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ABSTRACT
We have tested the ability of driven turbulence to generate magnetic Ðeld structure from a weak

uniform Ðeld using three-dimensional numerical simulations of incompressible turbulence. We used a
pseudospectral code with a numerical resolution of up to 1443 collocation points. We Ðnd that the mag-
netic Ðelds are ampliÐed through Ðeld line stretching at a rate proportional to the di†erence between the
velocity and the magnetic Ðeld strength times a constant. Equipartition between the kinetic and magnetic
energy densities occurs at a scale somewhat smaller than the kinetic energy peak. Above the equi-
partition scale the velocity structure is, as expected, nearly isotropic. The magnetic Ðeld structure at these
scales is uncertain, but the Ðeld correlation function is very weak. At the equipartition scale the magnetic
Ðelds show only a moderate degree of anisotropy, so the typical radius of curvature of Ðeld lines is com-
parable to the typical perpendicular scale for Ðeld reversal. In other words, there are few Ðeld reversals
within eddies at the equipartition scale and no Ðne-grained series of reversals at smaller scales. At scales
below the equipartition scale, both velocity and magnetic structures are anisotropic ; the eddies are
stretched along the local magnetic Ðeld lines, and the magnetic energy dominates the kinetic energy on
the same scale by a factor that increases at higher wavenumbers. We do not show a scale-free inertial
range, but the power spectra are a function of resolution and/or the imposed viscosity and resistivity.
Our results are consistent with the emergence of a scale-free inertial range at higher Reynolds numbers.
Subject headings : ISM: general È MHD È turbulence

1. INTRODUCTION

There are at least two distinct types of magnetohydro-
dynamic (MHD) turbulence. When the external large-scale
magnetic Ðeld is strong, the resulting turbulence can be
described as the nonlinear interactions of waves (e.g.,Alfve� n
Goldreich & Sridhar 1995 ; 1997). In contrast, when the
external Ðeld is weak, MHD turbulence near the scale of the
largest energy-containing eddies will be more or less like
ordinary hydrodynamic turbulence with a small magnetic
back reaction. In this regime, the turbulent eddy turnover
time at the large scale (L /V ) is less than the time ofAlfve� nic
the scale (L /B), where V and B are rms velocity and mag-
netic Ðeld strength [divided by (4no)1@2], respectively, and L
is the scale of energy injection or the largest energy-
containing eddies.

Various aspects of weak/zero external Ðeld MHD turbu-
lence have been studied both theoretically and numerically.
One of the most important issues in this regime is the gener-
ation of large-scale Ðelds. Since large-scale magnetic Ðelds
are observed in almost all astrophysical objects, the gener-
ation and maintenance of such Ðelds is of great importance.
In mean Ðeld dynamo theory (see Mo†att 1978 ; Parker
1979), turbulent motions at small scales are biased to create
a nonzero electromotive force along the direction of the
large-scale magnetic Ðeld. This e†ect (the ““ a-e†ect ÏÏ) works
to amplify and maintain large-scale magnetic Ðelds.
Whether or not this e†ect actually works depends on the
structure of the MHD turbulence, especially on the mobility
of the Ðeld lines. For example, Vainshtein & Cattaneo
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(1992) have argued that when equipartition between mag-
netic and kinetic energy densities occurs at any scale larger
than the dissipation scale, the mobility of the Ðeld lines and
the a-e†ect will be greatly reduced. An alternative approach,
which may avoid such difficulties, is to appeal to small-scale
Ðeld line stretching alone to generate strong magnetic Ðelds
(Batchelor 1950 ; Kazantsev 1967). In this model large-scale
magnetic Ðelds are actually composed of parallel Ðbrils of
random polarity ; i.e., the large-scale Ðeld is deÐned by the
preferred axis of the magnetic Ðeld direction but there is
little large-scale Ñux in such Ðelds. Whether or not the mean
Ðeld dynamo mechanism works, it is interesting to contem-
plate whether or not such Ðne-grained Ðelds can be produc-
ed in the absence of any a-e†ect.

In addition, there are at least two other points of conten-
tion regarding the nature of magnetic Ðelds generated in
MHD turbulence. First, the mobility of magnetic Ðelds will
be a†ected by their intermittence. Various models for the
generation and dynamics of Ñux tubes have been proposed,
motivated in part by observations of the solar photosphere
(e.g., Vishniac 1995a, 1995b ; Brandenburg, Procaccia, &
Segel 1995). However, so far numerical simulations have
tended to show only modest levels of intermittence. Second,
there is the nature of the energy cascade and power spec-
trum of MHD turbulence. There are numerous analytical
models for dealing with MHD turbulence : the eddy-
damped quasi-normal Markovian (EDQNM) approx-
imation (Pouquet, Frish, & 1976), theLe� orat
renormalization group technique (Fournier, Sulem, &
Pouquet 1982), and others, including recent work by Gold-
reich & Sridhar (1995, 1997) in which they treated nonlinear
eddy interactions as a series of interactions between margin-
ally nonlinear waves. The last is perhaps the mostAlfve� n
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promising. The energy spectra of MHD turbulence is one of
the most poorly understood Ðelds in astrophysics. Early
work by Iroshnikov (1963a, 1963b) and Kraichnan (1965)
obtained a k~3@2 spectrum for both magnetic energy and
kinetic energy in the presence of a dynamically signiÐcant
magnetic Ðeld. However, this work was based on the
assumption of isotropy in wavenumber space, which is diffi-
cult to justify unless the magnetic Ðeld is very weak. The
model by Goldreich & Sridhar assumes a critical level of
anisotropy, such that magnetic and hydrodynamic forces
are comparable, and predicts a k~5@3 spectrum for strong
external Ðeld turbulence (which should apply to very small
scales within any MHD turbulent cascade). Solar wind
observations, which are well within the strongly magnetized
regime, show an energy spectrum E(k)D k~1.70 (Leamon et
al. 1998). Numerical studies have only recently been able to
address this question. Recent work by Cho & Vishniac
(2000) and J. Maron & P. Goldreich (1999, private
communication) seems to support the scaling laws of Gold-
reich & Sridhar.

