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ABSTRACT
We have developed an implicit, multigroup, time-dependent, spherical neutrino transport code based

on the Feautrier variables, the tangent-ray method, and accelerated K iteration. The code achieves high
angular resolution, is good to O(v/c), is equivalent to a Boltzmann solver (without gravitational
redshifts), and solves the transport equation at all optical depths with precision. In this paper, we present
our formulation of the relevant numerics and microphysics and explore protoneutron star atmospheres
for snapshot postbounce models. Our major focus is on spectra, neutrino-matter heating rates, Edding-
ton factors, angular distributions, and phase-space occupancies. In addition, we investigate the inÑuence
on neutrino spectra and heating of Ðnal-state electron blocking, stimulated absorption, velocity terms in
the transport equation, neutrino-nucleon scattering asymmetry, and weak magnetism and recoil e†ects.
Furthermore, we compare the emergent spectra and heating rates obtained using full transport with
those obtained using representative Ñux-limited transport formulations to gauge their accuracy and via-
bility. Finally, we derive useful formulae for the neutrino source strength due to nucleon-nucleon bremss-
trahlung and determine bremsstrahlungÏs inÑuence on the emergent and neutrino spectra. Theselk lqstudies are in preparation for new calculations of spherically symmetric core-collapse supernovae, protoÈ
neutron star winds, and neutrino signals.
Subject headings : elementary particles È methods : numerical È radiative transfer È stars : interiors È

stars : neutron È supernovae : general

1. INTRODUCTION

With core-collapse supernova explosions, nature has
contrived an elegant means to create compact objects while
at the same time seeding the galaxy with the elements of
existence. Neutrinos play a key role in the phenomena of
collapse and explosion, for not only are they produced in
abundance at the high temperatures and densities achieved
in collapse, but they are weakly enough coupled to matter
that they transport heat and leptons on a dynamically inter-
esting timescale. It is now thought that neutrino heating of
the protoneutron star mantle drives the supernova explo-
sion (Colgate & White 1966 ; Bethe & Wilson 1985), but
only after a postbounce delay of hundreds of milliseconds to
1 s. During this delay, the quasi-static accreting core, the
protoÈneutron star bounded by the stalled shock wave,
radiates neutrinos of all species and the net energy deposi-
tion in the semitransparent ““ gain region ÏÏ behind the shock
plays a pivotal role in ““ igniting ÏÏ the explosion. However,
the precise deposition rate depends upon the details of neu-
trino transfer at low ““ optical ÏÏ depths, putting great
demands upon the theoretical tools employed to calculate
the properties of the neutrino radiation Ðelds. The character
of that radiation depends upon neutrino-matter opacities,
neutrino production source terms, and neutrino transport.
Over the years, neutrino transport theory and the associ-
ated microphysics have reached a sophisticated level of
reÐnement (Tubbs & Schramm 1975 ; Lichtenstadt et al.
1978 ; Bowers & Wilson 1982 ; Mayle, Wilson, & Schramm
1987 ; Bludman & Schinder 1988 ; Bruenn 1985 ; Janka
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1991 ; Mezzacappa & Bruenn 1993a, 1993b ; Messer et al.
1998 ; Yamada, Janka, & Suzuki 1999). However, despite
these e†orts, recent progress in modeling supernovae, and
new insights gained into the character of multidimensional
neutrino-driven explosions (Herant et al. 1994 ; Burrows,
Hayes, & Fryxell 1995 ; Janka & 1996 ; MezzacappaMu� ller
et al. 1998), the supernova explosion problem is not solved
in detail. We know little about the dependence of the 56Ni
yields on progenitor mass and composition, the iron-peak
nucleosynthesis, the explosion energies, the nascent pulsar
kicks, and the asymmetries and mixing in the explosion
debris. Furthermore, we still do not know the duration of
the postbounce delay, nor the ensemble of possible neutrino
signatures.

In the past, a variety of approximations to the full neu-
trino transport equations have been employed in complex
numerical codes meant to simulate stellar collapse and
supernova explosions. These compromises have been
deemed necessary because of the severe CPU constraints of
such simulations, particularly when those simulations have
been multidimensional (Herant et al. 1994 ; Burrows et al.
1995 ; Janka & 1996). A variety of gray approaches,Mu� ller
Ñux limiters, equilibrium assumptions, and approximations
to both neutrino source and redistribution terms have been
employed, sometimes to good e†ect. However, given the
marginality of the explosions thus far obtained, the fact that
there is as yet no unanimity among theorists concerning
important issues of principle (cf. Mezzacappa et al. 1998),
and the manifest importance of neutrinos in collapse
phenomenology, a fresh look at neutrino transport and the
relevant neutrino physics is in order. It is in that spirit that
we have constructed an implicit, time-dependent, multi-
group, multiangle, multispecies neutrino transfer code to
simulate the neutrino radiation Ðelds in stellar collapse and
explosion. This code embodies a di†erent computational
method from that used in the pioneering papers by Bruenn
(1985) and Mezzacappa (Mezzacappa & Bruenn 1993a,
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1993b), but in its use of Feautrier variables and the tangent-
ray method it is quite in keeping with traditional photon
transport and stellar atmospheres simulations (Mihalas
1980 ; Mihalas & Mihalas 1984). In this paper, we describe
the basic algorithm, discuss and derive the relevant neutrino
microphysics, and present high-resolution (in energy, angle,
and radius) results for representative postbounce protoÈ
neutron star conÐgurations. Hence, for this Ðrst paper in
our series on neutrino transport and microphysics we focus
on precision neutrino ““ atmospheres.ÏÏ We present the
energy spectra, Eddington factors, angular distributions,
phase space densities, and neutrino-matter energy coup-
lings. We also derive or discuss the relevant neutrino
physics, some of it new. We calculate the background neu-
trino radiation Ðelds for two snapshot models, one of which
is from the work of Burrows et al. (1995) representing the
wind phase that follows explosion (model W), and one of
which (our model BM) was kindly provided to us by
T. Mezzacappa and is from a multigroup, Ñux-limited di†u-
sion simulation by Bruenn (Messer et al. 1998), 106 ms after
the bounce of the core of a Weaver & Woosley (1995) 15

star. These are meant to exemplify various protoÈM
_neutron star structures and phases for the purposes of a

detailed scrutiny of the neutrino sector. Consistent dynami-
cal calculations will follow later in the series.

Neutrinos are the major signatures of the inner turmoil of
the dense core of the massive star, and they carry away the
binding energy of the young neutron star, a full 10% of its
mass energy. The detection of collapse neutrinos, their
““ light curve ÏÏ and spectra, will allow us to follow in real
time the phenomena of stellar death and birth. The super-
nova, SN 1987A, provided a glimpse of what might be pos-
sible, but it yielded only 19 events ; we can expect the
current generation of underground neutrino telescopes to
collect thousands of events from a Galactic supernova.

In ° 2, we present the equations and physics of neutrino
transport. In ° 3 we describe our implementation of the
Feautrier and tangent-ray schemes, and we follow this in ° 4
with a discussion of accelerated K iteration and our
approach to the implicit coupling of matter with neutrino
radiation. Section 5 contains a physical derivation of stimu-
lated absorption, and ° 6 summarizes the cross sections and
source terms we employ for this study. We provide in ° 7 a
derivation of the single and pair neutrino rates and spectra
due to nucleon-nucleon bremsstrahlung, a process that can
compete with pair annihilation as a source for andlk, l6 k, lq,neutrinos and that to date has not been incorporated intol6 qsupernova codes. (The consequences of bremsstrahlung for
the emergent spectra are presented in ° 10.) In ° 8, welkpresent for generic protoneutron star conÐgurations our
basic results vis vis emergent energy spectra, luminosities,à
and energy deposition rates (including that due to ll6
annihilation). We also explore the dependence of the emer-
gent spectra and neutrino heating rates on blocking factors,
weak magnetism and recoil, aberration and Doppler terms,
and stimulated absorption. These terms/e†ects are frequent-
ly dropped in simpler schemes. In ° 9, we highlight the
angular dependence of the radiation Ðelds and the concep-
tual limitations of Ñux limiters that ignore the angular
dimension. Moreover, we compare the emergent spectra
and heating rates obtained using our full transport code
with those obtained using representative Ñux-limiter clo-
sures in order to gauge the errors of such approximate
schemes.

This paper contains a description of neutrino transfer,
our numerical approach, and the new results that Ñow from
it. It is also meant to summarize various useful formulae
that others, as they approach the study of supernova neu-
trino radiation Ðelds, might employ. In assembling the rates
and cross sections, we have borrowed from the investiga-
tions of Tubbs & Schramm (1975), Bruenn (1985), Janka
(1991), Mezzacappa & Bruenn (1993a, 1993b, 1993c), Schin-
der & Shapiro (1982a, 1982b), and Bowers & Wilson (1982),
but we take full responsibility when we have chosen to
deviate from the literature.

2. NEUTRINO TRANSPORT EQUATIONS

We have constructed a radiation/hydrodynamic code
that solves the three equations of hydrodynamics with the
equations of multigroup radiative transfer and composition.
The hydro code is a one-dimensional Lagrangian realiza-
tion of the explicit piecewise parabolic method (PPM) of
Colella & Woodward (1984 ; also see Fryxell, &Mu� ller,
Arnett 1991) that is automatically conservative, second-
order accurate in space and time and employs a Riemann
solver to handle shocks. Radiation is coupled to the matter
between the hydro updates in an implicit, operator-split
fashion, employing accelerated K iteration (ALI) to facili-
tate the convergence both of the transport solution and of
the temperature and composition changes due to transport.
Since in this paper we focus on the transport sector of the
code and on precision neutrino atmospheres, we postpone
to a later paper a discussion of the full hydrodynamic tech-
nique and time-dependent results in the stellar collapse and
supernova context. Here we describe the radiation equa-
tions solved, the algorithm developed to solve them, and the
philosophy behind our methods. In later sections, we
explore the nature of the neutrino radiation Ðelds in the
postbounce and protoneutron star contexts. In addition, we
study the inÑuence of various terms and physics on the
emergent neutrino spectra and on the neutrino-matter
coupling in the semitransparent region between the neutrin-
ospheres and the stalled shock. Energy deposition in this
region is thought to be important in igniting and driving the
supernova explosion.

