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ABSTRACT
We investigate a method for determining the temperature-density relation of the intergalactic medium

(IGM) at zD 2È4 using quasar absorption-line systems. Using a simple model combined with numerical
simulations, we show that there is a lower cuto† in the distribution of column density and line(NH I

)
width (b parameter). The location of this cuto† can be used to determine the temperature-density rela-
tion (under certain conditions). We describe and test an algorithm to do this. The method works as long
as the amplitude of Ñuctuations on these scales (D100 kpc) is sufficiently large. Models with less power
can mimic higher temperatures. A preliminary application is made to data from two quasar lines of
sight, and we determine an upper limit to the temperature of the IGM. Finally, we examine the full
distribution of b parameters and show that this is completely speciÐed by just two : the temperature of
the gas and the amplitude of the power spectrum. Using the temperature upper limit measured with the

cuto† method, we derive an upper limit to the amplitude of the power spectrum. The limitingNH I
-b

uncertainty in this work appears to come from the nonunique nature of Voigt-proÐle Ðtting.
Subject headings : cosmology : theory È intergalactic medium È quasars : absorption lines

1. INTRODUCTION

It has become clear that observations of absorption lines
in the spectra of high-redshift quasars can give us valuable
information about the nature and distribution of the inter-
galactic medium. Early theoretical work (Doroshkevich &
Shandarin 1977 ; Rees 1986 ; Bond, Szalay, & Silk 1988 ;
McGill 1990 ; Bi, & Chu 1992), supplemented byBo� rner,
numerical simulations (Cen et al. 1994 ; Petitjean, &Mu� ket,
Kates 1995 ; Zhang, Anninos, & Norman 1995 ; Hernquist
et al. 1996) showed convincingly that absorption lines at
zD 3 with column densities of less than about 1016 cm~2
arise primarily from a network of relatively low density
Ðlaments and sheets that naturally form out of hierarchical
primordial perturbations.

Having established the link between cosmology and the
Lya forest, subsequent work has focused on two related
areas : improving our understanding of the physical condi-
tions of the IGM (at these redshifts), and using the forest to
constrain cosmological parameters. This includes using the
power spectrum of the Ñux distribution (Croft et al. 1998 ;
Croft, Hu, & 1999a), the slope of the column densityDave�
distribution (Hui, Gnedin, & Zhang 1997 ; Gnedin 1998 ;
Machacek et al. 2000), and an inversion of the Ñux-density
relation (Nusser & Haehnelt 1999).

Although early simulations seemed to show that all
models were in agreement with observations, recently it has
been shown (Theuns et al. 1998 ; Bryan et al. 1999) that the
width of the absorbers, commonly quantiÐed by the b
parameter of a Voigt proÐle, had been overpredicted in
most previous work. This left a discrepancy between the
canonical model and the observations.

A number of ways to resolve this have been suggested,
most revolving around increasing the temperature of the

1 Hubble Fellow.

gas, and hence the width of the lines. The low-density gas in
the IGM is very close to photoionization equilibrium with a
background radiation Ðeld, usually assumed to be from
quasars. Its temperature is determined by a competition
between adiabatic cooling and photoionization heating
(Hui & Gnedin 1997). An increase in the density will result
in more photoionization heating and hence higher tem-
peratures. Theuns et al. (1999a) showed that increasing )

b
,

the ratio of the baryon density to the critical density, could
widen the lines. However, even after doubling the baryon
density to the edge of the value permitted by primordial
nucleosynthesis, they still found some disagreement. Along
similar lines, delaying helium reionization to zD 3È4
(Haehnelt & Steinmetz 1998) can provide a small boost in
the temperature.

In part driven by this discrepancy, there have recently
been some suggestions of other ways to increase the tem-
perature of the IGM. The Ðrst is a suggestion of Compton
heating from a hard X-ray background (Madau & Efsta-
thiou 1999). The second stems from the observation that the
commonly adopted optically thin limit for photoionization
heating (particularly for helium) may result in a substantial
underestimate of the gas temperature (Abel & Haehnelt
1999). A third, which we will not examine in detail in this
paper, is provided by photoelectric heating from dust grains
(Nath, Sethi, & Shchekinov 1999). Each of these could, in
principle, provide the factor of 2 increase in the temperature
required.

However, since the width of the lines is not just due to
temperature but also comes from the velocity structure
(both peculiar and Hubble velocities) along the line of sight,
it seems likely that other parameters also play a role. In an
elegant paper based on linear perturbation theory, Hui &
Rutledge (1999) argued that the width should depend
inversely on the amplitude of the primordial density Ñuc-
tuations.
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In this paper we show that there exists a way to indirectly
measure the temperature of the IGM. The method is based
on a lower cuto† in the distribution (Ðrst noted byNH I

-b
Zhang et al. 1997). The position and slope of this line is a
reÑection of the density-temperature relation of the IGM. A
simple model for this is presented in ° 2, and extensive tests
using numerical simulations are described in ° 4. We
develop a simple but robust statistic to Ðnd the location and
slope of the cuto† in the plane.NH I

-b
However, we also demonstrate that this method breaks

down if the amplitude of the density Ñuctuations is too low.
Again, we present a simple explanation for why this occurs
and show directly with simulations that it can mimic the
e†ect of higher temperature gas. This means that the
density-temperature relation derived in this way must be
treated as an upper limit (until the power spectrum can be
Ðxed by other means).

Switching from the cuto† in the distribution to theNH I
-b

full distribution of b parameters, we show in ° 5 that the
entire distribution is controlled by the same two parameters
described above : the temperature of the gas and the ampli-
tude of the primordial Ñuctuations. In fact, in this case these
two variables are completely degenerate and form a single
parameter.

In ° 6, we apply our tests to previously published obser-
vations of two quasars, and derive a temperature-density
relation.

