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ABSTRACT

We construct relativistic equilibrium models of differentially rotating neutron stars and show that they can
support significantly more mass than their nonrotating or uniformly rotating counterparts. We dynamically evolve
such “hypermassive” models in full general relativity and show that there do exist configurations that are
dynamically stable against radial collapse and bar formation. Our results suggest that the remnant of binary
neutron star coalescence may be temporarily stabilized by differential rotation, leading to delayed collapse and
a delayed gravitational wave burst.

Subject headings: black hole physics — relativity — stars: neutron — stars: rotation

1. INTRODUCTION

One of the most important characteristics of a neutron star
is its maximum allowed mass. The maximum mass is crucial
for distinguishing between neutron stars and black holes in
compact binaries and for determining the outcome of many
astrophysical processes, including supernova collapse and the
merger of binary neutron stars.

Observations of binary pulsars suggest that the individual
stars in such systems have masses very close to 1.4 M, (Thor-
sett et al. 1993). If mass loss during the final binary coalescence
can be neglected, the remnant of such a merger will then have
a rest mass exceeding 3 M,. If this mass is larger than the
maximum allowed mass for neutron stars, then the merger will
lead to prompt collapse to a black hole on a dynamical (milli-
second) timescale. If, however, neutron stars can support such
a high mass, at least temporarily, then the merger may result
in a high-mass, quasi-equilibrium neutron star, which only later
may collapse to a black hole. The two different outcomes may
have important consequences for gravitational wave signals
and, possibly, gamma-ray burst models.

The maximum mass of a cold, nonrotating, spherical neutron
star is uniquely determined by the Tolman-Oppenheimer-
Volkoff equations and depends only on the cold equation of
state. For most recent equations of state, this maximum mass
is in the range of 1.8–2.3 M, (Akmal, Pandharipande, & Rav-
enhall 1998), significantly smaller than the mass expected for
the remnant of a binary neutron star merger.

Thermal pressure and uniform rotation can provide addi-
tional support and may stabilize slightly more massive stars.
In this Letter, we point out that differential rotation can sig-
nificantly increase the maximum allowed mass of neutron stars
and may temporarily stabilize the remnant of binary neutron
star mergers. Recent fully relativistic simulations of binary
neutron star mergers (Shibata & Uryu 1999) show that merger
remnants are indeed differentially rotating (as suggested by
several Newtonian simulations) and that they may support
masses much larger than the maximum allowed mass of spher-
ical stars.

In the case of a head-on collision from infinite separation,
thermal pressure alone may support the merged remnant of
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progenitors (Shapiro 1998). Thermal pressure is likely to have
a much smaller effect for coalescence from the innermost stable
circular orbit since shock heating on impact is less pronounced
and will be dissipated by neutrino emission in ∼10 s.

Rotation can further increase the maximum allowed mass.
The maximum mass of a uniformly rotating star is determined
by the spin rate at which the fluid at the equator moves on a
geodesic, and any further speedup would lead to mass shedding.
This maximum mass can be determined numerically and is
found to be at most ∼20% larger than the nonrotating value
(e.g., Cook, Shapiro, & Teukolsky 1992 [hereafter CST], 1994,
and references therein). It is therefore unlikely that uniform
rotation could support the remnant of a binary neutron star
merger. Rotating equilibrium configurations with rest masses
exceeding the maximum rest mass of nonrotating stars
constructed with the same equation of state are referred to as
“supramassive” stars (CST).

The merger of a binary neutron star system, however, will
not result in a uniformly rotating object, especially since the
neutron stars are likely to be close to being irrotational before
merger (Bildsten & Cutler 1992; Kochanek 1992). The remnant
is likely to be differentially rotating (see Rasio & Shapiro 1999
for discussion and references; Shibata & Uryu 1999). The star’s
core may then rotate faster than the envelope, and it is easy to
imagine that such a star could support a significantly larger
mass than its uniformly rotating counterpart (see also Ostriker,
Bodenheimer, & Lynden-Bell 1966, in which this effect was
demonstrated for white dwarfs). We refer to equilibrium con-
figurations with rest masses exceeding the maximum rest mass
of a uniformly rotating star as “hypermassive” stars.

