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ABSTRACT
We show that an exact expression for the GreenÏs function in cylindrical coordinates is
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where and is the half-integer degree Legendre function of thes 4 [R2 ]R@2 ] (z[ z@)2]/(2RR@), Q
m~1@2second kind. This expression is signiÐcantly more compact and easier to evaluate numerically than the

more familiar cylindrical GreenÏs function expression, which involves inÐnite integrals over products of
Bessel functions and exponentials. It also contains far fewer terms in its series expansionÈand is there-
fore more amenable to accurate evaluationÈthan does the familiar expression for o x [ x@ o~1 that is
given in terms of spherical harmonics. This compact GreenÏs function expression is well suited for the
solution of potential problems in a wide variety of astrophysical contexts because it adapts readily to
extremely Ñattened (or extremely elongated), isolated mass distributions.
Subject headings : galaxies : formation È galaxies : structure È methods : analytical È stars : formation

1. INTRODUCTION

A great many astrophysical problems require the deter-
mination of a gravitational Ðeld. The Ðeld, for the most part,
can be adequately described by Newtonian gravity and
often can be derived from a potential function. From a
mathematical viewpoint, there are two methods for obtain-
ing the potential : by solving a partial di†erential equation,
i.e., PoissonÏs equation, or by solving an integral equation,
i.e., employing the GreenÏs function method (Jackson 1975).
As Arfken (1985) has explained, boundary conditions are
directly built into the integral equation rather than being
imposed at the Ðnal stage of the solution of a partial di†er-
ential equation. Also, mathematical problems such as exis-
tence and uniqueness can be easier to handle when cast in
integral form. On the other hand, solving di†erential equa-
tions is often more tractable than solving integral equations,
particularly when dealing with multidimensional problems.

In building realistic models of steady state galaxies, a
considerable amount of e†ort has been devoted in recent
years toward identifying analytically prescribable potential-
density pairs. In some cases a reasonable three-dimensional
density distribution can be represented by a sum over a
Ðnite set of ““ basis density functions ÏÏ in which case
PoissonÏs equation can be solved using the corresponding
basis sets of the potential-density pairs (Earn 1996 ; Robijn
& Earn 1996). Some useful steady state models also can be
constructed by superposing other special density (or
surface-density) distributions with known potentials, such
as those derivable from potentials (de Zeeuw 1985 ;Sta� ckel
Evans & de Zeeuw 1992).

When following the time-evolutionary behavior of
models whose structures are changing on a dynamical time-
scale, however, one must develop an efficient technique for
solving PoissonÏs equation that works for arbitrary mass
distributions. Furthermore, simulations of time-evolving
systems often are carried out on grids that cover a Ðnite
(rather than an inÐnite) region of space, in which case one
must also determine the potential on the boundary of that

region. In practice, then, in many astrophysical studies a
GreenÏs function method is used to Ðnd the potential only
on a boundary outside of a mass distribution, then a tech-
nique is developed to solve PoissonÏs equation to obtain the
interior solution. A standard technique for calculating the
boundary potential has been to expand the GreenÏs func-
tion in spherical coordinates, resulting in what is often
referred to as a ““ multipole method ÏÏ (Black & Bodenheimer
1975 ; Norman & Wilson 1978 ; Barnes & Hut 1986 ; see also
° 2.1, below) in which the potential is grouped into an inÐn-
ite sum over a basis set of spherical harmonics described by
two quantum numbersÈone meridional, l, and the other
azimuthal, m.

Because very Ñattened mass distributions are poorly
described in a spherical coordinate system, we have exam-
ined whether it might be advantageous in our numerical
simulations to cast the GreenÏs function in a cylindrical
coordinate system. The ““ familiar ÏÏ expression for the cylin-
drical GreenÏs function expansion can be found in variety of
references (see Morse & Feshbach 1953 ; Jackson 1975 ;
Arfken 1985). It is expressible in terms of an inÐnite sum
over the azimuthal quantum number m and an inÐnite inte-
gral over products of Bessel functions of various orders
multiplied by an exponential function (see eq. [13], below).
We note a previous attempt by Villumsen (1985) to solve
the potential problem in this manner ; he presents a tech-
nique in which each inÐnite integral over products of Bessel
functions is evaluated numerically using a Gauss-Legendre
integrator. In that paper Villumsen states, ““ Cylindrical
coordinates are a more natural coordinate system for disk
systems.ÏÏ He then emphasizes the obvious problem that,
because of the inÐnite integrals involved, a calculation of
the potential via this straightforward application of the
familiar cylindrical GreenÏs function expansion is numeri-
cally much more difficult than a calculation of the potential
using a spherical GreenÏs function expansion.

In ° 2.2 of this paper, we derive an extraordinarily
compact expression for the GreenÏs function in cylindrical
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coordinates. Our expression (see eq. [15], below) com-
pletely removes the need for a numerical evaluation of the
inÐnite integrals involved since we have found an analytical
expression for the integral in terms of half-integer degree
Legendre functions of the second kind. As we discuss in
subsequent sections of this paper, our technique should
prove to be a particularly powerful tool for studying self-
gravitating systems that conform well to a cylindrical coor-
dinate mesh, such as highly Ñattened (disk systems) or
highly elongated ( jet or bipolar Ñow) mass distributions.

As far as we have been able to ascertain, this result has
not been previously derived. At the very least, based on
published research over the past 30 years, the result appears
to be unfamiliar to the astrophysics community.

2. A COMPARISON OF POTENTIAL EVALUATING

TECHNIQUES

In general, the integral solution to the potential problem
may be written in terms of the GreenÏs function G(x, x@) as
follows (see eq. [1.42] of Jackson 1975) :
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where ' is the potential, G is the gravitational constant, o is
the mass density, x denotes the position vector from the
origin to the point at which the potential is being evaluated,
x@ denotes the position vector over which the mass integra-
tion is performed, V is the volume over which x@ is inte-
grated, and S is the bounding surface of V . For the case of
no bounding surfacesÈas in most astrophysical systemsÈ
the surface integral in equation (1) vanishes because of the
requirement that both ' and the derivative of ' normal to
the surface L'/Ln@ vanish at inÐnity. In this case the GreenÏs
function reduces to

G(x, x@)\ 1
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. (2)

These requirements therefore reduce equation (1) to the
more often quoted integral expression for the gravitational
potential, namely
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2.1. Multipole Method Using Spherical Harmonics
In spherical coordinates, the expansion of the GreenÏs

function is (see eq. [3.70] of Jackson 1975)
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where r represents the radial distance from the origin, h is
the polar angle, / is the azimuthal angle, and is theY

lmspherical harmonic function (see eq. [3.53] of Jackson
1975). If we insert equation (4) into equation (3), we obtain
an expression for the potential at an exterior point (r [ r@),
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are called ““ multipole moments.ÏÏ In the case of an axisym-
metric conÐguration, only the m\ 0 terms in expression (4)
survive, reducing it to
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The corresponding expression for the axisymmetric poten-
tial is therefore given by
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where now the axisymmetric multipole moments

M
l
4
P
V
o(r@, h@)r@lP

l
(cos h@) d3x@ . (9)

Expressions (5) or (8) for the gravitational potential have
been adopted by many groups when developing numerical
techniques to follow self-gravitating Ñuid Ñows on spherical
or cylindrical coordinate meshes (Black & Bodenheimer
1975 ; Norman & Wilson 1978 ; Boss 1980 ; Tohline 1980 ;
Stone & Norman 1992 ; Boss & Myhill 1995 ; &Mu� ller
Steinmetz 1995 ; Yorke & Kaisig 1995). As mentioned
earlier, usually this multipole technique has been used to
determine the potential everywhere along the bounding
surface of the computational grid, then a separate technique
has been developed to solve the Poisson equation in order
to obtain the gravitational potential throughout the volume
of the grid. However, when utilizing this multipole method,
an exact determination of ' for a discrete mass distribution
is not possible because of the required inÐnite sum over the
quantum number l. Instead, a decision must be made
regarding when the series should be truncated in order to
achieve a desired degree of accuracy for a given o(x@) dis-
tribution. For example, referring to an expression for the
axisymmetric potential analogous to our equation (8),
Stone & Norman (1992) state that, ““ as implemented in
ZEUS-2D, we continue to add higher moments until has'

Bconverged to one part in 103, up to a maximum of 100
terms.ÏÏ

One must also be sure that every location on the bound-
ary of the computational grid at which the exteriorx

Bpotential is being evaluated is at a radial location that isr
Bgreater than all interior grid locations at which matter

resides. Otherwise must be evaluated in two parts,'(x
B
)
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As we illustrate more fully in ° 3.2, below, unless the bound-
ary of a cylindrical grid is carefully designed so that it lies
entirely outside the interior mass distribution (usually this
means placing the grid boundary far away from the surface
of the mass distribution), it will become necessary to calcu-
late a separate set of ““ interior ÏÏ and ““ exterior ÏÏ moments of
the mass distribution for the majority of boundary loca-
tions. This requirement will make the multipole method
very computationally demanding, unless accuracy is sacri-
Ðced through a reduction in the number of terms that are
included in the l summation.

