
L17

The Astrophysical Journal, 512:L17–L18, 1999 February 10
q 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE MODIFIED NEWTONIAN DYNAMICS PREDICTS AN ABSOLUTE MAXIMUM TO THE ACCELERATION
PRODUCED BY “DARK HALOS”

Rafael Brada and Mordehai Milgrom
Department of Condensed Matter Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot, 76100, Israel

Received 1998 November 10; accepted 1998 December 4; published 1998 December 23

ABSTRACT

We have recently discovered that the modified Newtonian dynamics (MOND) implies some universal upper
bound on the acceleration that can be produced by a “dark halo,” which, in a Newtonian analysis, is assumed
to account for the effects of MOND. Not surprisingly, the limit is on the order of the acceleration constant of
the theory. This can be contrasted directly with the results of structure-formation simulations. The new limit is
substantial and different from earlier MOND acceleration limits (discussed in connection with the MOND ex-
planation of the Freeman law for galaxy disks and the Fish law for elliptical galaxies): it pertains to the “halo”
and not to the observed galaxy; it is absolute and independent of further physical assumptions on the nature of
the galactic system; and it applies at all radii, whereas the other limits apply only to the mean acceleration in
the system.

Subject headings: galaxies: halos — galaxies: kinematics and dynamics — gravitation

1. INTRODUCTION

The acceleration constant of the modified Newtonian dy-
namics (MOND), , appears in various predicted regularitiesa 0

pertinent to galaxies. For example, it appears as an upper cutoff
to the mean surface density (or mean surface brightness, trans-
lated with ) of galaxies, as observed and formulated in theM/L
Freeman law for disks and in the Fish law for elliptical galaxies.
We have now come across another such role for that hada 0

escaped our notice until recently: in spherical configurations,
and in those relevant to the rotation-curve analysis of disk
galaxies, the excess, , of the MOND acceleration,g { g 2 gh N

g, over the Newtonian value for the same mass, gN, is univer-
sally bounded from above by a value , where h isg 5 hamax 0

on the order of 1. Thus, if we attribute effects of MOND to
the presence of a fictitious dark halo, gmax is a universal upper
bound to the acceleration produced by the “halo,” in all systems
and at all radii. If the halo is assumed to be quasi-spherical,
this can be expressed as a statement on the accumulated (three-
dimensional) surface density of the halo, which must obey the
universal bound .2 21M (r)/r ≤ ha Gh 0

Inasmuch as MOND is successful in explaining the rotation
curves of disk galaxies with reasonable stellar values (San-M/L
ders 1996; Sanders & Verheijen 1998; de Blok & McGaugh
1998), we can deduce that, indeed, halo accelerations are
bounded by gmax. This is an important observation regardless
of whether MOND entails new physics or whether it is just an
economical way of describing dark halos. Newtonian, disk 1
dark-halo decompositions and rotation-curve fits are rather
more flexible because they involve two added parameters for
the halo, allowing one to maximize the contribution of the halo
and minimizing that of the disk. But reasonable fits do give a
maximum halo acceleration. For example, in the dark-halo best
fits of Begeman, Broeils, & Sanders (1991), R. H. Sanders
(1998, private communication) finds a maximum acceleration
of ∼0.4a0 for all the galaxies with reasonable fits.

In § 2, we derive this upper bound and explain the assump-
tions that go into the derivation. Then, in § 3, we compare this
new limit with previous MOND limits on the acceleration in
galactic systems.

2. DERIVATION OF THE UPPER BOUND

The absolute upper bound on gh follows simply from the
basic MOND relation between the acceleration g and the New-
tonian acceleration gN:

m(g/a )g 5 g , (1)0 N

with being the interpolating function of MOND. The va-m(x)
lidity of this relation constitutes part of the underlying as-
sumptions (see below). The excess acceleration g 5 g 2 gh N

can be written as a function of g:

g 5 g 2 gm(g/a ). (2)h 0

Now g can take any (nonnegative) value, but, for all acceptable
forms of , expression (2) has a maximum, which canm(x) gh

thus not exceed. Writing and ,x 5 g/a y 5 g /a y(x) 50 h 0

is nonnegative and vanishes at . Thus, it hasx[1 2 m(x)] x 5 0
a global maximum if and only if it does not diverge at x r

, i.e., if approaches 1 at (as it must do) no slower` m(x) x r `
than . The parameter h defined above is just this maximum21x
value of . There are solar system constraints on how slowlyy(x)

can approach 1 in the Newtonian limit (Milgrom 1983).m(x)
Such constraints practically exclude the possibility that y(x)
diverges at large x. Some examples are as follows: for

, the maximum, which is achieved in the New-m(x) 5 x/(1 1 x)
tonian limit, is ; for the often usedh 5 1 m(x) 5 x(1 1