In contrast to the maximum mass of the nonrotating and
uniformly rotating stars, the maximum mass of differentially
rotating stars cannot be uniquely defined, since the value will
depend on the chosen differential rotation law. In principle,
one might even construct an extensive Keplerian disk around
the equator of the star, possibly increasing the mass of the star
by large amounts. Instead of constructing such extreme con-
figurations, we seek to determine whether a reasonable degree
of differential rotation can have a significant effect on the max-
imum mass of neutron stars.

Here we adopt a polytropic equation of state and a simple
rotation law to explore the effects of differential rotation on
the maximum mass. We construct relativistic equilibrium mod-
els and find that even for modest degrees of differential rotation
the maximum mass increases significantly, easily surpassing



L30 MAXIMUM MASS OF ROTATING NEUTRON STARS Vol. 528

Fig. 1.—Maximum rest-mass configurations vs. maximum mass-energy den-
sity for differentially rotating sequences specified by . Values of21ˆn = 1 A

are indicated. The mass-density relation for static equilibrium starsb = T/FWF
(TOV) is shown for comparison. Masses in solar masses are calculated by
assuming that the maximum mass for nonrotating stars is 2 M,. Note that
even modest differential rotating may easily support *3 M,, the expected
mass of binary neutron star merger remnants. We dynamically evolve the model
marked with a dot and show that it is dynamically stable (see Fig. 2).

the likely remnant mass of a binary neutron star merger. We
then evolve high-mass models dynamically in full general rel-
ativity and find that there do exist models that are dynamically
stable against both radial collapse and bar formation. These are
plausible candidates for binary neutron star remnants.

2. EQUILIBRIUM

We adopt a polytropic equation of state , where111/nP = Kr0

P is the pressure and r0 is the rest-mass density. We take the
polytropic constant K to be unity without loss of generality and
choose the polytropic index .3n = 1

Relativistic equilibrium models of rotating stars have been
constructed by several authors, including Butterworth & Ipser
(1975), Friedman, Ipser, & Parker (1986), Komatsu, Eriguchi,
& Hachisu (1989), CST, Bonazzola et al. (1993), and Ster-
gioulas & Friedman (1995). A comparison between several
different methods can be found in Nozawa et al. (1998). We
use the numerical code developed by CST, which is based on
the formalism of Komatsu et al. (1989).

Constructing differentially rotating neutron star models re-
quires choosing a rotation law , where and uf

t tF(Q) = u u uf

are components of the 4-velocity ua and Q is the angular ve-
locity. For simplicity we follow CST and consider the rotation
law , where Qc denotes the central angular2F(Q) = A (Q 2 Q)c

velocity and where the parameter A has units of length. Ex-
pressing and uf in terms of Q and metric potentials yieldstu
equation (42) in CST or, in the Newtonian limit, Q =

. Here we have rescaled A and r in terms22 2 2ˆ ˆQ /(1 1 A r sin v)c

of the equatorial radius : and . The param-ˆ ˆR A = A/R r = r/Re e e

eter is a measure of the degree of differential rotation andÂ
determines the length scale over which Q changes. Since uni-
form rotation is recovered in the limit , it is convenientÂ r `
to parametrize sequences by .21Â

We construct axisymmetric differentially rotating models us-
ing a modified version of the scheme adopted in CST. Instead
of fixing the central density in the iteration scheme for each
model, we fix the maximum density. This change allows us to
construct higher mass models in some cases, since the central
density does not always coincide with the maximum density
and hence may not specify a model uniquely. Given a value
of , we construct a sequence of models for each value of theÂ
maximum density by starting with a static, spherically sym-
metric star and then decreasing the ratio of the polar to equa-
torial radius, , in small increments. This sequenceR = R /Rpe p e

ends when we reach mass shedding (for large values of ) orÂ
when the code fails to converge (indicating the termination of
equilibrium solutions) or when (beyond which the starR = 0pe

would become a toroid).
In Figure 1 we show the maximum mass values in each

sequence as a function of the maximum value of the mass-
energy density e for different values of . Even for modestÂ
differential rotation, we can construct models with masses
much higher than the maximum mass for static and uniformly
rotating stars. Some of these models exceed the Kerr limit

, where J is the angular momentum and M is the total2J/M 1 1
mass energy of the star.