Neutrino transport is not an esoteric subject apart from
traditional radiative transfer. The same techniques devel-
oped for one particle type can be employed for another. For
all particles, the solution to the Boltzmann equation is
sought. What distinguishes neutrino transport and transfer
are the number of neutrino species (six), the particular
microphysics of the neutrino-matter interaction (i.e., cross
sections, sources), the Fermi statistics of the neutrinos
(manifest only in the collision term), and the fact that there
is in principle a conserved lepton number. Neutrino oscil-
lations can alter this, but given the particular neutrino
masses and oscillation angles suggested by the recent solar
and atmospheric neutrino data (Suzuki 1998 ; Totsuka et al.
2000), oscillations might not dramatically a†ect supernova
dynamics or the neutrino Ðelds in the core (Fuller et al.
1992). (It should be borne in mind that oscillations in the
outer envelope of the progenitor massive star or between
the supernova and the Earth may alter the signal detected
in underground neutrino telescopes.)

There are a variety of ways of writing the transport equa-
tion for the speciÐc intensity of the radiation Ðeld(Il)(Mihalas 1980 ; Mihalas & Mihalas 1984). In principle, the
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Boltzmann equation and the transport equation are equiva-
lent, though the former is written in terms of the invariant
phase space density related one-to-one to the speciÐc(Fl),intensity through the identity

I(k, e)
e3 \ g

h3c2 Fl , (1)

where g \ 1 for massless neutrinos, g \ 2 for photons, e is
the particleÏs energy, and the other symbols have their stan-
dard meanings. Sometimes it is said that the Boltzmann
equation is more general than the transport equation
because it contains a term that for massless particles cor-p5
responds to gravitational redshifts. However, there is no
reason to exclude such a term from the transport equation,
and we will not engage in such distinctions.

One form of the transport equation for in the com-Iloving frame in spherically symmetric geometry is
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a is the matter acceleration, k \ cos h, e is the neutrino
energy, and is the emissivity of the medium. The sub-glscript l indicates neutrino energy dependence, and ' is an
angular phase function for neutrino scattering into the
beam. This equation, good to O(v/c) (where v is the matter
velocity and c is the speed of light), assumes azimuthal sym-
metry and contains the appropriate redshift, aberration,
and advection terms due to matter motion, angular redistri-
bution due to scattering into the beam, scattering and
absorption out of the beam, and source terms. Equation (2)
does not include energy redistribution upon scattering, to
be incorporated in a later version of the code. The various
terms represent the additions and subtractions from the
beam, the entire equation representing conservation of
energy and number. The microphysics and collision terms
reside on the right-hand side and the geometry ; aberration,
advection, and Doppler shift terms reside on the left.

While equation (2) contains the relevant terms to O(v/c), it
is a bit awkward to di†erence. It is also a bit ugly, and its
various terms are not so cleanly distinguished by their
physical roles. Dropping the acceleration term, we follow
Eastman & Pinto (1993) and derive the form of the trans-
port equation we employ in this study. The equation, physi-
cally equivalent to the Boltzmann equation (ignoring
gravitational redshifts and the acceleration term) for an

individual neutrino species, is
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where Q4 L ln v/L ln r [ 1 and all other symbols have their
standard meanings. ' is a phase function for neutrino scat-
tering into the beam. is the total extinction coefficientslwhere and contain contributions from all(\i

a
] i

s
), i

a
i
sabsorption and scattering processes, respectively :

i
s
\ ;

i
n
i
p
i
s and i

a
\ ;

i
n
i
p
i
a . (5)

Equation (4) can be rewritten as the corresponding
Boltzmann equation for Fl :
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which can be mapped directly, term by term, into the Boltz-
mann equation employed by Messer et al. (1998) in their
recent work on Boltzmann neutrino transfer. Equation (6) is
the most useful form of the transport equation when study-
ing it using the method of characteristics.

For neutrinos, the phase function for a scattering process
i is well approximated (except for l-e~ scattering) by
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where is a constant speciÐc to each scattering process andd
ik is the angle between the incident and outgoing neutrinos.

Hence, we can write the di†erential cross section for a scat-
tering process i in terms of the total scattering cross section :
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Subsequently, we drop the superscript s. Equation (7)
implies that the angular redistribution term in equation (4)
becomes
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in equation (9) is the neutrino Ñux, and is the zerothFl Jlmoment deÐned by
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where is the neutrino energy density.ElIntegrating equation (4) and X times equation (4) over
dX yields the zeroth and Ðrst moment equations, respec-
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tively :
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is the equilibrium (blackbody) spectral energy densityBltimes c/(4n) and includes the correction for stimulatedi
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increase in inverse Ñux factor is but one e†ect that(Jl/Hl)can be studied with the transport tools we have developed
and are developing.

Integrating equation (12) over energy, we obtain the neu-
trino energy equation :
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where E and F are the integrated neutrino energy density
and Ñux, respectively. p is the energy integrated Eddington
factor, where The sums for all neutrino speciespl \Pl/Jl.of the negative of the right-hand side of equation (18) and

the negative of the integral of the right-hand side of equa-eltion (13) are the energy and momentum source terms in the
matter equations. The two equations for the rate of change
of the electron fraction due to capture are(Y
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where the minus sign is for the equation and the plus signl
eis for the equation. Equations (4), (12), and (13) for eachl6

eneutrino species, along with equation (19), are the basic
neutrino transport equations that we solve. o is the mass
density and is AvogadroÏs number.N

A

3. METHOD OF SOLUTION : FEAUTRIER AND

TANGENT-RAY ALGORITHM

We solve the moment equations (12) and (13) implicitly
for and by backward di†erencing in time the quan-Jl Hltities and backward di†erencing in ln eJl/o4@3 Hl/o2@3,
(according to the slope of the characteristic), and combining
the spatially di†erenced equations into one equation for Jlthat is second-order accurate in r. Standard matrix inver-
sion techniques are employed to obtain from which isJl, Hlderived using equation (13). This equation is manifestly
Lagrangian and by solving it the advective derivative is
included automatically. and are the naturalJl/o4@3 Hl/o2@3
combinations for adiabatic compression or expansion of a
relativistic gas.

Since equations (12) and (13) contain the higher order
angular moments and closure relations are needed.Pl Nl,These are obtained from a formal integration of the full
transport equation (4), written in terms of the Feautrier
variables :
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From the solution of equations (21) and (22), we obtain the
full radiation Ðeld and the higher order moments that are
then used in equations (12) and (13) for and SinceJl Hl.equations (21) and (22) require the lower order moment Jl(and in principle cf. eq. [9]), we iterate this system untilHl ;
we obtain a converged and consistent global solution.
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Simultaneously, we calculate the K operator that maps Sl,the source function, onto and employ accelerated K iter-Jlation (Cannon 1973a, 1973b ; Scharmer 1981 ; Olson, Auer,
& Buchler 1986 ; Eastman & Pinto 1993) to speed the con-
vergence of the temperature and composition updates.
Independent of the total optical depth, this generally
requires no more than two to three iterations to obtain an
accuracy of a part in 106. To maintain stability and reÑect
the density character of and the Ñux character ofUl(k) Vl(k),
we stagger the and meshes with respect to oneUl(k) Vl(k)
another by one-half a zone.

It may seem that by solving the moment equations
separately and iterating with the solution of the transport
equation itself and by not focusing simply on the solution of
equations (21) and (22) or equation (4) that we are doing
more than is necessary. An advantage of solving the
moment equations is that they can be di†erenced to auto-
matically conserve energy. However, enforcing energy con-
servation by construction does not guarantee that the
solution obtained is the correct one. In fact, it is standard
with many ““ nonconservative ÏÏ hydrodynamic codes that do
not di†erence the equations to conserve energy by construc-
tion to employ the degree to which energy is in fact con-
served with time to assess their accuracy. We have chosen
to retain the automatic energy-conserving feature, but in
dynamical calculations we use electron lepton number con-
servation the global code check. By not di†erencing the
equations to automatically conserve lepton number, since
the equations we di†erence certainly do conserve lepton
number, this is a useful approach. This is akin to employing
entropy conservation in adiabatic Ñow as a check of a
hydro code that is forced to conserve energy automatically
by the particular di†erencing scheme employed. However,
for the stationary atmospheres calculations we present here,
for which the time derivative is zero, this is a moot point.

The advantage of calculating and instead of isUl Vl Ilthat equations (21) and (22) can be di†erenced in such a way
that will go accurately to in the large opticalVl 3k LSl/Lqldepth, di†usion limit, and still remain accurate in the opti-
cally thin, free-streaming limit. Schemes based directly on
equation (2) or equation (4) have the correct large optical
depth behavior for i.e., but have round-o†Ul, Ul \Sl,trouble computing which is important if the only esti-Vl,mate of the Ñux comes from integrating over anglekVl(Larson, Morel, & Miller 1987). Typically in such codes
above a certain optical depth the di†usion limit is assumed
and is set equal toVl 3k LSl/Lql.Numerical methods that solve for the spatial variation of
a speciÐc-intensityÈlike variable (e.g., I[k, r, E, t]), such as
all discrete ordinate transport methods, su†er from the
problem that at large optical depth, the Ñux is not well
determined (Morel, Wareing, & Smith 1996). This is a well-
known problem, and the principle motivation for switching
to Feautrier variables and to full range moment methods, in
which J and H are solved for directly. Any method has aS

Nspatial truncation error that is proportional to (*q)k, where
k depends on the spatial discretization scheme. As *q grows,
the error in the Ñux, which is proportional to (*q)k, also
grows. For Feautrier variables, on the other hand, Ðnite
di†erence systems of equations that are at least second-
order accurate in q can be derived. These give an accurate
representation of the radiation Ðeld in the free streaming
limit and go naturally over to the di†usion limit when *q is
large.

To solve equations (21) and (22), we employ the tangent-
ray method (Schinder & Bludman 1989 ; Mihalas &
Mihalas 1984). At a reference radial zone, tangents are con-
structed to each of the interior zones. The angles of the
tangent rays to the normal at the reference zone deÐne the
angular grid at that zone on which the angular integrations
are performed. Equations (21) and (22) are integrated along
each tangent ray. If there are nx radial zones, the radiation
Ðeld at the outer zone is resolved with nx [ 1 angles ; as you
move inward the number of angles employed decreases lin-
early. Hence, if there are 100 radial zones, there are as many
as 99 angular bins. With reasonable radial gridding, this
approach can provide exquisite angular resolution, particu-
larly for forward-peaked radiation Ðelds, but at the cost of
increased computational overhead. For instance, we have
tested our implementation of the tangent-ray method with
the Kosirev (1934) (spherical Milne) problem for which the
absorptive opacity is assumed to be a power law in radius
(i \ 1/rn). For a variety of integer power laws (e.g.,
n \ 1.1, 1.3, 1.5, 2, 3, 4), with from 100 to 500 radial zones,
the tangent-ray method is superior to many implementa-
tions of the discrete ordinate method (Schinder & Bludman
1989). However, care must be taken to avoid purely geo-
metrical zoning, for which since such zoningr

n`1\ ar
n
,

biases the angular binning in a systematic way. The result
can be that the Eddington and Ñux factors asymptote at
inÐnity to between 0.96 and 0.98, and not to 1.0. However,
purely geometrical zoning is easily avoided in real calcu-
lations. Note that the increase in angular resolution with
radius, which comes naturally from this procedure, is quite
appropriate to spherical symmetry. Note also that the
tangent-ray method is in some sense automatically adaptive
for moving grids. At r \ 0, the radiation Ðeld is by deÐni-
tion symmetric and needs no angular resolution. As r
becomes large, a small bright central source is increasingly
Ðnely resolved.