Here we will concentrate on the structure of magnetic
Ðelds in MHD turbulence when the external Ðeld is weak.
In the case of hydrodynamical turbulence, the energy cas-
cades to smaller scales. If we introduce a weak uniform
magnetic Ðeld, turbulent motions will stretch the magnetic
Ðeld lines and divert energy to the small-scale magnetic
Ðeld. As the magnetic Ðeld lines are stretched, the magnetic
energy density increases rapidly, until the generation of
small-scale magnetic structures is balanced by the magnetic
back reaction at some scale between L and the dissipation
scale. This will happen when the magnetic and kinetic
energy densities associated with a scale l are comparable so
that Lorentz forces resist further stretching at or below that
scale.2 However, stretching at scales larger than l is still
possible, and the magnetic energy density will continue to
grow if l can increase.3 Eventually, a Ðnal stationary state
will be reached.

This discussion raises two questions. What is the scale of
energy equipartition? What is the magnetic Ðeld structure
on this scale? The answer to the latter question will depend
on the nature of di†usive processes acting on the magnetic
Ðeld. First, suppose that magnetic Ðeld lines are unable to
smooth the tangled Ðelds at small scales. Then, as a result of
the turbulent energy cascade and the subsequent stretching
of magnetic Ðeld lines, magnetic Ðelds have thin Ðbril struc-
tures with many polarity reversals within the energy equi-
partition scale l. Consequently, magnetic structures on the
equipartition scale are highly elongated along the local
magnetic Ðeld direction. This is the kind of picture one
obtains by considering passive advection of magnetic Ðelds
in a chaotic Ñow (for a review see Ott 1998). The degree to
which this can be applied to a realistic, highly conducting
Ñuid is controversial. On the other hand, if we assume
MHD turbulence is always capable of relaxing tangled Ðeld
lines at small scales, then we expect eddies at the Ðnal equi-
partition scale to be nearly isotropic. That is, the typical
radius of curvature of Ðeld lines will be comparable to the
scale of Ðeld reversal. This picture does not imply a clear

2 The Ðrst energy equipartition scale l can be larger than the dissipation
scale when the equipartition occurs before the energy cascade reaches the
dissipation scale.

3 Our results show that l does increase and the magnetic energy con-
tinues to grow.

expectation for the scale of equipartition in the stationary
state. As we will see later, our simulations support the latter
picture but with the energy equipartition scale near, but
somewhat smaller than, the largest energy-containing eddy
scale.

In this paper, we will interpret the results of numerical
simulations of MHD turbulence with a weak external Ðeld
in terms of these models. In ° 2, we discuss the numerical
method we used and performance of the code. In ° 3, we
present the results of simulations. Finally, ° 4 contains a
discussion of the results and our conclusions.

2. NUMERICAL METHOD AND PERFORMANCE

OF THE CODE

We used a pseudospectral code to solve the MHD equa-
tions in a periodic box of size 2n :

LV
Lt

\ ($ Â V) Â V [ ($ Â B) Â B ] l$2V ] f ] $P@ ,

(1)

LB
Lt

\ B Æ $V [ V Æ $B ] g$2B , (2)

and

$ Æ V \ $ Æ B \ 0 , (3)

where f is a random forcing term with unit correlation time,
P@4 P] V Æ V/2, V is the velocity, and B is the magnetic
Ðeld divided by (4no)1@2. Thus, the Ðeld B is, in fact, the

velocity. The velocity of the backgroundAlfve� nic Alfve� n
Ðeld, is set to 10~3.5 in all simulations. Throughout theB0,paper, we consider only cases where viscosity is equal to
magnetic di†usivity :

l\ g . (4)

In the pseudospectral approach, the actual calculations are
performed in wavevector space. The nonlinear terms are
evaluated in real space using Fourier-transformed variables
and their derivatives and then transformed back into their
Fourier components. The forcing term consists of 21
Fourier components with 2¹ k ¹ (12)1@2. The peak of
energy injection is at k B 2.5 We adjusted the ampli-(4k

L
).

tudes of the forcing components so that V B 1. We use
exactly the same forcing terms for all simulations. There-
fore, the external magnetic Ðelds are very weak for all simu-
lations (i.e., Each forcing component consists ofB0> V ).
two parts : a linearly polarized component and a small cir-
cularly polarized component with a preferred helicity. The
latter was introduced to provide nonzero helicity injection
to the turbulence. The resulting Ñuid helicity is D0.3È0.4 for
all runs. We use an appropriate projection operator to cal-
culate the +P@ term in Fourier space and also to enforce the
divergence-free condition ($ Æ V \ $ Æ B \ 0). We use up to
1443 collocation points. We use the integration factor tech-
nique for kinetic and magnetic dissipation terms and the
leapfrog method for the nonlinear terms. At t \ 0, the mag-
netic Ðeld is uniform and the velocity is in the range
2 ¹ k ¹ 4 in wavevector space. We give the parameters for
each run in Table 1.

