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ABSTRACT
We develop an analytic solution of the radiation transport problem for Type Ia supernovae (SNe Ia)

and show that it reproduces bolometric light curves produced by more detailed calculations under the
assumption of a constant-extinction coefficient. This model is used to derive the thermal conditions in
the interior of SNe Ia and to study the sensitivity of light curves to various properties of the underlying
supernova explosions. Although the model is limited by simplifying assumptions, it is adequate for
demonstrating that the relationship between SNe Ia maximum-light luminosity and rate of decline is
most easily explained if SNe Ia span a range in mass. The analytic model is also used to examine the
size of various terms in the transport equation under conditions appropriate to maximum light. For
instance, the Eulerian and advective time derivatives are each shown to be of the same order of magni-
tude as other order v/c terms in the transport equation. We conclude that a fully time-dependent solu-
tion to the transport problem is needed in order to compute SNe Ia light curves and spectra accurate
enough to distinguish subtle di†erences of various explosion models.
Subject headings : di†usion È radiative transfer È stars : interiors È supernovae : general

1. INTRODUCTION

The bolometric light curve is the simplest and most direct
manifestation of Type Ia supernovae (SNe Ia). For many
years it had been assumed that all Type Ia supernovae were
identical explosions, with identical light-curve shapes and
peak luminosities (cf. Woosley & Weaver 1986). While evi-
dence for this uniformity in the data was never terribly
convincing, the use of SNe Ia as the primary ““ standard
candles ÏÏ for cosmological distance measurement provided
a powerful incentive for assuming this homogeneity. This in
turn lead naturally to a search for an explosion model that
might produce identical displays from the diversity of pro-
genitors supplied by stellar evolution.

It became clear from the light curveÏs rapid evolution that
a relatively low-mass object was involvedÈone with a short
radiative di†usion time (Arnett 1982). The result of this
search is what one might call the present ““ standard
model ÏÏ : the thermonuclear incineration of a carbon-
oxygen white dwarf at the Chandrasekhar mass (see
Woosley & Weaver 1986, Arnett 1996 for details of this
search and a review of various models). The Chandrasekhar
mass provides a point of convergent evolution for various
progenitor systems, o†ering a natural explanation of the
assumed uniformity of display. The high densities attained
at the centers of these objects provide a mechanism (as
ill-deÐned as it may be at present) for their ignition, as well.

With the coming of age of various supernova searches
(Evans, van den Bergh, & McClure 1989 ; Hamuy et al.
1993 ; Barbon et al. 1993 ; Pollas 1994), there has recently
been an explosion in the availability of high-quality data. It
is now generally recognized that SNe Ia exhibit a variety of
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light-curve shapes, peak luminosities, and maximum-light
spectra. Perhaps most signiÐcant has been the discovery of
various regularities in the light-curve data, the most famous
of which we will call the ““ luminosity-width relation ÏÏ
(hereafter LWR) : the brightest supernovae have the
broadest light-curve peaks (Phillips 1993). There is also sig-
niÐcant evidence (Vacca & Leibundgut 1996) that the
decline at late times is more gradual in the brighter super-
novae.

This additional information provides new clues to the
nature of these explosions. We develop here, from Ðrst prin-
ciples, a theoretical framework for examining the formation
of SNe Ia light curves and extracting underlying properties
of the explosions. There have been a number of studies of
the light-curve problem in SNe Ia. In analytic work, Arnett
(1982, 1996) made various assumptions (discussed below)
that misrepresented the nature of energy deposition by
radioactive decay. The analytic results in this paper are a
generalization of his work.

Various numerical studies of the light-curve problem
(Harkness 1991 ; Khokhlov, & Wheeler 1995 andHo� Ñich,
references therein ; Weaver, Axelrod, & Woosley 1980) have
appeared in the literature. All of these have taken speciÐc
instances of explosion models and computed, to various
degrees of approximation, the resulting light curves. None,
however, have explored the e†ects of varying individual
properties of the underlying explosions while keeping all
others Ðxed. In this work, we will employ a rather less
sophisticated treatment of the transfer physics than pre-
vious authors have used and instead make a more system-
atic investigation of the e†ects of di†erent explosions. The
simpliÐed explosions we employ will thus not reÑect any
self-consistent model of the supernova phenomenon but
will make the e†ects of changing various parameters more
explicit.
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In the Ðrst section of this work, we derive an analytic
solution for the comoving frame transfer equation in
homologous expansion, which relaxes the assumptions
made by Arnett (1982). In the next section, we examine the
e†ects on the bolometric light curve of varying the proper-
ties of the underlying explosions. We use the solution from
° 1 in the third section to examine the relative importance of
various terms in the equations and the suitability of various
approximations that have appeared in the literature. The
analytic solution also provides an important check on the
accuracy of subsequent numerical solutions (Pinto &
Eastman 2000a).

The postexplosion dynamics of SNe Ia, which determine
the density and velocity structure, are quite simple. As in all
strong point explosions, the expansion becomes homolo-
gous. After a time that is short compared with the bolo-
metric rise time, the velocity gradient becomes equal
everywhere to the reciprocal of the elapsed time. The
density structure is quite smooth, with a density proÐle not
very di†erent from [with some typicalo P exp ([4v/v0) v0velocity P(E/M)1@2]. There is usually a small amount of
high-velocity material at the surface, in which the density
drops more rapidly ; as this material is largely transparent
long before the supernova is observed, we may ignore this
detail. To a surprising degree, all explosion models to date
have this relatively simple structure. Thus, the dynamics can
be speciÐed by the explosion energy and the mass of the
ejecta (in most models, the progenitor is completely
disrupted).

The other deÐning attributes of the explosion are in the
composition of the ejecta. Since it is radioactive nickel that
leads to any signiÐcant optical display, the amount of 56Ni
and the depth to which it is buried in the ejecta will obvi-
ously a†ect the light curve. The composition also a†ects the
opacity, obviously a determining parameter in a problem
concerned with the escape of radiation. In the next paper of
this series, we will examine the frequency distribution of the
opacity in a Type Ia supernova explosion and details of the
way in which energy di†uses from the center to the surface
(Pinto & Eastman 2000a).

We will thus deÐne a supernova by its total mass, explo-
sion energy, 56Ni mass, and opacity, allowing for variations
in the spatial distribution of the last two. With a simple
means of producing a light curve from these parameters,
one may eventually be able turn the problem around and
use the light-curve model to extract values for these param-
eters from observations of SNe Ia.

We Ðnd that, with the exception of the total mass, varia-
tions in any of these basic parameters lead to a behavior of
the light curve that is in the opposite sense of the LWR.
Varying the total mass can lead to a sequence of light curves
in which the LWR behavior is reproduced, but to date, a
viable model for supernovae with varying masses has not
been found. The full richness of SN Ia light-curve behavior
might be obtained from Chandrasekhar-mass explosions.
These analytical models assume a constant opacity. Ho� Ñich
et al. (1995 and references therein) have suggested that it is
the temperature dependence of the opacity that is the
primary factor in determining the light-curve shape. While
we show in a subsequent paper that these models signiÐ-
cantly overestimate this temperature dependence (Pinto &
Eastman 2000a), the idea is still probably correct, and we
provide a simple demonstration of this e†ect. The fact that a
constant-opacity solution can reproduce the observed

behavior does, however, suggest that the total mass of the
explosion could be a natural and simple explanation.

