relative to G93
and the right balance among index errors internal to the IDS data
as described in § 3.

indices, oror . 18 calculated from equatlon (6), us1ng (G
determined as in equation (4). This version of ¢ is more
accurate than the individual index standard deviations
because it uses the average error per spectrum, ooy ;, made
possible by knowing the ratios of the errors between indices
from the standard stars.

We then set out to check the quality of these preliminary
error estimates. We were interested in both the magnitude
of the errors averaged over all indices and the ratio of the
individual index errors. To anticipate the results, we found
that the mean magnitude of the galaxy errors was well
determined (to within 8%) but that certain individual error
ratios needed adjustment.

The details of this step are given in Trager (1997), but a
brief description follows. Independent nuclear data from
galaxies in the sample of Gonzalez (1993; hereafter G93)
were compared against individual observations of 37 IDS
galaxies in common. The G93 spectra cover only the region
4780-5600 A, and so only the indices from Hp through
Fe5406 could be compared. A y? analysis was performed to
determine the relative scaling of the Lick/IDS galaxy errors
with respect to G93. Gonzalez’s indices are so accurate
(except for Mg, and Mg,) that his errors contribute negligi-
bly, and the resultant 2 values are a good test of the Lick/
IDS errors alone. Though we expect the errors in G93 to be
negligible, we allowed for mean zero point and slope differ-
ences, as Gonzalez could not calibrate his CCD system pre-
cisely onto the IDS system (see his Fig. 4.4). The error
rescalings determined from the G93 comparison were fairly
small, about 0.92. The exception was Fe5270, which
required a large error rescaling (0.75; i.e., the preliminary
IDS errors from eq. [8] above were too large by 25% in this
index).

A further check for wavelengths not covered by the G93
spectra was performed using pairs of indices from the Lick/
IDS sample itself. Indices were chosen that might be
expected a priori to track each other closely (i.e., to be
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multiples of one another) and to have similar velocity-
dispersion corrections. The best choices came from the
Fe-peak family of indices (see § 4.4, although note that these
indices do not all track Fe abundance—see Tripicco & Bell
1995 and Table 2). Two groups were defined by their similar
velocity-dispersion corrections: Fe4383, Fe4531, and
Fe5709 were compared against Fe5270; and Fe5782 and
Cad4455 were compared against Fe5335. The errors of
Fe5270 and Fe5335 were first rescaled to match G93 as
described above. Chi-squared analyses were performed, and
the resultant reduced-y? value was forced to equal unity by
rescaling the Lick/IDS errors of the dependent index. The
error rescalings from these internal comparisons are com-
parable to those derived from the G93 comparison, typi-
cally again about 0.92.

A final mean fractional error scaling was then computed
from all scalings derived in these tests. This mean scaling
was again 0.92. Errors in the remaining 10 indices were
rescaled by this factor. We checked the final adopted index
scalings by performing a final set of y? tests on various
Fe-line pairs. The resulting reduced-y? values were consis-
tent with our final scaling of the errors to typically within a
few percent (and never worse than 5%). From these various
tests, we believe that systematic errors in the final uncer-
tainties are <5%.

The adjusted final errors for the raw indices of all galaxies
and globular clusters are computed as

049 = ¢jo; )

where ¢ is the preliminary error of index j computed in
equation (8), and c; is the scaling of index j relative to the
standard star indices as determined in these tests. Adopted
values of ¢; are shown in Table 3.

4. VELOCITY-DISPERSION CORRECTIONS

The observed spectrum of a galaxy is the convolution of
the integrated spectrum of its stellar population by the
instrumental broadening and the distribution of line-of-
sight velocities of the stars. The instrumental and velocity-
dispersion broadenings broaden the spectral features, which
causes the absorption-line indices to appear weaker than
they intrinsically are. In this section, we discuss the correc-
tions required to remove the effects of velocity dispersion
from the galaxy index measurements and the additional
uncertainties that arise from these corrections.