For dynamical, time-dependent calculations, solving
equations (21) and (22) by the tangent-ray method at each
time step can be time consuming, but manageable. Fortu-
nately, as long as the second and third angular moments do
not change quickly, one need not solve equations (21) and
(22) at every time step. Frequently, the solution to the
moment equations (12) and (13) with previous values of pland can be quite accurate. In fact, this is mostgl (\Nl/Hl)often the case, since the neutrino radiation Ðelds rarely
change on timescales shorter than D0.1 ms, whereas,
because of the explicit nature of the hydro portion of the
code, the Courant time steps are often near 1 ks. Hence,
during much of the preexplosion delay and protoÈneutron
star phases, as well as during much of the core collapse
phase, it is quite legitimate to solve for the Eddington
factors only every few steps. An exception is during very
dynamical phases such as shock breakout through the neu-
trinospheres.

Currently, there are two approximations in our algo-
rithm for solving the transport equations (21) and (22). The
Ðrst is that in calculating the radiation angular moments we
assume that scattering into the beam is isotropic, while
maintaining the correct transport cross section in the Hlmoment equation (13). To approximately incorporate the
e†ects of anisotropic scattering, we employ the transport
cross sections, as described and discussed above. Straight-
forward methods for solving the fully anisotropic problem
using the Feautrier variables and the approaches outlined
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in this paper will be described elsewhere. The second
approximation involves the assumption of linearity of the
characteristics. The second term in both equations (21) and
(22), which is proportional to L/Lk, comes from the aberra-
tion experienced in going from the local to a nearby rest
frame. The characteristics are not perfectly straight, which
can make the calculation more difficult. One cannot simply
integrate along a straight line impact ray. However, these
terms are often insigniÐcant because we require only an
estimate of and and are using them to compute onlyUl Vlthe closure coefficients, and Rather than just ignorepl gl.these two terms, we have substituted

1 [ k2
r

bQk
LUl
Lk

]
3k2[ 1

r
bQUl (23)

in equation (21) and

1 [ k2
r

bQk
LVl
Lk

]
4k2[ 2

r
bQkVl (24)

in equation (22). The substitution in equation (23) is derived
by integrating the left-hand side by parts, and the substitut-
ion in equation (24) is derived by integrating k times the
left-hand side by parts. Importantly, the two terms in equa-
tion (23) integrate to the same thing and k times the two
terms in equation (24) integrate to the same thing. There-
fore, both modiÐed equations reduce to the energy and
momentum conservation equations.

In sum, we solve two coupled moment equations for the
mean intensity and Ñux of the radiation Ðeld. These are the
fundamental results of the transport calculation. They are
solved by an Eddington factor iteration wherein a set of
angle-dependent equations consistent with the moment
equations are solved for the intensity given a constant
source function, and this intensity is used to determine the
closure factors in the moment solution.

4. IMPLICIT COUPLING TO MATTER AND ACCELERATED

" ITERATION

Though we are not highlighting in this paper time-
dependent calculations, we think it useful to include a dis-
cussion of the technique we employ to couple matter with
neutrinos. This is done implicitly in operator-split fashion,
after each hydro update. For each neutrino species, the scat-
tering and absorption opacities and the emissivities are cal-
culated and fed into the transport solver. A fully converged
solution of the transport equations is obtained and this is
used to calculate the various terms needed for the implicit
update of the temperature and because of transport. InY

eparticular, the derivatives with respect to temperature and
of the right-hand sides of equations (18) and (19) areY

ecalculated. For the implicit temperature update at each
radial zone, i, a backward-di†erenced matter energy equa-
tion such as

oC
V

T
i
k`1[ T

i
k ] *T

i
*t

\ [ 4n
P
0

=
(g@[ i

a
* Jl)de

[ 4n *T
i

P
0

= ALg@
LT

[ Li
a
*

LT
Jl [ i

a
*

LJl
LT
B
de (25)

is constructed, where is the temperature change*T
ibetween iterations, is the new temperature, is theT

i
k`1 T

i
k

old temperature, is the speciÐc heat, g@ is not correctedC
V

for Ðnal-state neutrino blocking (° 5), and *t is the time step.
(In fact, the matter energy is a function of both T and Y

e
,

and there is an extra term in the temperature update equa-
tion to account for the entropy change because of the Y

ecomposition change. That term has been dropped here for
clarity, but not in the computations.)

The subtlety with equation (25) lies in the term. InLJl/LT
general, equals at each frequency or energy, whereJ

i
K

ij
S
jthe K operator is a matrix coupling di†erent zones. Hence,

equation (25) is a matrix equation with

LJ
i

LT
\ K

ij
LS

j
LT

. (26)

For simplicity in equation (25), we have dropped in equa-
tion (26) the C operator that couples energy groups. Though
we have the option in the code of calculating the full K
matrix, we use only the diagonal and the two adjacent o†
diagonals. It is this truncated tridiagonal K operator that
we actually employ.

Since the we use in equation (26), perhaps a bit idio-Slsyncratically, equals g@/i*, LS/LT is given by

LS
i

LT
\
ALg

i
@

LT
[ S

i
Li

i
*

LT
BN

i
i
* , (27)

and this is employed to derive

LJ
i

LT
\ K

i,i`1
LS

i`1
LT

] K
i,i~1

LS
i~1

LT
] K

i,i
LS

i
LT

. (28)

Plugging equation (28) into equation (25), we solve for *T
iby inverting the tridiagonal matrix. For the andl

e
l6
especies, a similar procedure is followed to obtain from*Y

eequation (19). Note that the integral over neutrino energy is
performed before the T and updates, which are notY

eattempted for each energy group individually.
Once and are obtained, is set equal to*T

i
*Y

e
i T

i
k`1

and is set equal to We thenT
i
k ] *T

i
Y

e
k`1,i Y

e
k,i ] *Y

e
i .

loop back to obtain a new transport solution with the new
temperature and This procedure is iterated untilY

e
. *T

i
/T

iand are suitably small (normally 10~6) for all zones,*Y
e
i /Y

e
i

at which time we are left with a completely consistent set of
T , and and are not changed duringJl, Hl, Ul, Vl, Y

e
. T

i
k Y

e
i

the iteration. The total number of iterations varies between
1 and 7, the latter only when is changing fast in either theY

eor the modules. The various neutrino Ñuids arel
e

l6
eupdated in series, not in parallel, and we generally follow

three species : and the latter representing thel
e
, l6

e
, ““ lk,ÏÏsum of and neutrinos. Bunching these fourlk, l6 k, lq, l6 qneutrino species into one assumes that their cross sections

and source terms are identical, which technically is false, but
quantitatively reasonable. Note that to achieve stable iter-
ation, it is essential for the derivatives in equation (25) to be
accurate. Among other things, this requires good deriv-
atives of with respect to T and Analytickü (\k

n
[ k

p
) Y

e
.

derivatives are preferred, but numerical derivatives for most
quantities seem to work.

As stated previously, to achieve rapid convergence of the
transport iteration we employ accelerated K iteration (ALI ;
Cannon 1973a, 1973b ; Scharmer 1981 ; Olson et al. 1986).
This entails an approximation that improves during the
iteration. In particular, we use

Jlk`1\ Jlk] Kk(Slk`1[ Slk) , (29)
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where Kk is the retarded K operator. We use only its diago-
nal and Ðrst o†-diagonal terms. This procedure accelerates
and stabilizes the iteration, even if the optical depth is large
and the scattering albedo is high. Note that one cannot
iterate on the full K matrix (the inverse of the matrix repre-
sentation of the Ðnite-di†erence transport equations)
because its eigenvalues are very close to the unit circle and
the iteration stabilizes instead of converging. Subtracting o†
a piece of the K matrix and lagging the iteration of that
piece allows the iteration to converge much more rapidly.

5. STIMULATED ABSORPTION

The concept of stimulated emission for photons is well
understood and studied, but the corresponding concept of
stimulated absorption for neutrinos is not so well appre-
ciated. This may be because its simple origin in Fermi
blocking and the Pauli exclusion principle in the context of
net emission is not often explained. The net emission of a
neutrino is simply the di†erence between the emissivity and
the absorption of the medium:

Jnet\ gl [ i
a
Il . (30)

All absorption processes involving fermions will be inhib-
ited by Pauli blocking due to Ðnal-state occupancy. Hence,

in equations (30) and (4) includes a blocking term,gl (Bruenn 1985). is the invariant distribution(1[Fl) Flfunction for the neutrino, whether or not it is in chemical
equilibrium.

We can derive stimulated absorption using FermiÏs
Golden rule. For example, the net collision term for the
process, isl

e
n % e~p,

Cle nae~p
\
P d3ple

(2n)3
P d3p

n
(2n)3

P d3p
p

(2n)3

]
P d3p

e
(2n)3

A
;
s

oM o2
B
$(l

e
n % e~p)(2n)4d4

] (ple ] p
n
[ p

p
[ p

e
) , (31)

where p is a four-vector and

$(l
e
n % e~p)\FleFn

(1[F
e
)(1[F

p
)

[F
e
F

p
(1[F

n
)(1[Fle) . (32)

The Ðnal-state blocking terms in equation (32) are manifest,
in particular that for the neutrino. Algebraic manipula-l

etions convert in equation (32) into$(l
e
n % e~p)

$(l
e
n % e~p)\F

n
(1[F

e
)(1[F

p
)

]
C Fle@
1 [Fle@

(1[Fle)[Fle
D

\F
n
(1[F

e
)(1[F

p
)

1 [Fle@
(Fle@ [Fle) , (33)

where

Fle@ \ (e*ele~(ke~k9 )+b ] 1)~1 (34)

is an equilibrium distribution function for the neutrinol
eand it has been assumed that only the electron, proton, and

neutron are in thermal equilibrium. Note that in thereFle@is no explicit reference to a neutrino chemical potential,

though of course in beta equilibrium it is equal to k
e
[ kü .

There is no need to construct or refer to a neutrino chemical
potential in neutrino transfer.

