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ABSTRACT
Recently, it has been suggested that the dearth of small halos around the Milky Way arises because of

a modiÐcation of the primordial power spectrum of Ñuctuations from inÑation. Such modiÐcations
would be expected to alter the formation of structure from bottom-up to top-down on scales near where
the short-scale power has been suppressed. Using cosmological simulations, we study the e†ects of such
a modiÐcation of the initial power spectrum. While the halo multiplicity function depends primarily on
the linear-theory power spectrum, most other probes of power are more sensitive to the nonlinear power
spectrum. Collapse of large-scale structures as they go nonlinear regenerates a ““ tail ÏÏ in the power spec-
trum, masking small-scale modiÐcations to the primordial power spectrum except at very high z. Even
the small-scale (k [ 2 h Mpc~1) clustering of the Lya forest is a†ected by this process, so that cold dark
matter (CDM) models with sufficient power suppression to reduce the number of 1010 halos by aM

_factor of D5 give similar Lya forest power spectrum results. We conclude that other observations that
depend more directly on the number density of collapsed objects, such as the number of damped Lya
systems or the redshift of reionization, may provide the most sensitive tests of these models.
Subject headings : cosmology : theory È large-scale structure of universe

1. INTRODUCTION

The Ðeld of physical cosmology has made rapid progress
in the last decade, and a ““ standard model ÏÏ is already begin-
ning to emerge. Many of the main cosmological parameters
are becoming known, and there is good reason to believe
that the measurements will be signiÐcantly improved, and
the paradigm tested, in the next few years from observations
of the cosmic microwave background (CMB) anisotropy
and upcoming surveys of large-scale structure. While in
broad outline the paradigm appears to work well, there are
some discrepancies that indicate that revisions in our stan-
dard model may be required. In this paper we discuss
several topics related to one of these issues, the lack of
low-mass halos in our local neighborhood, and in particular
consider what we might learn about the small-scale matter
power spectrum.

The halo problem has been highlighted by several
groups. Analytic arguments based on Press-Schechter
(1974) theory were given by Kau†mann, White, & Guide-
rdoni (1993), while Klypin et al. (1999) and Moore et al.
(1999a) used very high resolution dark matter simulations.
A summary of the situation has been given recently by
Spergel & Steinhardt (2000) and Kamionkowski & Liddle
(1999).

Within the Press-Schechter theory and its extensions, the
number density of halos of a given mass is related to the
amplitude of the linear-theory power spectrum on a scale
proportional to M1@3. For example, 1010 halos in aM

_model with probe a linear scale of 0.3 h~1 Mpc.)
m

\ 0.3
Numerous numerical simulations have demonstrated that
halo number density seems to be governed by the linear
power spectrum, as Press-Schechter theory would predict.
A deÐcit of low-mass halos thus implies either additional
physics (see below) or a deÐcit of linear-theory power on
small length scales. This modiÐcation could come about
either by variations in the primordial power spectrum (e.g.,
from inÑation) or in the cosmological processing of this
power spectrum (e.g., from ““ warm ÏÏ dark matter).

Recently, Kamionkowski & Liddle (1999) pointed out
that a well-studied class of inÑationary models (broken
scale invariant [BSI] ; see, e.g., Starobinsky 1992) could give
rise to a deÐcit of small-scale power in the primordial power
spectrum. One way to achieve such a deÐcit is to introduce
a change in the slope of the inÑaton potential at a scale
determined by the astrophysical problem to be solved, in
our case k D 5 h Mpc~1. Thus, in such models one
““ naturally ÏÏ achieves fewer low-mass halos than in the con-
ventional inÑationary cold dark matter (CDM) models.

The linear-theory power spectrum of these BSI models is
well described by Kamionkowski & Liddle (1999). Com-
pared to a scale-invariant model, there is a small rise fol-
lowed by a sharp drop in power at some scale Beyondk0. k0the power spectrum oscillates with an envelope that falls
more steeply than k~3. At high k, the spectrum recovers to
the usual k~3 slope, but with much smaller amplitude.