Either physical viscosity (and di†usivity) or hyper-
viscosity (and hyperdi†usivity) is used in the dissipation
terms (see Table 1). The power of hyperviscosity is set to 8,
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TABLE 1

RESULTS OF SIMULATIONS

Run N3 l\ g B02 V 2 B2 v D
M

T
v @ v2

a T
b @ v2

b k
e
c (t1, t2)d

REF1 . . . . . . 963 0.0043 10~4 0.773 0.169 0.167 0.088 0.0815 0.0353 . . . (500, 560)
REF2 . . . . . . 643 0.015 . . . 0.85 . . . 0.163 . . . . . . . . . . . . (300, 750)
REF3 . . . . . . 963 0.0043 . . . 1.053 . . . 0.160 . . . . . . . . . . . . (50, 165)
144A . . . . . . 1443 Hyper 10~7 0.649 0.420 0.161 . . . 0.0519 0.0758 8.4 (60, 240)
128A . . . . . . 1283 0.003 10~7 0.755 0.200 0.166 0.099 0.0794 0.0421 7.1 (100, 210)
96A . . . . . . . . 963 0.0043 10~7 0.761 0.170 0.166 0.088 0.0807 0.0364 6.7 (200, 500)
72A . . . . . . . . 723 0.0064 10~7 0.792 0.122 0.165 0.070 0.0870 0.0276 6.8 (300, 800)
64A . . . . . . . . 643 0.0074 10~7 0.786 0.113 0.166 0.064 0.0835 0.0257 6.6 (300, 800)
64B . . . . . . . . 643 0.01 10~7 0.794 0.0804 0.165 0.048 0.0860 0.0019 6.6 (300, 750)
64C . . . . . . . . 643 0.015 10~7 0.808 0.0201 0.164 0.013 0.0903 0.0046 8.0 (300, 800)
64D . . . . . . . . 643 0.02 10~7 0.774 \10~4 0.164 D10~5 . . . . . . . . . (300, 750)

a T
v @ v2

4 T
v @ vk

(k \ 2).
b T

b @ v2
4T

b @ vk
(k \ 2).

c Equipartition wavelength.
d Time interval used for averaging physical quantities.

such that the dissipation term in the above equation is
replaced with

[l8($2)8V , (5)

where is determined from the conditionl8 l
h
(N/2)2h*t B 0.5

(see Borue & Orszag 1995, 1996). Here *t is the time step
and N is the number of grids in each direction. The same
expression is used for the magnetic dissipation term.

When f \ l\ g \ 0, that is, without forcing or dissi-
pation, the total energy drops by 0.87% after 13 time units,
apparently as a result of truncation errors. In the dissipative
case the injection and dissipation of energy are well bal-
anced after the magnetic energy reaches the stationary
state :

SvT\ SD
K
T ] SD

M
T , (6)

where v is the energy injection rate and and are theD
K

D
Mkinetic and the magnetic energy dissipation rates, respec-

tively. The angle brackets stand for an appropriate space-
time average, which is taken after the magnetic energy
reaches the stationary state.

FIG. 1.ÈTest of the code. Time evolution of and magneticT
b @ v

, T
v @ b

,
dissipation. and coincide exactly. Magnetic dissipation showsT

b @ v
[T

v @ ba time delay, which is the turbulent di†usion timescale. Run REF1.

Before we describe the third test, we deÐne several trans-
fer functions. Imagine velocity components in a thin (i.e.,
thickness \ 1) spherical shell of radius k in Fourier space.
The work done to the velocity components by magnetic
Ðelds can be written as follows :

[ ;
ky@ p @:k`1

VŒ (p)* Æ [($ Â BF ) Â B](p) , (7)

where carets indicate Fourier space variables and the aster-
isk denotes a complex conjugate. This relation is derived
from the second term on the right-hand side of equation (1).
This quantity is the negative of the energy transferred to the
magnetic Ðelds from the velocity components per unit time :

T
b @ vk

(k) \ ] ;
ky@ p @:k`1

VŒ (p)* Æ [($ Â BF ) Â B](p) . (8)

Note that the subscripts of read ““ to X from Y . ÏÏ Simi-T
X @ Ylarly, from the Ðrst term on the right-hand side of equation

(1), we obtain T
v @ vk

(k) :

T
v @ vk

(k) \ [ ;
ky@ p @:k`1

VŒ (p)* Æ [($ Â VF ) Â V](p) . (9)

Now, consider the magnetic components in the same shell.
From the Ðrst term on the right-hand side of equation (2),
we obtain the energy transferred to the velocity Ðelds from
the magnetic components per unit time :

T
v @ bk

(k) \ [ ;
ky@ p @:k`1

BŒ (p)* Æ (B Æf $V)(p) , (10)

the work done to the magnetic components by velocity
Ðelds : again, this quantity is the negative of the work done
to the magnetic components by velocity Ðelds per unit time.