This is the Ðrst paper of a series. The next paper (Pinto &
Eastman 2000a, hereafter Paper II) explores the physics of
radiation transport in SNe Ia and the nature of the opacity.
The third (P. Pinto & R. Eastman 2000b, in preparation)
examines the nature of the secondary maximum in infrared
colors. Subsequent papers will systematically explore the
light-curve and spectrum properties of speciÐc models for
Type Ia supernovae.

2. A SCHEMATIC TYPE Ia SUPERNOVA

In this section we develop a simple analytic model for the
thermal evolution and light curve of a SN Ia. This will
prove useful for estimating physical conditions in the ejecta
at various times after explosion and for illustrating the e†ect
that changes in opacity, mass, energy deposition, and explo-
sion energy have on the bolometric light curve.

The ejecta of SNe Ia form an opaque, expanding sphere
into which energy is deposited by radioactive decay at an
exponentially declining rate. Because the sphere is initially
so opaque, this energy is converted into kinetic energy of
expansion on a hydrodynamic timescale.3 At the earliest
stages, the ejecta is so optically thick that the time it takes
radiation to di†use out is much longer than the elapsed
time. The luminosity is therefore initially quite small. As
time passes, the ejecta become more dilute and the di†usion
time drops below the (ever-increasing) elapsed time. Since
the rate of energy input declines exponentially with time,
there is a peak in the light curve as soon as the injected
energy has an appreciable chance to escape conversion to
kinetic energyÈwhen the di†usion time becomes compara-
ble to the elapsed time. While the fraction of deposited
energy that escapes conversion will continue to increase,
this is more than o†set by the decreasing energy deposition
rate.

Shortly after this peak, there will be a considerable
amount of radiation still trapped and di†using outward.
Since the energy deposition rate is so rapidly declining, the
luminosity will, for a time, exceed the rate of deposition,
until the supernova empties itself of this excess stored
energy. Finally, as the rate of energy deposition, now from
cobalt decay, declines more slowly and the di†usion time
becomes small, the luminosity becomes equal to the instan-
taneous deposition rate. There are thus two milestones in
the light curve. The Ðrst occurs near peak when the lumi-
nosity Ðrst rises above the rate of energy deposition. The
second occurs when the excess, stored energy is exhausted
and the luminosity falls to equal the instantaneous deposi-
tion. The elapsed time and the rate of deposition are easily
determined. The Ðrst is obvious and the second comes from
the decay of 56Ni to 56Fe and the transport of c-raysÈfairly
simple physics. Determining the di†usion time is a far more
complex matter, and most of the difficulty in producing
synthetic light curves and spectra arises from correctly char-
acterizing the transport and escape of thermalized radi-
ation.

Arnett showed in two elegant papers (Arnett 1980, 1982)
that the ideas expressed above could be demonstrated by a
simple analytic model that accounts for the deposition and

3 For a point explosion like a SN Ia, the hydrodynamic timescale is
comparable to the elapsed time.



746 PINTO & EASTMAN Vol. 530

escape of radiation from the expanding ejecta. This model
predicted a bolometric light curve that was generally in
good agreement with observed SN Ia behavior. Starting
from the thermodynamics of the trapped radiation, he
showed that the luminosity at peak was equal to the instan-
taneous energy deposition rate under the assumption of
constant opacity, and thus, the Ðrst milestone occurs near
peak bolometric luminosity. A number of assumptions were
made that for a Ðrst attempt were quite reasonable, but that
rendered suspect the precise predictions for any particular
model explosion. These included a constant-density struc-
ture, a constant opacity in both space and time, and the
requirement that the radial distribution of the energy depo-
sition was identical to that of the thermal energy. Thus,
while he could vary the expansion velocity and the total
mass, the e†ects of varying the structure of the ejecta and of
a realistic energy-deposition proÐle were beyond exami-
nation. In mathematical terms, ArnettÏs solution was an
eigenfunction expansion from which only the fundamental
mode is retained. We shall have more to say on this later.

We take a no-frills approach similar to ArnettÏs (1982),
while relaxing some of his more limiting assumptions so as
to be able to address additional questions, such as how the
density structure and distribution of radioactive isotopes
are manifested in the bolometric light curve.

We start by writing down the Ðrst two frequency-
integrated moments of the time-dependent, comoving frame
radiative transport equation in spherical geometry. The Ðrst
moment equation, for the radiation energy density, can be
written correct to all terms O(v/c) as (e.g., Mihalas &
Mihalas 1984)
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Here, E, F, and P are the zeroth, Ðrst, and second frequency-
integrated moments of the radiation Ðeld : the energy
density, the Ñux, and the (isotropic) radiation pressure. The
quantity is the extinction coefficient, and is the volumesl glemissivity. These are formidable equations to solve directly
(cf. Eastman & Pinto 1993, among others) ; our goal here is
to obtain a simple, approximate solution.

The Ðrst and most important assumption we will employ
is that the expansion is homologous. As already described,
SNe Ia are strong point explosions ; homologous expansion
will be an excellent approximation if the energy released by
56Ni decay does not strongly a†ect the dynamics of the
expansion. The energy available from 56Ni decay is
3 ] 1016 ergs g~1. This corresponds to the kinetic energy of
a gram of material traveling at nearly 2500 km s~1, or,
equivalently, a velocity increment of the same magnitude
over the velocity initially imparted by the explosion. The
signiÐcantly greater decay energy available from decay all

the way to 56Fe is less relevant, as most of the 56Co decay
energy is emitted at times when the supernova is becoming
optically thin. Since the observed expansion velocity of SNe
Ia is in excess of 104 km s~1, we expect that this additional
source of energy will have a modest, but perhaps not com-
pletely negligible, e†ect upon the velocity structure. Fur-
thermore, as the time to maximum light, is observed totmax,be at least twice as large the 56Ni decay time, most of the
hydrodynamic e†ect of 56Ni decay will have occurred prior
to a supernovaÏs discovery. If we take the ejectaÏs density
structure from an explosion calculation that has allowed
this additional energy to accelerate the ejecta for the Ðrst
few days, we will have taken this e†ect sufficiently into
account. We will therefore take the outer edge of the super-
nova, or at least of a Ðducial mass shell that contains vir-
tually all of the mass, to be at a velocity and a radiusvmax

R(t) \ R0] vmax t , (3)

where is the initial radius of the progenitor. For this typeR0of expansion law, there is an associated timescale

tsc\ R0/vmax , (4)

which will be one of the parameters of the solution.
A major simpliÐcation is the so-called Eddington approx-

imation, wherein the radiation Ðeld is isotropic everywhere :
E\ 3P. This is certainly valid during the early, optically
thick stages of evolution, but breaks down when the ejecta
become transparent. The error that this assumption intro-
duces at late times a†ects principally the energy distribution
(the radiation energy density) and has much less e†ect on
the bolometric luminosity, which is the only link this simple
analytic model has to SN Ia observations. We note in
passing that this assumption has dire consequences for the
calculation of the energy deposition, where the deposition
rate is proportional to the c-ray energy density and not the
Ñux.

