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ABSTRACT

We explore the shapes of clusters and superclusters in the IRAS 1.2 Jy redshift survey with three reconstructions
spanning the range , 0.5, and 1.0, where ; b is the bias factor, and Q is the present value of0.6b 5 0.1 b 5 Q /b
the dimensionless matter density. Comparing our results with Gaussian randomized reconstructions of the IRAS
catalog, we find structures having both planar and filamentary properties. For and 1.0, the largest structuresb 5 0.5
in the survey have a distinct tendency to be filament-like, in general agreement with the results of N-body
simulations.

Subject headings: cosmology: theory — galaxies: clusters: general — infrared: galaxies —
large-scale structure of universe — methods: analytical — methods: numerical

Redshift surveys of galaxies show that the large-scale struc-
ture of the Universe has a nonrandom pattern that, on different
occasions, has been described as being cellular, network-like,
filamentary, a cosmic web, etc. (Zeldovich, Einasto, & Shan-
darin 1982; de Lapparent, Geller, & Huchra 1991; Bond, Kof-
man, & Pogosyan 1996). It is also well known that individual
structures forming through gravitational instability are likely
to be anisotropic since gravitational instability leads generically
to a collapse along one dimension, resulting in the formation
of pancakes (Shandarin & Zeldovich 1989; Shandarin et al.
1995); moreover, with the passage of time, filamentary features
acquire greater prominence, and the large-scale distribution de-
velops a network-like structure (Yess & Shandarin 1996; Sath-
yaprakash, Sahni, & Shandarin 1996).

The geometrical properties of large-scale structure have
evoked great interest in recent years, and mathematical tools
as diverse as minimal spanning trees, genus curves, percolation
theory, Minkowski functionals, and shape statistics have all
been employed in their study. The necessity of using different
statistical measures to study large-scale structure arises because
traditional indicators of clustering, such as the two-point cor-
relation function, though robust, do not address the issue of
“connectedness” or shape, issues that are central to an integral
understanding of the morphology of large-scale structure and
of the physics of gravitational clustering (Sahni & Coles 1995).

Some key issues of the large-scale clustering of matter, such
as whether the Great Wall in the north and the Sculptor Wall
in the south are truly one-dimensional “filaments” or whether
they are part of a more complex cellular structure consisting
of sheets and bubbles of which they represent a limited slice,
will be addressed by forthcoming large-redshift surveys, such
as the Sloan Digital Sky Survey (SDSS) and the Two-Degree
Field (2dF). In the present Letter, we report some progress
toward this goal by analyzing the shapes of clusters and su-
perclusters in the IRAS 1.2 Jy redshift survey.

Percolation theory, when applied to gravitationally clustered
systems, suggests that most of the matter is likely to be con-
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centrated in pancakes, filaments, and ribbons since such an
arrangement percolates easily (i.e., at small values of the filling
factor), as borne out by N-body simulations showing that the
filling factor at percolation for cold dark matter–type models
can be as low as 3%–5%, down from 16% for a Gaussian
random field (Klypin & Shandarin 1993). Percolation analysis
has also shown that the number of distinct clusters in a con-
tinuous density distribution peaks just before the onset of per-
colation. Thus, the percolation transition presents a natural
threshold at which to study the shapes of individual clusters
(Sathyaprakash et al. 1996, 1998), and in our study we shall
employ this threshold to study clusters in the IRAS survey. In
a companion paper (Sathyaprakash et al. 1998), we have made
an exhaustive analysis of the robustness of the shape statistic
to the threshold by studying the shapes of clusters defined at
different density thresholds. The results of that analysis indi-
cated that the modified shape statistic of Babul & Starkman
(1992) gives qualitatively similar results for clusters defined
according to different criteria. In the present Letter, we shall
quote results for clusters defined at the percolation threshold
since the results of Yess & Shandarin (1996) and Sathyaprakash
et al. (1996, 1998) lead us to believe that the latter provides a
robust and practically useful threshold at which to study shapes.
(A comprehensive analysis of the IRAS 1.2 Jy redshift survey
using percolation theory was carried out by Yess, Shandarin,
& Fisher 1997.)

We shall analyze clusters in the IRAS 1.2 Jy redshift survey
using a moment-based shape statistic that was originally sug-
gested for a distribution of points by Babul & Starkman (1992,
hereafter BS) and modified for use on continuous density dis-
tributions by Sathyaprakash et al. (1996). We briefly describe
the modified version of the BS statistic before applying it to
clusters obtained at the percolation threshold using a nearest-
neighbors algorithm. In order to minimize fluctuations, our
cluster-finding algorithm uses six nearest neighbors. However,
detailed properties of a cluster could depend, in general, on the
method used to identify clusters. This is an issue that requires
further scrutiny, and a comprehensive analysis of the sensitivity
of genus, percolation, and shape statistics to the nearest-
neighbor algorithm (used to define clusters) will be discussed
in a future work. Since the IRAS catalog does not cover the
full sky, it is relevant to ask whether edge and boundary effects
could have crept into the present analysis. Although a quan-
titative assessment of these effects lies outside the scope of this
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Fig. 1.—Multiplicity function of clusters in the IRAS 1.2 Jy redshift catalog
(left panels). The multiplicity function for a Gaussian randomization of the
IRAS catalog (right panels) is also shown.