3 Since has units of length, all solutions scale according ton/2 ¯K M =
, , , etc., where the barred quantities are physical quan-n/2 n 2n/2¯¯K M J = K J Q = K Q

tities and the unbarred quantities are our dimensionless quantities correspond-
ing to (compare CST).K = 1

3. STABILITY

Nonrotating spherical stars are dynamically stable (unstable)
against radial modes if ( ), where is­M/­e 1 0 ­M/­e ! 0 ec c c

the central energy density. The same criterion can be applied
to sequences of uniformly rotating stars of constant J to de-
termine secular stability (Friedman, Ipser, & Sorkin 1988). Ex-
act criteria do not exist for the dynamical stability of rotating
stars; however, numerical simulations of uniformly rotating
models suggest that the onset of dynamical stability is very
close to the onset of secular instability (Shibata, Baumgarte,
& Shapiro 1999).

As an indication of the stability of our models against non-
axisymmetric bar-mode formation, we have indicated values of
the ratio of their kinetic energy T to potential energy W,

, in Figure 1.4 Newtonian stars develop bars on ab { T/FWF
dynamical timescale when , while they developb * b = 0.27dyn

bars on a secular timescale for via gravitationalb * b = 0.14sec

radiation or viscosity (Chandrasekhar 1969, 1970; Houser, Cen-
trella, & Smith 1994). For relativistic stars, bsec for gravitational
wave–driven bars is somewhat smaller than for Newtonian stars
(Stergioulas & Friedman 1998), while bsec for viscosity-driven
bars is slightly larger (Bonazzola, Frieben, & Gourgoulhan
1996; Shapiro & Zane 1998).

To investigate the dynamical stability of our equilibrium
models, we insert them as initial data in a dynamical simulation
and evolve them in time. We employ a fully relativistic code
that solves Einstein’s equations coupled to hydrodynamics in
three spatial dimensions plus time (Shibata 1999).

As a candidate for a dynamically stable star, we evolve the

4 See CST for relativistic definitions of these quantities.



No. 1, 2000 BAUMGARTE, SHAPIRO, & SHIBATA L31

Fig. 2.—Snapshots of contours of the density of the hypermas-0 1/2r u (2g)0

sive star marked with a dot in Fig. 1. We show contours of the initial data
and after about 3 central orbital periods, both in the equatorial plane (left,
including the velocity field ) and in a plane containing the z-axis of rotationi tu /u
(right). The density of successive contours decreases outward by 100.3. The
star has a rest mass of , about 60% larger than the maximum non-M = 0.290

rotating rest mass. The simulation shows that this model is dynamically stable
against quasi-radial collapse and bar formation.

model with , , and (marked21Â = 1.0 e = 0.073 R = 0.3max pe

with a dot in Fig. 1). This model has a rest mass about 60%
higher than the maximum nonrotating rest mass, ,b ∼ 0.23

, and , and is plotted in Figure 2. The orbital2R /M ∼ 5 J/M ∼ 1e

period at the equator is about 3 times the orbital period at the
center. We show contours at and after 3.15 orbital periodst = 0
at the center. Clearly, this model is dynamically stable against
both quasi-radial collapse to a black hole and bar formation,
even when small perturbations are included initially. This dem-
onstrates that differentially rotating stars can stably support
significantly higher masses than uniformly rotating stars for
longer than a dynamical timescale. A more systematic study
of the dynamical stability of differentially rotating neutron stars
will be presented in a forthcoming paper (M. Shibata, T. W.
Baumgarte, & S. L. Shapiro 1999, in preparation).

Dynamically stable differentially rotating neutron stars are
subject to various secular instabilities. The timescale for grav-
itational wave–driven bar-mode formation can be estimated
from

23 4 25M R b 2 bsec
t ∼ s (1)bar ( ) ( ) ( )3 M 15 km 0.1,

(Friedman & Schutz 1975), where the average radius R and
mass M are scaled to values appropriate for a binary merger
remnant. For , this yields timescales of 10 s. The finalb ∼ 0.2
fate of bar-unstable stars is not known, except for incompress-
ible Newtonian spheroids, where in the presence of gravita-
tional radiation and viscosity they evolve to Jacobian or De-
dekind ellipsoids (Chandrasekhar 1969; Miller 1974; Shapiro
& Teukolsky 1983; Lai & Shapiro 1995). Gravitational waves
may also drive an r-mode instability for arbitrarily small ro-
tation rates (see, e.g., Lindblom, Owen, & Morsink 1998). For
the hot remnants of binary neutron star mergers, however, these
modes may be suppressed by bulk viscosity.