It is important in this context to distinguish the Edding-
ton approximation from the di†usion approximation. The
di†usion approximation results from expanding the optical
depth variation of the source function (usually assumed to
be the Planck function in the di†usion regime) in a power
series in q and retaining only the Ðrst term. This implies that
the radiation Ðeld is isotropic and that the Ñux is pro-
portional to dB/dq. The Eddington approximation amounts
to performing a one-point Gaussian quadrature of the spe-
ciÐc intensity in forming angular moments of the radiation
Ðeld. While the radiation Ðeld is thus assumed to be iso-
tropic, the Ñux can depart greatly from dB/dq in regions of
low optical depth and far more closely approximates a com-
plete solution. Most importantly, the Eddington approx-
imation retains the wavelike character of equations (1) and
(2) with wave speed c while the di†usion approximation
propagates radiation in optically thin regions with inÐnite
speed. See, for example, Mihalas (1978) for further dis-
cussion of this point.

At the temperatures and densities of maximum-light SNe
Ia, the gas energy density is less than the radiation-Ðeld
energy density by a large factor. The radiation-Ðeld energy
density is

oerad4 aT 4D 1210
A T
2 ] 104 K

B4
, (5)
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which greatly exceeds both the thermal kinetic energy
density

oekin4
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B
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B

(6)

and the ionization energy density

oeion 4
oNA
A
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D 0.5
A o
10~12 g cm~3

BA SET
30 eV

BAA
56
B

, (7)

where is AvogadroÏs number, A is the mean mass perNAnucleon, i is the average ionization, and SET is the mean
ionization energy.

The dominance of radiation over internal energy permits
us to ignore the gas internal energy and set

P
0

=
(4ngl[ csl El)dl\ v , (8)

where v is the volume rate of c-ray deposition. Equation (8)
is equivalent to saying that as soon as high-energy radiation
from decay is absorbed, it is immediately reradiated as
thermal emission. The mechanism by which this happens is
collisional : c-rays Compton scatter, producing high-energy
electrons, which then rapidly transfer their energy to the
plasma. This occurs on a timescale that is short compared
with any other timescale important to the problem of
energy transport.

While the escape of radiation from the supernova during
the peak of the light curve occurs on timescales much longer
than the light-crossing time, the radiation Ðeld changes con-
siderably on a hydrodynamic timescale. Following the dis-
cussion in Mihalas & Mihalas (1984), in order to ensure the
correct radiation energy balance, all terms to O(v/c) must be
retained in the radiation energy equation (eq. [1]).
However, in the frequency-integrated radiation momentum
equation, (eq. [2]), it is appropriate on a Ñuid-Ñow timescale
to discard all time- and velocity-dependent terms. This dif-
ference in treatment is intuitively evident when one realizes
that we are vitally interested in determining the energy
density and its Ñow within the supernova, yet the radiation
momentum has little e†ect upon the supernovaÏs dynamics
after the Ðrst few days. The radiation momentum equation
is thus reduced to the familiar di†usion form

F\ [ c
3s

LE
Lr

, (9)

where s is an appropriately deÐned frequency-averaged
mean opacity. We note once again that this result is valid
beyond the di†usion regime. Even when the mean free path
of photons becomes large, it is justiÐable to ignore the time-
and velocity-dependent terms in the momentum equation
(see Mihalas & Mihalas 1984 for further discussion of this
point).

Using this and the previous approximations in the radi-
ation energy equation, the transport equation becomes
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In general, equation (10) is too complicated to solve analyti-
cally. However, for certain conditions speciÐed below, the
spatial and temporal parts of the solution may be separated,
and equation (10) reduced to two ordinary di†erential equa-
tions.

It is convenient to homologously scale all of the remain-
ing quantities in terms of the time t and x \ r/R, the
(dimensionless) fractional radius. Since the gas is radiation
dominated, and we writeEP R~4P (1 ] t/tsc)~4,

E(x, t) \E(x, t)E0
C R0
R(t)
D4

\ E0t(x)/(t)
C R0
R(t)
D4

, (11)

where t(x) describes the radial variation and /(t), the tem-
poral variation, and is the initial energy density.E0The density can be written as

o(r, t) \ o0 o8 (x)
C R0
R(t)
D3

, (12)

where is the radial proÐle of the density, normalized soo8 (x)
that o8 (0)\ 1.

The extinction coefficient s is the mass-opacity coefficient
i times the density. We allow i to have an intrinsic radial
dependence, described by as well as a time dependence,i8 (x),
f(t) :

s(r, t) \ i0 i8 (x)f(t)o0 o8 (x)
C R0
R(t)
D3

. (13)

Separation of variables is possible only if the opacity does
not depend upon the energy density (i.e., the temperature).
Remarkably, conditions may actually conspire to produce
an e†ective (Ñux mean) opacity that is roughly constant
with both time and depth through the ejecta (Pinto &
Eastman 2000a), though for now we will merely take this as
an assumption in the derivation.

The volume energy deposition rate v will scale as

v(r, t) \ 3MNi v0
4nR03

h(t)"(x, t)
C R0
R(t)
D3

, (14)

where MeV] 3.69 MeV\ 5.42v0 \ENi] ECo \ 1.73
MeV is the total energy available from decay, per atom of
56Ni, and "(x, t) is the dimensionless energy-deposition
function that results from c-ray transport and escape. The
total production rate of decay energy as a function of t is
described by h(t), given as

h(t) \ v0~1

]
C
ENi e~t@qNi ] ECo qCo

qNi ] qCo
(e~t@qCo [ e~t@qNi)

D
. (15)

It is convenient to deÐne the total energy available from the
56Ni] 56Fe decay chain (excluding neutrinos) in terms of
the total kinetic energy of the gas,

v8 \ 3MNi v0
4nR03E0

, (16)

and the initial di†usion time from the center as

q
d
\ 3s0R02

c
, (17)

where s0\o0 i0.
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Substituting equations (11), (12), (13), (14), and (15) into
equation (10) gives

q
d
f(t)

R0
R(t)

/5 t[ /
1
x2

L
Lx
Ax2

s8
Lt
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B

\ q
d
v8 f(t)h(t)"(x, t) ,

(18)

where we have combined the spatial shape of the density
and opacities into the function Equation (18) iss8 (x)\ o8 i8 .
the principle equation that describes the evolution of the
radiation-Ðeld energy density.