2. THEORY

First, we quickly review the calculation of the line proÐle ;
more complete discussions can be found elsewhere (Hui et
al. 1997 ; Zhang et al. 1998). The optical depth at a given
(observed) frequency can be calculated withl0

q(l0)\
P
xA

xB
nH I

pa
dx

1 ] z
, (1)

where x is the comoving radial coordinate along the line of
sight, and is the neutral hydrogen density at this pointnH I(with redshift z). The Lya cross section, is a function ofpa,the frequency of the photon with respect to the rest frame of
the gas at position x :

l\ l0(1] z)
A
1 ] vpec

c
B

, (2)

where is the peculiar velocity and z is the redshift due tovpecthe Hubble expansion only. This can be rewritten in terms
of the velocity,

u \ H
1 ] z

(x [ x0)] vpec(x) , (3)

where we are expanding around the point and H is thex0,Hubble ““ constant ÏÏ at this redshift. The expression is valid
as long as u/c is much smaller than 1. In this case, the
optical depth can be written as

q(u0)\ ;
P
uA

uB nH I
1 ] z

K du
dx
K~1

pa du . (4)

The summation sign arises because equation (3) can be
multivalued. The cross section, assuming that Doppler
broadening dominates over natural or collisional line-
broadening (accurate for column densities less than 1017

cm~2), is given by

pa\ pa,0
c

bJn
e~(u~u0)2@b2 , (5)

where we have used the standard deÐnition b \
where is the Boltzmann constant, is the(2kB T /m

p
)1@2, kB m

pproton mass, and is the Lya line-center cross section.pa,0
2.1. Measuring the Temperature of the IGM

As outlined in ° 1, a central question is how to determine
the temperature-density relation of the gas. We also loosely
refer to this as the equation of state. It is quantiÐed as

T \ T0(1] d
b
)c~1 . (6)

Here, where is the mean density (both(1] d
b
) \o

b
/()

b
o6 ), o6

baryonic and dark). For gas primarily heated by UV photo-
ionization, c is expected to vary from 1 immediately after
reionization, to a limiting value of about 1.5 (Hui & Gnedin
1997). Similarly, is expected to evolve asT0 T0D (1] z)1.7.
This information is encoded in the absorption lines, and
here we describe a way to indirectly measure, or at least
constrain, the equation of state.

The width of a given line is the result of a convolution
involving the temperature, velocity, and density distribu-
tions of the gas along the line of sight. However, for low
column density lines (¹1015 cm~2) the temperature is a
slowly varying functions of position (Bryan et al. 1999).
Therefore, it makes sense to distinguish two sources of the
total line width :

the thermal Doppler broadening, which is a1. b
T
,

measure of the optical-depthÈweighted temperature of the
gas.

the broadening due to the velocity and density2. bprof,proÐle of the gas. While this is not generally a Gaussian, it
does have some width that can be parameterized with bprof(see Bryan et al. 1999 for a more thorough discussion of the
line proÐle).

A measure of the total width comes from adding these two
in quadrature : btot\ (b

T
2 ] bprof2 )1@2.

Our method is based on two assumptions. First, we
assume that the column density of a line is proportional to
the density of the gas, so that a measurement of can beNH Iconverted to The second assumption is that there(1] d

b
).

are at least some lines (at a given for which isNH I
) bprofsigniÐcantly smaller than so that If this is true,b

T
, btot B b

T
.

then there will be a minimum in the distributionNH I
-b

given by

bminB b
T

\
A2kB T

m
p

B1@2

\
C2kB T0(1] d

b
)c~1

m
p

D1@2
, (7)

where is the mean overdensity of a line with column1 ] d
bdensity In fact, this argument was Ðrst suggested byNH I
.

Zhang et al. (1997).
To make this a little more concrete, we can generate a toy

model for this minimum based on a number of assump-
tions : (1) photoionization equilibrium holds, (2) when com-
puting column densities, peculiar velocities can be ignored,
(3) all systems have the same comoving length, and (4) at
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any column density, there exist some absorbers with bvel\0. None of these conditions hold exactly ; however, numeri-
cal simulations show that, for at least some models, they are
not unreasonable approximations (Bryan et al. 1999). In
fact, as we will show, it is the last assumption that will
present the most difficulties.

From the Ðrst assumption, it is relatively straightforward
(e.g., Zhang et al. 1998) to show that the neutral hydrogen
density is given by

nH I
\ 1.2] 10~16(1] d

b
)2
A)

b
h2

0.02
B2

]
(1] z)6
!H I,~12

T 4~0.7 cm~3 , (8)

where K, and is the hydrogen photo-T4\ T /104 !H I,~12ionization rate in units of 10~12 s~1. The next two assump-
tions provide a relation between this and the column
density, which we will take to be where l \ 125NH I

\ lnH I
,

[4/(1] z)] kpc, so that

NH I
\ 1.9] 1013F(1] d

b
)2T 4~0.7 cm~2 . (9)

For notational ease, we have taken the cosmological and
photoionization factors into F, which is deÐned as

F\
A)

b
h2

0.02
B2A1 ] z

4
B5

!H I,~12~1 . (10)

In fact, the exact value of l has been selected to give a good
Ðt to the simulations described below; however, it is quite
compatible with the width of Ðlaments seen in simulations.

Finally, we use the fourth assumption along with equa-
tion (6) to derive an expression for the minimum column
density as a function of temperature :

NH I,min\ 1.9] 1013FT 42@(c~1)~0.7T 0,4~2@(c~1) cm~2 ,

(11)

where is K. Using equation (7), this can be recastT0,4 T0/104
entirely in terms of observable quantities and(NH I,min, bmin)parameters of the equation of state c) :(T0,

bmin\ 13 km s~1
A NH I,min
1.9] 1013 cm~2 F

B(c~1)@(5.4~1.4c)

] T 0,41@(2.7~0.7c) . (12)

This expression shows that the minimum in the dis-NH I
-b

tribution should take the form of a power law (since the
equation of state is assumed to be a power law). It gives a
way to determine the parameters of the density-temperature
relation in equation (6) from a measurement of the intercept
and slope of the minimum line in the plane.NH I

-b
Of course, this model is built on a number of approx-

imations, and its accuracy must be gauged in some way. We
do this by application to numerical simulations in ° 4.

