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ABSTRACT
We apply Minkowski functionals and various derived measures to decipher the morphological proper-

ties of large-scale structure seen in simulations of gravitational evolution. Minkowski functionals of iso-
density contours serve as tools to test global properties of the density Ðeld. Furthermore, we identify
coherent objects at various threshold levels and calculate their partial Minkowski functionals. We
propose a set of two derived dimensionless quantities, planarity and Ðlamentarity, which reduce the mor-
phological information in a simple and intuitive way. Several simulations of the gravitational evolution
of initial power-law spectra provide a framework for systematic tests of our method.
Subject headings : large-scale structure of universe È methods : numerical È methods : statistical

1. INTRODUCTION

The existence of the large-scale clustering of galaxies had
already been well established by the early 1970s, mainly due
to the pioneering work of Totsuji & Kihara (1969) and
Peebles (1974), who showed that the two-point correlation
function for galaxies in the Lick and Zwicky catalogs was
positive and had the power-law form m(r)P r~1.8 on scales

h~1 Mpc. Their result was later extended to three-[10
dimensional galaxy catalogs as well. Although the clus-
tering of galaxies is now a well-known fact, a complete
description of clustering that includes its geometrical fea-
tures has so far eluded researchers. This is perhaps due to
the fact that the galaxy density Ðeld that we observe appears
to be strongly non-Gaussian. A Gaussian random Ðeld is
uniquely described by its power spectrum, P(k), or its two-
point correlation function, m(r), since m(r) and P(k) form a
Fourier transform pair. This is no longer true for a non-
Gaussian Ðeld, for which m must be complemented by other
statistical descriptors that are sensitive to the structure of
matter on large scales. In the so-called ““ standard model ÏÏ of
structure formation, an initially Gaussian density distribu-
tion becomes non-Gaussian due to mode coupling and the
resulting build-up of phase correlations during the nonlin-
ear regime. These phase correlations give rise to the
amazing diversity of form that is characteristic of a highly
evolved distribution of matter, and is often referred to as
being cellular, Ðlamentary, sheetlike, network-like, sponge-
like, a cosmic web, etc. Most of these descriptions are based
either on the visual appearance of large-scale structure or
on the presence of features that are absent in the reference
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Gaussian distribution, which, by deÐnition, is assumed to
be featureless. Gravitational instability, for example, may
cause CDM-like Gaussian initial perturbations to evolve
toward a density Ðeld that percolates at a higher density
threshold, i.e., at a lower Ðlling factor, than a Gaussian Ðeld
(Melott et al. 1983). Such distributions display greater con-
nectivity and are sometimes referred to as being ““ network-
like ÏÏ (Yess & Shandarin 1996).

In order to come to grips with the rich textural pos-
sibilities inherent in large-scale structure, a number of geo-
metrical indicators of clustering have been proposed in the
past, including minimal spanning trees (Barrow, Sonoda, &
Bhavsar 1985), the genus curve (Gott, Melott, & Dickinson
1986), percolation theory (Zeldovich & Shandarin 1982 ;
Shandrain 1983) and shape analysis (Sathyaprakash, Sahni,
& Shandarin 1998 ; Sahni & Coles 1995, and references
therein). A major recent advance in our understanding of
gravitational clustering has been associated with the appli-
cation of Minkowski functionals (MFs) to cosmology
(Mecke, Buchert, & Wagner 1994). The four MFs

provide an excellent description of the geometri-V0, . . . , V3cal properties of a collection of point objects (galaxies) or,
alternatively, of continuous distributions such as density
Ðelds in large-scale structure or brightness contours in the
cosmic microwave background. The scope and descriptive
power of the MFs is enhanced by the fact that both perco-
lation analysis and the genus curve are members of the
family. In addition, as demonstrated by Sahni, Sathyapra-
kash, & Shandarin (1998), ratios of MFs provide us with an
excellent ““ shape statistic ÏÏ with which one can attempt to
quantify the morphology of large-scale structure, including
the shapes of individual superclusters and voids. Spurred by
the success of MFs in quantifying the geometrical proper-
ties of large-scale structure, we apply the MFs to scale-
invariant N-body simulations of gravitational clustering, in
an attempt to probe both the global properties and the
individual ““ bits and pieces ÏÏ that might make up the
““ cosmic web ÏÏ (Bond, Kofman, & Pogosyan 1996).