2.2. A Compact Cylindrical GreenÏs Function Method
2.2.1. General Expressions

In terms of the cylindrical coordinates (R, /, z) the
GreenÏs function may be written as (e.g., problem [3.14] of
Jackson 1975)
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where is an order m Bessel function of the Ðrst kind.J
mEspecially when faced with the problem of determining the

gravitational potential on a cylindrical coordinate mesh, it
would seem that this is a more appropriate expression to
use for the GreenÏs function than equation (4). As we dis-
cussed in ° 1, however, devising an efficient numerical tech-
nique by which to accurately evaluate the inÐnite integral
over products of Bessel functions has proven to be a difficult
task.

Using equation (13.22.2) in Watson (1944), we recently
have realized that
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where is the half-integer degree Legendre functionQ
m~1@2of the second kind. Hence, it becomes possible to rewrite

equation (13) as
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We note that this same result for the GreenÏs function can
be obtained by combining equation (3.148) in Jackson
(1975) with equation (6.672.4) in Gradshteyn & Ryzhik
(1994). Although relationship (14) and, hence, the ability to
derive (15) from (13), has been known for some time, appar-
ently the astrophysics community has not been aware that
the cylindrical GreenÏs function can be expressed in this
extraordinarily compact form. As we shall demonstrate,
highly accurate and efficient means of evaluating '(x) can
be developed from expression (15).

Realizing that (cf. eq. [8.736.7]Q~1@2`m
(s)\ Q~1@2~m

(s)
in Gradshteyn & Ryzhik 1994), and that
eih ] e~ih \ 2 cos h, we can express equation (15) in terms
of all mº 0 as
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where is the Neumann factor (Morse & Feshbach 1953),v
mthat is, and for mº 1. Now we substitutev0\ 1 v

m
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equation (17) into equation (3), obtaining
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which may also be rewritten as
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Finally, an azimuthal discrete Fourier transform of this
last expression yields the following elegant representation of
the gravitational potential in Fourier space :
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where & refers to the area over which the meridional inte-
gration is to be carried, dp@\ dR@ dz@, and the Fourier com-
ponents of ' and o are deÐned such that
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(Note that '02\o02 \ 0.)

2.2.2. Functional Forms of Q
m~1@2

Useful expressions for and may beQ~1@2(s) Q1@2(s)
obtained from equations (8.13.3) and (8.13.7), respectively,
of Abramowitz & Stegun (1965), namely,

Q~1@2(s) \ kK(k) (22)

and
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where K represents the complete elliptic integral of the Ðrst
kind, E is the complete elliptic integral of the second kind,
and
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One can then obtain the higher degree half-integer Leg-
endre functions of the second kind using the recurrence
relation (e.g., eq. [8.5.3] in Abramowitz & Stegun 1965)
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For example, substituting equations (22) and (23) into equa-
tion (25) gives the following useful expression for Q3@2(s) :

Q3@2(s)\ (43s2 [ 13)kK(k)[ 43s(1] s)kE(k) . (26)

According to Table XIII in Tables of Associated Leg-
endre Functions (US. NBS. Comput. Lab. 1945), we may
also express in terms of GaussÏs hypergeometricQ
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function as follows :
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where the speciÐc hypergeometric function
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and ! is the Gamma function (see eq. [6.1.1] of Abramo-
witz & Stegun 1965). Inserting equation (28) into equation
(27), we derive the following expression :
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It is well known (see Abramowitz & Stegun 1965) that Leg-
endre functions of the second kind are singular when their
arguments are unity. Evaluating the limit of inQ

m~1@2(s)
equation (29) for large values of s gives the asymptotic
behavior of (with only the n \ 0 term in the sumQ
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surviving) :
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which decays as 1/sm`1@2.

3. SUBSTANTIATIONS

In this section, we verify the correctness and highlight the
utility of the compact cylindrical GreenÏs function (CCGF)
representation by comparing expressions for the Newtonian
potential derived from it with previously known results. We
show that the familiar expression for the potential of an
inÐnitesimally thin, axisymmetric disk in terms of complete
elliptic integrals can be readily derived from equation (19).
We also show how this expression can be generalized to
axisymmetric systems of arbitrary vertical thickness and
how an analogous expression for any other isolated azi-
muthal Fourier mode can now be readily derived. In the
context of nonaxisymmetric Ðelds, we show how KalnajsÏ
reduced potential for an inÐnitesimally thin, non-
axisymmetric disk can be readily derived via our CCGF
expression, and we draw on one more speciÐc problem from
magnetostatics to demonstrate how the CCGF reproduces
the exact analytical expression for a potential problem
where the solution can be expressed entirely in terms of the
m\ 1 nonaxisymmetric term.(Q1@2)Finally, for several ““ geometrically thick ÏÏ conÐgurations
of uniform density, we provide numerical comparisons

between as derived from the CCGF method and as'(x
B
)

determined from (1) the traditional multipole method and
(2) analytical prescriptions, where available. In ° 3.3 we
comment on the computational advantages and disadvan-
tages of the CCGF method when the objective is to deter-
mine values of the gravitational potential outside, but in
close proximity to, Ñattened or elongated mass distribu-
tions. Generally speaking, for a given computational grid
resolution we Ðnd that the CCGF method provides more
accurate values of in equal or less computational time'(x

B
)

than using the multipole method, but in certain situations
the CCGF method can be quite demanding in terms of
memory storage requirements.

3.1. Analytical VeriÐcations and Propositions
3.1.1. Axisymmetric Systems with Vertical Extent

For an axisymmetric mass distribution, equation (19)
reduces to the form
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where s and k have been deÐned by equations (16) and (24),
respectively. As we shall illustrate in ° 3.2, this expression
can be used e†ectively to compute the potentials outside of
oblate spheroids, prolate spheroids, tori, or thick disks with
arbitrarily complex o(R, z) distributions.

It is important to note that equation (31) provides an
expression for the gravitational potential of an axisym-
metric mass distribution that contains a single term and a
single moment of the mass distribution In contrast toq0.this, the corresponding expression for the potential in
spherical coordinates [eq. (8)] requires a summation over
an inÐnite number of terms, each containing a di†erent
moment of the mass distribution. Hence, equation (31) pro-
vides an expression for the potential that is easier to evalu-
ate and guaranteed to be more accurate (for a given
computational grid resolution) than equation (8). We
strongly recommend its adoption in numerical algorithms
that are designed to study self-gravitating, axisymmetric
Ñuid Ñows.

3.1.2. InÐnitesimally T hin Axisymmetric Systems

In the case of an inÐnitesimally thin axisymmetric disk
located in the plane z@\ 0, the density distribution can be
written as

o(R@, z@) \ &(R@) d(z@) , (33)

where &(R@) is the surface density of the disk and d(z@) is a
Dirac delta function. Inserting this expression for o(R@, z@)
into equation (32b) and integrating over z@, we obtain the
following exact expression for the gravitational potential of
any inÐnitesimally thin, axisymmetric disk :
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where

k
d
4
S 4RR@

(R] R@)2] z2 . (35)

This equation exactly matches the expression for the poten-
tial of an inÐnitesimally thin, axisymmetric galaxy disk
given, for example, by equation (2-142a) of Binney & Tre-
maine (1987). It is now clear through equations (31) and (32)
that this familiar expression can be generalized to axisym-
metric conÐgurations with arbitrary vertical extent.