Letter, a visual inspection of clusters and superclusters shows
that the effect of boundaries in distorting shape is rather small.

Let r(x) be the density field of matter distribution defined
on a grid with coordinates xp 5 , , . . ., N.p p p(x , x , x ) p 5 11 2 3

The first and second moments of the density distribution around
a fiducial point x0 are given by

N10 p p pM (x ; R) 5 y r(x )W(Fy F), (1)Oi i
M p51

N10 p p p pM (x ; R) 5 y y r(x )W(Fy F), (2)Oij i j
M p51

where i, , 2, 3, R is the radius of a window W centeredj 5 1
on the point x0, yp { xp 2 x0 is the coordinate of the pth grid
point relative to the fiducial point x0, and is the total massM
in a given region:

N

p p 0M 5 r(x )W(Fx 2 x F). (3)O
p51

In this study, we use a spherical top-hat window function that
is large enough to cover the entire cluster under study. Also,
the fiducial point is chosen to be the center of mass of the
cluster in question. The moment-of-inertia tensor can beIij

computed from the moments

I 5 M 2 M M . (4)ij ij i j

The three eigenvalues, I1, , and I3, of the inertia tensor areI2

directly related to the three principal axes of an ellipsoid fitted
to the distribution of matter around the given point (fitting by
an ellipsoid becomes increasingly accurate in the limit of small
R when the distribution can be approximated by a quadratic).
Let us consider the ratios of the eigenvalues arranged in order
of increasing magnitude, i.e., :I ≥ I ≥ I1 2 3

1/2 1/2m { (I /I ) , n { (I /I ) . (5)2 1 3 1

The BS shape statistic consists of a triad of numbers (S1, S2,
S3) that can be constructed out of the parameters m and n as
follows:

p p ppS 5 sin (1 2 m) , S 5 sin a , S 5 sin n , (6)1 2 3[ ] ( ) ( )2 2 2

where p 5 log 3/log 1.5; the function a(m, n) is implicitly given
by

2 2m n
2 5 1, (7)2 2 1/3 2/3a a (1 2 aa 1 ba )

where and . As a result,1/3 1/3a 5 1.9 b 5 2(7/8)9 1 a3 0 ≤
, , 2, 3; i.e., the BS statistic can be thought of as aS ≤ 1 i 5 1i

vector whose components are always positive and whose mag-
nitude never exceeds unity. A perfectly spherical distribution
has , implying , , andI 5 I 5 I m 5 n 5 1 a 5 01 2 3

. Similarly, for a planar distribution(S , S , S ) 5 (0, 0, 1)1 2 3

, , which implies , , and , so thatI 5 I I 5 0 m 5 1 n 5 0 a 5 11 2 3

. A distribution that is filamentary has(S , S , S ) 5 (0, 1, 0)1 2 3

, so that andI 5 I 5 0 m 5 n 5 a 5 0 (S , S , S ) 52 3 1 2 3

. Thus, the three components of the shape vector S 5(1, 0, 0)
(S1, S2, S3) represent filamentarity , planarity , and sphericityS S1 2

. The magnitude and orientation of the shape vector describeS3

some morphological properties of a distribution, for realistic
distributions , , 2, 3. Since the three componentsS ( 0 i 5 1i

of S depend only on two parameters m and n, one can consider
any two of them as being independent. In this work, we shall
work mainly with (filamentarity/linearity) and (planarity);S S1 2

small values of both of these parameters imply a large value
for sphericity . We should point out that the moments in theirS3

present form can be used to determine shapes of continuous
fields, such as brightness/temperature or density distributions,
while those originally defined by BS could not have been used
in such cases.

We now apply the BS shape statistic to overdense regions
in a Wiener reconstruction of the IRAS 1.2 Jy redshift survey.
The Weiner reconstruction method is useful in cosmology for
constructing a real space density field from a galaxy distribution
in redshift space that may be incomplete and sparsely sampled.
The Weiner reconstruction technique uses linear perturbation
theory to model and compensate for redshift space distortions
caused by peculiar velocities of galaxies. The latter depend on
the growth rate of the linear density contrast parameterized by

, where Q is the present value of the cosmic density0.6b 5 Q /b
parameter and b is the linear bias parameter (for details of the
Weiner reconstruction, see Rybicki & Press 1992 and Fisher
et al. 1995a, 1995b). In this study, we investigate a set of three
reconstructions of the IRAS density field corresponding to

, 0.5, and 1.0. The real space density field is recon-b 5 0.1
structed on a 643 grid with a side of 200 Mpc (20,000 km21h
s ).21

Clusters in the IRAS survey are identified using percolation
theory and a “friends-of-friends” algorithm on a grid that uses
six nearest neighbors. A generic feature of any continuous den-
sity distribution (and therefore true also of the reconstructed
IRAS density field) is that at very high thresholds, only a small
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Fig. 2.—Shape spectrum of IRAS clusters (left panels) and of clusters from
the randomized IRAS catalog (right panels).