In our third test, we checked the energy budget of the
magnetic Ðelds. The net energy transferred to magnetic
Ðelds from velocity Ðelds can be calculated from either

or This energy will disappear through di†u-T
b @ vk

(k) T
v @ bk

(k).
sive damping. Therefore, the numerical scheme should
satisfy

T
b @ v

\ [T
v @ b

\ D
M

, (11)

where

T
b @ v

4 ;
k/0

kmax
T
b @ vk

(k) , (12)
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T
v @ b

4 ;
k/0

kmax
T
v @ bk

(k) , (13)

and is the largest wavenumber in Fourier space and iskmaxequal to N/2. Figure 1 shows that our code satisÐes equa-
tion (11). The two curves and coincideT

b @ v
(t) [T

v @ b
(t)

exactly. It is interesting to note that there is a time delay
between and which is a measure of theT

b @ v
(\T

v @ b
) D

M
,

energy cascade time.

3. RESULTS

3.1. Generation of Magnetic Fields
We list the results of our simulations in Table 1. We

obtained V 2, B2, v, and by averaging over usingD
M

(t1, t2)all available data. However, andT
v @ v2

[4T
v @ vk

(k \ 2)]
were calculated from a sparse subsetT

b @ v2
[4T

b @ vk
(k \ 2)]

of the data. It is important to note that, unless otherwise
noted, these time averages were taken after the turbulence
had reached the stationary state. Conclusions based on
these averages do not apply to the initial growth phase of
the magnetic Ðeld.

Figure 2 shows time evolution of kinetic and magnetic
energy density. All the simulations have similar kinetic
energy densities. However, the magnetic energy density
obviously depends on the ohmic di†usivity g. After an
initial growth phase, the magnetic energy reaches a station-
ary state. The initial growth rate of the magnetic energy
depends on di†usivity. Even though it is not clearly shown
in the Ðgure, the initial growth phase consists of two stages
for run 144A, the hyperviscosity run. In the Ðrst stage,
which begins at t \ 0 and ends after a few dynamical times,
the growth rate is very fast. At this stage the magnetic
energy grows through the stretching of magnetic Ðeld lines.
Growth is fast because there is no signiÐcant back reaction
by the magnetic Ðelds. Figure 3 shows that stretching is
initially most active near or somewhat larger than the dissi-
pation scale (cuto† scale) and the magnetic energy spectrum
peaks at this scale. As the magnetic energy grows, the mag-
netic back reaction becomes important at the dissipation

FIG. 2.ÈTime evolution of kinetic and magnetic energy. The results at
three di†erent resolutions are shown: 1443 (run 144A; dotted curve), 963
(run 96A; solid curve), and 643 (run 64A; dashed curve). For 64A and 96A,
the kinetic energy has very similar values. The magnetic energy depends on
l (\g). In the case of hyperviscosity (run 144A), the magnetic energy is
more than one-half of the kinetic energy.

FIG. 3.ÈTime evolution of and Run 144A.kT
b @ vk

(k) E
M

(k).

scale. When energy equipartition is reached at this scale, the
stretching rate slows down and a second stage of slower
growth begins. Figure 3 shows that during this stage the
peak of the magnetic power spectrum moves to larger
scales. Figure 2 shows that the second stage ends at
t \ 30 D 40 for run 144A. Other runs with physical vis-
cosities (run 128A, 96A, 64A, etc.) also show similar behav-
ior. However, the detailed evolution seems di†erent from
the hyperviscosity case. For example, the di†usivity also
a†ects the net growth rate in the second stage.

In Figure 4a, we plot the kinetic and magnetic energy
densities as functions of l (\g). Error bars are estimated
from

2
SX2T [ SXT2
J(t2 [ t1)/tcorr

, (14)

where angle brackets denote the time average and X \ V
and B. As noted above, this average is taken after the turbu-
lence has reached its stationary state. The correlation time

is calculated directly. We see that the kinetic energytcorr D 3
is almost independent of l (\g). The constancy of the
kinetic energy density is the result of the magnetic Ðeld. In
purely hydrodynamic simulations the kinetic energy density
increases as l decreases (see REF2 and REF3 in Table 1).
On the other hand, the magnetic energy increases as l (\g)
decreases. This Ðgure suggests that at small g even a weak
di†use magnetic Ðeld can lead to a strong Ðnal state. In the
case of hyperviscosity, the magnetic energy is almost one-
half of the kinetic energy at late times. This is the result of
Ðeld line stretching and not the a-e†ect (see next paragraph
and ° 4). The energy injection rates v (4f Æ V \ D

K
] D

M
)

are independent of l (\g) and in the range
0.161\ v \ 0.166 (Table 1).
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FIG. 4.ÈDependence of physical quantities on l (\g). T op: The kinetic
energy density is nearly independent of the physical viscosity. The mag-
netic energy density grows as l (\g) decreases. Bottom: This relation
implies D

M
D (V [ B/1.6)B2.