2.2. T he Cosmology-b Connection
What else, apart from temperature, inÑuences the width

of the absorbers? The most signiÐcant cosmological param-
eter turns out to be the amplitude of the primordial density
Ñuctuations on the scales giving rise to the forest. The most
convincing demonstration of this comes from numerical

simulations ; however, a simple plausibility argument can be
made as follows.2

We begin with a sinusoidal perturbation of comoving
wavenumber k that perturbs a Ñuid elementÏs Lagrangian
position q :

x \ q [ D̀ A sin (kq)/k , (13)

where A is the initial amplitude and describes the evolu-D̀
tion of a growing mode for the given cosmology [D̀ P
(1] z)~1 in an EinsteinÈde Sitter universe]. This equation
usually begins a discussion of the Zeldovich approximation,
but here we will need to assume that A is small compared to
unity.

The peculiar velocity of the Ñuid element is given by

vpec\ ax5 \ [a5 fD̀ A sin (kq)/k . (14)

We adopt the common notation wheref \ aD0
`

/a5 D
`
,

a \ (1] z)~1 is the scale factor (Peebles 1993). For gas in
photoionization equilibrium, the neutral hydrogen density
is related to the gas density by The densitynH I

D o1.7.
produced by this perturbation is given by o D

so[1] D̀ A cos (kq)]~1,
nH I

P [1[ D̀ A cos (kq)]~1.7P 1 ] 1.7D̀ A cos (kq) .

(15)

For brevity, we have dropped the coefficients to this expres-
sion, since they contribute only to the overall normalization
of the optical depth, not to the structure of the line.

This is the density in physical space. In order to compute
the redshift-space density and hence the optical depth dis-
tribution via equation (4), we need the Jacobian

K du
dx
K~1\ 1

a5
[1] fD̀ A cos (kq)] . (16)

Using the previous two expressions, the full expression for
the optical depth distribution is given by

qP
P

[1] (1.7] f )D̀ A cos (ku/a5 )]pa du , (17)

where we have employed equation (3) (to Ðrst order in A) to
write an expression only in terms of u.

While this is helpful, there is still a convolution with the
Doppler width to contend with. The general expression is
quite complicated ; it is more helpful to recognize that the
result of the convolution will be quite close to a Gaussian
with width (see Bryan et al. 1999 for an explicit(b

T
2 ] bvel2 )1@2

demonstration of this). The Ðrst term is the Doppler-
broadening contribution, while the second term comes from
the structure of the line, as given in equation (17). Under the
assumption that these two terms are independent, we can
ignore the thermal-broadening part and focus simply on the
velocity part. However, the sinusoidal perturbation is not
Gaussian, so determining a b parameter from this is not
trivial. Of course, this is quite true in the real forest, where
line proÐles are often not well described by Voigt proÐles.
We make the correspondence by matching the shapes of the
cosine and Gaussian proÐles near the peak of the line,
where the largest contribution to the total optical depth
occurs. This is done by expanding both the cosine term of
equation (17) and a Gaussian exp ([u2/b2) and equating

2 Another calculation along these lines, but for a random Gaussian Ðeld
instead of a single perturbation, can be found in Hui & Rutledge (1999),
who also derived the expected shape of the distribution of b parameters.



60 BRYAN & MACHACEK Vol. 534

the Ðrst nonconstant term, which is proportional to u2.
Another way to do this would be to start with a Gaussian
perturbation instead of the sinusoidal one in equation (13).
In either case, we Ðnd that

bvel2 \ 2H2
(1.7] f )AD̀ k2(1] z)2 . (18)

It is interesting to examine this expression in more detail.
For the redshifts under consideration here, it is useful to
approximate the Hubble velocity as H \H0)01@2(1] z)3@2,
which is accurate as long as the ratio of the total matter)0,density to that required to close the universe, is not too low
(Peebles 1993). Similarly, fB )0.6 B 1, since ) is close to 1
at this redshifts (again, as long as is not too low). By the)0same reasoning, the growth factor D̀ B (1] z)~1.

The wavenumber of the perturbation k is also a factor in
this expression. While there will be a range of wavelengths,
it seems very reasonable to associate this with the Jeans
wavenumber or at least some Ðxed fraction of it (e.g., Hui et
al. 1997 ; Gnedin & Hui 1998),

k
j
\
S12na2Go6 k

5kB T0
. (19)

In this expression, k is the mean mass per particle, which is
about for ionized gas. The average density0.6m

p
o6 \

so [In writing this we3H02)0(1 ] z)3/8nG, k
j
P H0~1)0~1@2.

have suppressed a factor of which is likely to(1 ] z)~1T 00.5,be quite small, since Therefore, k PT0D (1 ] z)1.7.]
since it is a comoving wavenumber.H0~1 )0~1@2(1 ] z),

Surprisingly, if we make these assumptions, then H0, )0,and z all cancel, leaving the remarkably simple expression

bvelP A~0.5 . (20)

For a more realistic model with a spectrum of perturbations
P(k), the amplitude A will be proportional to the amount of
power on the scales of interest [i.e., For a givenA2P P(k

j
)].

spectral shape, In fact, approximately thisb P p8~1@2.
scaling was found in Machacek et al. (2000). It fails when
the perturbations become too large or when the thermal
width dominates for a majority of lines ; however, it works
surprisingly well. It also explains why the other cosmo-
logical parameters, in particular and the Hubble con-)0stant, have so little e†ect on the b-parameter distribution.
The lack of a redshift dependence in equation (20) also helps
to explain why the median distributions (both simulated
and observed) seem to be so constant with redshift, while a

thermally dominated distribution would scale as
b D T 1@2 D (1] z)0.8. We note that this result di†ers slight-
ly from that derived in Hui & Rutledge (1999), who found

because they assumed that the smoothingb P (D̀ p8)~1@2
scale would be constant in redshift space rather than com-
oving space. Finally, a note of caution : it is not clear why
this model should work for the forest, since much of it is in
the quasi-linear regime, where the overdensities are signiÐ-
cant. It seems likely that nonlinear e†ects should act in the
same direction, causing the lines to sharpen (and hence b to
decrease), but the nature of the scaling is beyond the scope
of this paper.

3. SIMULATIONS

In order to examine these e†ects in more detail, we have
performed numerical simulations of a range of models with
various heating rates and hence various equations of state.
We use a grid-based method based on the piecewise para-
bolic algorithm to model the gas and a particle-mesh code
for the dark matter and gravity. We follow the abundances
of six species : H I, H II, He I, He II, He III, and e~, by solving
the nonequilibrium evolution equations. The simulation
method is described in more detail elsewhere (Bryan et al.
1995 ; Anninos et al. 1997).