4.1. Velocity-Dispersion Data

The adopted nuclear galaxy velocity dispersions, their
fractional errors, and their sources are presented in Table 4.
The majority of the velocity dispersions were derived
directly from the IDS spectra themselves. The basic method
was discussed in Dalle Ore et al. (1991), and the data were
presented in Davies et al. (1987, as tabulated by Faber et al.
1989) and Dalle Ore et al. Other sources of nuclear disper-
sions include G93, the compilation of Faber et al. (1997),
and the compilation of Whitmore, McElroy, & Tonry
(1985), in order of preference. The velocity dispersions of
both Whitmore et al. and Faber et al. are derived from
comprehensive literature searches, but the data of G93 are
excellent and uniform (and supersede all other measure-
ments when available). Two other sources noted in Table 4
(Bender, Paquet, & Nieto 1991; Peterson & Caldwell 1993)
were used for dwarf galaxies. For a few galaxies, no velocity
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TABLE 4

VELOCITY DISPERSIONS USED TO CORRECT
THE RAW INDICES

Name 4 Error Source

1 @ A3) @
AS69A ............. 226 14 3
CR32 ....ccennnn 238 14 3
IC171............. 179 14 3
IC179 ...l 214 14 3
IC310............. 232 14 3
IC783............. 100 50 8
IC 1131............ 104 20 5
IC 169%6............ 169 14 3
IC2955............ 188 14 3
IC 3303............ 100 50 8
IC 3652............ 100 50 8
IC 3672............ 100 50 8
IC 4051............ 223 14 3
N80 .....oevneeen 296 14 3
N83 ..o, 254 14 3
N128......c.eeeene 198 12 5
Ni185...cccvveennn 23 22 6
N19%4......oceeenee 208 14 3
N20S....cccveennn 14 7 7
N221....ooneennn 77 3 1
N224............. 183 1 1
N227..covnnennnn. 268 14 3
N315...oieeen 310 1 1
N379.ceiiinenn. 245 14 3
N380........e...... 277 14 3
N382....ccvvennnn. 153 14 3
N383....covvennnn 265 14 3
N385...eevvennnn 180 14 3
N386............... 61 14 3
N392....ccevvennn. 261 14 3
N404............... 55 14 3
N410............... 321 14 3
N474......c...... 171 13 4
N499....ccceven. 237 14 3
N5Ol.....oeeeeeee. 163 14 3
NSO7..ovvennannnn 275 2 1
N524......ceee.. 275 10 2
N529.eviiiennn, 216 14 3

Nortes.—Col. (1): Galaxy name. See note, Table
6. Col. (2): Velocity dispersion, o, in units of km
s~ 1. Col. (3): Fractional uncertainty of velocity dis-
persion, in percent. Taken from estimates in indi-
vidual sources except source 7, whose uncertainties
were estimated to be 10%, and this paper (source
8), in which velocity dispersions and uncertainties
are based on eye estimates in comparison to gal-
axies with similar Mg, using the Mg,-¢ relation.
Col. (4): Sources of velocity dispersion: 1=
Gonzalez 1993; 2 = Faber et al. 1997; 3 = Faber
et al. 1989; 4 = Whitmore et al. 1985; 5 = Dalle
Ore et al. 1991; 6 = Bender et al. 1991; 7 =
Peterson & Caldwell 1993; 8 = this paper (rough
eye estimates; see text).Table 4 appears in its
entirety in the electronic edition of the Astro-
physical Journal Supplement Series.

dispersions were available, so educated guesses were made
by eye or by comparing against similar galaxies with known
velocity dispersions These rough velocity dispersions are
derived for the purpose of velocity-dispersion corrections
only and should not be used for any other purpose. They
are indicated in Table 4 as source 8.

For off-nuclear observations of galaxies (Table 10), veloc-
ity dispersions were calculated as

r —0.06
0, =0y m ) (10)

where r is the radius at which the aperture was placed and
0, is the velocity dispersion given in Table 4. The exponent
is a mean for early-type galaxies as determined from Figure
6.10 of G93.

Finally, a few galaxy nuclei were observed by scanning a
long slit of dimensions 174 x 16" across the nucleus to
create a 16” x 16" aperture (denoted “scan” in Table 10).
These were observed to determine aperture corrections to
velocity dispersion and Mg, in Davies et al. (1987). For
these we have used the velocity dispersions as corrected by
equation (1) of Davies et al.

