OPTICAL AND INFRARED OBSERVATIONS OF THE BIPOLAR PROTO–PLANETARY NEBULA HENIZE 401¹

Pedro García–Lario

ISO Data Centre, Estación de Seguimiento de Satélites de Villafranca del Castillo, Apartado de Correos 50727, E-28080 Madrid, Spain

ANGELS RIERA

Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Avenida Víctor Balaguer s/n, E-08800 Vilanova i la Geltrú, Spain; and Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Avenida Diagonal 647, E-08028 Barcelona, Spain

AND

ARTURO MANCHADO Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain Received 1998 December 4; accepted 1999 July 16

ABSTRACT

Based on optical and near-infrared ground-based spectroscopy and optical and near-infrared Hubble Space Telescope (HST) images, we confirm the classification of Hen 401 as a bipolar proto-planetary nebula. HST images reveal a highly elongated morphology, consisting of two main bipolar lobes of unequal surface brightness separated by a dark lane of dust with a total extension of $28'' \times 3''$, superimposed on a much fainter background emission of elliptical shape extending over $\sim 10'' \times 5''$. The simultaneous detection of spectral lines formed under very different density conditions, together with the strong obscuration observed along the equatorial plane, is interpreted as the signature of a circumstellar disk, which would be responsible for the strong collimation observed. We conclude that the emission observed is mainly due to scattering of the light originated in the fluorescence-excited inner region of the circumstellar disk. In addition, we also report the detection of strong molecular H₂ emission in the near infrared, confirming that the onset of the H₂ emission occurs in proto–PNs after the bipolar structure has developed, but before photoionization takes place.

Subject headings: circumstellar matter — infrared: ISM: continuum —

planetary nebulae: individual (Henize 401)

1. INTRODUCTION

Henize 3-401 (= IRAS 10178-5958, hereafter Hen 401) was first identified as a star in the transition phase between the asymptotic giant branch (AGB) and the planetary nebula (PN) stages by Parthasarathy & Pottasch (1989) on the basis of its far-infrared IRAS colors. This object was previously cataloged in the list of Cool Carbon Stars compiled by Stephenson (1971) with the number 1662 (probably a misidentification), and later as a Be star by Sanduleak & Stephenson (1973) on the basis of its low-dispersion optical spectrum. Allen & Glass (1975) identified the object as an emission-line star with infrared dust emission, and Allen (1978) reported the detection of an extended bipolar reflection nebula around a B-type central star and the presence of permitted and forbidden emission lines of singly ionized iron in the optical spectrum, as well as other low-excitation forbidden emission lines and strong Balmer emission. Scarrot & Scarrot (1995) suggest from polarization measurements that the circular polarization pattern found is consistent with the presence of a circumstellar disk, which might be responsible for collimating the outflow.

Hen 401 was not detected in the OH maser emission line at 1612 MHz by Silva et al. (1993), but it was detected in CO at millimeter wavelengths by Loup et al. (1990) and by Bujarrabal & Bachiller (1991), suggesting a C-rich nature of the outer envelope. The CO lines detected are weak, probably due to an efficient photodissociation of this molecule by the UV radiation coming from the central star, and broad, corresponding to an expansion velocity of the circumstellar envelope of 16 km s^{-1} .

Recently, García-Lario et al. (1997) confirmed the detection of a strong near-infrared excess toward this source, which was interpreted as the signature of large amounts of hot dust in the circumstellar envelope, resulting from recent mass loss. Based on the overall emission of Hen 401 in the infrared from 1 to 100 μ m, they concluded that the *IRAS* source should be classified as a PN in a very early evolutionary stage or as a proto-PN.

In this paper we confirm this classification and show deep optical and near-infrared images taken with the *Hubble Space Telescope* (*HST*), which reveal a highly collimated bipolar morphology. A detailed analysis of the lowresolution optical spectrum is also carried out. In addition, we report the detection of strong H_2 molecular emission in the near infrared. This adds another member to the short list of four proto-PNs that have been found to show H_2 emission so far (Weintraub et al. 1998).

2. OBSERVATIONS

Low-resolution long-slit optical spectra were taken at the 1.52 m ESO telescope (La Silla, Chile). The Boller & Chivens spectrograph was used at two different epochs, in 1990 February and 1995 February, with a CCD as detector attached to the Cassegrain focus of this telescope. In 1990 February, the spectral range 4040–6940 Å was covered with a spectral resolution of 2.8 Å pixel⁻¹, while in 1995 Feb-

¹ Based on observations collected at the European Southern Observatory (La Silla, Chile) and observations made with the NASA/ESA *Hubble Space Telescope*, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

ruary we covered the range 3500-11200 Å, with a spectral resolution of 3.8 Å pixel⁻¹. The slit width was 1".6 at both epochs. The slit was always oriented along the bipolar axis and through the central star. Several exposures were taken, with different integration times, up to a maximum of 1800 s.