Next we must specify the boundary conditions. At the
center there is a reÑection boundary condition where the
Ñux vanishes, or equivalently, t@(0)\ 0. At the surface, we
use a solution to the plane-parallel gray-atmosphere
problem, assuming that the thickness of the surface layers is
small compared with the radius. This can be expressed as

t(x)\ 34t
e
(q] 23) ; (19)

the comes from the Eddington approximation. At the23outer edge, q\ 0, and we have

t(1)\ 12te
(20)

and thus

t(x)\ 32t(1)[q(x)] 23] . (21)

The boundary condition is then
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Since the optical depth to the surface from radius r is
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we have

K dq
dx
K
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\ [o0 i0R(t)o8 (1)i8 (1) . (24)

It is more convenient to require the solution to go to zero at
some radius beyond x \ 1 as a boundary condition.
Extrapolating equation (24) linearly, we Ðnd that this is
equivalent to requiring att(x0)\ 0

x0\ 1 [ 2
3
K dx
dq
K
x/1

. (25)

The value of increases as density declines, and strictlyx0speaking, this will introduce into the spatial solution a time
dependence that violates the conditions making equation
(18) separable. However, if we consider this to be a slow,
quasi-static change, the solution obtained by separation of
variables is not too inaccurate, and will be adequate for our
needs. We will touch on this again below.

To solve equation (18), we follow the usual procedure for
separation of variables and Ðrst Ðnd a solution to the
homogenous equation, where energy deposition from decay
is set to zero. In the absence of any sources, equation (18)
can be written as
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. (26)

Since the terms on the left-hand side of this equation
depend only on t, while those on the right-hand side depend
only on x, each must be equal to a constant independent of
either x or t. Let this constant be a. We can then write, for
the spatial part,

1
x2t(x)

L
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s8
Lt
Lx
B

\ [a . (27)

For the solution can be writtens8 \ 1,

t(x) \ sin (a1@2x/x0)
a1@2x/x0

, (28)

where the eigenvalue a depends upon the total optical
depth. For large opacity, dq/dx is large, and the boundary
condition equation (24) approaches the radiative-zero con-
dition, t(1)\ 0. For constant s, the radiative-zero eigen-
values are and the eigenfunctions area

n
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t
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Given the temporal part of the solution, is deter-a
n
, /

n
(t)

mined by the homogenous equation
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For f(t) \ 1 (opacity does not change with time), the solu-
tion can be written as

/
n
(t) \ exp

C
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A
1 ] t
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BD
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When is an arbitrary function, there are no analytics8
solutions to equation (27), and we must determine the eigen-
functions numerically. Eigenvalues are determined by a
Rayleigh-Ritz procedure, and a discrete representation of
their corresponding eigenfunctions is obtained by relax-
ation. The basin of convergence to a desired eigenfunction
for this process is surprisingly small ; for most interesting

eigenvalues must be determined to better than ao8 (x),
percent for the resulting relaxation to converge to the
desired solution. We prefer to normalize the solutions such
that the functions are orthonormal with respect to thet

ninner product

S f o gT 4
P
0

1
f (x)g(x)x2 dx . (32)

As the solution progresses in time, the spatial solution
changes, because the value of increases with decreasingx0optical depth. To avoid the need of a new solution of equa-
tion (27) at each time, in much of the discussion that follows,
we will take the radiative-zero solution. This allows a single
set of eigenvalues to be used at all times. For more realistic
calculations, we note that the change in eigenvalues due to
changes in over time is slow and continuous. We may thuss8
continuously re-solve the eigenvalue problem as we evolve
the solution in time. As an example, Table 1 lists the Ðrst 25
eigenvalues for the radiative-zero solution with s8 \ e~kx,
with k \ 0È4. A selection of these functions is shown in
Figure 1.

Turning now to our original, inhomogeneous transport
equation, equation (18), the general solution for E(x, t) is an
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TABLE 1

EIGENVALUES FOR o(x)\ e~kx

Mode k \ 0 k \ 1/4 k \ 1/2 k \ 1 k \ 2 k \ 4

1 . . . . . . . . . . . 9.86960 1.18781 1.42501 2.02981 3.92561 1.16372
2 . . . . . . . . . . . 3.94781 4.55671 5.24601 6.90071 1.15962 2.91752
3 . . . . . . . . . . . 8.88271 1.01522 1.15732 1.49222 2.40892 5.64532
4 . . . . . . . . . . . 1.57912 1.79782 2.04142 2.61152 4.14772 9.39372
5 . . . . . . . . . . . 2.46742 2.80372 3.17732 4.04882 6.37812 1.41813
6 . . . . . . . . . . . 3.55312 4.03282 4.56512 5.80432 9.10122 2.00153
7 . . . . . . . . . . . 4.83622 5.48522 6.20502 7.87822 1.23173 2.69003
8 . . . . . . . . . . . 6.31672 7.16102 8.09692 1.02713 1.60273 3.48373
9 . . . . . . . . . . . 7.99462 9.06022 1.02413 1.29823 2.02303 4.38283
10 . . . . . . . . . 9.87002 1.11833 1.26373 1.60113 2.49273 5.38743
11 . . . . . . . . . 1.19433 1.35293 1.52853 1.93603 3.01173 6.49743
12 . . . . . . . . . 1.42133 1.60983 1.81863 2.30273 3.58023 7.71303
13 . . . . . . . . . 1.66813 1.88913 2.13383 2.70133 4.19803 9.03423
14 . . . . . . . . . 1.93463 2.19073 2.47433 3.13173 4.86533 1.04614
15 . . . . . . . . . 2.22083 2.51473 2.84003 3.59413 5.58193 1.19934
16 . . . . . . . . . 2.52693 2.86103 3.23093 4.08833 6.34803 1.36324
17 . . . . . . . . . 2.85263 3.22973 3.64713 4.61443 7.16353 1.53754
18 . . . . . . . . . 3.19813 3.62073 4.08853 5.17243 8.02843 1.72254
19 . . . . . . . . . 3.56343 4.03413 4.55513 5.76243 8.94283 1.91804
20 . . . . . . . . . 3.94843 4.46993 5.04693 6.38423 9.90663 2.12414
21 . . . . . . . . . 4.35323 4.92793 5.56403 7.03793 1.09204 2.34084
22 . . . . . . . . . 4.77783 5.40843 6.10633 7.72353 1.19834 2.56804
23 . . . . . . . . . 5.22213 5.91123 6.67393 8.44103 1.30954 2.80594
24 . . . . . . . . . 5.68623 6.43643 7.26673 9.19053 1.42564 3.05434
25 . . . . . . . . . 6.17003 6.98403 7.88483 9.97193 1.54674 3.31334

Ratio . . . . . . 1.0 1.1322 1.2782 1.6163 2.5063 5.3643

NOTE.ÈThe Ðrst 25 eigenvalues for the spatial equation (27) The Ðnal row is the ratio
of subsequent eigenvalues to n2n2, the asymptotic limit.

expansion in terms of the eigenfunctions t
n
:

E(x, t)\ ;
m/1

=
E
m

t
m
(x)/

m
(t) . (33)

If we substitute this expansion into the inhomogeneous
equation (18), multiply by and integrate from x \ 0x2t

n
(x),

to 1, we get

FIG. 1.ÈEigenfunctions for mode numbers 1, 5, and 12 for exponential
density laws with constant k \ 0 and 4. The energy is more centrally
condensed for the more centrally condensed structure (dotted lines).
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where is the overlap integral of "(x, t) with eigen-S" ot
n
T

function according to equation (32).t
n
(x)

For simple forms of f(t) and equation (34) can beS" ot
n
T,

integrated analytically. It is, however, a straightforward
matter to integrate this equation numerically, and one need
not be limited by the analytic integrability of these two
functions.