4.2. Corrections from Broadened Stellar Spectra

To correct absorption-line strengths for the effects of
velocity dispersion, a reference velocity dispersion must be
chosen. As we plan to compare the indices derived in this
study to stellar population models based on our stellar
observations (Paper V; Worthey 1994), the indices are cor-
rected to zero velocity dispersion. To achieve this goal, a
variety of stellar spectra was convolved with broadening
functions of various widths. A selection of G dwarfs and the
K giant standard stars was convolved with Gaussians of
widths ranging up to ¢ = 450 km s~ . Index strengths were
measured from each convolved spectrum and compared to
the original strengths. A third-order polynomial was then
fitted to the ratios (original/convolved) for all the stars in
each index versus velocity dispersion. Several observations
of M32 were also included in the fits (M32 has a very small
velocity dispersion compared to the resolution of the IDS
system). Figure 3 shows the results of these fits, and Table 5
presents the coefficients of the polynomials.

A velocity-dispersion—corrected index is then

ix = Cilo) x Ty » (11)

where <I;», is the mean value of index j of galaxy k from
equation (7), and C{o,) is the velocity-dispersion correc-
tion:

3
C](O-v) = .Zocij O-:) ’ (12)

where c;; are the coefficients of the correction polynomial
for index j (Table 5), and o, is the velocity dispersion.

Figure 3 shows that considerable scatter exists in certain
velocity-dispersion corrections. As noted by G93, a varia-
tion with spectral type is seen in several indices. Some of the
scatter is negligible, which reflects variations in indices that
are intrinsically small (Mg,, TiO,, TiO,). Scatter in CNj,
CN,, and Hp is real. However, CN is not heavily used,
while the scatter in Hp is inflated owing to the inclusion of a
few very cool K giants with Hf strengths weaker than
typical galaxies. In what follows, we do not assign any
uncertainty to the velocity-dispersion corrections. The
uncertainty in the Hf correction will be noted in future
papers when applicable.

4.3. Final Errors

The velocity-dispersion corrections increase the raw
index errors, o;, by the value of the multiplicative correc-
tion. An additional source of uncertainty is introduced by
errors in the velocity-dispersion estimates themselves. It
proves simplest to discuss these effects in terms of the frac-
tional error of the final index.

The uncertainty from the velocity-dispersion error is
computed as the fractional uncertainty of the galaxy’s
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TABLE 5
VELOCITY-DISPERSION CORRECTION POLYNOMIAL COEFFICIENTS

j Name ¢ ¢y [ c3
1....... CN;, 1.000E + 00 3.333E—-05 2.222E—-07 —7.105E—15
2. CN, 1.000E +00 5.333E—-05 5.333E—-07 —2963E—10
3o Cad227 1.000E +00 1.378E—04 1.356E — 06 9.432E—09
4....... G4300 1.000E + 00 7.222E—-05 4.000E —07 3457E—10
S5iint Fe4383 1.000E +00 5.553E—-06 1.933E—06 —9.877E—10
6....... Cad455 1.000E +00 1.489E — 04 2.467E—06 4.198E—09
Teeenenn Fe4531 1.000E + 00 3.889E—05 2.578E—06 —1.136E—09
8. C, 14668 1.000E + 00 —6.667E—06 1.244E—06 —2963E—10
9. Hp 1.000E 400 7.444E —05 2.667E—07 1.136E—09
10...... Fe5015 1.000E + 00 9.667E —05 2.578E—06 —1.926E—09
11...... Mg, 1.000E + 00 —2223E—-06 5.333E—-07 —4.938E—10
12...... Mg, 1.000E +00 3.444E—05 —4.445E—08 2.469E—10
13...... Mg b 1.000E 400 —9.333E—05 2.800E —06 —1.481E—-09
14...... Fe5270 1.000E +00 4.000E —05 2.667E—06 —1.481E—09
15...... Fe5335 1.000E +00 —5.667E—05 5.444E —06 2.963E—10
16...... Fe5406 1.000E +00 —6.778E—05 4.956E —06 7.901E—10
17...... Fe5709 1.000E +00 2.111E—-04 6.222E —07 4.839E—09
18...... Fe5782 1.000E 400 1.033E—04 2.867E—06 5.926E—09
19...... Na D 1.000E +00 5.222E—-05 2.000E —07 1.975E—09
20...... TiO, 1.000E +00 —3.922E—-04 3.178E—06 —3.753E—09
21...... TiO, 1.000E 400 —8.889E—05 7.111E—-07 —7.901E—10

velocity dispersion multiplied by the derivative of the cor-
rection function at that velocity dispersion:

dInC;