3.1.3. Nonaxisymmetric Systems and Kalnajs L ogarithmic Spirals

Here we demonstrate that the expression for the reduced
potential of an inÐnitesimally thin, nonaxisymmetric disk
that has been developed by Kalnajs (1971 ; see also, for
example, ° 2.4b of Binney & Tremaine 1987) can be readily
derived from our CCGF. Guided by a key functional
relationship found in Morse & Feshbach (1953), we show
through a brief derivation in Appendix A (see speciÐcally
eq. [A5]) that
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Hence, expression (17) for the GreenÏs function can be
rewritten as
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Combining this expression with equation (3), we may there-
fore also conclude that the ““ reduced potential,ÏÏ
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Now, if we consider an inÐnitesimally thin disk located in
the plane z@\ 0, the density distribution can be written as

o(x@)\ d(z@)&(R@, /@) , (41)

where &(R@, /@) represents an arbitrary nonaxisymmetric
surface density distribution, and the integral over z@ in equa-
tion (40) can be completed, giving
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If, Ðnally, we deÐne a reduced surface density,

S(R, /)4 R3@2&(R, /) , (43)

and adopt in place of R the independent variable

u 4 ln R , (44)

we obtain
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Equation (45) is the expression Kalnajs (1971) has provided
for the reduced potential of an inÐnitesimally thin, non-
axisymmetric disk. It is via this expression that Kalnajs has
realized the utility of viewing nonaxisymmetric surface
density distributions in terms of their various ““ logarithmic
spiral ÏÏ components.

Our expression (40) may now be viewed as a gener-
alization of KalnajsÏ reduced potential that applies to non-
axisymmetric structures of arbitrary vertical thickness, the
key di†erence being that, in our more generalized expres-
sion for the reduced potential, the function K2D(u [ u@,
/[ /@) must be replaced by the function

K3D(s, /[ /@) 4
1

J2[s [ cos (/[ /@)]
, (47)

where, as deÐned in equation (16), s itself is a function that
involves a nontrivial coupling between the coordinate vari-
ables R, R@, z and z@. Although, as indicated by expression
(38), it is possible to rewrite cosh~1 (s) in terms of a
logarithmic function and, in so doing, transform equation
(47) into a form that more closely resembles KalnajsÏ func-
tion the nontrivial coupling between coordinate vari-K2D,
ables within s makes such a formulation less compelling in
the full three-dimensional problem.

3.1.4. T he m\ 1 Mode and the Magnetic Field of a Current L oop

A derivation of the magnetic Ðeld of a time-independent
circular current loop of radius a, and current I has been
provided in a multitude of classical electromagnetism text-
books (e.g., Landau & Lifshitz 1960 ; Jackson 1975). Here
we demonstrate that this classic problem can be readily
solved via the CCGF. In a magnetostatics problem we may
calculate the magnetic Ðeld from a vector potential, A(x), as
follows :

B(x) \ $ Â A(x) . (48)

Then in the Coulomb gauge the vector potential satisÐes the
following vector Poisson equation :

$2A(x) \ [4n
c

J(x) , (49)

where J(x) is the current density and c is the speed of light.
The integral solution of this vector Poisson equation pro-
duces the magnetic analogue of equation (3), namely,

A(x) \ 1
c
P
V

J(x@)
o x [ x@ o

d3x@ . (50)
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In the case of a circular current loop located in the
equatorial plane, z@\ 0, the current density has only a /
component, which is

J(x)\ /ü JÕ , (51)

where

JÕ(x@) \ I cos (/@) d(z@) d(R@[ a) . (52)

Since the Ðnal solution must be invariant under rotation, we
choose our observing point to be at /\ 0. Substituting
equations (51) and (17) into equation (50), we obtain the
following expression for the / component of the vector
potential :

AÕ\ I
nc
Sa

R
P
0

2n
d/@ cos (/@) ;

m/0

=
v
m

cos (m/@)Q
m~1@2(sl

) ,

(53)

where

s
l
4

R2] a2] z2
2Ra

. (54)

The only term in the summation that contributes is the
m\ 1 term, so equation (53) becomes

AÕ\ 2I
nc
Sa

R
Q1@2(sl

)
P
0

2n
cos2 (/@) d/@\ 2I

c
Sa

R
Q1@2(sl) ,

(55)

which, via equation (23), can be rewritten as

AÕ\ 4Ia

cJ(R] a)2] z2
C(2[ k

l
2)K(k

l
)[ 2E(k

l
)

k
l
2

D
. (56)

This identically reproduces the previously known result for
the vector potential of a current loop (e.g., eq. [5.37] in
Jackson 1975).

3.1.5. T he m\ 2 and Other Isolated Fourier Modes

In ° 3.1.1, we used the CCGF method to derive a general
expression that describes the m\ 0 (axisymmetric) Fourier
mode contribution to the gravitational potential for any
mass distribution. Here we illustrate how similarly simple
expressions for any other isolated azimuthal mode of a self-
gravitating system can be derived via equation (20). For an
m\ 2 distortion, for example, the two relevant Fourier
components of the potential are

'21,2(R, z)\ [ 2G

JR

P
&
dp@JR@o21,2(R@, z@)Q3@2(s) . (57)

Utilizing equation (26), which was derived in ° 2.2.2 via the
recurrence relation for half-integer degree Legendre func-
tions of the second kind, we are able to rewrite this expres-
sion for in terms of more familiar elliptic integrals'21,2(R, z)
as follows :

'21,2(R, z)\ [ 2G

3JR

P
&
dp@JR@o21,2(R@, z@)

] k[(4s2[ 1)K(k)[ 4s(1] s)E(k)] . (58)

Furthermore, in the case of an inÐnitesimally thin disk
the Fourier components of the density can be written as

o21,2(R@, z@)\ &21,2(R@) d(z@) , (59)

and we obtain the following exact expression for the m\ 2
Fourier components of the potential of any inÐnitesimally
thin, self-gravitating disk :

'2,disk1,2 (R, z) \ [ 2G

3JR

P
0

=
dR@JR@ &21,2(R@)k

d

] [(4s
d
2[ 1)K(k

d
) [ 4s

d
(1] s

d
)E(k

d
)] , (60)

where This compact analytical expressions
d
4 2/k

d
2[ 1.

should prove useful in, for example, studies of m\ 2 spiral-
arm instabilities in self-gravitating galaxy or protostellar
disks.

3.2. Numerical Evaluations
Here we perform a variety of numerical tests in which we

have discretized selected mass-density distributions on a
uniformly zoned cylindrical coordinate mesh. We have
selected these models in order to elucidate the power that
the CCGF method o†ers as a numerical technique for
evaluating exterior potentials surrounding self-gravitating
objects. Our comparison incorporates three methods for
potential evaluation : (1) analytical potential-density expres-
sions, as drawn from the works of other authors and
detailed here in Appendix B; (2) the multipole method
described in ° 2.1 ; and (3) our CCGF method, as outlined
in ° 2.2. Where available, analytical solutions provide
extremely useful veriÐcation of numerical methods for
potential evaluation since any valid method should yield
asymptotic convergence toward the analytical solution with
increased grid resolution. Most of the models we have selec-
ted have known analytical solutions. In cases where the
analytical solution does not exist, we simply compare the
potentials obtained through the CCGF and multipole
methods.

Table 1 lists the Ðve models we have selected, and Table 2
summarizes the seven tests that we have conducted using
these models. Each of the Ðve selected models has a uniform
density distribution that is enclosed within a surface of a

TABLE 1

MODELS

Model Type of Object Aspect Ratio Equation Number

I . . . . . . . . Oblate spheroid 5 :1 B2
II . . . . . . . Oblate spheroid 20 :1 B2
III . . . . . . Prolate spheroid 20 :1 B2
IV . . . . . . Torus 20 :1 . . .
V . . . . . . . Triaxial ellipsoid 20 :10 :1 B7

TABLE 2

TESTS

Test Model Grid Resolution

1 . . . . . . I 128 ] 128
2 . . . . . . I 128 ] 32
3 . . . . . . II 1024 ] 64
4 . . . . . . III 32 ] 512
5 . . . . . . IV 512 ] 32
6a . . . . . . I J] K
7 . . . . . . V 512 ] 32 ] 256

a J \ 32i, K \ 8i, with (1\ i\ 25).
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FIG. 1.ÈThree-dimensional wire-frame diagrams illustrating the
geometry of the Ðve uniform-density models for which the external gravita-
tional potential has been calculated herein using the CCGF technique ('Q)
and compared with approximate solutions obtained via a standard multi-
pole technique ('Y) and (where available) exact analytical expressions ('A).
See Table 1 for details regarding each test modelÏs selected aspect ratio.

well-deÐned geometry as described by the ““ type of object ÏÏ
column in Table 1. Figure 1 portrays the above described
models through a three-dimensional isosurface visual-
ization of each homogeneous objectÏs boundary. The oblate,

prolate, and toroidal objects are all axisymmetric. For the
two oblate spheroids (models I and II), the aspect ratios
listed in Table 1 deÐne the size of the equatorial axis relative
to the polar axis. For the prolate spheroid (model III), the
20 :1 aspect ratio describes the size of the polar axis relative
to the equatorial axis. For the torus (model IV), the aspect
ratio describes the size of the major radius of the torus
relative to its minor, cross-sectional radius. Finally, we also
have chosen one nonaxisymmetric model, model V, which is
a 20 :10 :1 triaxial homogeneous ellipsoid.