Using equation (1), we see that equation (33) naturally
leads to

Jnet\
i
a

1 [Fl@
(Bl [ Il) \ i

a
*(Bl[ Il) . (35)

This is akin to the right-hand side of equation (12). If neu-
trinos were bosons, we would have found a term (1]Fl@ )in the denominator, but the form of equation (35), in which

is manifestly driven to the equilibrium intensity,Il Bl,would have been retained. From equations (33) and (35),
we see that the stimulated absorption correction to isi

aIf we want to retain the form of the collision1/(1[Fl@ ).term as expressed in equations (30) or (4), the physics is
unaltered and stimulated absorption is not needed as a
concept, as long as in equation (4) contains the neutrinoglPauli blocking term, without the prime. However,(1 [Fl),by writing the collision term in the form of equation (35),
with corrected for stimulated absorption, we have a neti

asource term that clearly drives to equilibrium. The time-Ilscale is Though the derivation of the stimulated1/ci
a
*.

absorption correction we have provided here is for the
process, this correction is quite general andl

e
n % e~p

applies to all neutrino absorption opacities.
Kirchho†Ïs Law, expressing detailed balance, is

i
a
\ gl/Bl or i

a
* \ gl@ /Bl , (36)

where is not corrected for Ðnal-state neutrino blocking.gl@Furthermore, the net emissivity can be written as the sum of
its spontaneous and induced components :

gl \ i
a

C Bl
1 ^Fl@

]
A
1 [ 1

1 ^Fl@
B
Il
D

, (37)

where the plus or minus sign is used for bosons or fermions,
respectively.

6. NEUTRINO CROSS SECTIONS

Neutrino-matter cross sections, both for scattering and
for absorption, play the central role in neutrino transport.
The major processes are the superallowed charged-current
absorptions of and neutrinos on free nucleons, neutral-l

e
l6
ecurrent scattering o† of free nucleons (Schinder 1990 ; Janka

et al. 1996 ; Burrows & Sawyer 1998, 1999 ; Reddy, Prakash,
& Lattimer 1998 ; Yamada 2000, in preparation), alpha par-
ticles, and nuclei (Freedman 1974 ; Leinson, Oraevsky, &
Semikoz 1988 ; Horowitz 1997 ; Burrows, Mazurek, & Latti-
mer 1980), neutrino-electron/positron scattering (Schinder
& Shapiro 1982a, 1982b, 1983), neutrino-nucleus absorp-
tion, neutrino-neutrino scattering, neutrino-antineutrino
absorption (Janka 1991), and the inverses of various neu-
trino production processes such as nucleon-nucleon
bremsstrahlung and the modiÐed URCA process (l

e
] n

Compared with photon-matter inter-] n ] e~] p ] n).
actions, neutrino-matter interactions are relatively simple
functions of incident neutrino energy. Resonances play little
or no role and continuum processes dominate. Nice sum-
maries of the various neutrino cross sections of relevance in
supernova theory are given in Tubbs & Schramm (1975)
and in Bruenn (1985). In particular, Bruenn (1985) discusses
in detail neutrino-electron scattering and neutrino-
antineutrino processes (see also Dicus 1972) using the full
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energy redistribution formalism. He also provides a service-
able approximation to the neutrino-nucleus absorption
cross section (Fuller 1982 ; Fuller, Fowler, & Newman 1980 ;
Aufderheide et al. 1994). Recall that for a neutrino energy of
D10 MeV the ratio of the charged-current cross section to
the scattering cross section is D100. However,l

e
-electron

neutrino-electron scattering does play a role, along with
neutrino-nucleon scattering and nucleon-nucleon bremss-
trahlung, in the energy equilibration of emergent neu-lktrinos, though the relative contribution of each has yet to be
determined. In this context, our current lack of an energy
redistribution algorithm should be borne in mind. Never-
theless, our general conclusions in ° 10 concerning the lkneutrinos, their softer than previously believed spectra, the
likely role of bremsstrahlung in their production, and the
consequences of their high scattering albedos, will be
strengthened only when competent energy redistribution is
included.

6.1. Charged-Current Absorption
The cross section per baryon for either or absorp-l

e
l6
etion on free nucleons is larger than that for any other

process. Given the large abundances of free neutrons and
protons in protoÈneutron star atmospheres, these processes
are central to neutrino transport. A convenient referencel

eneutrino cross section is given byp
o
,

p
o
\ 4G2(m

e
c2)2

n(+c)4 ^ 1.705] 10~44 cm2 . (38)

The total absorption cross section is thenl
e
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The corresponding absorption cross section for the
process, isl6

e
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is the axial-vector coupling constant (D[1.26) andg
A MeV. is the correction*
np

\ m
n
c2[ m

p
c2\ 1.29332 W

Mfor weak magnetism and recoil (Vogel 1984), never before
included in supernova simulations, and is approximately
equal to for absorption on neutrons. At(1] 1.1ele/mn

c2) l
eMeV, this correction is only D2.5%. The corre-ele \ 20

sponding correction for neutrino absorption on(W
M1

) l6
eprotons is which at 20 MeV is a large(1 [ 7.1el6 e/mn

c2),
[15%. To calculate and must be multipliedi

a
*, plena p½epa

by the appropriate stimulated absorption correction,
or Furthermore, Ðnal-state block-1/(1[Fle@ ) 1/(1 [Fl6 e@ ).

ing by either electrons or positrons and either protons or
neutrons la eq. [33]) must be included. The consequences(à
of these various terms for the neutrino spectra and
neutrino-matter heating rates are explored in ° 8. Note that
the sign of in the stimulated absorption correctionk

e
[ kü

for neutrinos is Ñipped, as is the sign of in the positronl6
e

k
e

blocking term. Note also that the processl6
e
] p ] e`] n

dominates the supernova neutrino signal in proton-rich
underground neutrino telescopes on Earth, such as Super
Kamiokande, LVD, and MACRO, a fact that emphasizes
the interesting complementarities between emission at the
supernova and detection in Cerenkov and scintillation
facilities.

7. NUCLEON-NUCLEON BREMSSTRAHLUNG

A production process for neutrino/antineutrino pairs
that has received but little attention to date in the super-
nova context is neutral-current nucleon-nucleon bremss-
trahlung Its importance in the(n1] n2] n3 ] n4] ll6 ).
cooling of old neutron stars, for which the nucleons are
quite degenerate, has been recognized for years (Flowers,
Sutherland, & Bond 1975), but only in the last few years has
it been studied for its potential importance in the atmo-
spheres of protoneutron stars and supernovae (Suzuki
1993 ; Burrows 2000 ; Hannestad & Ra†elt 1998). As a con-
sequence, it has never before been incorporated into super-
nova codes. Neutron-neutron, proton-proton, and
neutron-proton bremsstrahlung are all important, with the
latter the most important for symmetric matter. As a source
of and neutrinos, nucleon-nucleon bremsstrahlung canl

e
l6
enot compete with the charged-current capture processes.

However, for a range of temperatures and densities realized
in supernova cores, it may compete with e`e~ annihilation
as a source for and neutrinos The majorlk, l6 k, lq, l6 q (““ lk ÏÏ).
obstacles to obtaining accurate estimates of the emissivity
of this process are our poor knowledge of the nucleon-
nucleon potential, of the degree of suitability of the Born
Approximation, and of the magnitude of many-body e†ects
(Hannestad & Ra†elt 1998 ; Ra†elt & Seckel 1991 ; Brink-
man & Turner 1988). Since the nucleons in protoneutron
star atmospheres are not degenerate, we present here a cal-
culation of the total and di†erential emissivities of this
process in that limit and assume a one-pion exchange
(OPE) potential model to calculate the nuclear matrix
element. To acknowledge ignorance, we encourage that a
fudge factor of order unity, but perhaps as low as 0.1, be
appended to the rate. The formalism we employ has been
heavily inÑuenced by those of Brinkman & Turner (1988)
and Hannestad & Ra†elt (1998), to which the reader is
referred for details and further explanations.

Our focus is on obtaining a useful single-neutrino Ðnal-
state emission (source) spectrum, as well as a Ðnal-state pair
energy spectrum and the total emission rate. For this, we
start with FermiÏs Golden Rule for the total rate per neu-
trino species :

Q
nb

\ (2n)4
P C

<
i/1

4 d3p
i

(2n)3
D d3ql

(2n)32ul

d3ql6
(2n)32ul6

] u ;
s

oM o2d4(P)F1F2(1[F3)(1[F4) , (41)

where d4(P) is four-momentum conservation delta function,
u is the energy of the Ðnal-state neutrino pair, and(ul, ql)are the energy and momentum of the neutrino and(ul6 , ql6 )antineutrino, respectively, and is the momentum ofp

inucleon i. Final-state neutrino and antineutrino blocking
have been dropped.

The necessary ingredients for the integration of equation
(41) are the matrix element for the interaction and a work-
able procedure for handling the phase space terms, con-
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strained by the conservation laws. We follow Brinkmann &
Turner (1988) for both of these elements. In particular, we
assume for the process that the matrixn ] n ] n] n ] ll6
element is

;
s

oM o2\ (64/4)G2( f/mn)4gA
2
CA k2

k2 ]mn2
B2] É É É

D ul ul6
u2

\ A
ulul6
u2 , (42)

where the ““ 4 ÏÏ in the denominator accounts for the spin
average for identical nucleons, G is the weak coupling con-
stant, f (D1.0) is the pion-nucleon coupling constant, isg

Athe axial-vector coupling constant, the term in brackets is
from the OPE propagator plus exchange and cross terms, k
is the nucleon momentum transfer, and is the pion mass.mnIn equation (42), we have dropped terms from theql Æ k
weak part of the total matrix element. To further simplify
the calculation, we set the ““ propagator ÏÏ term equal to a
constant f, a number of order unity, and absorb into f all
interaction ambiguities. The constant A in equation (42)
remains.

Inserting a by the neutrino phase/ d(u[ ul [ ul6 )du
space terms times and integrating over yieldsuul ul6 /u2 ul6
P

u
ul ul6
u2

d3ql
(2n)32ul

d3ql6
(2n)32ul6

]
1

(2n)4
P
0

= P
0

u ul2(u[ ul)2
u

dul du , (43)

where again u equals If we integrate over we(ul ] ul6 ). ul,can derive the u spectrum. A further integration over u will
result in the total volumetric energy emission rate. If we
delay such an integration, after the nucleon phase space
sector has been reduced to a function of u and if we multi-
ply equation (41) and/or equation (43) by an integra-ul/u,
tion over u from to inÐnity will leave the emissionulspectrum for the single Ðnal-state neutrino. This is of central
use in multienergy group transport calculations and with
this di†erential emissivity and Kirchho†Ïs Law (° 5) we can
derive an absorptive opacity.