Gv,j - eav dlIl 0'1; s (13)
where o, ; is the fractional uncertainty in the velocity-
dispersion correction of index j, €,, is the fractional uncer-
tainty of the velocity-dispersion estimate, C; is the
velocity-dispersion correction of index j (eq. [12]), and o, is
the velocity dispersion. This uncertainty is added in quadra-
ture with the raw fractional error in the index j,

O.qdj 2
J

where o, ; is the final fractional uncertainty of index j, 63
the raw error of index j (eq. [9]), and <I;) is the value of
index j uncorrected for velocity dispersion. The final frac-
tional error is then multiplied by the velocity-dispersion—
corrected index j, I3°" (eq. [11]), to determine the final,

corrected error of index j:

0P =g, x I (15)

adj ig

4.4. Index Families

Figure 4 presents the indices as a function of Mg, before
(Fig. 4a) and after (Fig. 4b) velocity-dispersion correction
for all galaxy observations through the nominal aperture
(1”4 x 4”; Figs. 4 and 5 include nuclear and nonnuclear
observations). Almost all line-strength—-Mg, distributions
tighten slightly, except Hf-Mg,, in which the scatter
increases somewhat since the velocity-dispersion correc-
tions multiply the scatter already present. Figure 5 presents
the indices as a function of velocity dispersion after velocity-
dispersion correction for the same galaxies. In Figure 4, a
tail of points to lower index values is visible for strong-lined
objects in both Hp and Fe5015. This tail is due to residual
emission-line contamination in a few objects.

After correction, indices seem to fall into three general
families: (1) a-element-like indices, including both CN
indices, all three Mg indices, Na D, and TiO,, characterized

by relatively narrow, positive correlations with both Mg,
and velocity dispersion; (2) Fe-like indices, including both
Ca indices, the G band, TiO,, and all Fe indices, with quite
broad distributions that are only weakly correlated with
Mg, and velocity dispersion; and (3) HpB, which acts
inversely to the a-element indices, with a relatively narrow,
negative correlation with Mg, and velocity dispersion.
Similar correlations were seen in a restricted set of indices
by Burstein et al. (1984), Carollo et al. (1993), and Jorgensen
(1997). C,4668 seems to be intermediate to the a- and
Fe-like indices, with a relatively broad, but positive, corre-
lation with Mg, and velocity dispersion. These groupings
probably represent element abundance families with differ-
ent nucleosynthesis histories, as discussed in Worthey
(1996).

5. REMAINING SYSTEMATIC ERRORS

We now estimate the remaining systematic errors in the
Lick/IDS data. Even small systematic errors are a source of
concern because indices change only slightly over time for
old stellar populations, so that small index differences can
translate to significant age differences. For example, a sys-
tematic error in the key Hf index of only 0.05 A corre-
sponds to a model age difference of ~1 Gyr at 15 Gyr
(Worthey 1994).

There are two potential sources of inhomogeneities, and
thus systematic errors, in the data. One comes from the use
of two measurement schemes, the original scheme described
by Burstein et al. (1984) (hereafter called “eye”) and the
current scheme used here and for many stars in Paper V
(called “AUTOINDEX”). The second source of error
comes from the presence of two separate instrumental
systems (for the first 11 indices only)—an earlier one (called
“old”) based on standardizing to mean data for K giant
standards in runs 3-24, and a second one (called “new”
based on K giant standards from all runs. The original 11
indices published for K giants (Faber et al. 1985) and G
dwarfs (Gorgas et al. 1993) were measured with the eye
method and transformed to the old system, whereas the new
stellar data in Paper V and the galaxy and globular data
measured here were measured with AUTOINDEX and
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transformed (at least initially, see below) to the new system.
We therefore consider (1) systematic differences in raw mea-
surements between the eye and AUTOINDEX schemes and
(2) any zero-point differences and their uncertainty between
the old and new standard systems. We stress that these
issues exist only for the 11 original indices; the 10 new
indices added in Paper V have always been measured using
AUTOINDEX and standardized to the K giant data from
all runs.

5.1. Measurement Systematics

We begin with a comparison of the eye and AUTOIN-
DEX schemes; there are two principal differences between
them.

1. Centering of feature bandpasses. In the eye scheme,
wavelength errors were corrected by centering feature band-
passes by eye using a reference stellar spectrum. AUTOIN-
DEX centers features automatically by performing a
cross-correlation of the object spectrum with a template
stellar spectrum. These automatic centerings were then
checked visually by eye.