In Figure 4b, we plot an empirical relation for the gener-
ation of magnetic Ðelds in the stationary state :

D
M

D
AV
L

[ c
B
L
B
B2 , (15)

where c is a constant (D0.63). It is somewhat dangerous to
assume that run 144A, the hyperviscosity run, is equivalent
to the case of vanishing viscosity. In particular, Figure 5
shows a sharp rise in the energy transfer to the magnetic
Ðeld near the dissipation scale. This makes it difficult to
extend this relationship to the case of vanishing di†usivity.4

What is the origin of this correlation? In the stationary
state, the magnetic dissipation is balanced by the net(D

M
)

energy transferred to the magnetic Ðelds from the velocity
Ðelds. The right-hand side therefore tells us that the net
energy transferred to the magnetic Ðelds is proportional to
the large-scale eddy turnover rate (V /L ) minus an Alfve� nic

4 In run 144A, the magnetic dissipation is given by ; l8 k16 o BŒ o2.
Although we can calculate this quantity directly, we should not use this for
eq. (15) because in eq. (15) actually represents the amount of energyD

Mtransferred to the magnetic Ðeld on large scales. If we use a physical vis-
cosity (and di†usivity), the two quantities are the same. However, in hyper-
viscosity runs, the two quantities diverge because nonlinear processes
occurring near the dissipation cuto† are presumably unphysical. The
dotted curve in Fig. 5 represents the amount of energy transferred to the
magnetic Ðeld in run 144A. The curve shows a nonnegligible change after
the dissipation cuto† which means that nonlinear processes do(k

d
D 50),

occur within the dissipation range (i.e., If we take the value ofk [ k
d
).

at for and substitute it into eq. (15), then we obtain%
b @ vk

k D k
d

D
M in good agreement with the other data shown in(v[ B/1.6)B2/D

M
\ 1.24,

Fig. 4b. This suggests that eq. (15) is true even in the limit of vanishing
viscosity (and di†usivity), but given the existence of anomalous energy
transfer near the dissipation scale, this conclusion may be premature.

FIG. 5.ÈEnergy transfer and Ñux spectra for run 144A. T op: Energy
transfer spectra. The spectrum of (dotted curve) shows that magneticT

b @ vkÐelds gain energy from large-scale eddies. Bottom: Energy Ñux spectra. The
spectrum of (dotted curve) rises rapidly at small k and reaches the%

b @ vkvalue of v at k D 10.

frequency (B/L ) times a constant. The large-scale eddy turn-
over rate is equal to the stretching rate of the magnetic Ðeld
when the back reaction is zero. We identify the second term
on the right-hand side of this equation as the e†ect of the
magnetic back reaction.

This interpretation is supported by the spectrum of the
energy transfer rate, The function is theT

b @ vk
(k). T

b @ vk
(k)

energy lost by velocity components within a unit shell of
radius k in wavevector space through interactions with the
magnetic Ðeld. When this quantity is positive, it means that
energy is being transferred from velocity components in the
unit shell to the magnetic Ðeld. In Figure 5a, we plot

and for run 144A. From the spec-T
v @ vk

(k), T
b @ vk

(k), T
v @ bk

(k)
trum of we can see that magnetic Ðelds are driven byT

b @ vk
(k)

energy extracted from the large-scale velocity components
(cf. Kida, Yanase, & Mizushima 1991). We can explain this
result if we suppose that the magnetic Ðeld energy is gener-
ated by Ðeld line stretching at large scales. On the other
hand, the magnetic Ðelds have a small rate of net energy
transfer to small-scale motions, implying that on small
scales the turbulent motions can be described as nonlinear

waves, with a rough balance between kinetic andAlfve� n
magnetic energy densities.

In Figure 5b, we plot the spectra of energy Ñuxes. The
energy Ñux is the amount of energy transferred%

b @ vk
(k)

from velocity components whose wavenumbers are less
than or equal to k, to the magnetic components of all wave-
numbers :

%
b @ vk

(k) \
P
0

k
T
b @ vp

(p)dp . (16)
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We deÐne other Ñuxes similarly. The graph of rises%
b @ vk

(k)
rapidly at large scales (k \ 10) and reaches the value of
energy injection rate v (D0.16) at k D 10. This means that
the energy injected to drive the turbulence (D0.16 per unit
time) is absorbed at large scales by the magnetic Ðelds. On
smaller scales (k [ 10) the velocity Ðeld does not drive the
magnetic Ðelds but instead absorbs energy. In summary, the
rise of at small wavenumbers is due to Ðeld line%

b @ vk
(k)

stretching, and the decrease at large wavenumbers is a sign
of turbulence at small scales. Consequently, atAlfve� nic
small scales, we can treat the turbulent motions as fully
developed MHD turbulence, even when external Ðelds are
weak.

Before proceeding, it is useful to take note of a property
of hyperviscosity simulations. The quantity %

v @ vk
(k)

is the total energy transferred from large-scale] %
b @ vk

(k)
velocity Ðelds ( o k o\ k) to either magnetic Ðelds or small-
scale velocity Ðelds. When there is no dissipation, the energy
injected by the driving force is either transferred to mag-
netic Ðelds or transferred to small-scale velocity Ðelds :

v\ %
v @ vk

(k)] %
b @ vk

(k) . (17)

That is, the quantity has to be a con-%
v @ vk

(k) ] %
b @ vk

(k)
stant for a hyperviscosity simulation. In fact, in the hyper-
viscosity simulation (run 144A), this quantity is constant for
k \ 50.