We believe that it is of interest to constrain such modiÐ-
cations to the initial power spectrum, if possible. However,
because of this sharp drop, the model near more closelyk0resembles the familiar top-down scenarios (e.g., hot dark
matter [HDM]) than a bottom-up CDM model for some
range of wavenumbers. Thus, arguments based on reason-
ing developed for ““ traditional ÏÏ CDM models should be
checked against numerical simulations. Furthermore, the
number density of objects may be one of the only probes of
the linear-theory power spectrum. Several astrophysical
probes of small-scale power are sensitive not to the linear
theory but to the nonlinear power spectrum. As is well
known, objects collapsing under gravitational instability
feed power from large scales to small, thus allowing small-
scale power to be regenerated once a mode goes nonlinear
(e.g., Little, Weinberg, & Park 1991 ; Melott & Shandarin
1990, 1993 ; Beacom et al. 1991 ; Bagla & Padmanabhan
1997). How much power is regenerated, crucial for deter-
mining how much there was initially, requires numerical
calculation. We address several of these issues in the follow-
ing sections.
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Finally, we should note that we believe that constraints
on small-scale power are of intrinsic interest in and of them-
selves. We discuss this within the context of the subhalo
problem described above, while noting that several other
astrophysical e†ects may also explain the discrepancy. The
most obvious possibilities are that the total number of
Local Group satellites could be underestimated, feedback
could be important (Kau†mann, White, & Guiderdoni
1993 ; Bullock, Kravstov, & Weinberg 2000), or the satellites
could fail to make stars and be dark (e.g., H I clouds).

2. PROBES OF SMALL-SCALE POWER

Any proposal to solve the small halo number density
problem by modifying the initial power spectrum must
simultaneously be able to pass other constraints on small-
scale power. While we have a number of constraints on the
linear and evolved power spectrum on larger scales, there
are very few stringent constraints on linear scales below 1
Mpc. Kamionkowski & Liddle (1999) argue that con-
straints from the abundance of damped Lya systems and
the reionization epoch are passed by low-density versions of
the BSI model, partly because of the uncertainties involved
in making those predictions. The clustering of objects at
high z does not appear to be a promising probe of the
matter power spectrum on these small scales. A priori, the
two most obvious probes are the object abundances that
initially motivated this modiÐcation of the power spectrum,
and the power spectrum of the Ñux in the Lya forest.

3. SIMULATIONS

To address some of these issues, we ran two sets of
N-body simulations. The base model in all cases was a
"CDM model with h \ 0.7, and n \ 1,)

m
\ 0.3, )" \ 0.7,

COBE normalized using the method of Bunn & White
(1997), i.e., with The transfer functions were com-p8\ 0.88.
puted using the Ðts of Eisenstein & Hu (1999) without the
baryonic oscillations. This power spectrum was optionally
Ðltered to suppress small-scale power. We have modeled the
behavior displayed in Figure 1 of Kamionkowski & Liddle
(1999) with a simple analytic form,

*2(k)4
k3P(k)
2n2 \

C
*fid~2]

A k
k0

B3@2
*fid~2(k0)

D~1
, (1)

where is the Ðducial power spectrum whose high-k*fid2behavior we are modifying, and the power-law slope of the
term was chosen to match the behavior of Figure 1 ofk/k0Kamionkowski & Liddle (1999) in the range just above k0.The model plotted in their Figure 1 corresponds to k0^ 10

h Mpc~1, as shown in our Figure 2 below.
The Ðrst set of simulations used a PM code described in

detail in Meiksin, White, & Peacock (1999) and White
(1999). The simulations used 2563 particles and a 5123 force
mesh in a box 25 h~1 Mpc on a side evolved from z\ 70 to
3. The high mass resolution and quick execution times
allowed us to explore parameter space and address the Lya
forest questions (° 4.3), where very high force resolution is
not necessary.