2. Continuum determination. As discussed in § 2.2, the
eye scheme took the continuum to be horizontal over the
feature bandpass at a level F; measured at the midpoint of
the bandpass. In the AUTOINDEX scheme, the continuum
slopes over the feature bandpass. The difference in contin-
uum shapes potentially induces small, systematic shifts in
the feature strengths.

Figures 6-9 investigate these potential errors by plotting
the quantity (eye — AUTOINDEX) for stars and galaxies
(including globular clusters) separately. All galaxy and
globular cluster observations are plotted in Figures 6 and 7,
including off-nucleus and nonstandard aperture size obser-
vations (i.e., all observations represented in Tables 7-10 are
including in these figures). All of these are raw values with
no run or velocity-dispersion corrections applied.

Figures 6 and 8 plot (eye — AUTOINDEX) versus eye
values. Most of the outlying points are either M stars (Fig.
8) or very noisy galaxy spectra (Fig. 6). For either, small
centering differences between the two schemes can make

large differences in the index values. A few residual distribu-
tions are also skewed toward negative values (e.g., Fe5270,
Fe5335). This probably results from the systematically
better index centering in AUTOINDEX, which results in
larger index values. However, these effects are small.

Figures 7 and 9 plot (eye — AUTOINDEX) versus run
number. Run-to-run differences are seen of order <0.2
and <0.010 mag, which reflects changes in instrumental
response (i.e., spectral shape) among runs. (These are about
half the size of the applied run corrections). However, large-
scale, systematic trends that affect a large fraction of the
data are at most half this size.

Of concern from the standpoint of systematic errors is
any global shift or tilt between the two measuring schemes.
Mean differences between eye and AUTOINDEX are sum-
marized in Table 6 for stars and galaxies separately. Except
for CN,, global shifts are generally very small, <0.04 A and
<0.003 mag. CN; shows an offset of 0.005 mag for stars,
plus a tilt of comparable size (see Fig. 8). Both effects were
mentioned in Paper V, but neither seems to be present for
galaxies and globular clusters (cf. Fig. 6). Neither the origin
of these trends nor the difference between stars and galaxies
are understood.

Summarizing the information in Figures 6-9 and Table 6,
we conclude that large-scale, systematic differences between
the eye and AUTOINDEX measuring schemes are gener-
ally <0.05 A and <0.003 mag, with the exception of CN,,
for which the differences are twice as large.

We turn now to differences between the “old” and
“new ” standard systems. Recall that the standard system
for the 11 original indices (here called the “ old ” system) was
standardized to the K giant standards in runs 3-24, about
one-third of the data. In hindsight, we see that these early
runs were atypical in some indices and that the standard
system is therefore slightly “ off ” with respect to the whole
data. Rather than change zero points now, since many data
have been published and fitting functions derived from
them (Gorgas et al. 1993; Paper V), we compute zero-point
corrections needed to transform AUTOINDEX plus its
new system of run corrections to the old, published system.
The adopted corrections, based on the nine K giant stan-

TABLE 6

MEAN MEASUREMENT DIFFERENCES

Eye — AUTOINDEX

Published — AUTOINDEX

(raw) (K giant standards)

j INDEX Galaxies® All Stars® Paper V* This Paper®
1., CN, —0.002 —0.005 —0.007 —0.010
4....... G4300 —0.02 0.01 —0.29 —0.21
9.inene. Hp —0.01 —0.02 —0.05 —0.03
11...... Mg, —0.001 —0.001 —0.007 —0.007
12...... Mg, 0.003 0.000 —0.001 —0.002
13...... Mgb 0.00 —0.04 —0.05 —0.01
14...... Fe5270 0.00 —0.04 —0.04 —0.02
15...... Fe5335 —0.04 —0.04 —0.10 —0.10
19...... NaD —0.04 0.00 0.03 0.06
20...... TiO, —0.001 —0.001 0.001 0.001
21...... TiO, —0.001 —0.001 0.000 0.000

* Eye — AUTOINDEX raw values; run corrections and velocity-dispersion correc-

tions have not been applied.

® Correction onto Lick/IDS system as determined for Paper V and applied to
AUTOINDEX measurements of stars there. Based on nine K giant standard stars.