In Figure 6, we plot and HereT
v @ v2

T
b @ v2

. T
v @ v2is proportional to the rate at which the[4T

v @ vk
(k \ 2)]

energy of large-scale eddies is transferred to small-scale
velocity Ðelds. On the other hand, T

b @ v2
[4T

b @ vk
(k \ 2)]

is proportional to the rate at which the energy of
large-scale eddies is transferred to magnetic Ðelds. Note
that k \ 2 corresponds to the scale of the largest energy-
containing eddies. Figure 6a shows

T
v @ v2

D V 3 , (18)

which suggests that large-scale kinetic energy (V 2) is trans-
ferred to smaller scales within an eddy turnover time (L /V ).
That is, turbulence at large scale is broadly similar to ordi-
nary hydrodynamic turbulence and the classical energy
cascade model seems to work. In the case of hyperviscosity,
the Ðgure suggests that the energy transfer rate may not
exactly follow the scaling relation given above. However, as
we can see in the Ðgure, the deviation, if any, will be very
small.

Figure 6b shows

T
b @ v2

D B2V . (19)

When a magnetic Ðeld is generated through the stretching
of Ðeld lines, will be proportional to the stretching rateT

b @ v2at large scales. Although equation (15) implies that the
overall stretching rate is proportional to (V [ const ] B),
Figure 6b suggests that the stretching rate scales as B2V at
the largest energy-containing eddy scale. That is, it is pro-
portional to the large eddy turnover rate V /L .

3.2. T he Structure of T urbulence
We plot energy spectra in Figure 7. For all simulations

using physical viscosities (runs 128A, 96A, 72A, and 64AÈD)
the kinetic energy spectra are almost independent of l at
large scales (k \ 10). However, this is not true in the case of
hyperviscosity (run 144A). Magnetic energy spectra peak
near but somewhat smaller than the energy injection scale.
The position of the peaks depends on magnetic di†usivity.

FIG. 6.ÈEvidence that large-scale turbulence is similar to ordinary
hydrodynamic turbulence. T op: is nearly constant forT

v @ vk
(k \ 2)/V 3

nonzero physical viscosity, which implies that In theT
v @ vk

(k \ 2) DV 3.
case of hyperviscosity, this relation may not hold true. Bottom: T

b @ vk
(k \

This relation implies stretching of magnetic Ðeld lines without2)/(B2V ).
signiÐcant back reaction is responsible for the nonlinear energy transfer
from velocity components at k D 2 to magnetic Ðelds.

FIG. 7.ÈEnergy spectra. The results at three di†erent resolutions are
shown: 1443 (run 144A; dotted curve), 963 (run 96A; solid curve), and 643
(run 64A; dashed curve). Both axes are drawn on a logarithmic scale.
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We see that the location of the peaks moves toward the
largest scale as di†usivity increases. In the case of the hyper-
viscosity (and hyperdi†usivity) simulation, both kinetic and
magnetic spectra show the well-known bottleneck e†ect
(see, e.g., Borue & Orszag 1996) for k [ D 20. This e†ect is
characterized by a local enhancement of the energy spectra
at scales somewhat larger than the dissipation cuto†.

We deÐne the energy equipartition wavenumber suchk
e
,

that

P
0

ke
dp E

M
(p)\

P
ke

kmax
dp E

K
(p) . (20)

In this deÐnition, energy equipartition between large-scale
magnetic Ðelds and small-scale velocity Ðelds occurs at k \

[Therefore, is di†erent from the scale of equipartitionk
e
. k

ebetween small-scale magnetic energy and small-scale kinetic
energy. A good measure for the equipartition scale between
small-scale energies is the wavenumber at which E

K
(k) \

In the case of hyperviscosity, the two wavelengths areE
M
(k).

similar.] From Table 1, we can see that is not very sensi-k
etive to the value of viscosity. In all cases, the equipartition

scale is somewhat smaller than the peak of the(D1/k
e
)

kinetic energy spectrum The magnetic Ðelds(1/k
L
D 1/2.5).

associated wavenumbers greater than act like a strongk
euniform external magnetic Ðeld for eddies smaller than

and the structure of turbulence at smaller scales willD 1/k
e
,

be similar to turbulence. On the contrary, turbu-Alfve� nic
lence at scales larger than will be more or less likeD1/k

eordinary hydrodynamic turbulence. This argument is sup-
ported by the fact that the value of is very close to thek

epeak of for all runs. For example, Figure 5b shows%
b @ vk

(k)
that peaks at k D 10 for run 144A. Table 1 shows%

b @ vk
(k)

that for the same run. [Our analysis also showsk
e
D 8.4

that, for run 96A, and peaks at k D 8. Ink
e
D 6.7 %

b @ vk
(k)

addition, for run 64A, and peaks atk
e
D 6.6 %

b @ vk
(k)

k D 8...] This suggests that, below the equipartition scale,
the turbulent Ñuid is in a state of nonlinear turbu-Alfve� nic
lence, with a Ðxed ratio between the kinetic and magnetic
energies associated with perturbations on these scales.

We see that a small external Ðeld leads to local magnetic
energy density, which, in the limit of very small di†usivity, is
comparable to the kinetic energy density, with a typical
scale only slightly smaller than the scale at which the turbu-
lence is driven. This still leaves the question of whether the
magnetic Ðeld is characterized by numerous polarity
reversals within each eddy. We have examined this question
by considering the magnetic Ðeld second-order structure
function. A detailed description of our method can be found
in Cho & Vishniac (2000). Here we note only that we deÐne
the structure function in cylindrical coordinates as

F(o, z)\ S o Y(r1)[ Y(r2) o2T , (21)

where Y can be either the magnetic Ðeld or the velocity. The
coordinates are deÐned relative to the local Ðeld direction,
with o being the distance perpendicular to [B(r1)] B(r2)]/2and z the distance parallel to it.