The column labeled ““ grid resolution ÏÏ in Table 2 speciÐes
the size of the computational grid or grids that was used in
each test. For each axisymmetric model (tests 1È6), the
stated resolution J ] K refers to the number of radial (J)
and vertical (K) zones used ; for model V (test 7), the stated
resolution J ] K ] L includes the number of azimuthal (L )
zones that were used as well. For each of the tests identiÐed
in Table 2, we have determined the fractional error of a
given numerical solution for the potential ' by measuring
at every location along the top and side boundaries of our
cylindrical grid the quantity

v4
'[ '*

'*
, (61)

where '* is the ““ known ÏÏ solution. Figures 2È7 present
subsets of these error measurements in various ways. In
presenting the results of these tests, the numerically derived
potential ' is either the Newtonian potential generated via
the multipole method, 'Y, or via the CCGF method, 'Q.
Where available, the known solution '* is given by the
analytical solution, 'A, as drawn from the relevant Appen-
dix B expression and identiÐed by the entry in the
““ equation number ÏÏ column of Table 1. Otherwise we take
'* to be 'Q, since we recognize it as the more correct
numerical solution for the discretized model. Note that in
test 6, model I has been reexamined using 25 di†erent grid
resolutions. This has been done in order to ascertain how
the determination of 'Q relative to 'A improves with grid
resolution.

3.2.1. Axisymmetric Models

For the four axisymmetric models listed in Table 1, 'Q
has been determined via equation (31) and its associated
moment of the mass distribution as deÐned by equation
(32b). The thick-dashed curves in Figures 2, 3, and 4 rep-
resent the fractional error obtained by comparing 'Q with
'A for models I, II, and III, respectively. Since, as empha-
sized in ° 3.1.1, equation (31) provides an expression for the
gravitational potential that contains only one term, any
error that arises in the determination of 'Q relative to 'A
must be entirely attributed to the fact that, at any Ðnite grid
resolution, a numerical integration of equation (32b) cannot
possibly give the precise analytical answer. It is important
to appreciate that this ““ failing ÏÏ has nothing to do with our
ability to evaluate the special function K(k) accurately.
Instead, it stems from the fact that the models for which we
have analytically known potentials have spheroidal sur-
faces, and it is impossible to represent such surfaces preci-
sely within a cylindrical coordinate mesh. Indeed, even a
straightforward volume integration over the density dis-
tribution will give a total mass that is di†erent from the
analytically ““ known ÏÏ mass because a spheroidal object
cannot be perfectly represented in a cylindrical mesh. We
shall return to this issue when discussing test 6, below.
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In contrast to this, errors in the determination of 'Y are
dominated by the fact that, in any practical implementation
of the multipole method, the summation over multipole
moments must be truncated at some Ðnite number of terms,

Only in the limit will the value of 'Y given bylmax. lmax ] O
equation (8) for an axisymmetric mass distribution converge
to the value of 'Q given by equation (31), for example.
Because the contribution that each multipole moment
makes to the potential drops o† as r~(l`1), a reasonably
small error can be realized with a reasonably small value of

if the boundary cells at which 'Y is to be evaluated arelmaxplaced at locations r that are fairly far from the mass dis-
tribution. For each of the seven tests listed in Table 2, 'Y
has been determined for six di†erent even values of inlmaxthe range in an e†ort to illustrate how rapidly0 ¹ lmax¹ 10
the determination of 'Y converges toward 'A and 'Q as
more and more terms are included in the l summation. We
illustrate results only for even values of because all Ðvelmaxmodels listed in Table 1 exhibit reÑection symmetry
through the equatorial plane and, by design, this symmetry
forces all odd multipole moments to be identically zero. In
each of Figures 2È5 and 7, dotted curves illustrate errors in
the determinations of 'Y when thin-dashed curveslmax\ 0 ;

represent errors resulting from setting and the dot-lmax\ 2 ;
dashed curves show errors in 'Y resulting from the inclu-
sion of even multipole moments through Thelmax\ 10.
three solid curves generally lying between the thin-dashed
curve and the dot-dashed curve in each Ðgure represent, in
sequence, errors in 'Y that result from setting lmax \
4, 6, and 8.

Figure 2 illustrates results from tests 1 and 2 on model I
(the 5 :1 oblate spheroid). In both of these tests, our compu-
tational mesh had 128 radial grid zones of uniform radial
(*R) and vertical (*z\ *R) thickness, and the oblate spher-
oid was positioned such that its equatorial radius extended
out to grid location 123. Tests 1 and 2 di†ered in only one
respect, as indicated in Table 2 : with a cylindrical computa-
tional mesh that had 4 times as many vertical zones, test 1
was designed to place the top boundary of the computa-
tional grid much farther from the surface of the oblate
spheroid than in test 2. Because every point along the
boundary of the grid in test 1 was at a radial location r

Bgreater than the equatorial radius of the model I spheroid,
'Y was evaluated using equations (5) and (6), with m set
equal to zero, as in equations (8) and (9). However, in test 2
it was also necessary to include an evaluation of (eq.'int

FIG. 2.ÈModel I (5 :1 oblate spheroid). The fractional error in the numerically determined gravitational potential (calculated via two di†erent GreenÏs
function techniques) relative to the analytically known potential 'A is shown here as a function of position R along the top and Z along the side boundaries
of the selected cylindrical computational mesh, as deÐned in Table 2. (a and b) Results from test 1 in which the top boundary of a 128] 128 computational
mesh has been positioned at the same distance from the center of the grid as the side boundary. A thin, solid horizontal line has been drawn at zero for
reference purposes. The thick dashed line running approximately horizontally across both frames shows the errors in the potential as determined via the
CCGF technique, i.e., ('Q [ 'A)/'A. (See the discussion associated with test 6 for an explanation of why these curves are slightly o†set from zero.) All other
curves illustrate the errors in the potential as determined via the standard multipole technique i.e., ('Y[ 'A)/'A, as the limiting number of terms in the
multipole expansion is increased successively by 2 from l\ 0 (dotted curves) to l\ 2 (dashed curves), etc., through l\ 10 (dot-dashed curves). (c and d) Same
type of information as displayed in (a) and (b), respectively, but for test 2, in which the top boundary of a 128] 32 computational mesh has been placed a
factor of 4 closer to the center of the grid, in a position that lies very close to the surface of the model I spheroid. Results from this test 2 also appear as the
example marked ““ A ÏÏ in Fig. 6.
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[11]) and, hence, a separate evaluation of and forq
lm
; q

lm
: ,

each zone along the top of the grid boundary. As a result
(see the related discussion in ° 3.3, below), the evaluation of
'Y in test 2 was much more computationally demanding
than in test 1. Errors in the determination of the potential
along the top boundary of these two di†erent cylindrical
computational domains are shown in Figures 2a and 2c ;
corresponding errors along the side boundary are displayed
in Figures 2b and 2d.

The results presented in Figure 2 highlight three key
points that have been discussed in a more general context,
above. First, in both tests 'Q very nearly follows the ana-
lytically derived potential 'A at all locations on the grid
boundary. It is, however, everywhere o†set from 'A by a
small amount. This small o†set is due almost entirely to the
e†ect mentioned above of being unable to properly rep-
resent a perfect spheroidal surface within a cylindrical coor-
dinate grid. Second, as is increased, the multipolelmaxmethod yields better and better results that converge
toward the solution 'Q, but in no case is the typical error in
'Y smaller than the typical error in 'Q. Third, for a given
choice of the typical error in 'Y measured along thelmax,top of the cylindrical grid is smaller in test 1 (Fig. 2a) than it
is in test 2 (Fig. 2c). This is because the top of the grid is
farther from the surface of the mass distribution in test 1
than in test 2.

