
L57

The Astrophysical Journal, 522:L57–L60, 1999 September 1
q 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.

EFFICIENCY OF MAGNETIZED THIN ACCRETION DISKS IN THE KERR METRIC

Charles F. Gammie1

Department of Astronomy and Department of Physics, University of Illinois at Urbana-Champaign,
1002 West Green Street, Urbana IL 61801; gammie@uiuc.edu

Received 1999 April 6; accepted 1999 June 30; published 1999 July 23

ABSTRACT

The efficiency of thin disk accretion onto black holes depends on the inner boundary condition, specifically
the torque applied to the disk at the last stable orbit. This is usually assumed to vanish. I estimate the torque on
a magnetized disk using a steady magnetohydrodynamic inflow model originally developed by Takahashi et al.
I find that the efficiency e can depart significantly from the classical thin disk value. In some cases , i.e.,e 1 1
energy is extracted from the black hole.

Subject headings: accretion, accretion disks — black hole physics

1. INTRODUCTION

The dynamics of accretion close the event horizon of black
holes is of considerable interest to astronomers because that is
where most of the accretion energy is released and because
strong-field gravitational effects may be evident there.

Much of the work on thin disks around black holes assumes
that the disk ends at or near , the radius of the mar-r 5 rmso

ginally stable circular orbit. Inside rmso, material is assumed to
nearly free-fall onto the black hole (e.g., Bardeen 1970; Thorne
1974; Abramowicz, Jaroszynski, & Sikora 1978). This implies
the so-called “no-torque” boundary condition on the disk and
leads to a disk whose surface brightness vanishes at the inner
edge (Shakura & Sunyaev 1973). The no-torque boundary con-
dition leads to the classical estimate for the accretion efficiency

, where is the “energy at2e 5 1 2 E(r )/c E(r ) 5 2u (r )0 mso mso t mso

infinity” per unit mass of a particle at the marginally stable
orbit; e0 ranges between for a nonrotatingÎ1 2 2 2/3 ≈ 0.057
( ) black hole to for a prograde diskÎa 5 0 1 2 1/ 3 ≈ 0.42
around a maximally rotating ( ) black hole.a 5 1

It was realized early on, however, that magnetic fields might
alter the dynamics of the accreting material and hence the ac-
cretion efficiency (see, e.g., J. M. Bardeen quoted in Thorne
1974). More recently, it has been argued that the magnetic
fields threading the accreting material should be strong enough
to be dynamically important, but not so strong that the fields
can be regarded as force-free (Krolik 1999).

In this Letter I estimate the magnetic torque on the inner
edge of a thin accretion disk in the Kerr metric. I use a model
for the inflow that is based on earlier work by Takahashi et al.
(1990), following Phinney (1983) and Camenzind (1986a,
1986b, 1989).

2. MODEL

Consider a thin disk in the equatorial plane of the Kerr
metric. Because the disk is thin, , so the relativistic2 2c /c K 1s

enthalpy . The disk is magnetically turbulent (Balbus &h ≈ 1
Hawley 1991) with magnetic energy density 2B /(8p) ≈

(Hawley, Gammie, & Balbus 1995), where a is the usual22arcs

dimensionless viscosity of accretion disk theory. I will assume
that so that magnetic fields make a negligible contri-a K 1
bution to the hydrostatic equilibrium of the disk. Then the disk
has an inner surface at , with , so2r 5 r r 2 r ∼ r (c /c)in mso in mso s

1 Also at Harvard-Smithsonian Center for Astrophysics, MS-42, 60 Garden
Street, Cambridge, MA 02138.

. At the inner surface of the disk, I imagine that mag-r ≈ rin mso

netic field lines rise approximately radially through the disk
atmosphere and force the atmosphere to corotate with the disk
surface. High enough in this corotating atmosphere, the gra-
dient of the effective potential changes sign and the gas begins
to stream inward along field lines toward the black hole. As
gas leaves the disk, the character of the flow changes, becoming
less turbulent and more nearly laminar.