2. METHOD

2.1. Minkowski Functionals
Minkowski functionals (named after Minkowski 1903)

were introduced into cosmology by Mecke, Buchert, &
Wagner (1994), employing the generalized Boolean grain
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model. This model associates a body with a point process
(in our case given by the location of galaxies or clusters) by
decorating each point with a ball of radius r. The union set
of the covering balls is then studied morphologically,
whereby the radius of the ball serves as a diagnostic param-
eter probing the spatial scale of the body.

In this paper we use the excursion set approach, which is
applicable to continuous Ðelds (which can be constructed
from point processes). Schmalzing & Buchert (1997) pointed
out how to apply Minkowski functionals to isocontours of
continuous Ðelds, where the contour level (the threshold) is
employed as a diagnostic parameter. The excursion set
approach inherits two diagnostic parameters, because we
can also vary the smoothing scale used in constructing the
continuous Ðeld.

In three dimensions there exist four Minkowski function-
als, k \ 0, 1, 2, and 3. They provide a complete andVk,unique description of a patternÏs global morphology in the
sense of HadwigerÏs theorem (Hadwiger 1957). While
reducing the information contained in the full hierarchy of
correlation functions, this small set of numbers incorporates
correlations of arbitrary order, and therefore provides a
complementary look at large-scale structure. The geometric
interpretations of all Minkowski functionals in three dimen-
sions are summarized in Table 1.

We calculate global Minkowski functionals of the iso-
density contours of the density Ðeld, as described in Appen-
dix A. Furthermore, we separately calculate the partial
Minkowski functionals of each isolated part of the iso-
density contour. Since the total isodensity contour is the
union of all its parts, the global functionals are given as
sums of the partial functionals at the same threshold. This
follows the spirit of Mecke et al. (1994), who introduced
partial Minkowski functionals to measure local morphol-
ogy for the generalized Boolean grain model.

Partial Minkowski functionals (PMFs) o†er the possi-
bility of probing the morphology of individual objects, or
the objectÏs environmental morphological properties. We
expect that this concept will be more powerful when applied
to continuous Ðelds at high spatial resolution, so that the
details of structures are not smoothed out. Their applica-
tion to point processes also delivers more direct informa-
tion. PMFs provide a wide range of possibilities for
morphological studies, which we will explore in a forth-
coming paper.

2.2. ShapeÐnders
One important task of morphological statistics is quan-

tifying strongly non-Gaussian features such as Ðlaments
and pancakes. Given the four Minkowski functionals, we
aim to reduce their morphological information content to

TABLE 1

MINKOWSKI FUNCTIONALS EXPRESSED IN TERMS

OF THE CORRESPONDING GEOMETRIC QUANTITIES

Geometric Quantity k Vk
V , volume . . . . . . . . . . . . . . . . . . . 0 V0\ V
A, surface . . . . . . . . . . . . . . . . . . . 1 V1\ A/6
H, mean curvature . . . . . . . . . 2 V2\ H/3n
s, Euler characteristic . . . . . . 3 V3\ s

two measures of planarity and Ðlamentarity, as has been
done, for example, with various geometrical quantities (Mo
& Buchert 1990), moments of inertia (Babul & Starkman
1992), and cumulants of counts-in-cells (Luo & Vishniac
1995).

Recently, Sahni et al. (1998) proposed a set of shape-
Ðnders derived from Minkowski functionals. One starts
from the three independent ratios of Minkowski functionals
that have a dimension of length. Requiring that they yield
the radius R if applied to a ball, we deÐne

Thickness, T 4
V0
2V1

; Width, W 4
2V1
nV2

;

Length, L 4
3V2
4V3

. (1)

By the isoperimetric inequalities (eq. [B6]), we have
L º W º T for any convex body.

Going one step further, Sahni et al. (1998) also deÐne
dimensionless shapeÐnders by

Planarity, P4
W [ T
W ] T

; Filamentarity, F4
L [ W
L ] W

.

(2)

Some examples are in order.

2.3. Simple Examples
Let us consider some simple families of convex bodies in

three-dimensional space that can take both Ðlamentary and
planar shape.