TABLE 1
Catalog of Clusters/Superclusters from the

IRAS Reconstruction with b 5 0.5

n V M (S1, S2, S3)

1 . . . . . . . 10927 238 (0.169, 0.005, 0.684)
2 . . . . . . . 1898 36 (0.413, 0.082, 0.375)
3 . . . . . . . 1417 27 (0.007, 0.388, 0.503)
4 . . . . . . . 905 17 (0.493, 0.024, 0.394)
5 . . . . . . . 775 15 (0.064, 0.221, 0.517)
6 . . . . . . . 494 10 (0.419, 0.012, 0.465)
7 . . . . . . . 302 5.3 (0.266, 0.199, 0.372)
8 . . . . . . . 302 5.1 (0.204, 0.266, 0.367)
9 . . . . . . . 287 4.9 (0.015, 0.104, 0.712)
10 . . . . . . 232 4.4 (0.113, 0.128, 0.541)
11 . . . . . . 252 4.2 (0.244, 0.271, 0.339)
12 . . . . . . 239 4.2 (0.200, 0.024, 0.597)
13 . . . . . . 208 3.5 (0.022, 0.376, 0.471)
14 . . . . . . 197 3.3 (0.067, 0.027, 0.728)
15 . . . . . . 161 3.0 (0.010, 0.051, 0.799)
16 . . . . . . 165 2.8 (0.064, 0.007, 0.795)
17 . . . . . . 123 2.0 (0.003, 0.107, 0.760)
18 . . . . . . 117 1.9 (0.066, 0.189, 0.539)
19 . . . . . . 108 1.8 (0.011, 0.293, 0.557)
20 . . . . . . 97 1.6 (0.047, 0.114, 0.635)
21 . . . . . . 97 1.6 (0.012, 0.017, 0.862)
22 . . . . . . 93 1.5 (0.280, 0.020, 0.540)
23 . . . . . . 85 1.4 (0.090, 0.239, 0.473)
24 . . . . . . 73 1.2 (0.122, 0.148, 0.515)
25 . . . . . . 48 0.78 (0.070, 0.188, 0.535)
26 . . . . . . 38 0.78 (0.006, 0.016, 0.886)
27 . . . . . . 44 0.74 (0.061, 0.019, 0.757)
28 . . . . . . 37 0.59 (0.208, 0.180, 0.422)
29 . . . . . . 31 0.56 (0.120, 0.016, 0.691)
30 . . . . . . 32 0.53 (0.399, 0.011, 0.482)
31 . . . . . . 25 0.40 (0.002, 0.180, 0.698)
32 . . . . . . 24 0.39 (0.047, 0.179, 0.573)
33 . . . . . . 21 0.38 (0.031, 0.047, 0.748)
34 . . . . . . 23 0.37 (0.035, 0.349, 0.465)
35 . . . . . . 21 0.35 (0.124, 0.003, 0.745)
36 . . . . . . 17 0.27 (0.052, 0.379, 0.422)
37 . . . . . . 17 0.27 (0.060, 0.024, 0.746)
38 . . . . . . 16 0.27 (0.320, 0.004, 0.569)
39 . . . . . . 16 0.27 (0.008, 0.040, 0.826)
40 . . . . . . 15 0.25 (0.482, 0.066, 0.351)
41 . . . . . . 14 0.22 (0.111, 0.190, 0.491)
42 . . . . . . 11 0.18 (0.000, 0.117, 0.799)
43 . . . . . . 10 0.16 (0.087, 0.117, 0.579)
44 . . . . . . 9 0.14 (0.083, 0.302, 0.437)

Note.—The list contains many interesting struc-
tures, some of them quite massive and with significant
amounts of planarity and/or filamentarity. The first col-
umn is the cluster number (n), the second is volume
in grid units (V), and the third is mass/102 (M).