, ; and for ,2 21/2 5/2 2xÎx ) h 5 [( 5 2 1)/2] ≈ 0.3 m(x) 5 1 2 e
(we see that, in fact, h tends to be rather smaller21h 5 e ≈ 0.37

than 1).
When is expression (1) valid? MOND may be viewed as

either a modification of gravity or as a modification of inertia.
“Mondified” gravity is described by the generalized Poisson
equation discussed in Bekenstein & Milgrom (1984), which is
of the form

= · [m(F=JF/a )=J] 5 4pGr, (3)0

where J is the (MOND) potential produced by the mass dis-
tribution r. For systems with one-dimensional symmetry (e.g.,
in spherically symmetric ones), equation (1) is exact in this



L18 ABSOLUTE MAXIMUM TO ACCELERATION PRODUCED BY DARK HALOS Vol. 512

theory. It was also shown to be a good approximation for the
acceleration in the midplane of disk galaxies (Milgrom 1986;
Brada & Milgrom 1995). An exact statement that can be made
in this case for an arbitrary mass configuration is that the av-
erage value of FghF over an equipotential surface of the halo
is bounded by gmax. To see this, note that from equation (3),

= · g 5 = · [g 2 m(g/a )g] (4)h 0

(because ). Let us take a Gauss= · g 5 4pGr 5 = · [m(g/a )g]N 0

integral for a volume bounded by an equipotential of J {h

. Because gh is perpendicular to the surface, we haveJ 2 JN

[1 2 m(g/a )]g · ds 5 g · ds 5 Fg Fds. (5)E 0 E h E h

Since we proved that , the left-hand side[1 2 m(g/a )]g ≤ g0 max

is bounded by , and so .g ds AFg FS { Fg Fds/ ds ≤ g∫ ∫ ∫max h h max

There is no concrete theory of mondified inertia yet, but, as
was shown in Milgrom (1994), equation (1) is exact in all such
theories for circular orbits in an axisymmetric potential. So our
limit here would apply, in both versions of MOND, to the halo
deduced from rotation-curve analysis.

3. COMPARISON WITH PREVIOUS MOND ACCELERATION LIMITS

The acceleration constant of MOND, , has been founda0

before to define a sort of limiting acceleration in two cases.
The first case concerns self-gravitating spheres that are sup-
ported by random motions with constant tangential and radial
velocity dispersions. The mean acceleration in all such spheres
cannot exceed a certain value on the order of (Milgroma0

1984). This was suggested as an explanation of the Fish law,
by which the distribution of the central surface brightnesses in
elliptical galaxies is sharply cut off above a certain value
(which, assuming some typical value, translates into aM/L
mean surface density ). The second instance con-21S ∼ a G0

cerns self-gravitating disks. In MOND, disks with a mean ac-
celeration much larger than are in the Newtonian regimea0

and are less stable than disks in the MOND regime, with mean
accelerations smaller than (Milgrom 1989 and Brada & Mil-a0

grom 1998 and references therein). This was suggested as an
explanation of the Freeman law in its revised form, whereby
the distribution of central surface brightnesses of galactic disks
is cut off above a certain value (see McGaugh 1996 for a recent
review and further references).

The new limit we discuss here is different from those two
in several important regards:

1. The previous limits concern the visible part of the galaxy,
while the new limit pertains to the fictitious halo and thus lends
itself to direct comparison with predictions of structure-
formation simulations, which are rather vague as regards the
visible galaxy. At the moment, such simulations are also equiv-
ocal on the exact structure of the halo itself. Different simu-
lations start with different assumptions, and the effect of the
visible galaxy on the halo is also poorly accounted for. None-
theless, it may be easy to check for a specific structure-
formation scenario, whether it predicts an absolute upper limit
to the acceleration in halos of the order predicted by MOND.
For example, the family of halos produced in the simulations
of Navarro, Frenk, & White (1996) do not seem to have a
maximum acceleration, with higher mass halos having higher
accelerations exceeding (S. S. McGaugh 1998, private com-a0

munication; R. H. Sanders 1998, private communication).
2. The new limit is “mathematical”; i.e., it does not make

further assumptions on the physical nature of the galaxy. In
contrast, the validity of the previous limits rests on additional
assumptions. In the first example, quasi-isothermality and a
nondegenerate, ideal-gas equation of state are assumed for the
spherical system. The limit then applies neither to normal stars,
which are not isothermal, nor to white dwarfs, whose equation
of state is not that of an ideal gas. Indeed, these stars have
mean accelerations much higher than . In the second example,a0

instability is relied on to cull out disks with high mean
acceleration.

3. The former two acceleration limits apply to the mean
acceleration in the system, while the new limit applies to the
halo acceleration at all radii.
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