The second set of simulations used a new implementation
of a TreePM code similar to that described in Bagla (1999).
These runs used 1283 particles in the same size box, evolved
from z\ 60 to 3, with the time step dynamically chosen to
be a small fraction of the local dynamical time. While higher
mass resolution would be preferable, this would make the

execution time prohibitive on desktop workstations with
the current serial version of the code. A spline-softened
force (Monaghan & Lattanzio 1985 ; Hernquist & Katz
1989) with h~1 kpc comoving wash \ 8 ] 10~4L box^ 20
used (the force was therefore exactly 1/r2 beyond h). Very
roughly, this corresponds to a Plummer-law smoothing,
v^ h/3 (e.g., Springel & White 1999), although a Plummer
law gives 1% force accuracy only beyond 10v.

We have performed numerous tests of the code, among
them tests of self-similar evolution of power-law spectra in
critical-density models and stable evolution of known halo
proÐles. The simulations took D200 time steps from z\ 60
to 3. Comparison of Ðnal particle positions suggested that
the time-step criterion was conservative. We have also com-
pared the TreePM code with a cosmological Tree code
(Springel & White 1999) and found good agreement in the
clustering statistics for several di†erent initial conditions,
including one of those used here (V. Springel 1999, private
communication).

With both the PM and TreePM codes, we ran three reali-
zations of four models : the ““ Ðducial ÏÏ "CDM power spec-
trum and three Ðltered versions with h Mpc~1,k0 \ 10
closely approximating Figure 1 of Kamionkowski & Liddle
(1999), and and 2 h Mpc~1, which show a largerk0\ 5
e†ect more easily resolved by these relatively small simula-
tions. For each of the three realizations the same random
phases were used for all four power spectra to allow inter-
comparison. As additional checks on Ðnite volume and
resolution e†ects, we also ran simulations in boxes of side
50 h~1 Mpc and 35 h~1 Mpc, Ðnding excellent agreement
where the simulations overlapped.

4. RESULTS

4.1. V isual Impression
In Figure 1 we show slices through the particle distribu-

tions of our four models. The most extreme model, with
h~1 Mpc, looks markedly di†erent from the others,k0\ 2

with smooth low-density regions (the simulation initial grid
is still clearly visible) and a lack of substructure in the
higher density areas. The di†erences between the other
panels are more subtle, and in all cases are really only
apparent on the smallest scales.

4.2. Power Spectrum
Most probes of small-scale structure, other than the

object abundance, depend on the nonlinear power spec-
trum. The process of gravitational collapse transfers power
from large scales to small and can generate a k~3 tail in P(k)
if it is absent initially. Fitting formulae for the nonlinear
power spectrum such as that of Peacock & Dodds (1996)
are not applicable for spectra, such as ours, that have
regions with n \ [3. We use our PM and TreePM simula-
tions to study the nonlinear power spectrum.

As can be seen in Figure 2, the scales of interest are
nonlinear by z\ 3, and small-scale power removed by Ðl-
tering has been regenerated by the collapse of large-scale
modes. The Ðducial model shows good agreement with the
Ðtting function of Peacock & Dodds (1996) on intermediate
scales, although for scales smaller than k D 10 h Mpc~1 in
the TreePM simulations we obtain more power than
Peacock & Dodds predict by a factor of about 2, indepen-
dent of the realization or box size. We believe that this is
due to the very Ñat nature of the linear-theory spectrum on
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FIG. 1.ÈSlices though the particle distribution in the TreePM simulations of our four models at z\ 3. From left to right, the panels show the models with
Ðlter scales h Mpc~1 (top left), h Mpc~1 (top right), h Mpc~1 (bottom left), and Ðducial "CDM (bottom right). The box side length ink0\ 2 k0\ 5 k0\ 10
each case is 25 h~1 Mpc, and the slice thickness 0.25 h~1 Mpc.

these scales : Jain & Bertschinger (1998) found a similar
discrepancy with Peacock & Dodds for n \ [2 spectra (see
their Fig. 7). We note that other Ðtting formulae have been
developed, which possibly would better reproduce the
behavior of our Ðducial model (see, e.g., Jain, Mo, & White
1995 ; Ma 1998).