We must now put back the dimensional constants in
order to be able to calculate a light curve. Starting with the
deÐnition of the Ñux equation (eq. [9]), we have for the
luminosity

L (t) \ [ 4ncR0 E0
3s0

1
f(t)

;
n/0

=
/
n
(t)
C x2
s8 (x)

dt
dx
D
x/1

. (35)

Because the boundary conditions are t(0)\ 0 and
there is no scale to the problem, and we are freet@(x0) \ 0,

to impose a third condition on the overall normalization of
the solution. We can compare the luminosity with the
energy deposited at late times by noting that when the time-
scale over which the energy deposition h(t)"(t, x) changes
becomes long compared with the di†usion time, the go/

nasymptotically to

/
n
\ q

d
a
n

v8 h(t)f(t)S" ot
n
T . (36)
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If we integrate equation (27) over volume, we Ðnd that

C x2
s8 (x)

dt
dx
D
x/1

\ [a
n
I
n
(1) , (37)

where the total radiation energy interior to x is

I
n
(x)\

P
0

x
x2t

n
dx . (38)

Putting these two results into the expression for the lumi-
nosity and using the deÐnitions of and givesq

d
v8

L (t)\ 3MNi v0 h(t) ;
n/0

=
/
n
(t)S" ot

n
TI

n
(1) . (39)

If "(x, t) is constant in x, we can let "(x, t)D "(t), and the
sum becomes

"(t) ;
n/0

= AP
0

xs
x2t

n
dx
B2

. (40)

Requiring that the solutions be normalized such thatt
nthis is "(t)/3 leads Ðnally to

L (t)\ MNi v0 h(t)"(t) , (41)

the instantaneous energy deposition.
To examine the e†ect of including an increasing number

of modes on the shape of the light curve, it is convenient to
renormalize the energy deposition such that the correct
total amount of energy is deposited per unit time into what-
ever modes are included in the calculation. We therefore
divide the energy-deposition factor by the quantityS" ot

n
T

f\ ;
n

S" ot
n
T

/01 x2" dx
. (42)

This has the aliasing e†ect of overestimating the power in
the included modes just enough to bring the deposited
power to the correct value.

For the c-ray deposition function, "(x, t), we compute a
numerical solution to the time-independent c-ray line trans-
port problem at each time t. It is not necessary to solve the
fully time-dependent transport problem, because the Ñight
time for c-rays before absorption or escape is much smaller
than any other timescale of interest. We have performed this
calculation two ways : in one case, each of the most impor-
tant lines in the 56Ni and 56Co decay spectra are separately
transported, as described by Woosley et al. (1994). Alterna-
tively, we perform the calculation for just two lines, one for
56Ni at the emission-weighted mean energy of 479 keV, and
the other for 56Co, at the emission-weighted mean energy of
1.13 MeV. The two methods give results that agree with
each other and with exact Monte Carlo results to better
than a percent over the Ðrst 30È40 days of the light curve.

2.1. Comparison with a Multigroup Calculation
In order to assess the accuracy or realism of the analytic

model, it is instructive to compare its predicted bolometric
light curve with one produced by a more detailed (and
expensive) calculation. We have therefore used the pro-
cedures outlined in the last section to compute the light
curve of a model that approximates the main properties of
the well-studied deÑagration model W7 of Nomoto,MchThielemann, & Yokoi (1984). For the analytic model, we
take Mtot\ 1.39 M

_
, M56\ 0.625 M

_
, R0\ 1.40 ] 108

cm, and cm s~1. The peak light curve is insensi-vmax\ 109
tive to the choice of initial temperature, and the value 1010

K was used. The density is constant with radius, and a
radiative-zero boundary condition is assumed. The mean
opacity was taken to be the constant value cm2i0\ 0.13
g~1. The abundance of 56Ni is unity out to a radius given
by and zero beyond thatr56\ (M56/Mtot)1@3(R0] vmax t)radius. The c-ray deposition was computed as described
above.

Figure 2 compares the analytic calculation with the bolo-
metric light curve obtained by a multigroup (3000 frequency
points) LTE transport calculation made with EDDING-
TON (Eastman & Pinto 1993). The EDDINGTON calcu-
lation used the actual structure and composition of model
W7 and predicted an average Ñux mean opacity equal to the
value adopted for the gray calculation (i \ 0.13 cm2 g~1).
For the Ðrst 30 days, the agreement between the two calcu-
lations is excellent. We note that the good agreement is
somewhat deceptive, because the constancy of i with time
arises by assumption in the gray model, while no such
assumption was made in the multigroup calculation
(however, see Paper IIÈthere is some reason to expect that
the opacity will in fact be roughly constant with depth).

The ““ bump ÏÏ in the light curve of the EDDINGTON
calculation that appears between 30 and 44 days reproduces
similar features seen in the observational data (Suntze†
1995). It is caused by a decrease in the mean opacity, which
allows stored energy to be released more quickly than in the
constant-opacity models. The constant-opacity calculation
lacks the second bump, and falls onto the radioactive tail
more slowly as a result.

2.2. T hermal Conditions in a Maximum-L ight SNe Ia and
Parameter Sensitivity

One application of the analytic model is to estimate tem-
peratures in SNe Ia. Figure 3 shows central temperature
versus time for the analytic model previously shown in
Figure 2. At times t \ 20 days, the central temperature is
T (x \ 0)[ 13,000 K, which puts the peak of the blackbody

FIG. 2.ÈComparison of the bolometric light curve (solid line) of model
W7 of Nomoto et al. (1984) as determined by a multigroup radiation
transport calculation performed with EDDINGTON, a numerical solu-
tion of the gray transport equation for the same model employing a con-
stant opacity, and the analytic solution described in the text for a
constant-density explosion of the same total mass, 56Ni mass, kinetic
energy, and opacity. The constant-opacity calculations agree well with the
multigroup calculation with the exception of the secondary ““ bump ÏÏ that is
produced by a decrease in the mean opacity, thus allowing the release of
stored energy on a shorter timescale than in the constant-opacity cases.
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FIG. 3.ÈAnalytic model temperature solution at x \ 0 for a constant-
density model having the same mass, kinetic energy, and 56Ni mass as
model W7.

spectrum at a wavelength at which thejWein[ 2200 A� ,
optical depth due to lines is very large.

Figure 4 demonstrates the dependence of the analytic
modelÏs light-curve solution upon changes in opacity, the
distribution of 56Ni, the mass of 56Ni, and the explosion
energy, all for Chandrasekhar-mass explosions. In all these

calculations the Ðducial model is the sameÈthe ““W7-like ÏÏ
model discussed in the previous section.

In the Ðrst panel of Figure 4, the opacity is varied by a
factor of 2 above and below our Ðducial model. The e†ect is
just what one would expect. A lower opacity decreases the
di†usion time, allowing radiation to escape earlier. Spend-
ing less time in the expanding, optically thick enclosure, the
radiation su†ers a smaller loss to expansion. The light curve
thus peaks earlier, at a higher luminosity. The ejecta
become optically thin sooner, making the transition to the
asymptotic solution of balanced deposition and radiative
loss at an earlier time, and the peak becomes narrower than
the Ðducial model. The higher-opacity model likewise peaks
later, is fainter, and is considerably broader. Note that this
behavior is the opposite of the LWR relation ; at least for an
opacity that is constant with time, we must look elsewhere
for a fundamental parameter to explain observations. Note
also that a factor of 4 change in opacity leads to only half a
magnitude of di†erence in the peak magnitude.