Whatever our Ðnal goal, we need to reduce the nucleon
phase space integrals and to do this we use the coordinates
and approach of Brinkmann & Turner (1988). We deÐne
new momenta : p

`
\ (p1] p2)/2, p~\ (p1[ p2)/2, p3c \

and where nucleons 1 and 2 arep3[ p
`

, p4c \ p4[ p
`

,
in the initial state. Useful direction cosines are c1\

and DeÐningp
`

É p~/ o p
`

o o p~ o c
c
\ p

`
É p3c/ o p

`
o o p3c o .

and using energy and momentum conserva-u
i
\ p

i
2/2mT

tion, we can show that

d3p1 d3p2\ 8d3p
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d3p~
u\ 2T (u~ [ u3c)

u1,2 \ u
`

] u~^ 2(u
`

u~)1@2c1
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] u3c^ 2(u

`
u3c)1@2cc . (44)

In the nondegenerate limit, the F1F2(1 [F3)(1 [F4)term reduces to where y is the nucleon degen-e2ye~2(u``u~),
eracy factor. Using equation (44), we see that the quantity

is independent of both and This is a great(u
`

] u~) c1 c
c
.

simpliÐcation and makes the angle integrations trivial.

Annihilating with the momentum delta function ind3p4equation (41), noting that p
i
2 dp \ [(2mT )3@2/2]u

i
1@2 du

i
,

pairing the remaining energy delta function with andu~,
integrating from 0 to O, we obtainu

`

dQ
nb

\ Am4.5
28 ] 3 ] 5n8.5 T 7.5e2ye~u@T(u/T )4
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CP
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=
e~x(x2] xu/T )1@2 dx

D
du . (45)

The variable x over which we are integrating in equation
(45) is equal to That integral is analytic and yields2u3c.

P
0

=
e~x(x2] xu/T )1@2 dx \ gegK1(g) , (46)

where is the standard modiÐed Bessel function of ima-K1ginary argument, related to the Hankel functions, and
g \ u/2T . Hence, the u spectrum is given by

dQ
nb

du
P e~u@2Tu5K1(u/2T ) . (47)

It can easily be shown that SuT \ 4.364T (Ra†elt & Seckel
1991). Integrating equation (45) over u and using the ther-
modynamic identity in the nondegenerate limit,

ey\
A 2n
mT
B3@2

n
n
/2 , (48)

where is the density of neutrons (in this case), we deriven
nfor the total neutron-neutron bremsstrahlung emissivity of

a single neutrino pair

Q
nb

\ 1.04] 1030f(X
n
o14)2

A T
MeV

B5.5
ergs cm~3 s~1 ,

(49)

where is the mass density in units of 1014 g cm~3 ando14is the neutron mass fraction. Interestingly, this is withinX
n30% of the result in Suzuki (1993), even though he has

substituted, without much justiÐcation, (1 ] u/2T ) for the
integral in equation (45). M[1] (ng/2)1@2] is a better approx-
imation.N The proton-proton and neutron-proton processes
can be handled similarly, and the total bremsstrahlung rate
is then obtained by substituting forX

n
2] X

p
2] (28/3)X

n
X

pin equation (49) (Brinkmann & Turner 1988). AtX
n
2 X

n
\

0.7, o \ 1012 g cm~3, and T \ 10 MeV, andX
p
\ 0.3,

taking the ratio of augmented equation (49) to the total rate
for e`e~ production of pairs (Dicus 1972), we obtainlk l6 kthe promising ratio of D5f. Setting the correction factor f
equal to D0.5 (Hannestad & Ra†elt 1998), we Ðnd that,
near and just deeper than the neutrinosphere, the bremss-lktrahlung rate is larger than that for classical pair pro-
duction.

If in equation (43) we do not integrate over but at theul,end of the calculation we integrate over u from to O,ulthen after some manipulation we obtain the single neutrino
emissivity spectrum:
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where C is the normalization constant equal toglb\ ul/2T ,
(3] 5 ] 7 ] 11)/211 (+0.564), and for the second expres-
sion we have used the integral representation of andK1(g)
reversed the order of integration. In equation (50), is theQ

nbemissivity for the pair.
Equation (50) is the approximate neutrino emission spec-

trum due to nucleon-nucleon bremsstrahlung. A useful Ðt to
equation (50), good to better than 3% over the full range of
important values of isgl,

dQ
nb
@

dul
+

0.234Q
nb

T
Aul

T
B2.4

e~1.1ul@T . (51)

Setting f equal to 0.5, we have incorporated bremsstrahlung
into our Feautrier transport algorithm. In ° 10, we show
how the emergent spectrum depends upon f.lk

8. BASIC NEUTRINO TRANSPORT RESULTS

The formalism and microphysics described in °° 2È7 were
used to calculate the neutrino radiation Ðelds for two snap-
shot proÐles in temperature, density, electron fraction, and
velocity. One of these is from the work of Burrows et al.
(1995) and represents the wind phase that follows explosion
(model W). The second proÐle (our model BM) was kindly
provided to us by T. Mezzacappa and is from a multigroup,
Ñux-limited di†usion simulation by Bruenn (Messer et al.
1998), 106 ms after the bounce of the core of the Weaver &
Woosley (1995) 15 star. Since Messer et al. (1998) haveM

_already published their results for this model, in order to
facilitate comparison we highlight our results for model
BM. Note that our focus is on neutrino atmospheres and
not on completely self-consistent proÐles and their evolu-
tion. Hence, di†erences between the equations of state and
microphysics employed in two di†erent dynamical calcu-
lations, in particular any di†erences between the willkü ,
translate at a given epoch into di†erences in composition
and thermal proÐles. Postprocessing one groupÏs snapshots
with the code of another can lead to di†erences in the neu-
trino Ðelds that are larger than the di†erences in their
thermal proÐles. The and neutrino luminosity proÐlesl

e
l6
eand spectra are particularly sensitive to di†erences between

the used. To check this, after achieving a steady state wekü
turned on the coupling for about 5 ms. The upshot wasY

ethat changed very little, demonstrating that we wereY
eusing substantially the same as Messer et al. (1998).kü

We concentrate on the generic features of the energy,
angle, and spatial distributions of the various neutrino radi-
ation Ðelds. We use 50 energy groups, concentrating them
below 50 MeV, so that the emergent spectra are well resolv-
ed. The models have 120 spatial grid points out to a radius
of about 300 km, and we interpolate in the various original
models to resolve important features, such as the neutrin-
ospheres and the shock wave (for model BM). Since we are
using the tangent-ray method to set up and determine the
angular grid, we employ from 119 to a few angular groups.
In the code, we can establish an arbitrary number of ““ core
rays ÏÏ in the interior to increase the angular coverage at
small radii, but we found that we did not need to exercise
this option.

The temperature (T ), density (o), and proÐles for theY
etwo models are shown in Figure 1. Model BM is a preexplo-

sion protoneutron star in a stalled shock conÐguration,
while model W is a snapshot of a postexplosion neutrino-
driven wind that expands o† of the protoneutron star after

FIG. 1.ÈTemperature (T ), density (o), electron fraction proton(Y
e
),

fraction neutron fraction and alpha fraction for models BM(Y
p
), (Y

n
), (Ya)(top panel) and W (bottom panel). In model BM, the shock is located at 170

km, but in model W there is no shock on the grid.

explosion. In model W from Burrows et al. (1995), Y
easymptotes to a value determined by the competition

between and neutrino absorption, e~ and e` capturel
e

l6
eon nucleons, and the speed of expansion. This situation is

similar to that found in a gasdynamic laser or freeze out in
the early universe. The actual asymptotic and acceler-Y

eation timescale will depend, in a self-consistent calculation,
on the details of the neutrino-matter coupling and radiation
Ðelds and will be the subject of a future paper. Also shown
in the lower panel of Figure 1 are the neutron, proton, and
alpha particle mass fractions that bear on the physics of
wind acceleration and the viability of this wind as a site for
the r-process (Woosley & Ho†man 1992 ; Qian & Woosley
1996).

8.1. Optical Depths and Scattering Albedos versus Radius
and Energy

The integrated depth versus radius or interior mass pro-
vides a measure of the global context of any transport
problem. Figure 2 shows the depth versus radius and neu-
trino energy for neutrinos with energies from 5 to 30l

eMeV in model BM. This is not the Rosseland mean, which,
because of the much higher average neutrino energies in the
deep interior, reaches a value greater than 105 at the center.
The position of the shock wave is manifest. Figure 2 demon-
strates that the position of the neutrinosphere is a(qD 23)
sti† function of neutrino energy. For neutrinos and thel

eenergies depicted in the Ðgure, the radii of the neutrinosp-
heres range from D50 to D130 km, more than a factor of 2.
For the and neutrinos, the range is similarly broad,l6

e
lkthough because of the weaker neutrino-matter coupling for

these neutrinos the radii are correspondingly smaller. These
facts emphasize the dubious merit of referring to a single
neutrinosphere for a given species. Figure 3 depicts the posi-
tions of the neutrinospheres versus energy and type. In
model BM, while 10 MeV neutrinos decouple at D80l

ekm, 100 MeV neutrinos decouple as far out as the position
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neutrino optical depth vs. radius (in kilometers) for model BM, at various particle energies. As the energy of the neutrino increases theFIG. 2.Èl
e

(qle)degree of transparency decreases. The dip in the optical depth at 170 km is where the shock (and, hence, a density jump) is located. The solid horizontal line
shows where qle \ 23.

of the shock. This situation has a bearing on the strength of
the high-energy spectral tail. Note that for the andl

e
l6
eneutrinos the gain region for model BM, between D110 km

and the shock, resides at optical depths below D0.1 near
the peak of their respective emergent spectra. For slightly
higher neutrino energies, the optical depth of this region is

correspondingly higher. Hence, energy deposition in this
semitransparent region is problematic and requires a full
transport code to study adequately.

It is important to distinguish absorption from scattering.
The scattering albedo is the a priori probability that an
interaction is a scattering It is a function of composi-(il/sl).