Figure 3 illustrates the results from test 3 on model II (the
20 :1 oblate spheroid). This test is similar to test 2 in that the
top boundary of the computational grid has been placed
very close to the surface of the spheroid. In one quadrant of
a meridional plane cutting through model II, Figure 3a
illustrates precisely where the top and side cylindrical
boundaries have been placed with respect to the surface of
the spheroid. Test 3 di†ers from test 2, however, in that the
spheroidal model for which the gravitational potential is
being determined has a relatively extreme (20 :1) axis ratio.
In order to maintain a uniformly zoned computational grid,
a correspondingly extreme radial to vertical (1024 ] 64)
grid resolution was adopted for test 3. In addition to dis-
playing in Figure 3c the fractional errors that resulted from
our determinations of 'Y and 'Q along the top boundary of
the computational grid, we have shown in Figure 3b the
functional variation of the boundary potentials from which
the errors displayed in Figure 3c have been derived. This is
a particularly severe test of the multipole moment method
because the potential of extremely Ñattened mass distribu-
tions is not well represented by an expansion in terms of
spherical harmonics. Notice, however, that the CCGF
method has no difficulty evaluating the potential for this
extremely Ñattened spheroid ; in both Figures 3b and 3c the
thick-dashed curve representing 'Q is nearly indistinguish-
able from the thin solid line representing 'A.

In Figure 4 we show results from test 4 on model III, the
20 :1 prolate spheroid. For this test, the model has been
discretized on a 32] 512 cylindrical grid. In this case, the
primary challenge for both the multipole moment and
CCGF methods is to accurately evaluate the potential
along the side, rather than the top, of the computational
grid. Figure 4a shows the fractional error as a function of z
along the side of this highly elongated coordinate mesh, and
Figure 4b shows the fractional error as a function of R
along the top of the grid. Once again 'Q appears to be
tracking the analytical solution extremely well, and 'Y is
seen to be converging toward 'Q (and 'A) as the maximum

FIG. 3.ÈModel II (20 :1 oblate spheroid) ; results from test 3, as deÐned
in Table 2. (a) Meridional cross section through model II is shown in which
the equatorial radius of the object extends to R\ 1.0 and the polar radius
extends to Z\ 0.05. The top and right-hand edges of this Ðgure frame
illustrate precisely the positioning of the top and side boundaries of the
1024 ] 64 cylindrical computational mesh have been positioned, relative
to the highly Ñattened spheroidal surface. (b) Gravitational potential ' is
plotted as a function of R along the top boundary of the computational
mesh, as determined analytically (thin solid curve), via the CCGF technique
(thick dashed curve), and via the standard multipole technique as the limit-
ing number of terms in the multipole expansion is increased successively by
2 from l\ 0 (dotted curve) to l\ 2 (dashed curve), etc., through l \ 10 (dot-
dashed curve). (c) Similar to Figs. 2a and 2c ; the fractional error in the
numerically determined gravitational potential relative to the analytically
known potential 'A is shown as a function of position R along the top of
the selected cylindrical computational mesh. These fractional errors have
been derived directly from the values of ' displayed in (b), and the meaning
of the various curves is the same as in (b). Note, in particular, that at all
radii the error in 'Q (bold dashed curve) is almost indistinguishable from
zero.

number of terms in the multipole expansion is increased.
However, for a given value of the typical error in 'Ylmax,appears to be larger for the prolate model (Fig. 4) than for
the oblate model with the same aspect ratio (Fig. 3).

Figure 5 shows results for test 5 on model IV, an axisym-
metric torus with a 20 :1 aspect ratio. The information that
has been displayed in the three panels of Figure 5 is analo-
gous to the information that was displayed in Figure 3 for
model II. SpeciÐcally, Figure 5a shows a meridional cross
section through the torus, with the symmetry axis of the
torus (and the cylindrical computational grid) at the left,
while the top and right-hand edges of the frame identify
precisely where the top and side cylindrical boundaries were
placed with respect to the surface of the torus. In this case
we do not have an analytical solution for the potential
against which to compare 'Y or 'Q, but in Figure 5b it is
clear that as is increased 'Y is converging toward 'Qlmax(thick-dashed curve), so in Figure 5c the error in 'Y has been
measured relative to 'Q.

For test 6 we have returned to model I to illustrate how
the calculated error in 'Q improves with increasing compu-
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FIG. 4.ÈModel III (20 :1 prolate spheroid) ; results from test 4, as
deÐned in Table 2. (a) Analogously to Figs. 2b and 2d, the fractional error
in the numerically determined gravitational potential relative to the ana-
lytically know potential 'A is shown as a function of position Z along the
side boundary of the selected cylindrical computational mesh. (b) Analo-
gously to Figs. 2a, 2c, and 3c, the fractional error in the numerically
determined gravitational potential relative to the analytically known
potential 'A is shown as a function of position R along the top boundary
of the selected cylindrical computational mesh.

tational grid resolution. As indicated in Table 2, for this test
we have computed the value of the potential on the bound-
ary of 25 di†erent sized grid meshes, all of which are integer
multiples of a 32 ] 8 cylindrical (R, z) grid. As is explained
in detail in the Ðgure caption, Figure 6a illustrates how the
maximum, minimum, and mean fractional error in 'Q vary
along the top boundary of the cylindrical grid as the radial
grid resolution is increased from J \ 32 to J \ 608, and
Figure 6c illustrates how the maximum, minimum, and
mean fractional error in 'Q vary along the side boundary of
the cylindrical grid as the vertical resolution is increased
from K \ 32 to K \ 200. Along both the top and side
boundaries we have been able to achieve mean fractional
errors D10~5. For Ðve selected grid resolutions (labeled B,
C, D, E, and F in each frame of Fig. 6), we also have shown
in detail how the fractional error in 'Q varies across the top
(Fig. 6b) and along the side (Fig. 6d) boundaries of the grid.
The curves in Figure 6b (or Fig. 6d) should each be com-
pared directly with the thick-dashed curve plotted in Figure
2b (or Fig. 2d), which presents the equivalent information
from test 2Èa relatively low-resolution (128 ] 32) but
otherwise identical calculation that also shows up and is
labeled ““ A ÏÏ in the results of test 6.

We should point out that the fractional errors presented
in Figure 6 for test 6 have all been calculated in a slightly

FIG. 5.ÈModel IV (20 :1 torus) ; results from test 5. (a) Analogous to
Fig. 3a ; a meridional cross section through model IV in which the major
and minor radii of the torus are 1.0 and 0.05, respectively. The top and
right-hand edges of this Ðgure frame illustrate precisely the positioning of
the top and side boundaries of the 512 ] 32 cylindrical computational
mesh have been positioned, relative to the surface of the slender torus. (b)
Analogously to Fig. 3b, the gravitational potential ' is plotted as a func-
tion of R along the top boundary of the computational mesh, as deter-
mined via the CCGF technique (thick dashed curve), and via the standard
multipole technique as the limiting number of terms in the multipole
expansion is increased successively by 2 from l\ 0 (dotted curve) to l \ 2
(dashed curve), etc., through l\ 10 (dot-dashed curve). (c) Analogous to Fig.
3c, but because the potential exterior to a torus is not known analytically,
the fractional error in the numerically determined gravitational potential is
shown here relative to the potential 'Q as determined from the CCGF
technique. The meaning of the various curves is the same as in (b).

di†erent manner from the fractional errors that have been
presented for tests 1È5. Before comparing 'Q to 'A in test 6,
we have renormalized the total mass that has been used in
the determination of 'A to correspond with the total mass
that results from a discretization of model I inside our cylin-
drical computational grid of the speciÐed (J ] K)
resolution. As explained earlier in the context of tests 1 and
2, the thick-dashed curves in Figure 2 are slightly o†set
from zero primarily because of a slight discrepancy in mass
that arises from trying to map a perfect spheroid onto a
cylindrical coordinate mesh. By adjusting the mass that is
being used in the analytical determination of the gravita-
tional potential for model I to account for this discrepancy,
we are able to present the fractional errors in such a way
that they asymptotically approach zero at the largest illus-
trated values of R (Fig. 6b) and z (Fig. 6d). We also suspect
that geometric imperfections arising from the discretization
of the Ñattened spheroid are also responsible for the fact
that the typical fractional errors shown in Figures 6a and 6c
level out at around 10~5 and do not continue to decrease
with increasing grid resolution.