Next we show the e†ect of varying the extent of the
energy deposition, but without varying the mass of 56Ni, the
velocity, or the total mass of the explosion. Such a variation
might be the result of hydrodynamically induced mixing, or
it may be simply that little extra energy is liberated by
burning beyond the Si group to 56Ni. Models with more
centrally condensed deposition peak later, but with only
very slightly lower peak magnitude. The width of the peak
is somewhat broader with a broader distribution of deposi-
tion, as there is a larger range in di†usion times for the
deposited energy to make it to the surface.

We next vary the kinetic energy of the explosions, which
is to say the scale velocity, by a factor of 2 above and below

FIG. 4.ÈE†ect of varying the opacity, extent of deposition, explosion energy, and 56Ni mass on the standard explosion (center line in each plot). The
instantaneous energy deposition rate is shown as a dotted line.
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the Ðducial model. Because a greater expansion velocity
leads to a more rapid decline in column depth, more ener-
getic explosions peak earlier, at higher luminosities, and
decline more rapidly. Thus, an increase in explosion energy
has much the same e†ect as a decrease in opacity. Indeed,
the opacity and the density occur in the thermalized radi-
ation equations only as the product oi. The change in the
slope of the energy deposition following peak is a conse-
quence of the change in column depth to the c-rays.

In the last panel of Figure 4, the 56Ni mass is varied. The
peak luminosity is seen to follow the 56Ni mass, with a
slight change in shape arising from the varying fraction of
the supernova Ðlled with radioactive material as in the
second panel.

ArnettÏs (1982, 1996) analytic SNe Ia light-curve model
predicts that the luminosity at bolometric maximum would
precisely equal the instantaneous rate of deposition from
56Ni and 56Co decay. This has provided some interesting
constraints, both on the mass of 56Ni produced and on the
luminosity at maximum. ““ ArnettÏs rule,ÏÏ as it has come to
be known, is only approximate, however, and is related to
the assumptions that a single eigenmode describes the shape
of the energy density and that the energy deposition has this
same shape.

Figure 5 illustrates the result of including a varying
number of eigenmodes in the solution. ArnettÏs (1982) result
is reproduced by taking only the Ðrst mode. The e†ect of
including higher modes is primarily to steepen the rise to

FIG. 5.ÈE†ect of the number of eigenmodes on the calculated light
curve. In the upper panel, energy deposition is taken to be uniform with
radius. In the lower, the deposition extends out to the radius used in the
standard model, x \ 0.76.

peak and to broaden the width of the peak. From equation
(34), we see that the e-folding time for the power in mode n
to decay is proportional to the eigenvalue, which varies
roughly as the square of the mode number. This is easy to
understand physically. The higher order modes describe
variations of the energy density on smaller and smaller
spatial scales. The energy variations at these scales do not
have far to go to di†use out to a smoother distribution, so
the power in these modes declines rapidly. In the lower
panel of the Ðgure, we have used the same model as in
Figure 2, while in the upper panel we have made the energy
deposition uniform over the entire star. In both cases, the
e†ect of adding more modes is to steepen the rise to peak. In
the case with the 56Ni ““ buried ÏÏ well within the ejecta, the
energy from the decay takes more time to di†use to the
surface, and by the time it does, the fundamental mode has
most of the power. Thus, the time of peak and the peak
magnitude are but little a†ected by the number of modes.
For the uniform-deposition case in the upper panel,
however, there is deposition near the surface, which can be
represented adequately only by the inclusion of higher
eigenmodes. The energy deposited near the surface spends
less time di†using and su†ers less from adiabatic decom-
pression. Thus, the inclusion of the higher modes shortens
the rise time. The light curve peaks earlier and at a higher
luminosity. Because of this e†ect, all subsequent light curves
in this work are calculated with a sufficient number of
eigenmodes to approach the exact solution. On the other
hand, the Ðgure shows that for models in which the 56Ni
does not extend beyond, say, 85% of the radius, the dis-
tribution of radioactivity has little e†ect on the light curve.
By the time energy has di†used out to the surface, informa-
tion about this distribution has been lost.

The tendency toward the fundamental mode near
maximum provides a clue to the expected shape of the peak.
For a constant opacity and times that are long compared
with the scale time, we see from equation (31) that the peak
of the light curve will be a Gaussian,

/(t) \ exp
A
[ a1 t2

2tsc qd

B
. (43)

This provides a theoretical justiÐcation for the use of a
Gaussian as a Ðtting function by Vacca & Leibundgut
(1996) to determine the rise time and width of observed light
curves. For explosions with signiÐcant amounts of 56Ni
near the surface, this approximation will of course be less
accurate. In such cases, a larger number of eigenmodes are
necessary to describe the wider variation of di†usion times
from the sites of deposition to the surface.

The previous Ðgures also show that, except for models
with signiÐcant deposition near the surface, the luminosity
at peak is nearly identical to the instantaneous deposition
rate (under the assumption of an opacity that is constant
with time, df/dt \ 0), as Ðrst noted by Arnett (1982). It is
important to remember that this does not imply a short
di†usion time at peak. Rather, it results from the fact that
peak light is the watershed that separates times at which the
energy deposition rate is greater than the luminosity from
those at which it is less, as noted in the introduction to this
section.

In Figure 6 we show the e†ect of altering the density
structure of the supernova. The density of most SN Ia
models is represented fairly well by an exponential in veloc-
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FIG. 6.ÈLight curve from a model with density structure o8 (x)\ exp
([kx) plotted along with that of the constant-density Ðducial model. The
upper set of curves shows the time dependence of the energy-deposition
fraction ; for all density laws, the deposition is nearly complete until 10
days or so after peak.

ity, with k D 4, which departs fairlyo8 (x)\ exp ([kx)
strongly from the constant-density proÐle we have
employed thus far. One can see from the Ðgure that in spite
of the crudeness of the model, a constant-density model
light curve is nearly identical to one that possesses a more
realistic density proÐle. The light curve is insensitive to the
density structure for the same reasons that it is insensitive to
the number of included modes.

None of the parameters we have examined thus far can
account for the luminosity-width relation ; varying the
explosion energy and opacity leads to a correlation opposite
in sense to the ““ brighter implies broader ÏÏ behavior
observed, and the other parameters lead to little variation in
light-curve shape. One way to obtain the LWR suggests
itself immediately : if the mass of 56Ni is decreased while the
kinetic energy is increased, then a sufficient decrease in 56Ni
mass can o†set the increased luminosity of the narrower
peak. The problem with this proposition is that in a Mchexplosion, most of the star must be burned at least to the
silicon/calcium group to obtain the observed velocities. We
can lower the 56Ni mass only by increasing the fraction of
the star burned to Si/Ca. Even though approximately 75%
as much energy is liberated in burning only to Si/Ca as in
burning all the way to 56Ni, it is hard to see how a decrease
in 56Ni fraction sufficient to achieve the desired e†ect on the
light curve can accompany a sufficient increase in kinetic
energy.