FIG. 3.ÈNeutrinosphere radii vs. neutrino energy for and neutrinos. For a given neutrino energy, the neutrinos decouple Ðrst, resulting in al
e
, l6

e
, ““ lk ÏÏ lkradius that is smaller than that for either or neutrinos. The hierarchy in decoupling radii of is manifest.q\ 23 l

e
l6
e

l
e
[l6

e
[lk
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and scattering albedos vs. radius for neutrino energies ofFIG. 4.Èl
e

l6
e10, 20, and 40 MeV. The shock is at D170 km. The increases in the l

ealbedo at small radii can be traced to e~ blocking of absorption onl
eneutrons, predominantly.

tion, neutrino energy, neutrino type, and Ðnal-state block-
ing. For neutrinos, the excess of neutrons over protons inl

ethe free-nucleon, high-entropy region interior to the shock
results in an albedo near 0.25, while for the neutrinos it isl6

e0.5È0.6. Figure 4 depicts the model BM scattering albedos
versus radius as a function of energy for and neutrinos.l

e
l6
eIn the interior, the absorption process, isl

e
] n ] e~] p,

suppressed by blocking due to Ðnal-state electrons. This

results in an elevated scattering albedo for the lower energy
neutrinos. For neutrinos in model BM, scattering pre-l

e
lkdominates and exterior to 20 km the albedo is above 0.95.

Such a scattering albedo for the neutrinos makes itslktransport a thermalization depth problem that cannot be
easily handled with Ñux limiters.

8.2. Emergent Spectra, L uminosities, and Heating Rates
The emergent neutrino spectra and luminosities are func-

tions of the progenitor, and they evolve. Generally, the
spectra after bounce harden with time (Mayle et al. 1987),
but after hundreds of milliseconds or as accretion reverses
into explosion (or otherwise subsides), the spectra start to
soften. The residue then cools inexorably over many
seconds, like a clinker plucked from a smelter (Burrows &
Lattimer 1986). Our models are merely snapshots, but they
serve as contexts in which to study the inÑuence of various
e†ects and physics. In addition, the results can serve as
benchmarks against which to compare those from approx-
imate schemes (see ° 9). The luminosity proÐles and spectra
for model BM are depicted in Figures 5 and 6, respectively.
The neutrino luminosity includes that due tolk lk, l6 k, lq,and neutrinos. The steeper rise and plateau of thel6 q lkluminosity is a consequence of the small scattering albedo
and deeper point of energy decoupling, even though the

surface is at larger radii. The peaks in the andq\ 23 l
e

l6
eluminosities mark the inner radius of the gain region, which

resides where the luminosity slope is negative. The rapid
variation in luminosity at smaller radii is a consequencel

eof the variation in the temperature slope in the original
model, itself presumably a consequence of sparse zoning.

The asymptotic and luminosities are 4.3] 1051 ergsl
e

l6
es~1 and 3.1 ] 1051 ergs s~1, respectively, 13% higher and

9% lower than the corresponding ““ BOLTZTRAN ÏÏ
numbers from Messer et al. (1998). The di†erences must

FIG. 5.ÈModel BM and luminosities vs. radius (in kilometers). The luminosity is the sum of the and neutrino luminosities. Thel
e
, l6

e
, lk ““ lk ÏÏ lk, l6 k, lq, l6 qmodest peaks mark the inner radius of the gain region, in which, because of net absorption, the luminosity slope is gently negative.
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FIG. 6.ÈModel BM emergent neutrino luminosity spectra for the three neutrino types. The symbols indicate the positions of the energy groups Ðlled(l
e
:

squares ; Ðlled triangles ; open circles).l6
e
: lk :

stem from a combination of di†erences in our numerical
algorithms, in our spatial, angular, and energy zoning, and
in our cross sections. Our emergent spectra for model BM
are given in Figure 6. The hardness hierarchy of l

e
\ l6

e
\

is manifest, as is the dominance of neutrinos at highlk lkenergies. The and spectra can be Ðt by a Fermi-Diracl
e

l6
edistribution with temperatures and g of 2.22 MeV and 3.16

for the neutrinos and 2.80 MeV and 3.48 for the neu-l
e

l6
etrinos. The best Fermi-Dirac Ðt to the neutrino spectrumlkhas a negative g, which might as well be [O. Note that the

emergent spectrum shown in Figure 6 was calculatedlkwith the bremsstrahlung f set equal to 0.5. The dependence
of the spectrum on f will be explored in ° 10.lkThe corresponding energy-integrated inverse Ñux factors

for model BM are plotted versus radius in(/ Jl de// Hl de)
Figure 7. Figure 8 depicts the unintegrated inverse Ñuxl

efactors at given radii versus neutrino energy. Since(Jl/Hl)neutrino-matter heating terms are proportional to theJl,higher the inverse Ñux factor the more efficiently a given
energy Ñux (luminosity) heats the matter in the semitrans-
parent gain region. Di†erent transport algorithms result in
di†erent inverse Ñux factors, so getting this term right can
be important to the viability of the neutrino-driven super-
nova mechanism (Mezzacappa et al. 1998) and to the accel-
eration and entropy of the postexplosion wind (Burrows
1998a, 1998b). In addition, the harder the spectrum, the
stronger the neutrino-matter coupling, so the and neu-l

e
l6
etrino spectra versus radius around and exterior to the neu-

trinospheres have a direct bearing on the heating rate.
Figure 9 portrays the and spectra as the neu-Hl Jl l

etrinos decouple. As this Ðgure shows, at large radii andHlare the same, but at depth is much larger than TheJl Jl Hl.precise values of as the neutrinos decouple determine theJlmatter heating rate. The energy-integrated heating and
cooling rates versus radius for model BM for all neutrino

species individually are given in Figure 10. The positions of
radiative equilibrium are indicated with a large dot and the
inner radius of the gain region for each neutrino is denoted
by an X. Note that the gain region identiÐed on Figure 10
coincides with the gain region determined from the lumi-
nosity plot (Fig. 5). Also included on Figure 10 are the
heating rates due to annihilation and to andl

e
[ l6

e
lk[ l6 kannihilation, done properly with the appropriatelq[ l6 qangular factors (Janka 1991). Aside from being competitive

in the irrelevant unshocked regime, heating due to neutrino
pair annihilation is meager, at best. In addition, because of
the fuzziness of the neutrinospheres, the heating rate per
cm~3 does not follow the 1/r8 law that might have been
appropriate for a sharp neutrinosphere. The di†erence
between the heating and cooling curves, the ““ net gain,ÏÏ for
model BM is given by a solid line in Figure 11, to be com-
pared with Figure 8 of Messer et al. (1998). We obtain
similar heating rates throughout most of the supernova
atmosphere, but slightly greater rates between 110 and 130
km. This slight di†erence could be due to a combination of
things, including di†erent techniques, di†erent cross sec-
tions, slightly di†erent equations of state, or our better
angular and energy resolution.

8.3. Consequences of Various Physical Terms
The neutrino radiation Ðelds depend upon terms that

incorporate various physical e†ects. It is conceptually useful
to gauge these terms by their inÑuence on the emergent
spectra and on the heating rate. Examples of e†ects that
may or may not be included in simpler schemes are the
Ðnal-state electron blocking term for the charged-current
absorption process (° 6.1), stimulated absorption correc-
tions (° 5), weak magnetism and recoil (° 6.1), and the veloc-
ity advection, aberration, and Doppler shift terms in the
transport equation (eqs. [2] and [4]). The net gain and the
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FIG. 7.ÈEnergy-integrated inverse Ñux factor as a function of radius for and neutrinos. The sharp increase in at 110 km occurs(S1/FlT) l
e

l6
e

S1/FVEFTjust inside the gain radius, where the neutrinos are starting to decouple from the matter. At large radii (o† the plot), the inverse Ñux factors approach the unity
expected for the free-streaming regime.

and neutrino spectra for model BM, with and withoutl
e

l6
ethe blocking, weak magnetism and recoil, or the stimulated

absorption terms, are depicted in Figures 11 and 12. The
blocking correction to the emergent luminosity is D15%,l

eand that due to stimulated absorption is D[3.5%. The
blocking and stimulated absorption corrections to the
emergent neutrino luminosity are of opposite sign andl6

e

approximately equal to [6.0% and 3.5%, respectively.
Blocking and stimulated absorption shift the emergent l

eand spectra in opposite directions in a given energyl6
egroup by as much as D20% and D[8%, respectively,

because of blocking and D[5.5% and D6.5%, respec-
tively, because of stimulated absorption. Blocking increases
the net gain by 10%È20%, while stimulated absorption

FIG. 8.ÈModel BM ratios of the neutrino energy density to the energy Ñux for radii of 100, 125, 150, 180, 200, 220, and 300 kml
e

l
e
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neutrino energy Ñux solid line) and energy density dashed line) spectra at various radii. A, B, C, D, and E denote radii at 50, 130, 200,FIG. 9.Èl
e

(Fl ; (El ;250, and 300 km. At depth, the spectra are very di†erent, but they converge at large distances from the neutrinospheres. At these large distances, the
unintegrated Ñux factor, is unity.Fl/cEl,

decreases it by less than 5%. Without electron blocking, the
absorption cross sections are artiÐcially enhanced. Since the
degree of degeneracy is di†erent in the envelope and around
the neutrinospheres, the magnitude of this e†ect in the two

regions is di†erent, enhancing the emergent luminosity
more than it decreases the coupling in the periphery. Stimu-
lated absorption has the opposite e†ect (° 5), but its e†ect in
the core and in the envelope is similarly di†erential.

FIG. 10.ÈModel BM heating and cooling rates (in ergs g~1 s~1) vs. radius (in kilometers). The heating and cooling rates for the three neutrino species are
shown, along with the annihilation energy deposition rates. The solid points indicate where radiative equilibrium is achieved for each neutrino species.l[ l6
The X indicate the positions of the gain radii for the respective neutrino types. The top two solid lines are the heating and cooling curves for the neutrinos.l

eThe dashed lines are the heating and cooling curves for the neutrinos. The bottom two solid lines are the heating and cooling curves for neutrinos. Thel6
e

lkbold dashed curves are the heating rates for (top) the process and (bottom) both the and processes.l
e
l6
e
] e`e~ lk l6 k] e`e~ lq l6 q] e`e~
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FIG. 11.ÈNet heating rate (net gain) for various BM models vs. radius. The Ðducial model (solid lines) is compared to models with no stimulated
absorption (short-dashed line), with no e~ blocking (long-dashed line), or with no weak magnetism/recoil (dot-dashed line). The absence of either stimulated
absorption or weak magnetism/recoil would result in an increase in neutrino absorption and, thus, a greater heating rate. The absence of e~ blocking would
result in a decrease in the net gain.