We plot the results for run 144A in Figure 8. The shape of
the contours represents the average shape of the eddies,
which in turn reÑects the degree of anisotropy along the
local Ðeld direction. As expected, the velocity Ðeld shows
isotropy at large scales and anisotropy at small scales. The
magnetic Ðelds show an insigniÐcant amount of correlation
at large scales and strong anisotropy at small scales. At

FIG. 8.ÈSecond-order structure functions for the magnetic and velocity
Ðelds. The horizontal axis is in the direction of the local magnetic Ðeld,
deÐned by pairwise averaging. The velocity Ðelds show correlations at all
scales, with a smooth transition from isotropy on large scales to anisotropy
on small scales. The magnetic Ðeld shows similar behavior on small scales,
below the equipartition scale, but has almost no correlation on large scales.

intermediate scales, comparable to the equipartition scale,
the magnetic Ðeld shows a factor of 2 di†erence in corre-
lation lengths along local Ðeld line directions and across
them. The implication is that the Ðeld is not composed of
numerous parallel Ðbrils with frequent polarity reversals on
small scales, as envisioned by Batchelor (1950) and Kazant-
sev (1967). Instead, the Ðeld is largely smoothed by small-
scale turbulent di†usion and shows only one or two
polarity reversals at its typical scale of organization.

4. DISCUSSION AND CONCLUSIONS

We have presented results of MHD numerical simula-
tions for unit magnetic Prandtl number (i.e., l\ g). A weak
di†use magnetic Ðeld was used as an initial condition, and
we tested the sensitivity of our results to dissipative e†ects
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by varying the viscosity and numerical resolution in our
simulations. We have found that magnetic Ðelds are ampli-
Ðed through Ðeld line stretching at a rate proportional to
(V [ cB)/L , where cD 0.63. It is not certain whether or not
the hyperviscosity run follows this relation. We have also
shown that, in the limit of l (\g)] 0, the magnetic Ðeld
reaches a Ðnal stationary state where the magnetic energy
density is comparable to the kinetic energy. Since the simu-
lations using physically realistic functional forms for the
di†usivity are very far away from this limit, we are not able
to extrapolate to a deÐnite Ðnal ratio of but it shouldE

B
/E

K
,

be at least as large as the value reached in run 144A, D0.6.
The typical scale of the magnetic Ðeld is slightly smaller
than the scale of the largest energy-containing eddies. At or
above the equipartition scale, eddies are almost isotropic.
However, eddies smaller than the equipartition scale show
elongation along the local magnetic Ðeld lines.

When we vary viscosity (and di†usivity) explicitly, physi-
cal quantities scale as follows :

1. V 2D const,
c\ const,2. D

M
D (V [ cB)B2,

and3. T
v @ vk

(k \ 2)DV 3,
4. T

b @ vk
(k \ 2)DV B2.

The turbulent dynamo e†ect did not play a role in these
simulations. There is no sign of the spontaneous generation
of a large-scale Ðeld, above what we would expect by
extrapolating the magnetic energy power spectrum to wave-
numbers smaller than the energy peak. Our results are most
plausibly explained in terms of random Ðeld line stretching
within eddies. We have tested this conclusion by conducting
additional simulations with no imposed helicity. The results
were almost identical to the simulations presented here.
However, this does not allow us to draw any general con-
clusions about the possibility of mean Ðeld dynamos in
astrophysical objects. We note that the average helicity for
all the runs listed in Table 1 is in the range 0.3È0.4. Since the
smallest allowable wavenumber is 1, this implies a
maximum mean Ðeld growth rate of order 0.1 times the
eddy correlation time. By comparison, the turbulent dissi-
pation rate is SV 2T/3 (or D0.3) times the eddy correlation
time. The obvious conclusion is that no dynamo e†ect is
expected. The energy injection scale here is too close to the
size of the computational box.

The isotropic structure of eddies at large scales in our
simulations implies something about di†usive processes in
MHD turbulence. In particular, it suggests the presence of
an e†ective magnetic di†usivity, which is tied to the large-
scale eddy size rather than the resistive scale. This is an old
idea (see, e.g., Parker 1955) and is equivalent to the notion
that the usual turbulent di†usion coefficients can be substi-
tuted for ohmic resistivity. In its original form it was based
on a picture of small-scale Ðeld line mixing, which has been
convincingly criticized by Parker (1992). However, it can
also be justiÐed by appealing to rapid reconnection, that is,
Ðeld line reconnection at rates that are comparable to an
eddy turnover rate and much more rapid than estimates
based on the Sweet-Parker reconnection rate (Sweet 1958 ;
Parker 1957). In terms of our simulations, we note that if
reconnection is slow then we expect that magnetic Ðelds will
show a thin Ðbril structure in the saturated state, with a
typical Ðeld reversal scale much smaller than the curvature
scale. We see from the structure function that this is not the

case. Apparently, in our simulations at least, reconnection is
fast enough to relax tangled magnetic Ðeld structures in no
more than an eddy turnover time. Either the suppression of
reconnection appears suddenly at higher resolutions, or
theoretical arguments suggesting fast reconnection in highly
conducting turbulent Ñuids (Lazarian & Vishniac 1999) are
correct. If the latter interpretation holds up, then arguments
suggesting the suppression of the a-e†ect (e.g., Vainshtein &
Cattaneo 1992) at high Reynolds numbers are unlikely to
prove correct.