Another way to obtain the LWR in an explosion isMchto vary the opacity in such a way that an increased 56Ni
mass is accompanied by an increase in opacity enough to
o†set the increase in kinetic energy, as must be required
from the results of & Khokhlov (1996). An increaseHo� Ñich
in 56Ni will in general result from a more energetic explo-
sion and hence a narrower peak. If the opacity is increased
sufficiently, however, the peak will be, nonetheless, broader.
An increased opacity accompanying a higher 56Ni mass
might result from a combination of higher temperatures due
to increased deposition and a higher opacity in iron group
elements than in Si/Ca.

One can estimate crudely how much of an opacity
increase is needed in order to reproduce the LWR relation,

using the fact that the rate of decline from maximum is a
measure of the di†usion time,

tdiff B R2oi P
Mi
vt

P
M3@2i
E1@2t , (44)

where we have assumed the velocity vP (E/M)1@2. Hamuy
et al. (1995) give and 1.72 (B magnitudes) for*M15\ 0.82
SN 1992bc and SN 1992bo, respectively, which correspond
to di†usion times of 19.6 and 9.5 days. SN 1992bc was D2.1
times brighter in B than 1992bo, which, if we take that to be
the ratio of their explosion energies, corresponds to an
opacity ratio of 3.1.

The Ðnal parameter in the solution is the total mass of the
explosion. For a constant velocity (speciÐc kinetic energy),
changing the total mass will result in a change in the density
and will have a similar e†ect to changing the opacity as in
Figure 4, leading to a brighter and narrower peak for lower
masses. Lower mass explosions, however, will naturally
produce less 56Ni, as the densities attained in lower mass
white dwarfs are smaller. Changing the density will also
a†ect the c-ray deposition. A decrease in mass will allow
energy to escape more easily in the form of c-rays. More
importantly, it will allow the rate at which the escape
increases to be greater, and this more rapid fallo† in the
deposition will also act to oppose the tendency toward
increased luminosity in models with lower column depth.

In Figure 7, the total mass of the ejecta is varied. Simply
as an illustration of the e†ects, in both panels the 56Ni mass
fraction is kept constant, but in the upper panel the energy
of the explosion is kept constant while in the lower panel
the ratio of explosion energy to total mass, the speciÐc
energy, and thus the velocity, are preserved. Constant-
energy series of explosions might arise, for example, from
the fact that lower mass white dwarfs have lower densities,
leading to an increasing fraction of the energy arising from
incomplete burning to lighter nuclei. Explosions with con-
stant speciÐc energies would arise when di†erent mass pro-
genitors nonetheless give similar nucleosynthetic yields. In
both cases, the higher column depth of larger mass models
leads to later, broader peaks, but the larger adiabatic losses
are more than compensated by the increased mass of 56Ni.
In both cases, larger masses lead to brighter and broader
peaks, as observed.

While such an explanation for the LWR is attractively
simple, it is not clear how progenitors of varying mass
might lead to SNe Ia explosions. Two possibilities have
been suggested. The Ðrst are low-mass (0.6È1.0 C/OM

_
)

cores that have accreted helium on their surfaces to the
point where the helium detonates (Woosley & Weaver
1994 ; Livne & Arnett 1995). This helium detonation will
likely lead, in many circumstances, to a detonation of the
C/O core as well, resulting in a supernova with a total mass
less than Such models as have been computed to dateMch.for such a scenario do not show encouraging agreement
with spectral observations, but the model has not been
exhaustively explored. The second possibility is that SNe Ia
are the result of mergers between lower mass C/O cores.
This would also lead to a variety of explosion masses.
Because of the computational difficulty involved in a simu-
lation of this inherently multidimensional process, there
have been no models to date that have been carried to a
point from which a spectrum or light curve might be com-
puted.
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FIG. 7.ÈTwo ways of varying the total mass of the explosion : in the top
panel the explosion energy is constant at 1 foe (1051 ergs), and the 56Ni
yield is Ðxed as a constant fraction of the total mass, for M \ 0.8, 1.0, 1.2,
and 1.4 In the lower panel E/M is held constant at 3.6] 1017 ergsM

_
.

g~1.

In the absence of detailed models, then, we can note only
that explosions of di†ering masses would appear to provide
a simple and natural explanation for the physics underlying
the LWR, with the total mass of the explosion as a funda-
mental underlying parameter. At present, a variation in
opacity accompanying variations in 56Ni mass seems more
likely.

3. TIME DEPENDENCE

As a Ðnal, more technical issue, we can use the analytic
solution we have developed to examine the validity of
various approximations to the solution of the radiative
transfer problem in supernovae. While it may seem obvious
that SNe Ia are not steady state phenomena, several papers
have appeared in the literature in which the absolute lumi-
nosity of some SNe Ia has been estimated ignoring the basic
time dependence of the transport physics. This is a natural
and indeed necessary assumption for the calculation of
NLTE (non-LTE) maximum-light spectra, as general, time-
dependent, NLTE calculations are beyond current compu-
tational capabilities. It is, however, important to
understand the magnitude of the errors that may be
incurred by such approximations.

Among the most important and commonly used approx-
imations is that of steady stateÈthat one or more of the
time-dependent terms in equations (1) and (2) can be
ignored. These are enormously attractive approximations,

as they greatly reduce the computational complexity. A
time-independent problem is much easier to solve than a
time-dependent one !

Steady state amounts to the assertion that heating by
energy deposition and cooling by radiative processes (and
perhaps by expansion as well) are balanced at all times.
There are two versions of this approximation. The Ðrst
asserts that the Lagrangian derivative (the Ðrst term in eq.
[1]) is small compared with the Ñux divergence. In this
approximation, the supernova is no di†erent than a static
stellar atmosphere. The second (employed, for example, by
Nugent et al. 1995 and references therein), takes into
account energy loss from PdV work but asserts that the
Eulerian derivative LE/Lt is negligible.

In Figure 8 we present ratios of various terms in the
transfer equations as functions of time for our fully time-
dependent solution. For clarity, only the fundamental mode
is considered ; the inclusion of higher modes will make the
time dependence di†erent at di†erent depths in the ejecta
but does not alter the character of the solution or the order
of magnitude of the terms.

The ratio of the Lagrangian derivative to the Ñux diver-
gence in equation (1) is

DE
Dt
C

[ 1
r2

L
Lr

(r2F)
D~1

\ t
C

[ 1 ] q
d
a

v8 h"
/

[ 4q
d

tsc a
A
1 ] t

tsc

B~2D
. (45)

Using the asymptotic value equation (36), equation (45)
becomes the ratio of the di†usion (current) time to the
expansion (elapsed) time and thus goes to zero in the limit
of large t. At late times, energy is deposited in the ejecta and
is immediately radiated away ; thus, the Ñux divergence
must equal the deposition, and it is appropriate to use a
““ steady state ÏÏ solution, which balances instantaneous
luminosity against the time-varying deposition rate, h(t)"(t).