This picture leads one to consider a steady, axisymmetric
inflow close to the equatorial plane of the Kerr metric. In what
follows, I will work exclusively in Boyer-Lindquist coordinate
t, r, v, f and follow the notational conventions of Misner,
Thorne, & Wheeler (1973). I assume that, in the poloidal plane,
the fluid velocity and magnetic field are purely radial, i.e., that

and , where um is the 4-velocity and Fmn is thevu { 0 F { 0rf

electromagnetic field (“Maxwell”) tensor; recall that in the non-
relativistic limit (denoted with an arrow), ,F (v 5 p/2) r rBrf v

where B is the magnetic field 3-vector. I also assume that all
flow variables are functions only of r, i.e., that . This­ 5 0v

one-dimensional flow is similar in spirit to the old Weber &
Davis (1967) model for the solar wind, turned inside out. As
in the Weber-Davis model, the magnetic field has a monopolar
geometry.

I will also assume perfect conductivity, so that the electric
field vanishes in a frame comoving with the fluid:

mu F 5 0. (1)mn

Together with the symmetry conditions, this leaves Fmn with
six nonzero components, Ftv ( ), Frv ( ), andr 2rE r 2rBv f

Fvf ( ), and gives the relation2 tr 2r B F 5 2(F u 2r rv tv

. Thus the electromagnetic field has only 2 degrees off rF u )/uvf

freedom.
The flow symmetries reduce Maxwell’s equations to

­ F 5 0 (2)r tv

and

­ F 5 0. (3)r vf

The first equation is the relativistic “isorotation” law, which
can be rewritten , where QF is the rotation frequencyF 5 Q Ftv F vf

at the radius where . The second equation is thef t ru /u u 5 0
relativistic equivalent of .= · B 5 0
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Fig. 1.—Example solution with and . The upper left panela 5 0.95 F 5 6vf

shows ur(r), the upper right . The dot shows the location of the fastl 5 u (r)f

critical point. The lower left panel shows the electromagnetic energy density
[ ; solid line] and the rest-mass energy density of the accretingm nT (EM)u umn

particles (r; dashed line) measured in a frame comoving with the fluid. The
lower right panel shows the electromagnetic, particle, and total energy fluxes
as a function of radius.

Conservation of particle number leads to a conserved “rest
mass flux,” per unit v,

2 r 2F 5 2pr ru r 2pr rv , (4)M r

where particle number density multiplied by the rest massr {
per particle and is the 3-velocity. The conserved angularv
momentum flux is

DF Fvf rv2 r 2 rF 5 2pr T 5 2pr ru u 2 (5)L f f( )24pr

B Bf r3r 2pr Urv v 2 I,r f 4p

where Tmn is the stress-energy tensor, D { 1 2 2r /r 1g

, . The conserved mass-energy flux is2 2 2 2a r /r r { GM/cg g

DF Ftv rv2 r 2 rF 5 22pr T 5 2pr 2ru u 2E t t( )24pr

1 GM2 22 2r 2pr rv c 1 (v 1 v ) 2r r f[ ]{ 2 r

2B B Bf r f1 v 2 v , (6)r f }4p 4p

and, consistent with the thin disk approximation, I have ne-
glected the thermal energy’s contribution to FE. Notice that the
accretion efficiency is given by .e 5 1 2 F /FE M

The final equation needed to close the system is the nor-
malization of 4-velocity,

m 2u u 5 2c . (7)m

Henceforth I will set .2r 5 c 5 2F 5 1g M

Equations (1)–(7) describe a one-dimensional inflow model
with a series of algebraic relations. This model is physically
identical to that developed by Takahashi et al. (1990), although
cast in somewhat different notation. Also, unlike Takahashi et
al. (1990), I specialize to the case in which the inflow is an-
chored in a thin disk at the marginally stable orbit. This sets
the inflow in a specific astrophysical context and allows one
to relate it to an accretion efficiency. These inflow solutions
have also been explored by Camenzind (1994, 1996) and, in
unpublished work, by M. Camenzind & P. Englmaier.

3. BOUNDARY CONDITIONS

The inflow model has six dynamical variables (r, ut, ur, uf,
Ftv, and Fvf) and six conserved quantities (FM, FL, FE, Fvf, QF,
and umum), so the equations are fully integrated. What sets the
conserved quantities?