Magnetic braking and viscosity will eventually bring the star
into uniform rotation. When a hypermassive star is driven to
uniform rotation by viscosity or magnetic fields, it will undergo
catastrophic collapse and/or mass loss. The lifetime of a hy-
permassive star is therefore set by these dissipative processes.
If , angular momentum must be dissipated either by2J/M 1 1
radiation or mass loss before the star can form a Kerr black
hole (see also Baumgarte & Shapiro 1998), which may produce
a massive, hot, and thick disk around the newly formed black
hole.

A frozen-in magnetic field will be wound up by differential
rotation, which may create very strong toroidal fields. This
process will generate Alfvén waves, which can redistribute and
even carry off angular momentum. The timescale tB for this
magnetic braking mechanism is related to the Alfvén speed

according to1/2v = B/(4pr)A

21 21/2 1/2R B R M2t ∼ ∼ 10 s. (2)B ( ) ( ) ( )12v 10 G 15 km 3 M,A

Here B is the initial poloidal field along the gradient of Q.
Strong poloidal magnetic fields can increase the maximum al-
lowed mass of neutron stars (Bocquet et al. 1995) and con-
tribute to the dissipation of angular momentum by dipole ra-
diation, but they are subject to a variety of MHD instabilities
(e.g., Spruit 1999a, 1999b).

Since the fluid flow in differentially rotating equilibrium stars
is divergence-free, the viscous timescale tV is determined by

shear viscosity

2 23/4 2 25/4rR R T M9t ∼ ∼ 10 s, (3)V ( ) ( ) ( )94h 15 km 10 K 3 M,

where (cgs) (Cutler & Lindblom 1987). Mo-9/4 22h = 347r T
lecular viscosity alone is likely to be less effective in bringing
the star into uniform rotation than magnetic braking. Nascent
neutron stars may also be subject to convective instabilities
(e.g., Burrows 1987; Keil, Janka, & Müller 1996; Pons et al.
1999), but the role of convection in rotating magnetic stars is
not well understood (see Tassoul 1978).

For weak magnetic fields and high values of b, the neutron
star merger remnant is likely to develop a bar. The accompa-
nying quasi-periodic gravitational wave signal may be observ-
able by the new generation of gravitational wave laser inter-
ferometers under construction (Lai & Shapiro 1995; M. Shibata
et al. 1999, in preparation).

For strong magnetic fields and small values of b, magnetic
braking is likely to dominate the evolution of differentially
rotating neutron stars and may alter the velocity profile within
minutes. On this timescale, differential rotation will no longer
be able to support hypermassive stars formed in binary merger.
In the resulting delayed collapse, a brief secondary burst of
gravitational waves will be emitted. The frequency of this sec-
ondary burst may be quite high,5 but since the angular mo-

5 The frequency of the fundamental quasi-normal mode of a Schwarzschild
black hole is , which yields kHz for M,; the frequency21q ∼ 0.37M f ∼ 4 M = 3
of the axisymmetric mode is slightly higher for a Kerr black hole (Leaver
1985).



L32 MAXIMUM MASS OF ROTATING NEUTRON STARS Vol. 528

mentum parameter may be close to unity, the amplitude2J/M
could be large enough to be observable by an advanced gen-
eration of gravitational wave detectors (Stark & Piran 1985).
If the orbital parameters, including the masses and radii of the
stars, can be determined during the inspiral and early merger
phase and if the time of the initial coalescence can be inferred
from the initial burst signal, then the measurement of this delay
in the final collapse may provide an estimate for the strength
of the wound-up magnetic field in the interior of the merged
neutron star.

4. DISCUSSION

We find that the maximum mass of a differentially rotating
star can be significantly higher than that of nonrotating or uni-
formly rotating stars, even for modest degrees of differential
rotation. As an immediate consequence, it is possible that bi-
nary neutron star coalescence does not lead to a prompt black
hole formation but that, instead, a differentially rotating, hy-
permassive quasi-equilibrium neutron star is formed. This has
important consequences for the gravitational wave signal from

such an event and possibly for the prospects of explaining
gamma-ray bursts by binary neutron star mergers.

Pulsars are likely to be uniformly rotating, since magnetic
braking and viscosity will bring any initially differentially ro-
tating stars into uniform rotation. The well-established maxi-
mum masses of uniformly rotating neutron stars are therefore
relevant for old neutron stars, including millisecond pulsars,
while our much higher maximum masses may be relevant for
nascent neutron stars in a transient phase in a supernova, fol-
lowing fallback, or in a merged binary.
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