To focus on the dynamics of the power regeneration, we
show the evolution of the mass power spectrum for our
Ðducial model and one Ðltered model (with hk0\ 5
Mpc~1) in Figure 3. We use the average of three realiza-
tions of PM simulation output here, since the greater parti-
cle density allows us to probe smaller amplitude
Ñuctuations before shot-noise contamination becomes
severe. The PM and TreePM simulations agree on the
power up to k D 20 h Mpc~1, suggesting that we resolve the
relevant scales with our PM code.

Note that even at z\ 6, the ““ peak ÏÏ in power introduced
by equation (1) has disappeared and small-scale power has
been regenerated. The di†erence between the Ðducial and
Ðltered models grows progressively smaller as the evolution
proceeds. For comparison, the generation of nonlinear
power has also been studied in numerical experiments by
Little et al. (1991), who studied scale-invariant models,

Melott & Shandarin (1990, 1993), Beacom et al. (1991), and
Bagla & Padmanabhan (1997), among others.

Finally, it is of interest to ask how the redshift-space
power spectra evolve. Typically, the redshift-space spectra
appear closer to the linear-theory power spectrum than the
real-space spectra. In Figure 4 we show the redshift- space
mass power spectrum as a function of redshift, as in Figure
3 for the real-space spectra. We can see that even the
redshift-space spectra have a tail of power at small scales,
induced by the nonlinear clustering.

4.3. Lya Forest
There has been a great deal of progress in theoretical

understanding of the Lya forest recently, due in large part
to hydrodynamical simulations (Cen et al. 1994 ; Zhang,
Anninos, & Norman 1995 ; et al. 1996 ;Miralda-Escude�
Hernquist et al. 1996 ; Wadsley & Bond 1997 ; Zhang et al.
1997 ; Theuns et al. 1998a, 1998b ; et al. 1998 ; Bryan etDave�
al. 1999). In these simulations, it has been found that at high
z ([2), most of the absorption in Lya forest spectra is due
to a continuous, Ñuctuating photoionized medium. The
physical processes governing this absorbing gas are simple
(see, e.g., Bi & Davidsen 1997 ; Hui & Gnedin 1997), and as
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FIG. 2.ÈLinear and nonlinear power spectrum at z\ 3. We show the
mean from three runs of our TreePM simulations for each of four models :
our Ðducial "CDM model (triangles), one Ðltered at h Mpc~1k0\ 10
(open squares), h Mpc~1 (open circles), and h Mpc~1 (three-k0\ 5 k0\ 2
pointed stars). The solid line shows the prediction of Peacock & Dodds
(1996) for the Ðducial model (the theory is not applicable to the Ðltered
models), and the dotted lines show the linear-theory input spectra. While
the N-body simulations have the same random phases and so are directly
comparable, comparison with the analytic models requires error bars. We
show the 1 p error on the mean of the Ðducial model computed from our
three realizations. The errors on the other models are similar.

a result, the optical depth for absorption at a particular
point can be related directly to the underlying matter
density (Croft et al. 1997). Because of this, observations of
the Lya forest in quasar spectra can be potentially very
useful for probing the clustering of matter (e.g., Gnedin
1998 ; Croft et al. 1998 ; Nusser & Haehnelt 2000).

We have generated simulated Lya forest spectra from our
PM N-body outputs at z\ 3 in order to test how con-
straining Lya measurements could be for the models
described in this paper. To do this, we follow a procedure

FIG. 3.ÈNonlinear power spectra as a function of redshift for our Ðdu-
cial model ( Ðlled symbols) and one Ðltered model with h Mpc~1k0\ 5
(open symbols). The symbols represent the mean of three runs of our PM
simulations, the error bars show the 1 p error on the mean estimated from
our three realizations at z\ 0. (However, recall that for each model the
simulations have the same random phases.) The spectra are scaled by
(4a)~2 to reduce the e†ect of linear evolution and highlight the nonlinear
growth.