In these model BM calculations, the e†ects of weak mag-
netism and recoil on the emergent and neutrinol

e
l6
espectra and luminosities are small (¹2.0%). This is due in

part to the fact that the presence of scattering mutes the
e†ect of changes in the absorption cross section through the

FIG. 12.ÈEmergent luminosity spectrum for both the and neu-l
e

l6
etrinos for our Ðducial model BM (solid line), compared with models

without stimulated absorption (short-dashed line), e~ blocking (long-dashed
line), or weak magnetism/recoil (dot-dashed line). Also included is a model
for which the total scattering cross section is substituted for the transport
cross section (short-dashedÈlong-dashed line).

thermalization depth e†ect. Because of the modest scat-
tering albedo (Fig. 4), the response of the radial dependence
of the radiation Ðeld to changes in the absorption cross
section is not linear with the change in the absorption cross
section itself. The increase in the net gain that one would
anticipate because of any increase in the luminosity isl6

ecountered by the concomitant decrease in the absorption
cross section in the gain region.

The winds that emerge from protoneutron stars after
their envelopes supernova are powered by neutrino energy
deposition in the expanding gas. Just as with the supernova
itself, the wind mass and enthalpy Ñuxes, velocities,
entropies, and compositions are inÑuenced by details of
neutrino-matter coupling and neutrino transport. The dis-
tribution of the heating determines the magnitude, spatial
extent, and timescale of acceleration. In turn, the degree of
r-processing in the ejecta is a function of the expansion
timescale, the asymptotic and entropy (Woosley &Y

e
,

Ho†man 1992 ; Qian & Woosley 1996). Hence, it is impor-
tant to gauge the relative strengths of the various terms that
determine the degree and distribution of neutrino-matter
heating.

The e†ect of the velocity terms on the emergent andl
e

l6
espectra for model W is depicted in Figure 13. Model W is

the postexplosion wind model from Burrows et al. (1995), in
which the velocities at large radii are D30,000 km s~1. Of
course, at small radii they are zero. As Figure 13 shows, the
velocity e†ects collectively boost the emergent spectra of
model W in a given energy group by D15%, with a corre-
sponding boost in the and luminosities by 15% andl

e
l6
e13%, respectively. This is mostly a consequence of the

Doppler shift of the radiation Ðeld. Because of the smaller
velocities in the important accretion regions in model BM,
the velocity corrections for that model are much smaller
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FIG. 13.ÈEmergent luminosity spectrum for the wind model W withl
ea velocity Ðeld (solid line) and without a velocity Ðeld (dashed line), vs.

energy in MeV. The velocity terms boost the spectrum that emerges from a
protoÈneutron star with a wind by D15%.

(¹5%). Figure 14 shows the net gain in model W for our
Ðducial model, as well as without blocking, velocity correc-
tions, or weak magnetism/recoil corrections and implies
that various terms not easily or often included in Ñux-
limited or energy-integrated transport can each make a
D10% di†erence in the parameters of the wind. Note that
though the weak magnetism/recoil corrections for model

BM are small, those for model W are modest. This result
implies that the importance of absorption cross section
changes is a function of the speciÐc thermal and composi-
tion proÐles. What distinguishes the wind is the more
abrupt transition from the di†usive to the streaming regime
and the lower value in its decoupling region (Fig. 1).Y

eWhereas, in model BM the slight increase in the core lumi-
nosity due to the inclusion of the weak magnetism/recoil
term is nulliÐed by the decrease in the absorption opacity in
the envelope when determining the net gain, in model W the
slight increase in the luminosity due to the lower absorption
cross section that is a consequence of weak magnetism
(particularly for the neutrinos) is not adequate to counterl6

ethe resulting greater transparency of the envelope. The atY
ethe base of the windÏs atmosphere is smaller than that near

the neutrinospheres in model BM, with the result that the
scattering albedo for the neutrinos is larger there. Thisl6

eresults in a smaller increase in the emergent luminosity that
cannot compensate for the increase in the transparency of
the windÏs mantle.

The anisotropy of neutrino-nucleon scattering and the
di†erence between the transport and the total cross sections
(eq. [17]) can in principle translate into larger inverse Ñux
factors and, hence, greater net gain. Backscattering
increases for a given and delays the transition fromJl Hlisotropic to forward-peaked radiation Ðelds. However, since
absorption plays an important role for the and neu-l

e
l6
etrinos and their scattering albedos are not very close to one,

the backscatter e†ect is muted. The upshot is that anisot-
ropy accounts for only D2% of the net gain and results in
shifts of less than 1% in the or spectra.l

e
l6
e

9. FLUX LIMITERS

It is common to seek methods for solving equations (12)
and (13) without employing the full machinery of transport.

FIG. 14.ÈNet heating rate (net gain) vs. radius (in kilometers) for wind model W. The Ðducial model (solid line) is compared with models for which either
weak magnetism/recoil (short-dashed line) or e~ blocking (long-dashed line) is ignored. Also included is a model for which the velocities were set equal to zero
(dot-dashed line).
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In principle, such methods simplify the mathematics and
speed solution, but they compromise accuracy. Equations
(12) and (13) are the Ðrst two equations in a moment hier-
archy in which each moment equation involves still higher
order moments ; to solve such a hierarchy precisely requires
the solution of an inÐnite number of moment equations.
The simplifying ansatz often introduced is that higher order
moments can be written in terms of lower order moments,
thereby closing the system of equations. However, these
so-called closure relations can vary a great deal. The most
common closure is the Ñux limiter.

In Ñux-limited schemes, equation (13) is reduced to its
di†usion form in which is set equal to the product of theHlgradient of and a coefficient (the Ñux limiter), is setPl Plequal to (the Eddington closure), and this expression for13Jlis inserted into the divergence term in equation (12).HlOnly this zeroth-moment (energy) equation is solved. The
third-order moment, important for multienergy groupNl,calculations in moving media, is generally ignored. The art
of this approach is in the choice of the Ñux limiter, so called
because the coefficient is constructed in such a way that the
Ñux, otherwise mathematically di†usive in this scheme, does
not exceed the streaming limit, This is necessitated byJl.the dropping of equation (13), with its causality-enforcing
time derivative. All angular information is lost, though
some Ñux limiters are derived under certain assumptions
about the angular distribution (cf. Levermore & Pomraning
1981). Examples of Ñux limiters that have been employed in
supernova calculations are the Wilson (Bowers & Wilson
1982) and Bruenn (1985 ; Messer et al. 1998). Their prescrip-
tion for the Ñux is

Hl \ [ jl
3
A
1 ] oR o

3
$

F

B~1 LJl
Lr

, (52)

where for Wilson and$
F
\ 1 ] 3/(1 ] oR o /2] R2/8)

for Bruenn, and is the trans-$
F
\ 1.0 R\[jl L ln Jl/Lr, jlport mean free path. The expression in parentheses is the

limiter. Hence, in Ñux-limiter closures, is a function ofHlonly and its derivative (or and R) and isJl Jl pl (\Pl/Jl)set equal to Note that the Knudsen parameter (R) is small13.in the di†usion limit. The subscript l is a reminder that
these equations apply for each energy group. It is important
to note what should be obvious : not all Ñux limiters are the
same, nor are their quantitative consequences. Hence, there
is not a uniform ““ Ñux limiter ÏÏ result. For instance, the
multigroup Ñux-limited di†usion (MGFLD) scheme of
Messer et al. (1998) is merely one such approach. The results
of employing a given Ñux limiter can deviate from the
correct result as much as can the results derived using
various Ñux limiters deviate from one another.

9.1. Angular Distributions
To gauge the character of the proper angular dependence

of the neutrino distribution functions in the supernova
context, we provide in Figure 15 the model BM Eddington
factor versus radius for neutrinos, at particle energies(pl) l

efrom 5 to 30 MeV. As we would expect from the decoupling
hierarchy, the Eddington factors start their rise from thelkisotropic value of from the deepest layers. However, for all13neutrino species, particularly for the and neutrinos, thel6

e
lkEddington factor is a sti† function of energy and only grad-

ually makes the transition from to 0.75 over a region that13can be 50 to 150 km wide. Many Ñux limiters e†ect the

FIG. 15.ÈEddington factor for neutrinos vs. radius (in kilometers) atl
evarious neutrino energies. At depth, in the di†usive region the Edding-l

eton factors converge to At large radii, the Eddington factors approach13.
unity. The low-energy neutrinos are the Ðrst to decouple, and their Edding-
ton factors approach unity faster than those of the higher energy neutrinos.

related transition from di†usion to free streaming early (at
higher and within an unphysically narrow range inql)radius and This can be seen in Figure 16, where theql.Bruenn and Wilson Ñux limiters for neutrinos at 20 MeVl

ein model BM are compared with the ““ e†ective ÏÏ Ñux limiter
derived using full transport. Approximately 20 km interior
to the appropriate point, the Bruenn and Wilson limiters
begin to deviate from the di†usion value of 1.0.

Polar plots depicting representative angular distributions
of the model BM speciÐc intensity Ðeld for an energyl6

e
(Il)of 15 MeV are presented as solid lines in Figure 17. The

transition from isotropy to forward-peaked is clear, as is the
gradual nature of that transition. There is no corresponding
angular function for either the Bruenn or Wilson limiter.

Complementary to this polar plot are Figures 18, 19, and
20 of the full transport phase-space densities versus(Fl)energy at various radii and for all the neutrino species.
Depicted are the phase-space densities along the 0¡ and 90¡
directions. For the neutrinos, the degree of degeneracy atl

edepth is clear ; one can almost read the chemical poten-l
etials o† the graph. From Figure 19, we see that the occu-

pancy of the neutrino states is generically low, but froml6
eFigure 20 we see that at depth and for low energies the

occupancy of the neutrino states can approach 0.5.lkBlocking due to Ðnal-state occupancy is generally unim-lkportant in the pair source terms, since the peak energies of
the pair source functions are always signiÐcantly above the
energies at which is high.FlAmong other things, Figures 18, 19, and 20 convey a
sense of the angular dependence of ignored in the stan-Fl,dard Ñux-limiter schemes. At depth, since the radiation
Ðelds are isotropic, the 0¡ and 90¡ curves are the same.
However, with increasing radius and at lower energies, devi-
ations from isotropy manifest themselves ; transverse beams
are less occupied than forward beams. As expected, at low
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FIG. 16.ÈElectron neutrino Ñux limiter proÐles vs. radius (in kilometers) for model BM using BruennÏs Ñux limiter (dot-dashed line), WilsonÏs Ñux limiter
(solid line), and an artiÐcial Ñux limiter derived from the full formalism (dashed line). The neutrino energy is 20 MeV. See text and eq. (52) for details.l

e

optical depths this di†erential e†ect is quite pronounced.
Flux-limited transport schemes are not capable of address-
ing or illuminating this phenomenology.