3.2.2. A Nonaxisymmetric Model

In an e†ort to illustrate how well the CCGF method
works for nonaxisymmetric mass distributions, we have
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FIG. 6.ÈModel I (5 :1 oblate spheroid) ; results from test 6. Fractional errors in the gravitational potential derived via the CCGF technique using 25
di†erent cylindrical grid resolutions (see Table 2) to resolve the oblate spheroidal mass distribution. (a) For a speciÐed radial grid resolution J, the vertical
column of dots identiÐes on a logarithmic scale the full range of fractional errors that have been derived along the top boundary of the computational mesh.
Each dot identiÐes the fractional error at a speciÐc radial grid location so, for example, for the column of dots (labeled ““ A ÏÏ) that is drawn from a calculation
using a grid resolution J \ 128 (as in test 2 ; see also Fig. 3), 128 di†erent dots have been plotted showing errors that range from 1.5 ] 10~6 to 2 ] 10~3. At
each grid resolution J, an open circle has been drawn to identify the largest, smallest, and median error ; a solid line connecting the circles helps the eye
recognize an overall trend in computed errors as the resolution of the model is improved. (b) Analogous to the thick dashed curve in Fig. 2c, the fractional
error in the gravitational potential determined via the CCGF technique 'Q relative to the analytically known potential 'A is shown as a function of position
R along the top of the selected cylindrical computational mesh, but for several di†erent grid resolutions. The curves labeled B through F are drawn from
models having the grid resolutions J as indicated by the corresponding column labels in (a). (c and d) Same as (a) and (b), respectively, but showing fractional
errors that have been derived along the side boundary of the computational mesh from calculations using various vertical grid resolutions K (see Table 2).

developed a test based on the analytically known potential
exterior to a triaxial homogeneous ellipsoid, as given in
Appendix B by equation (B7). SpeciÐcally, as detailed in
Tables 1 and 2 for test 7, we have embedded a homogeneous
triaxial ellipsoid with a 20 :10 :1 axis ratio in a uniformly
zoned cylindrical mesh with 512] 32 ] 256 zones in the
R, z, and / directions, respectively. Test 7 is similar to test 3
in the sense that the top and side boundaries of the compu-
tational grid were positioned just outside the surface of the
ellipsoid in such a way that a vertical cross section through
the conÐguration that contains the major and minor axes of
the ellipsoid looks identical to Figure 3a. As a result, a
vertical cross section containing the minor and intermediate
axes of the ellipsoid would show that, in the equatorial
plane of the grid, the ellipsoidal surface extends only half-
way out to the side boundary of the computational grid.
Hence, we should expect any numerical evaluation of the
potential on the top and side boundaries of our cylindrical
grid to produce better results at azimuthal angles near the
intermediate axis of the ellipsoid (i.e., near /\ n/2 and
3n/2) than at azimuthal angles near the ellipsoidÏs major
axis (/\ 0 and n ; see Fig. 7b, below).

The analytical potential outside of a homogeneous, tri-
axial ellipsoid contains an inÐnite number of azimuthal

Fourier components. When the ellipsoid is discretized and
placed inside of a grid with a Ðnite number of azimuthal
zones, L (in our case, L \ 256), we know by FourierÏs
Theorem that the ““ exact ÏÏ potential corresponding to this
discretized object will exhibit, at most, Fourier components
extending up to mode m\ L /2 (in our case, m\ 128). As we
have shown in ° 2.2.1 (speciÐcally, eq. [20]), via the CCGF
method the amplitude and phase of each one of these
Fourier modes can be determined precisely by performing a
single integral over the mass distribution, weighted by the
appropriate special function, In contrast to thisQ

m~1@2(s).
(see ° 2.1), when the method of multipole moments is
employed, each of the azimuthal Fourier modes can be
determined exactly only via a summation over an inÐnite
number of terms (l \ 0 to O), each one of which requires a
separate integral over the mass distribution. Hence, by
analogy with our determination of the axisymmetric poten-
tial, the multipole method can be implemented in the
context of nonaxisymmetric mass distributions only if the l
summation is truncated to a Ðnite number of terms for each
separate azimuthal Fourier mode. In a practical implemen-
tation of either method, it is computationally prudent to
limit the calculation of Fourier mode amplitudes to a
number substantially smaller than m\ L /2, in which case
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FIG. 7.ÈModel V (20 :10 :1 triaxial ellipsoid) ; results from test 7. (a)
Analogous to Fig. 3c, except that, at each radius, the fractional error has
been derived from an azimuthal average because model V is not an axisym-
metric conÐguration. (b) In an e†ort to display information that is comple-
mentary to the results shown in (a) for this nonaxisymmetric conÐguration,
the fractional error in the derived potential is shown as a function of
azimuthal angle /. The displayed error has been derived from a radial
average at each angular position. (c) The error in the m\ 2 Fourier com-
ponent of the potential is displayed as a function of R along the top
boundary of the computational mesh. In all three frames, by analogy with
Fig. 3c, fractional errors have been determined via the CCGF technique
(thick dashed curve), and via the standard multipole technique as the limit-
ing number of terms in the multipole expansion is increased successively by
2 from l\ 0 (dotted curve) to l\ 2 (dashed curve), etc., through l\ 10 (dot-
dashed curve).

one must admit that even the CCGF method can at best
produce only an approximation to the ““ exact ÏÏ discretized
potential, but at least the CCGF method provides an accu-
rate determination of the amplitude and phase of each of
the included azimuthal Fourier modes whereas, by truncat-
ing the l summation, the multipole method cannot.

In conducting test 7, we have included in the evaluation
of 'Y even terms through and, for each value of l,lmax \ 10
even azimuthal modes through m\ ^l. (All odd azimuthal
moments of the mass distribution are guaranteed to be zero
because model V exhibits a periodic symmetry about the
azimuthal angle /\ n as well as about /\ 0 or 2n.) There-
fore, in our evaluation of the double summation in equation
(5) to calculate 'Y in test 7, 36 separate terms have been
included. In addition, we have had to evaluate an entirely
independent set of 36 terms associated with the summation
in equation (11) because, as in tests 2, 3, and 5, most of the
zones along the top boundary of our computational grid

had radial locations that is to say, at least some ofr
B
\ a1,the material enclosed by model VÏs ellipsoidal surface fell

outside a sphere of radius In contrast to this, whenr
B
.

evaluating 'Q at each grid boundary location via equation
(19), we included only 16 terms, but these 16 terms permit-
ted us to include azimuthal Fourier mode contributions to
the potential up through mode m\ 30 because the odd
azimuthal modes were guaranteed to be zero.

Figures 7a and 7b show how closely our determination of
'Y and 'Q in test 7 come to matching the analytical poten-
tial 'A for model V. Rather than trying to display the errors
in 'Y and 'Q at all grid boundary locations, Figure 7a
displays azimuthally averaged errors as a function of R
along the top of the computational grid and Figure 7b dis-
plays radially averaged errors as a function of / over the
same region. Being azimuthally averaged, the error mea-
surements presented in Figure 7a do not tell us much that
was not already apparent in our examination of the corre-
sponding axisymmetric spheroid (see test 3 and, speciÐcally,
Fig. 3c). However, Figure 7b is clearly illustrating some-
thing new. It illustrates that the potential 'Q determined
through the CCGF method (thick-dashed line) represents
the azimuthal variation of the potential outside of the tri-
axial ellipsoid very accurately. We also see in Figure 7b
that, as is increased, 'Y approaches 'Q.lmaxFinally, via a Fourier analysis of 'A, we have determined
the correct amplitude as a function of radius of a single,
isolated azimuthal mode, for model V, and in Figure 7c'2A,
we have compared this function with the corresponding
m\ 2 Fourier mode amplitudes of 'Y and 'Q. As a point of
reference, the m\ 2 Fourier amplitude has been derived'2Qvia the integral expression (58) given in ° 3.1.5. Figure 7c
shows in a somewhat cleaner manner than does Figure 7b
that the CCGF method works as well for the determination
of the gravitational potential of nonaxisymmetric mass dis-
tributions as it does for axisymmetric systems. At most
radii, is almost indistinguishable from Note,'2Q '2A.
however, that near the z-axis of the grid (i.e., near the polar
axis of the ellipsoid), does di†er from by a few'2Q '2Apercent. This deviation almost certainly occurs because we
have used only 32 vertical zones to resolve model VÏs highly
Ñattened mass distribution. Hence, the upper surface of our
discretized mass model does not reproduce well the smooth
quadratic surface of the analytically deÐned ellipsoid.
Similar, although lower amplitude, deviations can be found
near the z-axis in Figure 2c (test 2), Figure 4a (test 4), and
Figure 7a. Once again, it is fair to say that provides a'2Qmore correct description of the gravitational potential for
the discretized mass model than does This statement is'2A.
supported by the fact that, as is increased, 'Y is con-lmaxverging toward 'Q in Figures 7a and 7c, rather than toward
'A.