FIG. 4.ÈRedshift-space nonlinear power spectra as a function of red-
shift for our Ðducial model ( Ðlled symbols) and one Ðltered model with

h Mpc~1 (open symbols). The symbols represent the mean of threek0\ 5
runs of our PM simulations. The spectra are scaled by (4a)~2 to reduce the
e†ect of linear evolution and highlight the nonlinear growth.

similar to that outlined in Hui & Gnedin (1998) and Croft et
al. (1998). We bin the particle distribution onto 5123 density
and velocity grids using a cloud-in-cell scheme, and smooth
with a Gaussian Ðlter of width one grid cell. We convert the
density in each cell to an optical depth for neutral hydrogen
absorption by assuming the ““ Ñuctuating Gunn-Peterson
approximation ÏÏ (FGPA; see Croft et al. 1997, 1998 ; see
also Hui & Gnedin 1998) and assign a temperature to the
cell using a power-law density-temperature relation. In all
our tests, we use the form with c\ 1.5 (see HuiT \T0 oc~1,
& Gnedin 1997 for the expected dependence of c on reioni-
zation epoch). We set the coefficient of proportionality
between density and optical depth by requiring that the
mean transmitted Ñux SFT \ 0.684, in accordance with the
observations of McDonald et al. (1999). We run 256 lines of
sight parallel to each of the three axes through one simula-
tion box and create mock spectra from a convolution of the
optical depths, peculiar velocities, and thermal broadening.
The conversion to km s~1 from h~1 Mpc at z\ 3 in this
model is a factor of 112.

On small scales, the Ðnite pressure of the gas will in detail
modify its clustering (see e.g., Hui & Gnedin 1998 ; Bryan et
al. 1999 ; Theuns, Schaye, & Haehnelt 1999), tending to
make the gas density Ðeld smoother than the dark-matterÈ
only outputs of our simulations. We have also implemented
a two-species version of ““ Hydro-PM ÏÏ (Hui & Gnedin
1998), which takes these e†ects into account, but we Ðnd
that for our purposes here the main results are adequately
reproduced by the pure PM runs. We expect that the details
of the spectra we create will also depend on other assump-
tions about, e.g., the reionization epoch and our simulation
methodology. To the extent that we are interested primarily
in relative comparisons between models, this should not be
cause for concern.

For each set of mock spectra we compute the one-
dimensional Ñux power spectrum, using a fast Fourier
transform (FFT), and we show the results in Figure 5. In the
top panel of this Ðgure, we have set the temperature of the
gas at the mean density, to be equal to 104 K for allT0,models. The di†erent curves show the e†ects of linear power
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FIG. 5.È(a) One-dimensional power spectrum of the Ñux measured
from our simulations of the four models (lines), all with K. TheT0\ 104
observational results, also at z\ 3, of McDonald et al. (1999) are shown as
Ðlled circles. (b) : One-dimensional power spectrum of the Ñux for the Ðdu-
cial model with three di†erent values ofT0.

suppression at di†erent values of while the points showk0,the observational results of McDonald et al. (1999). While a
suppression in Ñux power is seen in Figure 5, it is very small.
If we vary the value of the change in the thermalT0,broadening scale causes a more dramatic e†ect. This can be
seen in the bottom panel of Figure 5, where we show results
for the Ðducial linear power spectrum only. In general, the
Ñux power spectrum shape on small scales will depend on
the temperature of the gas through thermal broadening and
Ðnite gas pressure, as well as the nonlinearity of matter
clustering. In the context of this "CDM model, it seems as
though the observations of McDonald et al. (1999) are con-
sistent with a fairly high mean gas temperature, although a
more detailed study involving hydrodynamic simulations is
needed to give deÐnitive results. What is certain from the
present study is that the one-dimensional Ñux power spec-
trum provides little constraint on our models with sup-
pressed linear power. Clustering in the Ñux has apparently
been regenerated by nonlinear gravitational evolution in a
fashion similar to that seen in Figure 2. There may be a
positive side to this, however, since insensitivity to the
amount of small-scale linear power will mean that estimates
of the temperature of the IGM made by looking at small-
scale clustering of the Ñux (as in Fig. 5) should be more
robust than expected.