In what follows, we will give a rough explanation for the
dependence of Ðeld quantities on l (\g). Readers are
advised that this analysis might fail in the limit of vanishing
di†usivity. The reason is that run 144A shows slight devi-
ations from the extrapolation results (see V 2 in Fig. 4a and

in Fig. 6a). However, in most cases, the deviation isT
b @ v2small.
The kinetic energy depends on both viscosity and mag-

netic energy. The result shown in Figure 4a, that the kinetic
energy is almost independent of l\ g, is actually the result
of a rough cancellation between these two competing
e†ects. Suppose that magnetic Ðeld is turned o† and, there-
fore, the turbulence is ordinary hydrodynamic turbulence.
Let us also suppose that the viscosity is zero. Then, at the
energy injection scale, we will have

V 3D v . (22)

This is a well-known relation in Kolmogorov phenomen-
ology wherein the energy injection rate v is equal to the
energy cascade rate at the largest energy-containing scale,
which is proportional to the energy contained in the largest
eddies (DV 2) divided by 1 eddy turnover time (DL /V ).
When viscosity is not extremely small, we need to add a
viscosity e†ect :

V 3 ] lV 2D v , (23)

where we omit constants of order unity in each term. The
second term on the left-hand side is proportional to dissi-
pation at the large scale. Since the second term on the left-
hand side is much smaller than the Ðrst, we can assume that
lV 2P l] O(l2). If we solve this relation for V 2, we obtain

V 2D Cv v2@3[Cl l , (24)

where and are constants. Now if we turn on theCv Clmagnetic Ðelds and set the viscosity to be zero, then we have

V 3] B2V D v . (25)

Here we also omit constants of order unity in each term.
The Ðrst term on the left-hand side is still proportional to
V 3, which is supported by the relation (Fig. 6a).T

v @ v2
P V 3

The second term on the left-hand side comes from the rela-
tion (Fig. 6b). Since the second term is smallT

b @ v2
PV B2

compared with the Ðrst, we can write B2V P B2] O(B4).
Solving for V 2, we have

V 2D Cv v2@3[C
B
B2 . (26)

If we combine the two relations, we have

V 2D Cv v2@3 [Cl l[ C
B
B2 , (27)

where we ignore the interactions between the l e†ect and
the B2 e†ect. If any, such interactions will be weak because
both the l e†ect and the B2 e†ect are weak. This equation
implies that the quantity depends only on l.V 2] C

B
B2
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To complete the above analysis, we need an expression
for B2. To this end, let us adopt an energy cascade model
analogous to the ordinary hydrodynamical case : the energy
transfer rate is equal to the magnetic energy cascade rate at
the large scale. The energy transfer rate is given in equation
(15). The magnetic energy cascade rate is B2/(L /V ). There-
fore, we have

(V [B)B2D B2V ] gB2 , (28)

where the second term on the right-hand side is the large-
scale dissipation term. Again, we omit all order unity con-
stants. If we solve the equation for B, we obtain

B\ C
V

V [Cg g , (29)

where and are constants. In fact, our calculationC
V

Cgshows that

B[ 0.6V
g

\ [26.7^ 2.1 (30)

for runs 128A, 96A, 72A, 64A, 64B, 64C, and 64D. It implies
that and This relation slightly underesti-C

V
\ 0.6 Cg D 26.

mates the magnetic Ðeld strength for run 144A. (It gives
BD 0.6V , as opposed to the observed value of 0.8V .) If we
examine Figure 7 we see that this discrepancy arises from
the di†erence between the rms magnetic Ðeld strength and
the magnetic Ðeld strength on the largest eddy scale. Com-
paring the hyperviscosity run (144A) with the other cases we
see that the former has a substantially greater fraction of its
magnetic energy in small-scale structures. If we interpret B
in the preceding equation as the average obtained by
smoothing on the large eddy scale, which is consistent with
our derivation, then the hyperviscosity run is in agreement
with equation (30). In this sense, the values of B and B2

present in this discussion section should be regarded as
lower limits for the case of vanishing di†usivity. Alterna-
tively, one might regard the following discussion as valid
for cases of moderate magnetic Reynolds numbers and that
this analysis sets limits for the case of zero di†usivity. For
B2, we have

B2D C
V
2 V 2[ 2C

V
Cg V g . (31)

Here we omitted on the right-hand side.Cg2 g2
If we combine expressions for V 2 and B2, we have

V 2D (Cv v2@3 [ Cl l] Cg g)/(1 ] C
B
C

V
2) , (32)

B2D (C
V
2 Cv v2@3[ C

V
2 Cl l[ C

V
CgV g)/(1 ] C

B
C

V
2) . (33)

Note that, even though we treat l and g separately, there is
no guarantee that the above relations are true for nonunity
Prandtl numbers. Since l\ g and the second and third
terms on the right-hand side of equation (32) have di†erent
signs, V 2 depends on l (\g) weakly. We expect andC

B
C

Vto have similar values because they are describing similar
things : dissipation. The expression for B2 is not absolutely
correct because the omitted term in equation (31) becomes
nonnegligible when g becomes large.

When l\ g \ 0, we have

V 2 D Cv v2@3/(1 ] C
B
C

V
2) , (34)

B2 D C
V
2 Cv v2@3/(1 ] C

B
C

V
2) . (35)

These give a lower limit for B2 and an upper limit for V 2.
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