Table 1 lists the simulations that we analyze in this paper.
The Ðrst column gives the cosmological model ; most are a
form of the currently popular cosmological constantÈ
dominated model (LCDM) with )0\ 0.4, )" \ "/3H02\
0.6, and h \ 0.65 (the Hubble constant in units of)

b
\ 0.05,

100 km s~1 Mpc~1). We also run one other model in order
to demonstrate that the cosmological dependence is well
understood. This is a Ñat model (SCDM) with )0\ 1,

and h \ 0.5. The second column shows the selec-)
b
\ 0.08,

ted normalization of the power spectrum by giving thep8,linearly extrapolated rms density Ñuctuations in a top-hat
sphere of 8 h~1 Mpc. The next column gives a measure of
small-scale Ñuctuations suggested by Gnedin (1998),

p342 \
P
0

=
P(k, z\ 3)e~2k2@k324 k2dk

2n2 , (21)

where P(k, z\ 3) is the power spectrum at z\ 3 and k34\
h Mpc~1. All power spectra in this paper come from34)01@2the analytic Ðts of Eisenstein & Hu (1999).

The fourth column indicates L , the size of the simulation
volume, in Mpc. As we demonstrated in a previous paper
(Bryan et al. 1999), there is some dependence of the b-
parameter distribution on the box size, since Ñuctuations

TABLE 1

SIMULATIONS ANALYZED IN THIS PAPER

L X-Ray bmed
Model p8 p34 (Mpc) !He II

/!He II,HM Heating? T0,4 c T 0,4@ c@ (km s~1)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

LCDM . . . . . . . . . . 1.0 1.93 4.8 1.0 no 1.01 1.40 1.07 1.44 20.1
LCDM . . . . . . . . . . 1.0 1.93 4.8 2.0 no 1.30 1.39 1.35 1.43 23.0
LCDM . . . . . . . . . . 1.0 1.93 4.8 4.0 no 1.80 1.37 1.84 1.40 27.1
LCDM . . . . . . . . . . 1.0 1.93 4.8 1.0 yes 1.18 1.34 1.28 1.26 21.5
LCDM . . . . . . . . . . 0.8 1.54 4.8 2.0 no 1.52 1.34 1.36 1.42 24.6
LCDM . . . . . . . . . . 0.8 1.54 4.8 1.8 no 1.44 1.37 1.39 1.26 23.9
LCDM . . . . . . . . . . 0.8 1.54 9.6 1.8 no 1.49 1.32 1.42 1.27 24.3
LCDM . . . . . . . . . . 0.6 1.16 4.8 2.0 no 2.31 1.22 1.44 1.32 28.9
SCDM . . . . . . . . . . 0.55 1.55 4.8 2.0 no 1.53 1.32 1.29 1.38 24.6
LCDMh0.5 . . . . . . 0.8 1.54 4.8 2.0 no 1.22 1.40 1.17 1.43 24.3
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with wavelengths larger than L are not included. Our
canonical box size of 4.8 Mpc is sufficient for a reasonable
prediction ; however, convergence requires 9.6 Mpc, so we
perform one simulation with this larger size. All runs use a
grid of 1283 cells (except the 9.6 Mpc box, which uses 2563) ;
this provides the minimum resolution required to accu-
rately resolve the line proÐles.

The radiation Ðeld is assumed to be spatially constant
with the form given by Haardt & Madau (1996), which
assumes that the ionizing photons come from the observed
quasar distribution. However, we modify the He II photo-
heating rate in order to account for the neglected radiative
transfer e†ects, as discussed in Abel & Haehnelt (1999).
Although this is not realistic in detail, it does produce the
desired result of heating the IGM. The Ðfth column of Table
1 indicates the factor by which this is increased relative to
the original Haardt & Madau heating rates. Abel & Haeh-
nelt suggested that this factor should be D2È4.

The next column indicates whether the simulation
includes Compton heating due to a hard X-ray background.
We use the heating rate as computed by Madau & Efsta-
thiou (1999), who assumed that the energy density evolved
as and included theUX(z)\ UX(0)(1] z)4 exp ([z2/z

c
2)

Klein-Nishina relativistic corrections to the cross section,
resulting in a heating rate that scales approximately as
(1] z)13@3. We adopt z

c
\ 5.

The next four columns indicate the equation of state
parameters as given in equation (6), at z\ 2.7. The Ðrst set
(without primes) come from Ðtting the minimum andNH I

-b
are the observational estimates, while the second set (with
primes) come from directly Ðtting 10,000 randomly selected
cells in the simulation. The last column gives the median
value of the b distribution.

The analysis is carried out by generating artiÐcial spectra
along random lines of sight through the computational
volume. These spectra are then analyzed with an automated
Voigt proÐleÈÐtting routine (Zhang et al. 1997). This algo-
rithm does not include a number of observational e†ects,
such as noise, and so is somewhat idealized ; it probably
remains the largest source of uncertainty in the results pre-
sented here. In ° 4.3, we attempt to determine the level of
uncertainty that results. We have refrained from using the
same techniques as observers, due to the fact that they
require human intervention and generally produce results
that are not unique. In future work, we hope to use sta-
tistical methods that are more directly tuned for the task at
hand.

4. THE DENSITY-TEMPERATURE RELATION

4.1. Testing with Simulations
In ° 2.1, we discussed why there should be a minimum in

the bivariate distribution. In Figure 1, we show thisNH I
-b

distribution for our LCDM run with and the usualp8\ 1.0
Haardt & Madau (1996) photoheating rates for three red-
shifts, z\ 4, 3, and 2. There is a sharp cuto† at low column
densities and large b values (i.e., in the upper left corner of
each frame), which is due solely to our criterion for identify-
ing lines, namely, that the optical depth at the line center be
larger than 0.05. More interestingly, there is another fairly
sharp cuto† at low b, which is the subject of this paper.

The sharp edge that deÐnes the cuto† is fairly obvious to
the human eye and has been previously noticed in both
observations (e.g., Kirkman & Tytler 1997) and simulations

FIG. 1.ÈColumn densityÈwidth distribution at z\ 4, 3, and 2(NH I
-b)

(top to bottom) for our LCDM model with and our standardp8\ 1.0
heating rates. Small dots show about 1200 simulated lines, Ðlled diamonds
trace the minimum in the distribution as described in the text, andNH I

-b
the solid line shows a Ðt to these points.