9.2. Neutrino Heating and Emergent Spectra Using
Flux L imiters

Given the nuances in the angular distributions of the
neutrino radiation Ðelds portrayed in Figures 15È20, it is no
wonder that Ñux limiters only inadequately represent the
radiation energy density proÐles, emergent spectra, and net

FIG. 17.ÈPolar plots of the speciÐc intensity of neutrinos with an(Il) l6
eenergy of 15 MeV. Shown are angular distributions at radii of 80, 120, 170,

and 300 km. In the interior, the radiation Ðelds are isotropic and strong. At
large radii, the distribution becomes more forward peaked and geometric
dilution decreases The numbers on the left axis provide the scale, withIl.the negative numbers emphasizing the fact that the rays are pointing back-
ward in this hemisphere.

gain in the semitransparent decoupling region. This is made
manifest by comparing the emergent spectra and net gain
derived using such Ñux limiters with those same quantities
obtained using full transport. Figure 21 compares the emer-
gent spectrum for the BM model using the full Feautrier/l

etangent-ray formalism, BruennÏs limiter, and WilsonÏs

FIG. 18.ÈPhase-space density for the neutrinos vs. neutrino(Fl) l
eenergy in MeV, for various radii from 20 km to 170 km. The solid lines are

for the forward direction and the dashed lines are for the transverse direc-
tion (at D90¡ to the radial direction). At small radii, the neutrinos arel

edegenerate, but at larger radii, and generally at larger energies, they
quickly become nondegenerate. Note that at small energies, ““ larger ÏÏ radii,
and large angles, the degeneracy of the neutrinos diminishes.l

e
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FIG. 19.ÈPhase-space density for the neutrinos vs. neutrino(Fl) l6
eenergy in MeV, at radii of 120, 150, and 200 km. The solid lines are for the

forward direction and the dashed lines are for the transverse direction (at
D90¡).

limiter. Though comparisons for many snapshot proÐles
would be useful, we can still conclude for such an early
protoneutron star epoch that BruennÏs limiter, as simple as
it is, results in a spectrum that deviates from the more
precise spectrum by D5%È10%, while WilsonÏs limiter,
despite its modestly greater complexity, can be o† by as
much as D20%È30%. Figure 22, in which curves of the net
gain (heating) versus radius are compared, tells a similar
story : BruennÏs limiter yields net gains that are generally o†,

FIG. 20.ÈPhase-space density for the neutrinos vs. neutrino(Fl) lkenergy in MeV, at radii of 55, 70, and 80 km. The solid lines are for the
forward direction and the dashed lines are for the transverse direction (at
D90¡). At depth, and at lower energies, neutrino degeneracylk (Fl)approaches 0.5, as expected for the situation with no net lepton numberlkand, hence, zero chemical potential.

but by no more than D20%, while WilsonÏs can be o† by as
much as D50%. Figures 21 and 22 serve to illustrate both
that all Ñux limiters are not the same and, in particular, that
they can underestimate the net gain in the outer gain region
by many tens of percent.

In sum, Ñux-limiter schemes can miscalculate net heating
rates, radiation energy densities (quantities that factor into

FIG. 21.ÈEmergent neutrino luminosity spectrum for model BM using the full Feautrier/tangent-ray formalism (solid lines), BruennÏs limiter (short-l
edashed lines), and WilsonÏs limiter (long-dashed lines) (cf. Fig. 6).
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FIG. 22.ÈComparison of the net gain (in ergs g~1 s~1) vs. radius (in kilometers) for model proÐle BM, calculated using the full transport formalism of this
paper (solid line), BruennÏs Ñux limiter (dot-dashed line), and WilsonÏs Ñux limiter (dashed line) (cf. Fig. 11).

the net gain), emergent spectra, and the inverse Ñux factors
by from 5% to 50% and can artiÐcially accelerate the tran-
sition from isotropy to free streaming in the q\ 1 region.
This is particularly true for neutrinos, with their extended
neutrinospheres. Furthermore, the thermalization depth
e†ect is difficult to handle with Ñux limiters when the scat-
tering albedo is large. The albedo for neutrinos is abovelk0.90 throughout most of the object. As a result, only full
transport can properly handle the enhancement in the e†ec-
tive absorption path because of the frustrated escape caused
by scattering.

10. DETERMINANTS OF THE EMERGENT NEUTRINOl
k

SPECTRUM

The and neutrinos and their antiparticles carry awaylk lqfrom the protoÈneutron star more than 50% of its total
binding energy. Since they do not participate in charged-
current interactions, they energetically decouple at smaller
radii and, hence, at larger temperatures, than the other neu-
trino species. This results in a harder spectrum (Fig. 6) and
the hardness hierarchy alluded to in ° 8.2. The fact that
there are four species is primarily responsible for their
major cooling role. Neutrino-matter energy coupling is
a†ected by the inverse production processes of pair annihi-
lation and nucleon-nucleon bremsstrahlung (° 7), as well as
by neutrino-nucleon and neutrino-electron scattering. The
proper treatment of energy redistribution by scattering is
deferred to a later publication. However, it is clear that
scattering generically softens the spectra.lkIgnoring the potential e†ects of neutrino oscillations, the
emergent spectra have a direct bearing on the process oflkneutrino nucleosynthesis (Woosley et al. 1990) and on the
suitability of various underground detectors that rely on
neutral-current spallation processes with high energy
thresholds. In both cases, the relevant neutral-current inter-

action cross sections are stiffly increasing functions of neu-
trino energy, with thresholds above D15 MeV (Haxton
1990). Hence, they are most sensitive to the componentlkand its precise spectrum. In the past, people had thought
that the spectra were hard, with e†ective Fermi-Diraclktemperatures of D8È9 MeV and average energies of
D25È30 MeV. However, the energy spectrum on Figurelk6 can be very approximately Ðt with a temperature of 7
MeV.

Bremsstrahlung has a major e†ect on the radiationlkÐeld. The factor f in ° 7 incorporates a correction for our
approximations to the propagator terms and to the nuclear
matrix element. In Figure 6, f was set equal to 0.5. Using
Hannestadt & Ra†elt (1998) and our own estimates of the
correct propagator terms, we derive that above 1013 g cm~3
f is above 0.7 and that at and around 1011 g cm~3 f is near
0.2. This translates into an ““ average ÏÏ f of D0.5 for protoÈ
neutron stars. Figure 23 depicts the consequences of
varying f from 0.0 to 1.0 in steps of 0.2 for the emergent lkenergy spectrum. Because of the presence of an absorption
term for every emission term (Kirchho†Ïs Law; eq. [36]),
the strength of the spectrum is not strictly linear in f. As
Figure 23 demonstrates, nucleon-nucleon bremsstrahlung is
softer than e`e~ annihilation (the other major source)lk l6 kand can dominate at low energies. Though the emergent
spectra are softer, because of the extra source the spectra are
also brighter at every energy. Hence, the inclusion of
nucleon-nucleon bremsstrahlung increases the Ñux, while
decreasing the average and peak neutrino energies. This is
important. At 10 MeV, the spectrum can be more than alkfactor of 2 stronger with bremsstrahlung than without. For
energies above D35 MeV, e`e~ annihilation still domi-
nates the emergent spectrum. In Figure 23, the lowest curve
corresponds to a pure e`e~ annihilation source. Note that
it is demonstrably harder than when f is large and that it
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FIG. 23.ÈEmergent luminosity spectra for model BM for bremsstrahlung factors, f, of 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. Also included is the spectrumlk lkwith the scattering cross section artiÐcially decreased by 50%.lk-nucleon

alone is ““ pinched.ÏÏ Though it still remains to be determined
whether nucleon-nucleon bremsstrahlung in supernovae is
in fact dominant for spectrum formation, Figure 23 sug-lkgests that it is, particularly at lower neutrino energies. Since
energy transfer due to neutrino-matter scattering and gravi-
tational redshifts will only further soften the emergent
spectra, we conclude that spectra are indeed softer thanlktraditionally quoted.

Also shown on Figure 23 is an emergent spectrum withlkthe scattering cross sections very artiÐcially cut by one half.
This curve demonstrates the severe dependence of the
spectra on the basic numbers associated with the neutrino-
matter interaction. It suggests that if we did not have a
fairly good handle on the basic interactions of neutrinos
with nucleons our predictions would be quite di†erent and
perhaps would be quite wrong.

11. SUMMARY

We have constructed and described an implicit, multi-
group, multiangle, multispecies neutrino transfer code to be
used in the context of core-collapse supernovae and protoÈ
neutron stars. The basic algorithm embodies the Feautrier
and tangent-ray approaches to spherical atmospheres and
is conceptually equivalent to various Boltzmann solvers. It
is capable of resolving angular distributions and of calcu-
lating angular moments to great precision and employs
accelerated K iteration to achieve rapid convergence.
Focusing on neutrino atmospheres, we presented the energy
spectra, neutrino heating rates, Eddington factors, angular
distributions, and phase space densities for typical post-
bounce structures. The inÑuence on these quantities, in par-
ticular on the net gain, of various corrections to the
charged-current cross section and terms in the transport
equation were examined and the character of the neutrino

radiation Ðelds and spectra was scrutinized. One goal has
been to provide a detailed snapshot of the neutrino radial,
angular, energy, and species distributions in a typical post-
bounce environment, including in the protoneutron star
context, and to explore the factors that determine the
heating rates in the semitransparent gain region, so central
to the viability of the neutrino-driven mechanism of super-
nova explosions. To this end, we focused on the decoupling
transition of the emergent neutrinos. Moreover, we com-
pared the emergent spectra and neutrino heating rates
obtained using representative Ñux limiters with those
obtained using our Feautrier transport algorithm to gauge
the accuracy of those oft-used approximate schemes.
Finally, we derived the rate of nucleon-nucleon bremsstrah-
lung and its neutrino source spectrum and showed for the
Ðrst time that it probably dominates neutrino productionlkand spectrum formation.

The tool that we have developed is meant to explore
supernova explosions, protoneutron star cooling, the neu-
trino signature of core-collapse, neutrino shock breakout,
and postexplosion winds, among other things. It is also
easily converted into a photon transport code for the study
of classical supernova light curves. However, we have yet to
generalize the scheme for use in multidimensional super-
nova simulations or in the general relativistic context, nor
have we parallelized it for use on shared-memory machines.
Hence, much technical work remains.

Supernova theory has been evolving for 30 years, and in
that time our understanding of the neutrino and its inter-
actions has changed substantially. There are now indica-
tions from atmospheric and solar neutrino experiments that
lepton number is not strictly conserved and that neutrinos
may mix. Heating in the protoÈneutron star mantle is a
subtle sum of competing e†ects. We have investigated in
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this paper but a few of these. This e†ort to fully characterize
the neutrino radiation Ðelds is part of a larger e†ort, as yet
unÐnished, to understand the mechanism of supernova
explosions and their systematics. However, when this puzzle
box is eventually opened, precise neutrino transport will
certainly be one of the keys.
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