If we assume isotropy of clustering, the three-dimensional
Ñux power spectrum, can be simply recovered from*

F
2(k),

the one-dimensional one (see Croft et al. 1998 for details). It

was found by Croft et al. (1998) that on sufficiently large
scales, the shape of measured from simulated spectra*

F
2

matches well that of the linear-theory mass power spectrum,
*2(k). In Figure 6 we test this using the model with k0\
2 h~1 Mpc and the Ðducial model (both with K).T0\ 104
We can see that there is not much di†erence between *

F
2(k)

for the two (the same is true of the two intermediate models,
which we do not plot). The linear-theory mass power spec-
trum (arbitrarily normalized) is shown for comparison. On
scales approaching the box size, cosmic variance is large
enough to account for the di†erence between the linear
curve and the points. On smaller scales, there is still scatter,
but the points taken from the simulation with less linear
power are systematically a bit lower. We might expect the
simulation points to start to trace the linear-theory shape
around the scale of nonlinearity, where *2(k) becomes com-
parable to 1, which from Figure 2 is around k D 1È2 h
Mpc~1. If we look at Figure 6, this does seem reasonable,
and we Ðnd similar results even if we assume di†erent gas
temperatures. On smaller scales, however, has been*

F
2(k)

regenerated by nonlinearity, so that the exact relationship
between and the matter clustering is complex, and, as*

F
2(k)

in Figure 5, the di†erences between models is small.
Another statistic that we can check in order to see

whether suppression of linear power has caused any
changes in higher order clustering is the probability dis-
tribution of the Ñux. We plot this in Figure 7, showing the
four models with di†erent linear power (and all with T0\
104 K) in the top panel. There are small di†erences between
the models, particularly at the high-Ñux end, where the
models with more power appear to have more truly empty
regions. These small di†erences are likely to remain unob-
served, however, due to the difficulty of accurate continuum
Ðtting. This has implications for studies that use the Ñux
PDF information to constrain the amount of linear power
on the JeanÏs scale (e.g., Nusser & Haehnelt 2000). For the
same reason that the Ñux power spectrum does not change
much on small scales (generation of power), these methods

FIG. 6.ÈDimensionless three-dimensional power spectrum of the Ñux
measured from our Lya PM simulations of two of our models : Ðducial
"CDM ( Ðlled triangles) and the Ðltered model with h Mpc~1 (openk0\ 2
triangles). The linear-theory mass power spectra, scaled down by an arbi-
trary factor to match the Ñux power spectra, are shown by dotted lines.
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FIG. 7.È(a) Probability distribution function of the Ñux, P(F), mea-
sured from our Lya PM simulations of the four models, all with T0\ 104
K. (b) P(F) for the Ðducial "CDM model, with three di†erent values for the
temperature at the mean density.

are also likely to be insensitive to power truncation of the
type we are considering.

The bottom panel of Figure 7 shows results for our Ðdu-
cial model with di†erent gas temperatures. There appears to
be little di†erence between the curves, although we have
found that di†erences do appear if the spectra are subjected
to a moderate amount of smoothing (e.g., with a 50 km s~1
Gaussian ; not shown).

From our tests with both sets of statistics, we Ðnd that the
Lya forest is not a promising discriminator between the
models we are considering here. Two e†ects conspire to
mask any di†erences in the Lya measurements on the small
scales where there are large di†erences in the linear power
spectra. First, the thermal broadening has the e†ect of
smoothing the spectra (the thermal width of features is a few
tens of km s~1). Second, nonlinear evolution of the density
Ðeld causes power to be rapidly transferred from large to
small scales. For these models, the scale of nonlinearity at
z\ 3 is about the same as or larger than the scale at which
there are large di†erences in the linear power spectra. On
smaller scales, the shape of the three-dimensional Ñux
power spectrum no longer follows that of the linear mass
power spectrum.