At peak light, in equation (34) and in equation (36)/5 \ 0
as well, so equation (45) becomes the ratio of the present
di†usion time to the elapsed time. Since peak occurs when
the di†usion time approximately equals the elapsed time,

FIG. 8.ÈRatios of various terms in the transfer equation as functions of
time. Because a logarithmic scale is used, the absolute value of each curve
is plotted. Thus, at maximum (near 15 days), the Eulerian derivative
changes sign from positive to negative.
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the ratio in equation (45) is D1, implying that the time-
dependent terms cannot be ignored. Thus, while steady
state is a Ðne approximation at late times, it is quite a poor
approximation at earlier phases of the light curve. Indeed,
for the ““ standard model ÏÏ above, it is only after 246 days
that the ratio in equation (45) falls below 1%.

In the second approximation, which one might call
““ quasiÈsteady state,ÏÏ only the Eulerian derivative is
neglected. We can formulate the ratio of the Eulerian to the
advective derivative as

LE/Lt
(v É+)E

\ tsc
4
Cv8 h"

/
[ a

f(t)/t
d

DA
1 ] t

tsc

B2
. (46)

Once again, this ratio goes to zero in the limit of large time,
but it also goes to zero at peak, when That this must/5 \ 0.
be so is obvious from examination of the light curves of the
previous sections. Before peak, the luminosity of the super-
nova is less than the rate at which energy is being deposited
in the ejecta, even accounting for losses due to expansion.
Shortly after peak, the luminosity is greater than the deposi-
tion rate. This means that before peak, a store of energy is
being built up in the supernova and therefore that LE/
Lt [ 0. After peak, this ““ excess ÏÏ energy is radiated away,
and the energy loss is greater than the loss due to expansion
alone, so LE/Lt \ 0. Since the sign of the Eulerian derivative
changes when the supernova traverses peak light, there
must be a time near peak at which it is zero. This does not
mean that the term can be ignored, however. When the
e†ects of all modes are included, the time at which
LE/Lt \ 0 is di†erent for each radius. As well, the deriv-
ativeÏs value is changing rapidly ; one can see from the Ðgure
that only a few days before and after maximum it is 30% as
great in magnitude as the advection term.

We wish particularly to draw attention to the erroneous
conclusions drawn in this regard by Baron, Hauschildt, &
Mezzacappa (1996). In that work, its authors express LE/Lt
as a Ðnite di†erence over a time interval dt. They then go on
to show that inclusion of this term has the e†ect of an
additional source or sink of radiation. While this is correct,
when comparing the magnitude of various terms, they let
dtÈwhich would be the ““ time step ÏÏ in a Ðnite-di†erence
treatment of the time-dependent problemÈbe the elapsed
time. They then conclude that the term is small and can be
ignored. This is wrong. While it is obvious that in an
implicit-di†erence scheme one approaches some sort of
steady state if a sufficiently long time step is employed, it is
equally obvious that such a state need have little semblance
to a correct solution of the time-dependent equations. This
is especially so in that the solution at peak is not an asymp-
totic limit. If they had chosen a time step small enough to
preserve accuracy in the Ðnite di†erence, dt would have
been almost 2 orders of magnitude smaller and their esti-
mate of the relative size of the Eulerian derivative would
have been much the same as that determined here.

To see the error in the quasiÈsteady state approximation
another way, consider the limiting case of inÐnite opacity,
radiative equilibrium, and homologous expansion. Equa-
tions (1) and (2) then become

DE
Dt

\ [ 4R0
R

E . (47)

If we solve this equation directly, we Ðnd the expected result
that EP t~4. This clearly contradicts the notion that the

intrinsic time derivative of E is zero ! In yet another
demonstration, if we consider the case in which we set /5 \
0, the light curve must decline monotonically, following the
energy deposition. Thus, the mere fact that the light curve is
observed to peak is testament to the error of the quasiÈ
steady state.

Perhaps the simplest way to gauge the e†ects of time
dependence upon the light curve is to examine when the
luminosity emitted at a given time was deposited in the
ejecta. Figure 9 shows the cumulative fraction of luminosity
at maximum light as a function of deposition time for a
typical supernova model. It is clear that the ““ residence
time ÏÏ of the energy that emerges from a supernova near
maximum light is signiÐcant. From the Ðgure, for example,
50% of the luminosity is energy deposited at times earlier
than 75% the age of the supernova.

Energy is stored predominantly in the form of photons
di†using out through the ejecta. Even the tactic of taking
the thermal structure of the matter from a light-curve calcu-
lation, placing it in an atmosphere code, and calculating the
resulting spectrum does not do justice to the presence of
these ““ old photons.ÏÏ There is no reason to suspect that the
radiation temperature is the same as the matter tem-
perature, and thus, without taking some measure of the
radiation-Ðeld energy density from the light-curve calcu-
lation, there is no way to characterize the spectrum or inten-
sity of these photons in the spectrum calculation. The only
way to avoid a serious omission in the physics of spectrum
formation is to provide some measure of the spectral shape
and intensity of the ““ old photons ÏÏ to the atmosphere code.
In practice, this means that the spectrum formation
problem is the light-curve problem; one cannot avoid the
inherent time dependence in calculating either light curves
or spectra. Especially when attempting to calibrate SNe Ia
as cosmological distance indicators, it is necessary to
include all of these important physical e†ects.

It is true, however, that LE/Lt becomes small near
maximum light, and it may be true, despite the presence of
““ old photons,ÏÏ that a ““ quasiÈsteady state ÏÏ treatment may
not be too much in error at this epoch. Without a bench-
mark time-dependent NLTE calculation with which to
compare, however, it is difficult to assess the magnitude of
any error in the resulting luminosity. Since the spectrum-

FIG. 9.ÈFraction of maximum-light luminosity arising from energy
deposited before the time indicated on the abscissa.
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forming layers of the outer atmosphere are primarily scat-
tering, and since the shape of the pseudocontinuum may
have little to do with the gas temperature or the luminosity
as demonstrated above, a good agreement with the
observed spectrum shape may not in fact imply a reliable
estimate of the luminosity.

4. CONCLUSIONS

We have derived an analytic solution of the comoving
frame transport equations that closely reproduces the
results of more complex numerical solutions. This allows
one to examine a number of key features of the light-curve
physics itself and of the observed systematics in SNe Ia
data. One result is the demonstration that the light-curve
and spectrum problem is inherently time dependent and
cannot be approximated by time-independent calculations
before at least 70 days past explosion.

Using the analytic model, we have explored the e†ect of
changes in a variety of parameters on the resulting light
curve. These include the opacity, explosion energy, 56Ni
mass and distribution, and total mass. Of these, there is only
one parameter that by itself can explain the observed corre-
lation of peak width and luminosity : the total mass. All
others, when varied individually, lead to anticorrelations.
This does not necessarily imply that the mass of the explo-

sion is the controlling parameter ; there may be various
combinations of parameters that, when altered in concert,
lead to the same behavior. For example, if the opacity can
be shown to be a strong function of the 56Ni mass, then the
behavior of models at a single mass may be able to repro-
duce the LWR. The fact that variations in so fundamental a
property of the explosion as the total mass can explain the
observed behavior is suggestive.
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