A spheroid with two axes of length r and one axis of
length jr has Minkowski functionals

V0\ 4n
3

r3j , V1\ n
3

r2
C
1 ] f

A1
j
BD

,

V2\ 2
3

r[j ] f (j)] , V3\ 1 , (3)

where8

f (x) \ arccos x

J1 [ x2
. (4)

By varying the parameter j from zero to inÐnity, we can
change the morphology of the spheroid from a Ðlament to a
pancake via a spherical cluster.

A di†erent way of deforming a Ðlament into a pancake is
via generic triaxial ellipsoids, whereby one of the smaller
axes of a strongly prolate spheroid is increased in size until
it matches the larger axis and an oblate spheroid has been
reached. An integral expression can be found in Sahni et al.
(1998).

Yet another transition from prolate to oblate shape is
provided by cylinders of radius r and height jr. Here the

8 Note that for arguments x [ 1, one can use the relation
i arccos x \ ln [x ] (x2[ 1)1@2] to recover an explicitly real-valued
expression.
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FIG. 1.ÈShapeÐnders of some convex bodies. The solid line shows the
transition from a ball to a Ðlament to a pancake and back to a ball via
triaxial ellipsoids of various shapes. The dashed line corresponds to cylin-
ders that also undergo the transition from a Ðlament to a pancake by
varying their height. The dots on the spheroid and cylinder curves indicate
typical values of the j parameter from eqs. (3) and (5), respectively.

Minkowski functionals are given by

V0\ nr3j , V1\ n
3

r2(1] j) ,

V2\ 1
3

r(n ] j) , V3\ 1 . (5)

Figure 1 shows a Blaschke diagram, which is a plot of
planarity, P, and Ðlamentarity, F, summarizing the mor-
phological properties of these simple convex bodies.

3. A SET OF N-BODY SIMULATIONS

3.1. Description
We start from a family of initial power-law spectra

P(k)P kn, where n ½ M[2,[ 1, 0, ]1N, set before an
EinsteinÈde Sitter background ()\ 1, "\ 0). We conduct
numerical experiments using a PM code (consult Melott &
Shandarin 1993 for details). Four sets of phases were used
for each model, making a total of 16 simulation runs. Each
run consists of 1283 particles sampled at an epoch well in
the nonlinear regime. This epoch is chosen such that the
scale of nonlinearity, deÐned in terms of the evolvedknl,spectrum

p
knl
2 \

P
0

knl
d3kP(k)\ 1 , (6)

is equal to 8 in units of the fundamental mode of the simula-
tion box. By using the stage we make sure thatknl\ 8,
structure is already sufficiently developed on scales much

larger than the simulationÏs resolution, while it is not yet
inÑuenced by boundary e†ects.

Using a cloud-in-cell kernel, these particles were put onto
a 2563 grid, which is the maximum value an ordinary work-
station can tackle with acceptable time and memory con-
sumption. Subsequently, the density Ðeld was smoothed
with a Gaussian kernel Pexp ([x2/2j2), where x is the
distance in mesh units, and the width j is set to 3. Tests have
shown that this value both leads to a reasonably smooth
Ðeld and preserves at least some detail on smaller scales.
Throughout this article, we rescale the density to the density
contrast d, ranging from [1 to inÐnity with zero mean.

3.2. T he Global Field
The global Minkowski functionals calculated from the

density Ðelds described in the previous section are shown in
Figure 2. The four di†erent line styles correspond to the
di†erent spectral indices. Figure 3 shows the Minkowski
functionals for the same set of models, but instead of the
density threshold d, the rescaled threshold l is used as the
x-axis. The value of l is calculated from the volume Min-
kowski functional which is the Ðlling factor f, asv0,described by Gott, Weinberg, & Melott (1987). Essentially,
its use forces exact Gaussian behavior of the volume byv0,the implicit connection

v0(d) \ 1
2

[ 1
2

'
A l
J2

B
. (7)

Thus, the deviations from Gaussianity that are due to
changes in the one-point probability distribution function
are removed, and deviations due to higher-order corre-
lations are emphasized.

Obviously, the global functionals clearly discriminate
between the various models. However, in order to make this
statement more quantitative, let us take a closer look at the
individual coherent objects composing the isodensity con-
tours.