(Zhang et al. 1997). In order to be more quantitative about
the position of the cuto†, we take as our inspiration edge-
detection techniques from machine-vision research. An edge
(in one dimension) is deÐned as a zero in the second deriv-
ative of the intensity (since this is an extremum in the Ðrst
derivative, the rationale is obvious). The application of this
idea is quite straightforward.

First, we sort the lines by column density and divide them
into groups of size 30È50 (each group is equivalent to a scan
line in an image). The smoothed density of lines is then
computed as a function of b with a weighted sum over all
lines in each group :

o
b
(b) \ ;

i
exp [[(b

i
[ b)2/2p

b
2] , (22)

where km s~1 is the smoothing constant. Thep
b
\ 3

method is not sensitive to small changes in either this
parameter or the number of points in the group (more lines
per group mean less noise, but lower resolution along the

direction). We can compute derivatives of veryNH I
o
beasily, so for each group with average column density

we simply deÐne the edge to be at such thatNH I,min, bmin
d2o

b
db2 (bmin) \ 0 . (23)

For noisy data there are occasionally several zero crossings ;
we take the strongest, deÐned as the one with the largest
Ðrst derivative. In order to get the lower cuto†, we insist
that the Ðrst derivative be positive. Software to perform this
is available from the authors on request.
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One important advantage of this algorithm is that it is
relatively insensitive to noise, which tends to smear out the
data (but not shift the edge) or outliers in the dis-NH I

-b
tribution (which may be rogue metal lines or simply the
result of blending). It also nonparametric, in that it does not
assume a form for the line.NH I

-b
This results in a set of points that deÐne the NH I

-b
minimum, plotted in Figure 1 as solid diamonds. We also
show a least-squares power-law Ðt to the line. We used only
absorption lines within a range of column densities that was
selected to include the majority of lines but not go below
about 2 ] 1012 cm~2 or above a few times 1015 cm~2. The
lower limit is slightly below present-day observational
limits, and the upper limit marks the point at which line
dynamics becomes more complicated (i.e., a†ected by
shocks and, in the real world, star formation).

Each of these points can be converted into a measure-
ment of T and via equations (9) and (7). The results ared

bplotted in Figure 2 as open circles. Also shown is a measure
of the temperature-density relation in the simulation made
by plotting 10,000 random cells as dots. The solid line
comes from converting the power-law Ðts from Figure 1
into measurements of and c via equation (12).T0The match is quite good, although clearly we prefer-
entially probe the upper part of the T -d relation. This is
because, to be observed, a line must be more dense than the
surrounding gas, so the measure is insensitive to the tem-
perature of gas between Ðlaments and sheets (although note

FIG. 2.ÈTemperature-overdensity relation for the same canonical
LCDM model as in Fig. 1, shown at z\ 4, 3, and 2 (top to(p8\ 1.0)
bottom). Small dots show 10,000 random cells, and the open circles and
solid line are derived from the minimum line as described in the text.NH I

-b

that we can still probe densities signiÐcantly lower than the
cosmic mean). At the other end, the maximum overdensity
is around 10 because of the maximum limit. If the T -dNH Irelation is not a strict power law, as at z\ 4, then this can
result in a substantial under- or over-estimate of the tem-
perature at very low or very high densities. We also note
that there are a small fraction of points in the simulation
with moderate densities but very high temperatures. These
points tend to lie near much more massive structures and
have been enveloped in their accretion shock. The
minimum b method described here is not sensitive to these
(rare) points.

We should remind the reader of two points regarding the
normalization of the relation, equation (12). First,d

b
-NH Ithe normalization was selected to give a good match at

z\ 3 ; changing this value is roughly equivalent to shifting
the open circles horizontally (in Second, the param-1 ] d

b
).

eter F shows that there is a degeneracy among the param-
eters h, and such that as long as the value of F is)

b
, !H I

,
unchanged, these parameters can be changed without
a†ecting the results plotted here. In fact, this is one reason
we choose to plot rather than a physical density.1 ] d

bAlthough the individual parameters h, and are not)
b
, !H Iwell determined, this particular combination is, from obser-

vations of the Lya forest (see, e.g., Rauch et al. 1997).
One further question about the method that can be

addressed at this point comes from the scatter in the
temperature-density relation. The method can be viewed as
a transformation of the sharp cuto† in the plane tob-NH Ithe plane. Seen in this way, it would seem thatT -(1 ] d

b
)

the result should trace the lower edge of the scatter in the
relation, since the lowest b lines should ariseT -(1 ] d

b
)

from gas with the lowest temperature. An inspection of
Figure 2 shows this not to be true. In fact, the transform-
ation is not a simple one, since a given line contains gas with
a range of temperatures and densities. This means that the
T and values derived from the b-N cuto† are aver-(1 ] d

b
)

aged temperatures and densities, reducing the scatter from
that derived by simply sampling Ñuid elements.

4.2. Changing the Equation of State
Given our success in measuring the temperature of the

IGM in the canonical simulation described in the previous
section, it is interesting to see whether we can detect the
e†ect of changing the primary heating mechanism as out-
lined in the introduction. In this section, we show that this is
possible. We retain the same cosmological model, but
modify the He II photoheating rate as described in Abel &
Haehnelt (1999). This takes into account radiative transfer
e†ects during He II photoionization that are neglected in
these simulations. Since the amplitude of the e†ect is hard
to gauge, we multiply the rate by either 2 or 4.