The mass flux FM has been normalized to 21, but more
physically it is set by conditions in the disk at large radius.
The normalization of 4-velocity gives . Fvf is relatedmu u 5 21m

to the magnetic flux emerging from the inner edge of the disk.
This is presumably determined by the action of magnetohy-
drodynamic (MHD) turbulence in the disk and the interaction
of the disk with the inflow itself. I will treat it as a parameter

2 Physical units may be recovered as follows: length, rg; time, ; mass,r /cg

; Fvf, , while .1/2 23/2 ˙2F c/r GM(2F ) c F ≈ 2Mr/(2H)M g M M

of the problem and estimate reasonable values for it later. Three
quantities remain to be specified.

It seems reasonable to require that the energy and angular
momentum fluxes be continuous across the boundary between
the inflow and the disk. It also seems reasonable to require that
the inflow 4-velocity match continuously onto the disk. Hap-
pily, these requirements do not overconstrain the problem. If

and , then one can show thatrQ 5 Q(r ) u (r ) 5 0 F 5F in in E

at rin; here . This eliminates 2 degreesQF 1 (E 2 lQ)F l { uL M f

of freedom by expressing FE in terms of FL and by fixing QF.
The energy and angular momentum flux are then continuous
if the viscous (more properly, turbulent) angular momentum
flux of the disk just outside rin matches the electromagnetic
angular momentum flux of the inflow just inside rin:

r rT (visc) 5 T (EM). (8)f f

This condition will be automatically satisfied once the disk
relaxes to a steady state, since the disk will increase its surface
density until it can carry off the entire outward electromagnetic
angular momentum (and energy) flux from the inflow.

The final degree of freedom (FL, or equivalently, FE) is fixed
by the condition that the flow pass smoothly through the fast
critical point.3 Thus, FL and FE emerge as “eigenvalues” of the
solution.

4. SOLUTIONS

Once the model parameters are fixed, the resulting set of
nonlinear algebraic equations must be solved numerically. I

3 The Alfvén point does not impose any new condition on the flow, since
all trans-Alfvénic solutions pass smoothly through the Alfvén point; see, e.g.,
Phinney (1983). The slow point is absent because the flow is cold.



No. 1, 1999 GAMMIE L59

Fig. 2.—Contours of constant angular momentum flux FL in the a-Fvf plane.
The zero angular momentum flux contour is marked as a heavy solid line;
above and to the right of this line . The light contours are linearly spacedF 1 0L

at .DF 5 1L

Fig. 3.—Contours of constant efficiency in the a-Fvf plane. Thee { 1 1 FE

unit efficiency contour is marked as a heavy solid line; above and to the right
of this line , i.e., energy is being extracted from the black hole. TheF 1 0E

light contours are linearly spaced at . The heavy dashed contours liesDe 5 0.1
at , the classical efficiency of a prograde disk around a maximallye ≈ 0.42
rotating black hole.

obtain FL and the location of the fast critical point ( , ur
f) viarf

simultaneous solution of

r­ F (r , u , F ) 5 0, (9)ru E f f L

r­ F (r , u , F ) 5 0, (10)r E f f L

rF (r , u , F ) 2 F (r , 0, F ) 5 0. (11)E f f L E mso L

Here I have used the fact that the critical point is a saddle point
of . I use the multidimensional Newton-RaphsonrF (r, u ; F )E L

method of Press et al. (1992), and for simplicity I evaluate the
derivatives numerically.

There is one subtlety involved in the solution. In calculating
, one must solve a quadratic equation for ut (orrF (r, u , F )E L

equivalently uf), so one must decide which root is physical. In
general this is a nontrivial matter, since the physical solution
skirts a region in the r-ur plane where the discriminant of the
quadratic vanishes (the solution makes a smooth transition from
one branch of the solution to another). Fortunately, it turns out
that one branch is appropriate in the neighborhood of rmso and
the other in the neighborhood of the fast point, so in practice
this subtlety is easily dealt with.

Figure 1 shows ur(r) for a solution with anda 5 0.95
. The dot marks the fast point at (r, ur) 5 (1.37, 20.26).F 5 6vf

This solution has and , soF ≈ 0.04 F ≈ 1.23 e { 1 1 F ≈E L E

, i.e., energy is extracted from the black hole. Evidently1.04
magnetic fields can significantly alter the efficiency from the
classical value.