4.4. Halo Abundance
Ideally, we would like to evolve a large volume and study

the number density of small halos present today within a
larger halo such as the Milky Way. This is not possible with
the limited dynamic range of the simulations presented

here. While many e†ects could potentially disturb all the
small halos as they interact with each other and a larger
halo, very high resolution numerical simulations suggest
that this may not be the case in practice. Moore et al.
(1999a) Ðnd that a large number of small halos are not
disrupted, so that the number remaining will still be a sub-
stantial fraction of the number that existed in the protoga-
laxy. In this paper, we focus on the number density of halos
in our simulations at z\ 3, where our 25 h~1 Mpc box is
just about to go nonlinear. We assume that these small
halos would become incorporated into a larger halo at later
times by the usual evolution of clustering, and that the
fraction that survive disruption can be predicted by refer-
ring to the detailed calculations of Moore et al. (1999a).
Here we are only interested in the deÐcit in the number of
small halos in our suppressed models relative to the Ðducial
model. This relative fraction should be similar at the red-
shift of our simulation box to what it would be at z\ 0,
although the absolute number of halos could only be quan-
tiÐed using simulations such as those of Moore et al.
(1999a). Assumptions similar to ours were also used by
Kamionkowski & Liddle (1999).

We show in Figure 8 the Press-Schechter predictions for
our Ðducial and Ðltered models and the numerically deter-
mined mass functions. Since there is no perfect algorithmic
deÐnition of a ““ group ÏÏ of points, the mass function is
slightly sensitive to the halo-Ðnding algorithm. We have
used both the friends-of-friends (FOF; Davis et al. 1985)
algorithm, with linking length 0.2, and the HOP (Eisenstein
& Hut 1998) halo Ðnding algorithm to construct these mass
functions. We Ðnd that the mass function di†ered slightly if
we changed the parameters in the algorithms or the algo-
rithm used, and we show results for both of these schemes.
However, these di†erences should not a†ect our main con-
clusions, since we are interested in comparing models with
di†erent amounts of small-scale power to each other.

FIG. 8.ÈMass functions of our simulations, using the HOP algorithm
of Eisenstein & Hut (1998) to Ðnd halos. We show results for Ðducial model
(triangles) and our three models with reduced small-scale power : hk0\ 10
Mpc~1 (open squares), h Mpc~1 (open circles), and h Mpc~1k0\ 5 k0\ 2
(three-pointed stars). We have coadded the mass functions of the three
realizations to construct an ““ average ÏÏ mass functionÈthe error on the
mean as calculated from the three realizations is smaller than the size of the
symbols. The solid lines show the predictions of the Press-Schechter
theory. We have used top-hat smoothing and in the calculation ofd

c
\ 1.5

the Press-Schechter predictions.
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The N-body mass functions and the Press-Schechter pre-
dictions are shown in Figures 8 and 9 for the HOP and
FOF algorithms, respectively. The ““ shelf ÏÏ at the low-mass
end of the N-body mass functions arises because of the
minimum number of particles allowed to form a group.
There are no very low mass halos in the simulation. If we
use with a top-hat window in the Press-Schechterd

c
\ 1.69

predictions, we Ðnd that the mass functions have too few
large-mass halos compared to the HOP N-body results for
both z\ 4 and 3. The two can be brought into better agree-
ment if we decrease to 1.5, as we have done. With thisd

cmodiÐcation, the Press-Schechter predictions overestimate
the FOF results by a factor of up to 2. To check for simula-
tion artifacts, we also ran several larger boxes. We Ðnd that
the mass functions from a sequence of larger boxes (up to 50
h~1 Mpc) with di†erent random phases map smoothly and
stably onto the mass function of these simulations, suggest-
ing that there are no Ðnite-volume or sample-variance
e†ects operating. As a Ðnal check, a completely separate
analysis chain using a di†erent N-body code (a cosmo-
logical Tree code) obtains the same mass function at
z\ 3 for one of our runs (V. Springel 1999, private
communication).

Figures 8 and 9 suggest that the number of halos is
indeed governed by the linear-theory power spectrum. The
amount of suppression relative to the Ðducial model is
robust to the parameters of our group-Ðnding algorithm or
the algorithm used. The absolute number of halos can in
principle be predicted from statistics of the initial density
Ðeld, although there are uncertainties related to the deÐni-
tion of halos in the simulations and parameters in Press-
Schechter theory.