3.3. Computational Demands
Here we compare the computational demands of the

multipole moment and CCGF methods. We do so not from
the standpoint of a static problem whose solution need be
determined only once, but from the standpoint of a dynami-
cal problem in which the systemÏs two- or three-
dimensional density distribution is changing with time, in
which case a solution to the gravitational potential must be
frequently redetermined in order to ensure that the poten-
tial is at all times consistent with the density distribution.

We will assume that, during such an evolutionary simula-
tion, the cylindrical computational grid and the positions
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along the grid boundaries at which the potential is to'(x
B
)

be determined do not change with time. Under this assump-
tion, it is clear that, whichever GreenÏs function method is
being used, the terms included in the GreenÏs function itself
do not vary with time because these terms are functions of
only the coordinates. Hence, the functions (for theY

lm
(h, /)

multipole moment method) or (for the CCGFQ
m~1@2(s)

method) need be calculated only once, as appropriate, for
each grid cell location and stored in memory for reuse
throughout a time-evolutionary calculation. The primary
calculational cost associated with either GreenÏs function
method therefore has very little to do with the cost of evalu-
ating various or the expressions. Instead, theY

lm
Q

m~1@2cost is directly related to the number of integrals N over
(moments of) the mass distribution that must be reevaluated
each time the mass-density distribution of the evolving
system is updated.

For a (two-dimensional) mass distribution that is axisym-
metric, but that otherwise exhibits no special geometric
symmetries, the multipole moment method includes

terms in the GreenÏs function expansion, whereaslmax ] 1
the CCGF method contains only one. However, because the
argument s of the special function is, itself, a func-Q

m~1@2(s)
tion of the boundary coordinates (R, z), a separate moment
of the mass distribution must be calculated for each grid
boundary location. Hence, for the CCGF method, the
number of moments NQ that must be reevaluated each time
the mass-density distribution changes is

NQ \ 2J ] K , (62)

where, as in Table 2, J and K specify the radial and vertical
grid resolutions, respectively, and the factor of 2 indicates
that in general ““J ÏÏ boundary values must be determined
along the bottom as well as along the top of the cylindrical
grid. In contrast to this, the terms in the multipole moment
(i.e., spherical coordinate GreenÏs function) expansion are
not explicitly functions of the boundary coordinates, so

NY\ lmax ] 1 . (63)

Now, as discussed earlier, in order to achieve the same level
of accuracy with the multipole moment method as can be
achieved with the CCGF method, must be set to O.lmaxHowever, if, in practice, one is satisÐed with the level of
accuracy achieved by setting to a valuelmax lmax \ (2J ] K
[ 1), then NY/NQ \ 1, and one may conclude that the
multipole method is computationally less expensive than
the CCGF method.

However, this is not the full story. Even though the terms
in the multipole moment expansion are not explicitly func-
tions of the boundary coordinates, the limits on the volume
integration for each moment of the mass distribution will be
a function of the boundary coordinates unless every point

along the boundary of the computational grid is at ax
Bradial location that is greater than all interior grid loca-r

Btions at which matter resides. (See the related discussion
associated with eq. [10] in ° 2.1.) Test 1 (see Figs. 2a and 2b)
is the only test presented above for which this special condi-
tion was true. By setting J \ K, we ensured that every point
along the top boundary of our cylindrical grid was at a
radial location greater than the equatorial radius of ther

B5 :1 oblate spheroid, so the number of separate moments of
the mass distribution that had to be evaluated in test 1 was,
indeed, However, as explained in ° 2.1, forNY\ lmax ] 1.
situations in which the boundary of the grid is positioned

close to the surface of a Ñattened or elongated mass dis-
tribution, it is necessary to calculate a separate set of
““ interior ÏÏ and ““ exterior ÏÏ mass moments for the majority
of boundary locations.

For example, for mass distributions that are Ñattened
along the symmetry axis, as in our tests 2, 3, 5, and 6,
boundary locations along the side of the grid do not require
separate sets of mass moments, but most boundary loca-
tions along the top and bottom of the grid do. Hence,

NYB 4J(lmax] 1) , (64)

where the extra factor of 2 comes from having to determine
both interior and exterior moments for each value of l, as
shown in equation (10). Therefore, and theNY/NQ D lmax,(less accurate) multipole moment method proves to be more
expensive to implement computationally than the CCGF
method.

For a nonaxisymmetric (three-dimensional) mass dis-
tribution, the CCGF method will require the same number
of moments as in the axisymmetric case for each separate
azimuthal Fourier mode. Hence, if the discrete Fourier series
is truncated at mode number the number of momentsmmax,NQ that must be reevaluated each time the mass-density
distribution changes is

NQ \ 2mmax ] (2J ] K) , (65)

where the leading factor of 2 comes from the fact that each
Fourier mode requires the determination of both an ampli-
tude and a phase. In the optimum situation where the
boundary of the computational grid is everywhere outside
the mass distribution, in three dimensions the multipole
moment method will require the evaluation of

NYB ;
l/0

lmax
(2l ] 1)\ (lmax] 1)2 (66)

separate moments (unless the strategic decision is made to
set In most situations, then, NY/NQ will be lessmmax D lmax).than unity, as in the corresponding optimum axisymmetric
case, but the ratio will be somewhat larger here.

Again, though, for situations in which the boundary of
the grid is positioned close to the surface of a Ñattened or
elongated mass distribution, the number of moments
required for the multipole moment method climbs substan-
tially. For example, for a Ñattened nonaxisymmetric mass
distribution like the one examined above in connection with
test 7

NYB 4J ] ;
l/0

lmax
(2l ] 1)\ 4J(lmax ] 1)2 , (67)

and the ratio NY/NQ becomes even larger than it was for the
corresponding axisymmetric case. Hence, in connection
with a broad range of astrophysically interesting, two- and
three-dimensional Ñuid Ñow problems, we have found the
CCGF method to be not only much more accurate but also
less expensive to implement than the traditional multipole
method.

One note of caution is in order. Because the argument s
of the special function is a function of both coor-Q

m~1@2(s)
dinates of the interior mass (R@, z@), at the beginning of any
time-evolutionary simulation, a two-dimensional array of
““Q ÏÏ values must be calculated at each location along the
boundary of the grid and for each discrete Fourier mode m.
Hence, although the expense associated with the calculation
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of this global Q array can be conÐned to initialization rou-
tines, it must generally be a four-dimensional array having
dimensions As a result, theD[J] K ] mmax] (2J ] K)].
CCGF method can be quite demanding in terms of storage
space. Because for a given azimuthal mode number m the
function is very smooth over the entire range of s,Q

m~1@2(s)
it may prove to be more practical to store only one-mmaxdimensional arrays that could be referenced by all bound-
ary grid cells in which the particular function hasQ

m~1@2been evaluated at a reasonably large number and sufficient-
ly wide range of discrete values of s. Then, when performing
its own evaluation of the moments of the mass distribution,
each boundary cell could evaluate as needed viaQ

m~1@2(s)
an interpolation within the discretized array. We have not
yet implemented such a scheme, although as we begin to
investigate problems having sizes larger than the one illus-
trated in test 7, above, we will probably need to do so.

4. SUMMARY

When studying the structure, stability and/or dynamical
evolution of astrophysical systems, it often seems natural to
adopt cylindrical coordinates because the systems being
studied are either rotationally Ñattened (e.g., galaxies and
protostellar disks) or elongated along an underlying axis of
magnetic and/or rotational symmetry (e.g., jets and bipolar
Ñows). When self-gravity is important in deÐning a systemÏs
structural and stability properties, however, cylindrical
coordinates have not provided much of a modeling advan-
tage in the past. This is because the familiar expression for
the GreenÏs function expansion in cylindrical coordinatesÈ
shown here in equation (13)Èinvolves not only an inÐnite
summation over all azimuthal modes but also inÐnite inte-
grals over products of Bessel functions of various orders.
Because it is not obvious at what level the Bessel function
integrals should be truncated in order to achieve a desired
degree of accuracy for arbitrary mass distributionsÈand
Bessel functions, themselves, are not as easy to evaluate as
trigonometric functionsÈresearchers usually have adopted
a GreenÏs function expansion in terms of spherical harmo-
nics (even though this expansion is not well suited to Ñat-
tened mass distributions) or have employed Cartesian
coordinates along with Fourier techniques (see Hockney &
Brownrigg 1974 ; James 1977 ; Hohl & Zang 1979), which
are able to remove the inÐnite periodicity in order to evalu-
ate the gravitational potential of an isolated mass distribu-
tion. (See Villumsen 1985 for one notable counterexample,
and the Robijn & Earn 1996 examination of the relative
utility of several other orthogonal coordinate systems.)
Spherical harmonics also have been the basis set of choice
in analyses of nonradial modes of oscillation in rotationally
Ñattened stars (Tassoul 1978).