3.3. T he L argest Objects
At intermediate thresholds, the excursion sets consist of

numerous isolated objects. We identify them by grouping
adjacent occupied grid cells into one object, where adjacent
means that the cells have a common face. Since the Min-
kowski functionals of the global Ðeld are calculated by inte-
grating over quantities that can be assigned to individual
grid cells, the partial Minkowski functionals of each object
can be obtained at no extra cost once the cells belonging to
each object have been identiÐed.

Several plots in Figures 4, 5, 6, and 7 illustrate the behav-
ior of the Minkowski functionals of these objects.

Obviously, the contribution of smaller objects to the
volume is almost negligible compared to the largest one.
Note that in all Ðgures, the mean and standard deviation
over all four realizations are shown instead of the individual
curves. It is worth noting that the variance is largest in the
n \ [2 and [1 models, which are dominated by structures
on large scales and hence show the strongest sample
variance.

The models with various initial spectral indices n show a
qualitatively similar behavior. At small Ðlling factors (high
density thresholds), the two largest clusters make negligible
contributions to each of the global characteristics. Then
at the percolation transition the largest cluster quickly



FIG. 2.ÈMinkowski functionals for the evolutionary stage of four di†erent models with initial power law spectra P(k)P kn. The area between twoknl \ 8
lines gives the 1 p deviations of four realizations from their mean. Solid lines, n \ [2 ; dotted lines, n \ [1 ; dash-dotted lines, n \ 0 ; dashed lines, n \ ]1.

FIG. 3.ÈMinkowski functionals for the evolutionary stage of four di†erent models with initial power law spectra. Line styles are as in Fig. 3, butknl \ 8
instead of the density threshold d, the rescaled threshold l introduced by Gott et al. (1987) is used.



FIG. 4.ÈComparison of the global Minkowski functionals of the whole density Ðeld (solid line) to the Minkowski functionals of the largest (dashed line)
and second-largest objects (dotted line). The areas indicate the mean and standard deviation over the four realizations of each model. In order to emphasize
the region around the percolation transition, the Minkowski functionals are plotted against the Ðlling factor, which is equal to the volume enclosed in all
isocontours of the global Ðeld. In this particular plot, the values for an initial power-law spectrum with an index of n \ [2 are shown.

FIG. 5.ÈSame tendency as in Fig. 4, visible in this case where n \ [1. As before, the dominance of large networked structures is clearly visible ; for
example, the Euler characteristic stays well below zero even for high thresholds, which indicates a spongy structure with many tunnels in it. However, the
networked structures have fewer loops, since they tend to split up at lower thresholds.
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FIG. 6.ÈThe case of n \ 0, showing a di†erent situation. The largest object splits up rapidly, and is already simply connected at fairly low density contrast
(d B 0.5). In addition, at thresholds around percolation, the second-largest object becomes comparable to the largest one, so the Ðeld is not dominated by a
single networked structure, but by several chunks.

FIG. 7.ÈSame e†ect as in Fig. 6, even more pronounced for n \ ]1, since this model is dominated by small-scale structures. Contrary to the models with
negative index n, where the Euler characteristic of the largest object approaches the value 1 for a simply connected structure from below, one can even see a
small positive peak around the percolation threshold.
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FIG. 8.ÈShapeÐnder or Blaschke diagram of the model with n \ [2.
The area of each dot corresponds to the number of coherent objects whose
shapeÐnders (P, F) lie around the center of this dot. Note that the shape-
Ðnders of all objects at all thresholds are used in the construction of the
diagram. Nevertheless, most information comes from thresholds close to
percolation, where small objects are abundant.

FIG. 9.ÈAverage planarity shapeÐnder, P, as a function of the cluster
mass. Lines are as in Fig. 2. As in Fig. 8, all objects at all thresholds are
used to improve statistics.

FIG. 10.ÈPlot of the same type of distribution as in Fig. 9, but here the
average Ðlamentarity shapeÐnder, F, is plotted as a function of the cluster
mass. Lines are as in Fig. 2.