The results are shown in Figure 3, again with pointsbminand Ðtted as determined from our edge-detection algorithm.
Here, in order to give a concrete comparison with obser-
vations and to provide a constant reference point, we also
plot the observational equivalent of the minimum asNH I

-b
found by Kirkman & Tytler (1997) at a mean redshift of 2.7
for a single line of sight. Although they Ðtted this by eye, the
result agrees very well with the method used here. Our
standard He II photoheating rate produces temperatures
that are too low, while the ] 2 and ] 4 simulations are
much closer and bracket the result, with the ] 2 case being
the closest. There is some evidence that the slope is in dis-
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FIG. 3.ÈColumn densityÈwidth distribution at z\ 2.7 for our(NH I
-b)

canonical LCDM model with four di†erent heating rates. The top frame
shows the usual Haardt & Madau (1996) He II photoheating rate, while the
next two panels demonstrate the e†ect of increasing this rate by factors of 2
and 4, respectively. The bottom panel has the usual He II rate, but includes
Compton X-ray heating. The Ðlled diamonds show the minimum in the

distribution as described in the text. The solid line shows a Ðt toNH I
-b

these points, and the dashed line is the same for each panel and shows the
observational determination of the minimum from Kirkman &NH I

-b
Tytler (1997).

agreement for all cases ; however, this does not appear to be
strongly signiÐcant given our level of uncertainty (see
below). We can apply the same method used earlier to
determine the T -d relation, which is shown in the three left
panels of Figure 4. Again, the equation of state is quite
accurately determined.

Next, we examine the importance of Compton X-ray
heating in the bottom panel of Figure 3, which again shows
our canonical LCDM simulation with the usual He II pho-
toheating rates. However, now we include hard X-ray
heating, as described earlier. While this does boost the tem-
perature somewhat, it is clearly in itself insufficient to match
observations. Since the Compton heating rate is indepen-
dent of density, it tends to Ñatten the temperature-density
relation, shown in the upper right panel of Figure 4.
However, the e†ect at z\ 2.7 is mostly limited to low den-

sities and so is very difficult to detect with the minimum
method.NH I

-b

4.3. Changing the Power Spectrum
Although we have been successful in measuring the equa-

tion of state for our canonical LCDM model, we argued in °
2 that the amplitude of Ñuctuations on scales of a few
hundred kpc is also important in determining the distribu-
tion of line widths. In this section, we demonstrate that for
some models, this e†ect prevents us from accurately mea-
suring the temperature-density relation.

Figure 5 shows the results from two LCDM models in
which the power has been reduced to andp8\ 0.8 p8\ 0.6,
respectively. This changes the derived minimum line.NH I

-b
For (Fig. 5, top) the match with observations isp8\ 0.8
very good, while the lower power simulation produces a
power-law Ðt that is too Ñat. Since the equation of state has
not changed, application of the minimum methodNH I

-b
results in temperatures that are too hot, particularly for the
lowest power run. This is shown in the bottom right panels
of Figure 4.

This happens because one of our key assumptions is vio-
lated : speciÐcally, that there be a substantial number of
lines for which is small. For the lower power models, thebvelsmallest Ðlaments are almost all in the pre-turnaround
stage. That is, their peculiar velocities are still smaller than
the Hubble Ñow across their width, so that these two values
cannot cancel. This preferentially a†ects low column
density lines because they are the smallest Ñuctuations. In
fact, lines with a column density of around NH I

D 1015
cm~2 faithfully reproduce the correct tem-(1 ] d

b
D 10)

perature even for the simulation.p8\ 0.6
This demonstrates that the minimum methodNH I

-b
su†ers from a degeneracy between the gas temperature and
the amplitude of Ñuctuations. As long as thep34Z 1.6,
method can be used in a straightforward fashion (we use

since this is much closer to the scale and redshift ofp34,interest and so is nearly independent of other cosmological
parameters). Below this value, there is still useful informa-
tion to be gained, but the interpretation is more compli-
cated. In particular, without other knowledge about p34,the value of derived in this way is an upper limit, and theT0value of the slope c is a lower limit.

Although we do not show the results here, we have also
analyzed an LCDM simulation with a lower value of the
Hubble constant, as well as an SCDM model (see Table 1).
The results agree with the trends discussed in this section.

It is important to ask at this point what the uncertainties
are in determining the minimum line. The primaryNH I

-b
source of uncertainty is Ðtting the Voigt proÐles in the Ðrst
place, since this is both nonlinear and nonunique (e.g.,
Kirkman & Tytler 1997). In order to gauge the magnitude
of the possible error, we select one simulation (LCDM

with twice the usual He II photoionizing rate) andp8\ 1.0
Ðt it with the more realistic method AUTOVP et al.(Dave�
1997), kindly provided by Romeel This method per-Dave� .
forms a s2 minimization to produce the line list from the
simulated spectrum. Figure 6 shows the result for a signal-
to-noise ratio of 60, along with the Ðt found with the more
idealized Voigt proÐleÈÐtting algorithm. Clearly there is
some di†erence, which also a†ects the derived equation of
state, shown in the middle left panel of Figure 4. This
amounts to about a 15% di†erence in T at and isd

b
\ 0,

mostly due to Ðtting Voigt proÐles to lines that do not
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FIG. 4.ÈTemperature-overdensity relation at z\ 2.7 for six simulations. Symbols are as in Fig. 2. The three left panels show the canonical LCDM model
(with for the same three values of He II photoheating rate as in Fig. 3. The top right panel shows the same model, but with X-ray Compton heatingp8\ 1.0)
instead. The middle and bottom right panels were run with twice the usual Haardt & Madau He II photoheating rate, but for low-power LCDM models, with

and 0.6, respectively. For comparison, each plot also shows the equation of state from the middle left frame as a dashed line. The triangles andp8\ 0.8
dot-dashed line in the middle left panel show the equation of state derived from a di†erent Voigt proÐleÈÐtting technique, as described in the text.

follow this proÐle in detail. This demonstrates that Voigt
proÐle Ðtting remains the dominant source of systematic
uncertainty.

5. THE MEDIAN OF THE b-DISTRIBUTION

We have so far focused on the low b cuto†, but now we
turn, brieÑy, to the rest of the distribution. The top panel of
Figure 7 shows dn/db at z\ 2.7 for our three p8\ 1.0
models with varying equations of state (i.e., di†erent He II

photoheating rates). Only lines in the range NH I
\

1013.1È1014 cm~2 are used, so as not to be biased by the
line-selection function. All distributions are normalized so
that / (dn/db)db \ 1. This plot shows that increasing the
temperature results in a constant shift in log b. As discussed
in Bryan et al. (1999), this is not primarily a result of thermal
Doppler broadening, but comes instead from a thickening
of the Ðlaments and sheets (in both physical and velocity
space) due to the inÑuence of the increased pressure ; gas is
driven out of the centers of the Ðlaments.