° Repeat analysis of Paper V corrections based on same nine K giant standard stars.
Values applied to all galaxies and globular clusters in this paper.
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dard stars, are given in the last column of Table 6; they are
applied to all the galaxy and globular data in this paper.
For most indices, the corrections are quite small, a few
hundredths of an A or a few thousandths of a magnitude.
The significant exception is the G band, for which the offset
is 0.21 A. A previous, similar analysis in Paper V yielded the
corrections shown in the second-to-last column. These
shifts were used to correct the new stellar data in Paper V.
The differences between the two sets of corrections are
again at most a few hundredths of an A or a few thou-
sandths of a magnitude. These are small to negligible in the
context of old stellar populations. The differences between
the Paper V and present corrections are a measure of the
irreducible zero-point uncertainties inherent in the
published Lick/IDS system.

5.2. Mg, : Comparison with Seven Samurai

Finally, we examine the Mg, values presented here with
respect to those of the Seven Samurai (Davies et al. 1987;
Faber et al. 1989). Davies et al. (1987) used a combined Mg,
index that weighted contributions from Mg, and Mg, both
measured using the eye scheme. The resulting Mg, index is
hereafter called (Mg, ) to distinguish it from the Lick/IDS
index Mg,. We reproduce equations (2) and (3) of Davies et
al. here:

Mg, = 0.03 + 2.10 Mg, — 62 Mg?, (16)
(Mg, = 0.6 Mg, + 0.4 Mg, . 17)

We have recomputed {Mg,> using the AUTOINDEX
measurements for all galaxies in common between the two
samples (Seven Samurai and that presented here). After
removing the aperture correction to the Seven Samurai
measurements (eq. [4] of Davies et al), we compare the
results in Figure 10. The mean difference (Seven
Samurai — AUTOINDEX) is +0.003 mag, with a standard
deviation of 0.010. This difference is close to what one
would expect from comparing of the eye and AUTOIN-
DEX schemes for Mg, in Table 6. The dispersion is also

ATTT ‘ TTTT ‘ TTTT ‘ T \TJ ITT ‘ TTTT ‘ T Tal ‘ T \\7
- 4+ o4
4 — S
5 B F | 02 '&‘?/
s | f T . 3
O | ..:. . s E - Q
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<Mg,> (7 Samurai, no aperture corrections)

F1G. 10.—Comparison of IDS and Seven Samurai measurements of
{Mg,>. Data for Seven Samurai measurements are taken from Davies et
al. (1987), without aperture corrections to Coma.

expected from a close examination of Figure 6. We recom-
mend that those interested in using (Mg, ) for Lick galaxies
recompute this index from the values of Mg, and Mg, given
here.

6. FINAL ABSORPTION-LINE INDICES

Table 7 presents final mean velocity-dispersion—corrected
indices, rms errors, and total goodnesses (N ;)12 G) for all
galaxy nuclei observed through the nominal slit width and
length (174 x 4").

Table 8 presents similar data for nearly all globular clus-
ters in the sample. Globular clusters have stellar run correc-
tions applied to all indices. The values in Tables 7 and 8
supersede all previously published Lick/IDS galaxy and
globular cluster index strengths. Galactic globular clusters
were scanned over the cluster through a 174 x 16" slit to
synthesize a 66” x 66" aperture (see Burstein et al. 1984).
Entries marked “O” are off-center observations through a
similarly scanned aperture displaced 35” away from the
main aperture.

Table 9 presents data for galaxies observed through the
nominal aperture of 174 x 4” but off the nucleus. The offset
from the nucleus in arcseconds is marked next to the galaxy
name. See the notes for details.

Table 10 presents data for observations through non-
standard apertures. These were mostly off-nuclear measure-
ments of bright galaxies, plus a few wide-slit nuclear
observations of small galaxies and two globular clusters (the
M31 globulars V29 and V92). The slit was widened to
increase signal-to-noise ratio. The offset from the nucleus
(typically in arcseconds) is marked next to the galaxy name,
if applicable. See the notes for details. The third column lists
the aperture dimensions; entries marked “scan” in that
column were spatially scanned over a 16" x 16” area
through a 174 x 16" slit. Standard run corrections were
applied as described in § 2.2. K giant standard stars
observed through wide slits were confirmed to have run
corrections consistent with those observed through the
nominal slit width.