Figure 2 shows contours of the eigenvalue FL in a survey
over the plane (see also Fig. 3 of Camenzind 1994). Fora-Fvf

strong field and large black hole spin (up and to the right of
the heavy solid line in the figure), . Takahashi et al. (1990)F 1 0L

have shown that if the field rotation frequency QF isF 1 0L

exceeded by the characteristic rotation frequency of the
spacetime, , at the Alfvén point.3 2 2 2 32a/[r (1 1 a /r 1 2a /r )]

Figure 3 shows contours of the accretion efficiency e eval-
uated over a portion of the plane (see also Fig. 4 ofa-Fvf

Camenzind 1994). The contours in Figure 3 are located at
intervals of . For strong field and large black holeDe 5 0.05
spin (up and to the right of the heavy solid line in the figure),

, that is, energy is extracted from the black hole. AsF 1 0E

Takahashi et al. (1990) have shown, this can only happen if
the Alfvén point lies within the ergosphere ( ). The heavyr ! 2
dashed line corresponds to the classical efficiency of a prograde
disk around a maximally rotating black hole, .e ≈ 0.42

5. ASTROPHYSICAL DISCUSSION

What is an astrophysically sensible value for the crucial
magnetic field strength parameter Fvf? I will make a purely
Newtonian estimate for clarity and because the relativistic cor-
rections are likely to be smaller than the other sources of un-
certainty. Suppose that the radial field leaving the disk is equal
to fBd, where the subscript d denotes a quantity evaluated in
the disk and . It is a result of numerical models of diskf & 1
turbulence that (e.g., Hawley, Gammie, &2 2B /(8p) ≈ 2ar cd d s, d

Balbus 1995). Using the usual steady state disk equation
, I find˙3pSn ≈ M ≈ 22F (H/r)M

2 3/4F ≈ r B ≈ 2.3fr . (12)vf r d

If the inner edge of the disk is at , , so ther 5 6 F ≈ 8.8fd vf

region of parameter space shown in Figures 2 and 3 is likely
relevant to disks.

The inflow model thus suggests that the presence of a modest
magnetic field and the accompanying torque on the inner edge
of the disk can significantly increase the efficiency of thin disk
accretion onto black holes. For and ,a 5 0 F K 1 e ≈ e 1vf 0

, while for , . The added luminosity0.01FF F F 5 4 e 5 0.165vf vf

manifests itself as an increase in the surface brightness of the
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disk due to the torque applied at its inner boundary. In the
same quasi-Newtonian spirit as the estimate of Fvf, the surface
brightness profile becomes (see Shapiro &1/2∝ 1 2 b(r /r)mso

Teukolsky 1983) and in the Shakura-Sunyaev model.b ≈ 1
Here .b { 1 2 F (EM)/l & 1L mso

The inflow model also suggests that because material ac-
cretes with a smaller specific angular momentum than it would
in the absence of magnetic fields, it is more difficult to man-
ufacture a rapidly spinning hole by disk accretion. An equilib-
rium spin is reached when (e.g., eq. [10] of PophamF 5 2aFL E

& Gammie 1998). For , this equilibrium value isF 5 4vf

reached at .a ≈ 0.7
A major limitation of this study (which should be regarded

as an instructive example rather than a source for estimating
efficiencies) is that I have ignored the vertical structure of the
inflow. Crudely speaking, one might expect that field lines that
do not lie in the midplane are more lightly loaded ( isFF Fvf

larger) so that specific energy and angular momentum fluxes

might increase away from the midplane, until at sufficient lat-
itude one reaches a field line that would rather inflate away
than remain tied between the inflow and the disk. At high
latitude, then, the outward electromagnetic energy flux might
emerge in the form of a wind and be better described by the
force-free magnetosphere model of Blandford & Znajek (1977).

Another major limitation is the simplified, monopolar field
geometry. This limitation can be overcome by direct numerical
integration of the basic equations. Evidently numerical models
of inflow inside the marginally stable orbit would be enor-
mously interesting. Fortunately they are now practical, at least
within the MHD approximation.

Stu Shapiro’s thoughtful advice has greatly improved this
Letter. I am also grateful to Eric Agol, Roger Blandford, Jeremy
Goodman, John Hawley, Julian Krolik, Jochen Peitz, and Gor-
don Ogilvie for their comments and to Phil Myers and the
Radio Group at the Center for Astrophysics for their hospitality.
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