FIG. 11.ÈDistribution of the planarity shapeÐnder, P. The histogram
only includes objects larger than 10~5 times the simulation box, a value of
the order of the smoothing volume. Note that although theoretically the
value should lie between 0 and 1, measurement errors lead to negative
values. The curves give total numbers of objects per histogram interval ;
hence, they di†er widely in normalization, but still agree reasonably well in
shape. Lines are as in Fig. 2.
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becomes the dominant structure in terms of volume, area,
and integrated mean curvature. The second-largest cluster
also grows at the percolation threshold, but just a little, and
then it quickly diminishes. The percolation transition is
clearly marked in all three characteristics of the largest
cluster by their sudden growth. However, this transition
does not happen at a well-deÐned threshold. Instead, clus-
ters gradually merge into the largest objects as the thresh-
old is decreased (the Ðlling factor grows). This continuous
transition has also been observed using percolation
analysis, i.e., the zeroth Minkowski functional alone
(Shandarin & Zeldovich 1983 ; Shandrain & Yess 1998 ;
Klypin & Shandrain 1993 ; Sahni et al. 1997), and is
explained by the Ðnite size of the sample.

Nevertheless, the percolation transitions happen within
fairly narrow ranges of the Ðlling factor that are clearly
distinct for di†erent models in question ; the Ðlling factors
are approximately 0.03 ^ 0.01, 0.07^ 0.015, 0.11^ 0.015,
and 0.14 ^ 0.015 in the n \ [2, [1, 0, and ]1 models,
respectively. It is remarkable that all percolation transitions
occur at smaller Ðlling factors than in Gaussian Ðelds
(about 0.16), indicating that even in the most hierarchical
model (n \ ]1) the structures tend to be more connected
than in the ““ structureless ÏÏ Gaussian Ðeld. Pauls & Melott
(1995) showed positive correlation with networks based on
the same phases all the way to n \ ]3. This conÐrms the
conclusion of Yess & Shandarin (1996) that the universality
of the network structures results from the evolution of
Gaussian initial conditions through gravitational insta-
bility. The Euler characteristic of the largest cluster also
marks the percolation threshold, but in a di†erent manner :
before percolation it is zero and after percolation it becomes
negative in every model ; however, in the n \ 0 and n \ ]1
models, it grows to a small positive peak before becoming
negative. All global functionals have no particular features
at the percolation threshold.

3.4. Small Objects
As an example, the Blaschke diagram for the model

n \ [2 is shown in Figure 8. The distributions for the other
models look qualitatively very similar, and the average
quantities for other models are presented in Figures 9 and
10. Figure 9 shows that most of the small objects are either
spherical or slightly planar (two largest dots in Fig. 8).
There is also a considerable number of elongated clusters
with Ðlamentarities from 0.1 to 0.5. In some cases, Ðlamen-
tarity reaches large values, D1. In contrast, planarity is
much weaker ; it hardly reaches the value of 0.2 (which is
partly a consequence of the smoothing). There is a hint of a
small correlation between Ðlamentarity and planarity : the
objects with the largest Ðlamentarity also tend to have
larger planarity.

Figures 9 and 10 display the shapeÐnders as functions of
the cluster mass. The curves give averages over the realiza-
tions of each model. Apparently, the signal for Ðlamentarity
is much stronger than for planarity, regardless of the model,
which is in full agreement with Figure 8. The planarity and
Ðlamentarity distributions qualitatively look very similar
except in amplitude. Small objects (5] 10~6[ m[
5 ] 10~4) display stronger planarity and Ðlamentarity for
models with more power on large scales. However, for
greater masses the situation is reversed ; the(mZ 5 ] 10~4)
less large-scale power, the greater the Ðlamentarity and
planarity. If the former condition seems to be natural and

FIG. 12.ÈSame type of distribution as in Fig. 11, but showing the
Ðlamentarity shapeÐnder, F. Lines are as in Fig. 2.

was expected, the latter has been unexpected. Both the plan-
arity and Ðlamentarity monotonically grow and reach their
maxima at the largest clusters : and inP

m
B 0.1 F

m
B 0.5

all models. As expected, the largest objects possess the
largest planarities and Ðlamentarities, but the independence
of the maxima from the model was again unexpected.
Figures 11 and 12 show the histograms for the shapeÐnders
P and F, respectively. They clearly show the large di†er-
ence in the total number of structures ; the more power on
small scales, the greater the abundance of clusters. These
Ðgures are in general agreement with Figures 9 and 10.