The middle panel of Figure 7 shows the e†ect of changing
the amplitude of the power spectrum while keeping the tem-
perature constant. The results appear to match the simple
scaling derived in ° 2. This degeneracy between temperature
and power can be written in terms of the median of this
distribution :

bmed(T 0@ , p34) \ 26.5 km s~1
A T 0@
10,000 K

B1@2
(p34)~1@2 .

(24)

We use to indicate the temperature at measuredT 0@ d
b
\ 0

directly from the simulations, rather than via the minimum
method. In Figure 8, we plot this function against theNH I

-b
measured median b parameters from our simulations.
Finally, in order to demonstrate that there is not much
change in the shape, we rescale the b distributions in the top
two panels of Figure 7 with the following transformation :
b ] fb and (dn/db) ] (dn/db)/f. We deÐne f \ bmed(T 0@ , p34)/K, 1.93), where is given in equation (24).bmed(13,000 bmed
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FIG. 5.ÈColumn densityÈwidth distribution at z\ 2.7 for two(NH I
-b)

LCDM simulations. These both use twice the usual He II heating rate, but
decrease the amplitude of the initial Ñuctuation spectrum to (top)p8\ 0.8
and (bottom). Symbols are as in Fig. 3.p8\ 0.6

The result is shown in the bottom panel of Figure 7. The
scaling works very well, indicating that the shape of the
distribution changes little once the median is speciÐed. The
biggest di†erences are at small b, where thermal Doppler
broadening dominates.

Our simulated boxes are too small to fully contain all the
large-scale power. Previously (Bryan et al. 1999), we showed
that this has little e†ect on the shape of the b distribution,
but can cause a small shift in the median. In order to gauge
the size of this e†ect here, we ran two models with p8\ 0.8,
one with our usual box length of 4.8 Mpc and one twice this
size (see Table 1). They both had the same cell size (i.e., the
larger box simulation had 2563 cells rather than our more
usual 1283). The change in the median was only 0.4 km s~1
(1.6%). This could be slightly larger for models with more
power, but is unlikely to be a signiÐcant e†ect. This uncer-
tainty is smaller than that due to possible systematic di†er-
ences in Voigt proÐleÈÐtting algorithms (which remains the
dominant source of uncertainty).

FIG. 6.ÈColumn densityÈwidth distribution at z\ 2.7 for a(NH I
-b)

LCDM simulation with and twice the usual He II photoheatingp8\ 1.0
rate. This is the same simulation analyzed in the second panel of Fig. 3, but
here we use a di†erent Voigt-proÐle Ðtting technique. The diamonds and
solid line show the derived minimum line, while the dot-dashed lineNH I

-b
shows the minimum Ðt found previously, for comparison.NH I

-b

FIG. 7.ÈSimulated b distribution function for three models with the
same power but di†erent temperatures (top), the same temperature but
di†ering power (middle), and all models scaled as described in the text
(bottom).

6. A PRELIMINARY COMPARISON TO OBSERVATIONS

In this section, we make a preliminary comparison to
observations, using previously published results from the
quasar HS 1946]7658 (Kirkman & Tytler 1997) at a mean
redshift SzT \ 2.7, and APM 08279]5255 (Ellison et al.
1999) at SzT \ 3.4. Both observations have high signal-to-
noise ratios, ranging from 15 to 100 for HS 1946]7658 and
from 30 to 150 for APM 08279]5255. It should be kept in

FIG. 8.ÈMedian of the b distribution depends almost entirely on just
two parameters : the temperature of the gas and the amplitude of the(T 0@ )power spectrum (p34).
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FIG. 9.ÈColumn densityÈwidth distribution for two sets of(NH I
-b)

observed absorption-line systems. Top : HS 1946]7658 (Kirkman &
Tytler 1997) at SzT \ 2.7 ; bottom : APM 08279]5255 (Ellison et al. 1999)
at SzT \ 3.4. Symbols are as in Fig. 3.

mind that the Voigt proÐleÈÐtting technique used in these
papers (which is not fully automated) di†ers somewhat from
both methods used here. The distributions are shownNH I

-b
in Figure 9, along with the minimums derived using our
edge-detection method. (for APM 08279]5255 we adopt a
minimum column density of 2] 1013 cm~2 due to concerns
about line blending at these high redshifts).

The minimum edges detected can be convertedNH I
-b

into a measurement of the temperature-density relation,
which is shown in Figure 10. The values of F required to
convert the column density to were determined by1 ] d

bÐtting the column-density distribution to the simulations
(we use the LCDM simulation, but this is not veryp8\ 0.8
sensitive to which model we select). The noise in the T -d

brelation is larger than for the simulations because of the
much smaller number of lines (D300 as compared to
D1200). The power-law Ðts are given by T0,4\ 1.65,

FIG. 10.ÈTemperature-density relation as derived from the two
quasars analyzed in Fig. 9.

c\ 1.29 (HS 1946]7658) and c\ 1.54 (APMT0,4\ 1.52,
08279]5255). We remind the reader that these determi-
nations are really upper limits to the temperature rather
than measurements, because of the possible e†ects of cos-
mology (i.e., the unknown value of p34).There is an indication from the higher redshift system
that the gas is cooler at low density (i.e., a steeper equation
of state), although clearly this is substantially uncertain.
Still, a similar trend of lower b lines at higher redshift has
been previously noted from di†erent data (Hu et al. 1995 ;
Kim et al. 1997), so it is worth considering the possibility
that (low-density) gas is cooler at higher redshift. This does
not agree with what is expected for gas dominated by steady
photoionization heating and adiabatic cooling, i.e., T0D
(1] z)1.7 with a slowly steepening equation of state slope
(Meiksin & Madau 1993 ; & Rees 1994 ;Miralda-Escude�
Hui & Gnedin 1997 ; Abel & Haehnelt 1999). An alternate
heating source, such as late Helium reionization, would be
required if this result proves true.