volume is in the overdense phase, so that the resulting number
of clusters is very small and so is the volume in the largest
cluster. As the density threshold is lowered, the number of
clusters increases, and the volume in the largest cluster grows
rapidly because of the merging of nearby clusters. At a critical
value of the density (the percolation threshold), the largest
cluster percolates, spanning the entire region of interest in a
homogeneous sample. Further lowering of the threshold in-
creases mergers, resulting in a subsequent decrease in the num-
ber of clusters. Thus, the total number of clusters peaks at
thresholds close to percolation, making the percolation tran-
sition an objective and useful density threshold at which to
study properties of individual clusters (Sathyaprakash et al.
1996, 1998), and we shall use this threshold for studying cluster
shapes in the IRAS survey. The density threshold at which the
number of clusters peak for , 0.5, and 1.0 areb 5 0.1 r 5T

, 1.58, and 1.51, respectively.1.59
The cluster multiplicity function for three reconstructions of

the IRAS density field, , 0.5, and 1.0, is shown in Figureb 5 0.1
1 (left panels). Gaussian randomized reconstructions of the
IRAS catalog (right panels) are also shown, which serve as
useful standards for our analysis. (Details of Gaussian random-
ization of the IRAS density field can be found in Yess et al.
1997.) In the IRAS catalog, there are between 40 and 50 clusters
in each reconstruction. About half of them are small clusters,
a third are of intermediate mass, and the rest are very massive.
In a low-Q universe, or if the bias is very large, the clusters
tend to be not as massive as in a high-Q universe, or if there
is no biasing. The randomized IRAS catalog contains a larger
fraction of small clusters as compared with the IRAS catalog.
In our analysis, we have discarded clusters having a volume
smaller than 8 grid cells since quantifying the shape of such
clusters would be biased toward linearity/planarity because of
a lack of resolution.

In Figure 2, we show the “shape spectrum,” the number
fraction of IRAS clusters having a given value of the BS shape
parameters and . From the shape spectrum, we see thatS S1 2

most IRAS clusters are predominantly isotropic/spherical; how-
ever, a small fraction can have fairly large amounts of planarity/
filamentarity. Figure 2 does not provide a comprehensive pic-
ture since it weighs all clusters equally, regardless of whether
they are large or small. The issue of the shape of the largest
objects (superclusters) in the IRAS catalog is clearly one of
central importance, and we explore it by showing the depen-
dence of shape on mass in Figure 3. We find that for b 5

, clusters in all mass ranges have almost equal amounts of0.1
planarity and filamentarity. However, for and 1.0, theb 5 0.5
largest clusters (superclusters) tend to be predominantly fila-
mentary, in agreement with the results of N-body simulations
(Sathyaprakash et al. 1996, 1998). The statistical significance
of these results is not yet clear because of the small number
of such (large) objects in the IRAS survey volume, but a com-
parison with the randomized IRAS catalog (see the right panel
of Fig. 3, in which results from 10 Gaussian randomizations
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Fig. 3.—The dependence of shape on mass is shown for IRAS clusters (left
panels) and for clusters chosen from the randomized IRAS catalog (right
panels).

of the IRAS density field are shown) clearly indicates that very
massive filamentary superclusters are extremely unlikely to ap-
pear “by chance.” We also find that clusters in the randomized
IRAS catalog are more prolate than oblate, in agreement with
the earlier analysis of the shapes of density peaks in a Gaussian
random field (Bardeen et al. 1986; Dubinsky 1992; Peacock
& Heavens 1985).

Table 1 is our catalog of clusters in the IRAS density fields

reconstructed with . (We do not include very smallb 5 0.5
clusters having a volume less than 8 grid cells.) We find several
large clusters with significant amounts of filamentarity/planar-
ity. It should be pointed out that the largest “percolating” su-
percluster is likely to be “treelike,” with several branches em-
anating from a “central trunk.” This will give it an isotropic
appearance on very large scales. Since the BS statistic is
moment-based, it is likely to interpret such an isotropic struc-
ture as being spherical! This shortcoming of moment-based
shape statistics can be avoided if one works with shape di-
agnostics based on Minkowski functionals, as demonstrated in
Sahni, Sathyaprakash, & Shandarin (1998) and Sathyaprakash
et al. (1998). (In addition, clusters occurring at the edge of the
box may show enhanced planarity because of boundary
effects.)

To conclude, we have addressed the issue of the morphology
of clusters and superclusters in the IRAS 1.2 Jy redshift catalog.
We find that individual clusters defined at the percolation
threshold can have significant amounts of both filamentarity
and planarity, the largest clusters appearing to be strongly fil-
amentary. Although these results are broadly in agreement with
recent studies of N-body simulations, their statistical implica-
tions are still unclear, mainly because of the sparseness of the
IRAS catalog. However, the stage is now set to analyze larger
and deeper three-dimensional redshift surveys complementing
the IRAS survey, such as the 2dF and the SDSS. A compre-
hensive study of cluster and supercluster shapes in these sur-
veys is bound to shed more light on the abundance of pancakes,
filaments, and ribbons and on the geometry of large-scale struc-
ture, whether bubble-like, network-like, or some other!
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