4. CONCLUSION AND OUTLOOK

Global Minkowski functionals do discriminate (Figs. 2
and 3). Only the n \ [2 model shows slight drawbacks as
far as robustness is concerned, but that is due to the
methodÏs sensitivity to large-scale features of the smoothed
density Ðeld. The total area, mean curvature, and Euler
characteristic are sensitive to abundances of the structures
and are easy to interpret ; the more power on small scales
(greater n), the more abundant structures and therefore the
greater the amplitude of the curve.

Even more valuable information is obtained from
looking at the Minkowski functionals of the largest coher-
ent object at each threshold (Figs. 4, 5, 6, and 7). All four
Minkowski functionals of the largest cluster clearly consis-
tently detect the percolation transition. Two points are
worth stressing : (1) in all models, the percolation transition
happens at smaller Ðlling factors than in the ““ structureless ÏÏ
Gaussian Ðelds ; and (2) the more power on large scales (i.e.,
the smaller n), the smaller the Ðlling factor at percolation.
Both conclusions conÐrm the results of Yess & Shandarin
(1996) regarding the universality of the network structures
in the power-law models with n ¹ 1. The results of Pauls &
Melott (1995) present evidence that this should be expected
all the way up to n \ ]3 ; at n \ ]4, mode coupling e†ects
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from smaller scales should begin to fully disrupt the
network structure.

Small objects, on the other hand, give di†erent results.
Their abundance discriminates well, but is already deter-
mined by the di†erence in the Euler characteristic, as well as
by the total area and mean curvature of the whole contour
(Figs. 2 and 3), which are also sensitive to the abundance of
structures. The morphology of small objects as measured by
shapeÐnders shows little di†erences between models so far
(Figs. 9, 10, 11, and 12). Both the maximum average plan-
arity (PB 0.1) and the maximum average Ðlamentarity
(FB 0.5) are reached in the most massive nonpercolating
objects. None of the models showed ribbon-like objects
characterized by both large planarity and large Ðlamen-
tarity. We may speculate that the smaller objects are ones
that formed earlier, are more nonlinear, and therefore more
decoupled from initial conditions.

However, all models used Gaussian initial conditions and
evolve under the inÑuence of gravity. Hence, the similar
morphology of the clumps may point toward universal

behavior. Note that phenomena such as string wakes might
produce totally di†erent results.

The grouping and measurement techniques used in this
study may be less accurate for small objects than for large
clusters. It is worth trying to study the morphology of small
objects by applying more accurate methods of measuring
partial Minkowski functionals, such as a Boolean grain
model (Schmalzing 1996, and a follow-up to this article) or
the interpolation method of Novikov, Feldman, & Shan-
darin (1999), generalized to three dimensions.
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NSF-EPSCoR program and the GRF program at the Uni-
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APPENDIX A

CALCULATING MINKOWSKI FUNCTIONALS OF ISODENSITY CONTOURS

Using methods from integral geometry and scale-space theory, Schmalzing & Buchert (1997) developed numerical methods
to quantify the morphology of isodensity contours of a random Ðeld. They present two complementary possibilities for
estimating Minkowski functionals.

Given a density Ðeld sampled at the grid points of a cubic lattice with lattice constant a, CroftonÏs formula (Crofton 1868)
requires counting the number of grid cells per unit volume contained in the excursion set. We obtain

VŒ0(l)\ n3 , (A1)

VŒ1(l)\
2
9a

(n2[ 3n3) , (A2)

VŒ2(l)\
2

9a2 (n1[ 2n2] 3n3) , (A3)

VŒ3(l)\
1
a3 (n0[ n1] n2[ n3) , (A4)

where the quantity is the number density of j-dimensional elementary cells ; to be speciÐc, is the number of grid volumes,n
j

n3counts the grid faces, and and denote the numbers of grid edges and lattice points, respectively.n2 n1 n0Alternatively, it is sufficient to estimate the derivatives of the random Ðeld at the grid points and perform a spatial average,
over Koenderink invariants :9S É É É T

D
\ (1/D) /

D
d3x

VŒ0(l)\ S#(u [ l)T
D

, (A5)

VŒ1(l)\
T1

6
d(u [ l)(u,i u,i)1@2

U
D

, (A6)

VŒ2(l)\
T 1

3n
d(u [ l)

v
ijm

v
klm

u,i u,jk u,l
2u,n u,n

U
D

, (A7)

VŒ3(l)\
T 1

4n
d(u [ l)

v
ijk

v
lmn

u,i u,l u,jm u,kn
2(u,p u,p)3@2

U
D

. (A8)

9 The notation is chosen to emphasize the coordinate invariance of the integrand. We use indices following a comma to indicate di†erentiation with
respect to the corresponding coordinate. The terms denotes the components of the totally antisymmetric third-rank tensor normalized tov

ijk
v123 \ 1.