We Ðnd that in order to reduce the number of small halos
by a large factor (for example, Kamionkowski & Liddle
1999 recommend about an order of magnitude), we require
a fairly severe Ðltering of the Ðducial model, using a Ðlter
with h Mpc~1.k0\ 2

Finally, we remark that this set of simulations does not
have enough mass resolution to probe the structure of the
halos we Ðnd. However, simulations by Moore et al. (1999b)
suggest that the halo structure will not be sensitive to the
Ðltering of the initial power spectrum. This lends some
support to our assumption that the amount of disruption of

FIG. 9.ÈSimulation mass functions, as for Fig. 8, except that a FOF
scheme (with linking length v\ 0.2) was used to Ðnd halos.

the small halos when they become incorporated into a
larger halo does not depend on the alterations we have
made to the initial power spectrum.

5. CONCLUSIONS

While the essential picture of the hierarchical formation
of large-scale structure in a universe containing primarily
cold dark matter appears to work well, some puzzles
remain. One of these is the paucity of dwarf galaxies in the
local neighborhood. One resolution of this ““ lack-of-small-
halos problem ÏÏ is a modiÐcation of the initial power spec-
trum, reducing the amount of small-scale power. There exist
inÑationary models that can accomplish this, although the
scale of the modiÐcation must be put in by hand. Other
approaches, such as assuming that the universe is domi-
nated by warm dark matter (WDM), will have a similar
e†ect (and both approaches may solve other problems ; see,
e.g., Sommer-Larsen & Dolgov 1999). In models with
reduced small-scale power, structure forms in a top-down
manner over a range of scales near the break, so Ansa� tze
developed for the ““ traditional ÏÏ bottom-up scenario should
be treated with caution. In this work, we have used numeri-
cal simulations to address the question of how one could
constrain such a modiÐcation of the initial power spectrum.
We note that we have dealt in detail only with a model with
suppressed initial power. In a WDM model, the deÐcit of
power arises from the dark matter velocity dispersion, and
so such as model may behave slightly di†erently, at least on
the smallest scales.

We Ðnd that the halo mass function depends primarily on
the linear-theory power spectrum, so a suppression of
small-scale power does reduce the number of low-mass
halos. While the Press-Schechter theory qualitatively pre-
dicts the right behavior, its free parameter must be(d

c
)

adjusted to Ðt the N-body results. To reduce the number of
1010 halos by a factor of more than 5 compared to ourM

_Ðducial model requires a fairly extreme Ðltering of the pri-
mordial power spectrum, and the structure that forms in
such a model appears qualitatively di†erent from the Ðdu-
cial "CDM model (Fig. 1).

Collapse of large-scale structures as they go nonlinear
regenerates a ““ tail ÏÏ in P(k) if it is suppressed in the initial
conditions (and this holds in redshift as well as real space).
Thus, probes that measure primarily the evolved power
spectrum are less sensitive to reduced small-scale power
than one might think. We particularly examine measure-
ments of clustering from the Lya forest Ñux. On the scales
that govern the number of small halos, choosing a di†erent
gas temperature a†ects Lya clustering much more strongly
than suppressing the linear power spectrum. The matter
power spectrum measurement made from the low-
resolution Lya forest spectra by Croft et al. (1999) probes
scales just above this, which are still linear, and o†ers essen-
tially little constraint on these models. Any extension of
these simple Lya forest measurements to smaller scales
must necessarily have less general conclusions drawn from
them.

Given that the number density of collapsed objects seems
to be the most sensitive probe of this small-scale modiÐ-
cation of the power spectrum, other observations that
depend on this should be used to make consistency checks.
At the moment, the obvious choices, such as the number
density of damped Lya systems or the redshift of reioniza-
tion induced by the formation of the Ðrst stars and quasars,
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are difficult to predict accurately from theory. Their poten-
tially strong discriminatory power will eventually make
them useful, however, as we learn whether more of cosmol-
ogyÏs puzzles can be resolved by an absence of small-scale
power.
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