In order to bring the wide-slit galaxy observations in
Table 10 onto the Lick/IDS system, a correction for slit-
width broadening was made that was similar to the
velocity-dispersion correction. Figure 11 shows a plot of the
K giant standard star indices measured through wide slits
as a function of slit width (compare to Fig. 3). Observations
through 178 and 22 slits were judged usable without need
for correction. For observations through the 374, 5”4, and
7"4 wide slits, the median values of the K giant ratios of
mean index strength through the nominal slit to the wide-
slit index strengths were used to correct the index values
and raw errors. These multiplicative corrections are listed in
Table 11. The strengths of Ca4227, Cad455, Fe4531, Hp,
Fe5015, Fe5335, Fe5406, Fe5709, and Fe5782 were all
judged to be unusable for observations through the 774
wide slit due to the large dispersion in the K giant ratios of
Figure 11. These indices are not listed for this aperture in
Table 10.

Some index measurements are missing from Tables 7-10.
There are five possible reasons:

1. The spectral coverage of the IDS system was not con-
sistent throughout all runs, and the CN indices or TiO
indices may not have been observed (this is more likely for
galaxies observed only once).
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TABLE 11

MULTIPLICATIVE CORRECTIONS TO BRING WIDE SLIT OBSERVATIONS
ONTO 174 SYSTEM

j Name 3”4 Correction 5”4 Correction 7”4 Correction
1., CN, 1.05 1.06 1.08
2., CN, 1.07 1.10 1.13
3. Cad227 1.00 1.00 e
4....... G4300 1.07 1.09 1.12
5. Fe4383 1.06 1.13 1.20
6....... Cad455 1.08 1.08 e
Toeeene. Fe4531 1.07 1.07
8. eent. C,4668 1.03 1.10 1.17
9.inene. Hp 1.06 1.06 e
10...... Fe5015 1.07 1.07
11...... Mg, 1.01 1.02 1.03
12...... Mg, 1.00 1.01 1.02
13...... Mg b 1.04 1.11 1.18
14...... Fe5270 1.04 1.13 1.22
15...... Fe5335 1.03 1.03
16...... Fe5406 1.04 1.04
17...... Fe5709 1.06 1.06
18...... Fe5782 1.14 1.14
19...... NaD 0.99 1.01 1.02
20...... TiO, 1.00 1.07 1.15
21...... TiO, 0.95 0.99 1.03

2. Ephemeral features caused by bubbles in the immer-
sion oil of the photomultiplier chain may have contami-
nated certain index measurements.

3. The systemic velocity of the galaxy may have moved
the reddest indices (TiO; and TiO,) out of the spectral
range of the IDS system.

4. Intrinsic emission such as Hf or [O m] 45007 in the
galaxy may have contaminated a central bandpass or side-
band. We have culled the most obvious examples of emis-
sion contamination, but subtle contamination remains.
Users of these data should be aware of this.

TABLE 12

INDICES MOST AFFECTED BY STRONG NIGHT-SKY EMISSION

Name Contaminants Location
G4300 ...... Hg 1 14358 Sideband, for some redshifts
Fe5406...... Hg 1 15461 Sideband, for some redshifts
Fe5709...... Na 1 115683, 5688 Sideband
Fe5782...... Hg 1 A5770 Sideband
Hg1 15791 Central bandpass

5. Poorly subtracted night-sky lines contaminated
certain indices. Table 12 presents a list of indices possibly
affected by residual contamination from poor night-sky
subtraction.

7. SUMMARY

This paper presents the complete database of Lick/IDS
absorption-line index strengths for galaxies and globular
clusters. This database supersedes all previously published
Lick/IDS data on these objects. The Lick/IDS galaxy data
are among the largest collection of homogeneous
absorption-line strengths for stars and galaxies currently
available.

We have reviewed the measurement of Lick/IDS indices
from IDS spectra and have characterized the errors. The
level of remaining systematic uncertainties is discussed. We
also present for the first time the correction of Lick/IDS
absorption-line strengths for velocity dispersion. Such a
correction is a crucial step to compare Lick/IDS galaxy
absorption-line strengths to models of stellar populations
based on the Lick/IDS stellar library (Worthey 1994).

In a subsequent paper, we will present an analysis of a
subset of these data using stellar population models in an
attempt to derive stellar population ages, metallicities, and
relative element abundances of the nuclei of early-type gal-
axies.
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