Summation over pairwise indices is understood.
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Careful analysis reveals that both families of estimators are biased by the Ðnite lattice constant, a, encountered with any
practical realization of a random Ðeld. The deviations are of order a2 and can be evaluated analytically for a Gaussian
random Ðeld (see Winitzki & Kosowsky 1997 for some results). It turns out that the two estimates using CroftonÏs formula
and Koenderink invariants, respectively, deviate from the true value in opposite directions. Hence, their di†erence gives at
least a rough idea of the errors associated with binning the continuous Ðeld onto a Ðnite lattice.

Yet another method of calculating Minkowski functionals of isocontours was suggested by Novikov et al. (1999). However,
their interpolation method has so far only been implemented in two dimensions.

APPENDIX B

ISOPERIMETRIC INEQUALITIES AND SHAPEFINDERS

In his original article, Minkowski (1903) introduced the mixed volumes of n convex bodies to InV (K1, . . . , K
n
) K1 K

n
.

terms of ordinary volumes of Minkowski sums of the bodies, we have

V (K1, . . . , K
n
)4

1
n !

;
k/1

n
([1)n`k ;

i1: Õ Õ Õ :ik
V (K

i1
= É É É = K

ik
) , (B1)

where the Minkowski sum is deÐned as

K = L 4 Mx ] y o x ½ K, y ½ L N . (B2)

In the case of a single body, the mixed volume reduces to its ordinary volume. Furthermore, these quantities inherit many
interesting properties from the volume and hence play a central role in the Brunn-Minkowski theory (see Schneider 1993 for
an introduction).

A most useful inequality, proved by Alexandrov (1937) and Fenchel (1936), states that

V 2(K1, K2, . . . , K
n
)º V (K1, K1, K3 . . . , K

n
)V (K2, K2, K3 . . . , K

n
) . (B3)

The Minkowski functionals of a body K in d dimensions can be related to mixed volumes of two bodies via10

V
j
(K)\ 1

u
j
V (K, . . . , K, B, . . . , B) (B4)

GHI GHI
d[j j

where B denotes the d-dimensional unit ball. Consult the book by Burago & Zalgaller (1988) for a broad discussion of the
Alexandrov-Fenchel inequality and related issues.

In three dimensions, the Alexandrov-Fenchel inequality (eq. [B3]) leads to two independent nontrivial inequalities for the
Minkowski functionals, namely,

V 12 º
n
4

V0 V2 , (B5)

V 22 º
8
3n

V1 V3 . (B6)

(B7)

These two inequalities motivate the introduction of the Blaschke diagram (Hadwiger 1955). A convex body with Mink-
owski functionals is mapped to a point (x, y) with coordinatesV

j

x 4
nV0 V2
4V 12

, y 4
8V1 V3
3nV 22

. (B8)

A ball has x \ y \ 1. For convex bodies, all Minkowski functionals are nonnegative and satisfy the inequalities given in
equation (B6), so these points are conÐned to the unit square. Nevertheless, the convex bodies do not Ðll the whole unit
squareÈthe limiting isoperimetric inequality has yet to be found (Schneider 1993 and references therein).

The dimensionless shapeÐnders introduced in equation (2) are related to the isoperimetric ratios via

P\ 1 [ x
1 ] x

, F\ 1 [ y
1 ] y

. (B9)

Obviously, a scatter plot of shapeÐnders is almost equivalent to the ordinary Blaschke diagram reÑected at the point (0.5, 0.5),
so either method of presentation should convey the same morphological information. Throughout this article, we refer to
plots of shapeÐnders (P, F) as Blaschke diagrams.

10 The volume of the j-dimensional unit ball is denoted by Some special values are and The general formula readsu
j
. u0\ 1, u1\ 2, u2\n, u3\ 4n/3.

u
j
\nj@2/[!( j/2] 1)].
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