In ° 2.2, we have derived a much more compact expres-
sion for the GreenÏs function in cylindrical coordinates,
namely equation (15) or equation (17). Given that the ana-
lytical solution to the inÐnite integral permitting the deriva-
tion of equation (15) from equation (13) has been known for
over 50 years (see discussion on p. 389 of Watson 1944 for a
more detailed historical presentation), it is hard to believe
that we are the Ðrst to discover this CCGF (compact cylin-
drical GreenÏs function) expansion. However, we can Ðnd
no evidence that this compact expression has previously
been utilized by the astrophysics community, except in its
axisymmetric form (see ° 3.1.2).

When studying the dynamical evolution of self-

gravitating Ñuid systems, we historically have used 'Y, i.e.,
the multipole method based on spherical harmonics, to
specify values of the potential on the boundary of our com-
putational grid (Tohline 1980 ; Durisen & Tohline 1985 ;
Williams & Tohline 1988 ; Woodward, Tohline, & Hachisu
1994 ; Tohline & Hachisu 1990), as have numerous other
groups (Black & Bodenheimer 1975 ; Norman & Wilson
1978 ; Boss 1980 ; Stone & Norman 1992 ; Boss & Myhill
1995 ; & Steinmetz 1995 ; Yorke & Kaisig 1995). InMu� ller
the majority of these studies it has been advantageous for us
to set the vertical size K of our cylindrical grid equal to the
radial size J of the grid because, as illustrated and discussed
in depth in ° 3.2, relatively small errors in 'Y can be
achieved with a relatively small number of terms in the
multipole expansion when the top of a cylindrical grid is
placed far above a Ñattened mass distribution. (Test 1, and
Fig. 2 in particular, illustrates the type of grid that we have
frequently used in the past.) However, when the choice is
made to set K \ J, a very large number of computational
grid cells must be placed between the surface of a rotation-
ally Ñattened mass distribution and the top boundary of the
grid, i.e., in a region of space that contains little matter and
therefore is relatively uninteresting, physically. In the
context of every other aspect of our simulations, such as the
time integration of the equations governing motion of the
Ñuid and the determination of the gravitational potential at
all grid points interior to the grid boundary, it would be
much more advantageous computationally to select a grid
resolution with K > J. As discussed and illustrated in ° 3.2,
the CCGF expansion provides an ideal method for numeri-
cally evaluating the gravitational potential of nonspherical,
isolated mass distributions on such Ñattened cylindrical
coordinate grids. It is generally less costly to implement and
always more accurate than methods that rely upon the stan-
dard expansion in terms of spherical harmonics. We now
routinely incorporate the CCGF method in our self-
gravitating Ñuid simulations. As an extension of the work
presented by Robijn & Earn (1996), this new compact
expansion may also prove to be useful in analytical studies
of the structure and stability of self-gravitating systems
because the half-integer degree Legendre functions about
which the new expansion is made seem to o†er a natural set
of basis functions to aid in the isolation and evaluation of
system eigenmodes.
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APPENDIX A

A USEFUL MODAL EXPANSION

Morse & Feshbach (1953 ; see the expression just above their eq. [10.3.79]) have presented the following useful relationship
in connection with the integral representation of Q

m~1@2 :

Q
m~1@2(cosh k) \ 1

2J2

P
0

2n cos (m/@) d/@
Jcosh k [ cos /@

. (A1)

Multiplying both sides of this expression by eim Õ and then summing both sides from m\ [O to m\ O yields the following
expression :

;
m/~=

=
eim ÕQ

m~1@2(cosh k)\ 1

2J2

P
0

2n d/@
Jcosh k [ cos /@

;
m/~=

=
(eim(Õ`Õ{)] eim(Õ~Õ{)) . (A2)

Utilizing the following representation of the Dirac delta function (e.g., eq. [3.139] of Jackson 1975),

d(#) \ 1
2n

;
m/~=

=
eim # , (A3)

the integral on the right-hand side of equation (A2) can be readily performed, giving

1

Jcosh k [ cos /
\J2

n
;

m/~=

=
eim ÕQ

m~1@2(cosh k) , (A4)

or, written entirely in terms of real functions,

1

Jcosh k [ cos /
\J2

n
;

m/0

=
v
m

cos (m/)Q
m~1@2(cosh k) . (A5)

APPENDIX B

SELECTED ANALYTICAL POTENTIAL-DENSITY PAIRS

For a distinguished class of nonspherical objects there exist analytical solutions for the Newtonian potential given in terms
of elementary and special functions. Below we list a few of these distinguished objects and the analytical forms of the exterior
potential associated with them. There is a long history associated with these problems (see, e.g., Ramsey 1981 ; Binney &
Tremaine 1987). Unfortunately, these objects do not represent most of the types of objects for which one might need to
calculate gravitational forces. Even so, they are certainly very useful in comparing numerical methods for evaluating poten-
tials.

Consider a homogeneous, axisymmetric spheroid deÐned such that

o(R, z)\
Go0, if R2/a12] z2/a32¹ 1 ,
0, if R2/a12] z2/a32[ 1 ,

(B1)

where and are the equatorial and polar radii of the spheroid, respectively. From Chandrasekhar (1969), we Ðnd that thea1 a3gravitational potential exterior to the spheroid is

'(R, z)\ nGo0 a12 a3
GC

1 ] R2
2(a32[ a12)

[ z2
a32[ a12

D
I1[ R2Ja32] j

(a32 [ a12)(a12] j)
[ 2z2

(a12] j)Ja32 ] j
[ 2z2Ja32] j

(a32[ a12)(a12] j)
H

(B2)

where

j \ [(R2] z2[ a12[ a32)] J(a12] a32[ R2[ z2)2[ 4(a12 a32[ R2a32[ z2a12)]/2 , (B3)

and, for an oblate spheroid (a1[ a3),

I1\ n
Ja12[ a32

[ 2

Ja12[ a32
tan~1

S a32] j
a12[ a32

, (B4)

whereas for a prolate spheroid (a1\ a3),

I1\ [1

Ja32[ a12
ln
C(Ja32] j [ Ja32[ a12 )2

a12] j
D

. (B5)
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For a homogeneous, triaxial ellipsoid deÐned such that

o(x, y, z)\
Go0, if x2/a12] y2/a22] z2/a32¹ 1 ,
0, if x2/a12] y2/a22] z2/a32[ 1 ,

(B6)

where the three principal axes are deÐned such that the potential at any point x \ (x, y, z) exterior to thea1 [ a2[ a3,ellipsoid is

'(x)\ 2no0 a1 a2 a3
Ja12[ a32

GA
1 [ x2

a12[ a22
] y2

a12[ a22
B
F(h, k) ]

C x2
a12[ a22

[ (a12[ a32)y2
(a12[ a22)(a22[ a32)

] z2
a22[ a32

D
E(h, k)

]
A a32 ] j
a22[ a32

y2[ a22] j
a22 [ a32

z2
B Ja12[ a32

J(a12] j)(a22] j)(a32] j)

H
, (B7)

where

F(h, k) \
P
0

h d/

J1 [ k2 sin2 /
(B8)

and

E(h, k) \
P
0

h
d/J1 [ k2 sin2 / (B9)

are LegendreÏs elliptic integrals of the Ðrst and second kind, respectively,

h 4 sin~1
Sa12[ a32

a12] j
, (B10)

k24
a12[ a22
a12[ a32

, (B11)

and j is deÐned as the algebraically largest root of the following cubic equation :

x2
a12] j

] y2
a22] j

] z2
a32] j

\ 1 . (B12)
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Note added in proof.ÈIt has recently come to our attention that equation (A4) appears in problem (1) on p. 465 of H.
Bateman (Partial Di†erential Equations of Mathematical Physics [1959 ; Cambridge : Cambridge Univ. Press] ; also see E.
Heine, Handbuch der Kugelfunctionen, Theorie und Anwendungen, 2, umgearb. und verm. AuÑ., 2 vols [1881 ; Berlin : G.
Reimer], p. 286) in the context of toroidal coordinates. This conÐrms our suspicion that the functional form of our CCGF had
previously been derived, but the result has remained unfamiliar to the astrophysics community and does not appear to have
been used previously in the context of circular cylindrical coordinates.