To compare the shape of the b distributions to obser-
vations, in Figure 11 we plot dn/db from the same two
quasar systems previously discussed. We also show the dis-
tribution from our LCDM simulation with twicep8\ 0.8
the Haardt & Madau He II photoheating rate. The shape is
in reasonable agreement with HS 1946]7658, but the other
system has a large number of very low b lines that are not
seen in any of the models considered here (although a very
low temperature model might match). Both observed
systems also have a more pronounced non-Gaussian tail at
large b than appears in the simulations. Note, however, that
the log-log plot accentuates this tail when compared to the
more usual linear plot. It should also be kept in mind that
the Voigt proÐleÈÐtting method used for the observations
di†ers from either employed in this paper. Clearly, a more

FIG. 11.ÈTop : b-distributions from two observed quasar line systems,
along with one of the better Ðtting simulated results ; bottom : dn/db for the
same simulation using two di†erent Voigt proÐleÈÐtting algorithms ; the
solid line shows ZANM97 (Zhang et al. 1998), which is quite idealized,
while the dashed line indicates AUTOVP et al. 1997), which includes(Dave�
random noise with a signal-to-noise ratio of 60.
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deÐnitive result will require identical treatment of data and
simulations. The bottom panel of the same Ðgure shows
how the two di†erent Voigt proÐleÈÐtting algorithms used
in this work compare.

The observed median b (in the same column density
range considered earlier) is 27.3 for both systems. Using
equation (24), this implies that

(T 0@ /10,000 K)1@2(p34)~1@2 \ 1.03 . (25)

If we use the upper limits for derived earlier from theT0distribution, we can get an upper limit on the ampli-NH I
-b

tude of the power spectrum: The uncertainty isp34[ 1.52.
at least 30%, due to the uncertainty in the measured tem-
perature. This is quite close to the minimum value of p34required for a straightforward interpretation of the NH I

-b
minimum method Interestingly, this value of(p34Z 1.6).

(around 1.5È1.6) agrees reasonably well with a numberp34of determinations of the power spectrum amplitude using
other characteristics of the Lya forest (Gnedin 1998 ; Croft
et al. 1999b). For the LCDM model, it is also in accordance
with the normalization from COBE and rich clusters of
galaxies (e.g., Liddle et al. 1996). However, this result is
certainly preliminary ; a recent determination with a prom-
ising direct inversion method (Nusser & Haehnelt 2000)
favors lower values.

7. CONCLUSIONS

In this paper we have investigated a method for deter-
mining the relation between density and temperature
(loosely denoted the equation of state of the IGM) from the
distribution of quasar absorption lines in the plane.NH I

-b
SpeciÐcally, we look for a sharp minimum line in this plane
arising from the fact that Doppler thermal broadening sets
a minimum line width. Because there is a tight relation
between column density and overdensity, we can relate NH Ito overdensity and b to temperature. We derive a simple
model that reproduces this behavior, and clearly state its
assumptions.

We test this method with a range of equations of state,
including an enhanced He II photoheating rate (assumed to
be due to neglected optical transfer e†ects) and X-ray
Compton heating. We show that the method works as long
as the power spectrum amplitude is sufficiently high, so that

If the density Ñuctuations are too small, then onep34Z 1.6.
important assumption fails : that there be a substantial frac-
tion of lines whose width is dominated by thermal broaden-
ing. When this occurs, it mimics an equation of state that is
hotter and Ñatter.

Recently, Schaye et al. (1999) independently investigated
the feasibility of using this method. They used a di†erent
method for identifying the cuto†, but came to conclu-NH I

-b
sions quite similar to those presented here, with one excep-
tion. They did not Ðnd a cosmological dependence on the b
parameter, although they did not examine models with a
large variation in A follow-up paper by the same groupp34.
(Theuns, Schaye, & Haehnelt 1999b) looked at this point in
more detail and argued that although the density proÐles
were broader for low models, a more observationallyp34motivated Voigt proÐleÈÐtting algorithm would be largely
insensitive to this. Clearly, better statistical tools for analyz-
ing the spectra would be of help here. This is also reÑected
in the di†erence between the two Voigt-Ðtting techniques
employed in this paper.

Another independent work along similar lines has also
been presented recently by Ricotti, Gnedin, & Shull (2000).
They use a di†erent technique, but derive a broadly similar
temperature at zD 3 to that found here.

Applying our results to two quasar lines of sight with
mean redshifts of z\ 2.7 and 3.4, we derive a temperature-
density relation from these two systems that is similar to
those found in at least some of the simulations presented
here. We Ðnd a temperature of approximately 16,000 K for
gas with the mean density, rising to about 35,000 K for an
overdensity of 6. The uncertainty of these numbers is at
least 30%, however ; without any more information about
the value of they must be treated as upper limits to thep34,
temperature of the gas. If we were to assume that the power
spectrum criterion is satisÐed, then this represents fairly hot
gas compared to traditional models. The additional He II

photoheating is sufficient to produce this much heat ;
however, by itself Compton X-ray heating is not.

We turn now from the minimum to dn/db, theNH I
-b

distribution of b parameters. Following similar earlier work
(Hui & Rutledge 1999), we present a simple linear argument
that shows that the other important parameter in determin-
ing the b-parameter distribution is the amplitude of the
power spectrum. We demonstrate that simulations repro-
duce this scaling and show that the(bmedD T 1@2p34~1@2),
shape of the b distribution stays nearly invariant to changes
in temperature or the power spectrum amplitude. Its
median value can be given as a simple function of the gas
temperature and (at zD 3). If we use the temperaturep34derived from the method, this implies thatNH I

-b p34D 1.5
(with an uncertainty of about 30%), a value that is in rea-
sonable agreement with other methods of determining the
amplitude of the power spectrum. It should be kept in mind
that since the temperature measurement is really an upper
limit, this value for is also an upper limit.p34The degeneracy described in this paper between power
and temperature means that the b distribution alone will
not be sufficient to determine the equation of state of the
gas. This is unfortunate, because the evolution of the
temperature-density relationship can provide constraints
on other cosmologically interesting events. For example, if
the gas were to be colder above z\ 3 (as the data presented
here might be indicating), one possible explanation could be
the late reionization of helium (Reimers et al. 1997 ; Haeh-
nelt & Steinmetz 1998 ; Abel & Haehnelt 1999). This degen-
eracy can be broken by using other aspects of the Lya forest
(e.g., Croft et al. 1998 ; Machacek et al. 2000) to indepen-
dently Ðx the amplitude of Ñuctuations at these scales and
redshifts.
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