Near-infrared spectra were also taken at La Silla using the infrared spectrograph IRSPEC attached to the Nasmyth focus of the 3.5 m NTT telescope during observations carried out in 1993 March. Spectra were centered at 2.122 and 2.166 μ m, wavelengths corresponding to the $1 \rightarrow 0 S(1)$ vibrational-rotational emission line of molecular hydrogen, H₂, and H I Br γ , respectively with the slit again aligned along the bipolar axis of the nebula and through the central star. This time the slit width was 4".5. The standard beam-switching technique was used in order to subtract the sky background. IRSPEC is a cryogenically cooled grating spectrometer equipped with a 58 × 62 pixel InSb array, which provides a resolving power of around 2000 at the observed wavelengths.

The data-reduction process includes bias and flat-field corrections, as well as wavelength calibration, sky subtraction, and absolute flux calibration using comparison standard stars for both optical and near-infrared spectroscopic observations.

High spatial resolution optical $(0.045 \text{ pixel}^{-1})$ and nearinfrared (0".075 pixel⁻¹) images of Hen 401 were retrieved from the HST Data Archive. A detailed description of these images can be found in a recent paper by Sahai, Bujarrabal, & Zijlstra (1999). They were originally obtained as part of proposals 6816 (optical data; PI, R. Sahai) and 7840 (nearinfrared data; PI, S. Kwok). Optical images with exposure times ranging from 200 to 600 s were obtained on 1997 June 12 using the Wide Field Planetary Camera 2 (WFPC2) in the light of H α and the [S II] doublet 6717, 6731 Å through the narrow F656N and F673N filters, respectively, and in the continuum through the broad F606W filter centered around 6060 Å. Near-infrared images were obtained using NICMOS on board HST on 1998 March 6 in the light of H₂ 2.122 μ m and in the adjacent continuum at 2.149 μ m through the narrow F212N and F215N filters, with exposure times slightly below 300 s in all cases. Cosmic-ray hits were eliminated from individual images. After this, and for each filter, all the available images were recentered and combined into a single image in order to increase the signalto-noise ratio.

3. RESULTS

3.1. HST Imaging

HST images of Hen 401 (see Fig. 1) reveal a spectacular highly elongated structure consisting of two main bipolar lobes of unequal surface brightness extending over $28'' \times 3''$, separated by a dark lane of dust. The major axis is oriented along a position angle of 73°. The intensity ratio of the maximum peaks of the two lobes is $\simeq 3.5$ (southwest/ northeast) in the optical range, while the contrast is not so strong in the near-infrared, where the same ratio drops to ~ 2 . Assuming axial symmetry, the different brightness observed suggests shading of the northeast lobe by an equatorial disk of dust. The central star is detected very faintly in the optical images and appears much brighter in the nearinfrared, which is consistent with a very strong reddening.

The *HST* images reveal a clumpy structure in the outermost nebular regions. In addition, the main bipolar lobes appear to be superimposed on a central faint emission with a more elliptical shape extending over $\sim 10'' \times 5''$, probably the remnant of the circumstellar shell previously ejected during the AGB phase.

Figure 1 shows logarithmic-scale images of Hen 401 taken in the light of H α and the optical continuum around 6000 Å. They look very similar, and are also identical to the images obtained in other filters not shown in this figure. This suggests that the illuminated lobes emit as a consequence of dust scattering and are not yet photoionized.

The same figure (Fig. 1, bottom) also shows the logarithmic-scale H₂ continuum-subtracted image of Hen 401 at 2.122 μ m (*left*), together with the image containing the emission in the adjacent continuum at 2.15 μ m (*right*). In order to obtain the continuum-subtracted image, the adjacent continuum image was subtracted from the H₂ image after rescaling the continuum image by the appropriate factor using other stars in the field. While the continuum image looks very similar to the optical images, as expected if most of the emission is due to dust scattering, the H_2 continuum-subtracted image shows that there is intrinsic H_2 emission, coming mainly from the walls of the lobes. Unfortunately, the central part is dominated by noise caused by the subtraction of the bright central star, and therefore it is not possible to know whether or not H_2 emission is present in the central region of Hen 401.

3.2. Near-Infrared Spectroscopy

The near-infrared spectrum reveals a strong H₂ $1 \rightarrow 0$ S(1) emission at 2.122 μ m, which constitutes a new detection. This emission is 1.75 ± 0.10 times brighter than Br γ , which is also detected in emission. The ratio H₂/Br $\gamma \sim 1.75$ is similar to the values found in other very young PNs, although much higher ratios (H₂/Br $\gamma \geq 10$) are sometimes observed in more evolved H₂-dominated bipolar PNs (Guerrero et al. 1999).

So far, only a handful of objects in this short transition phase are known to show H_2 emission (Weintraub et al. 1998). Usually, this emission is interpreted as the signature of shock-excited gas in the circumstellar envelopes of these stars, but fluorescence might also play an important role in the origin of the emission observed.

The integrated fluxes of the H₂ 2.122 μ m and Bry 2.166 μ m lines are 7.63 × 10⁻¹² ergs s⁻¹ cm⁻² and 4.36 × 10⁻¹² ergs s⁻¹ cm⁻², respectively, with an estimated uncertainty of 10%. They are not corrected for extinction.

3.3. Optical Spectroscopy

Hen 401 shows a rich emission-line optical spectrum (see Fig. 2) characterized by the presence of strong and broad H I Balmer lines over a faint and reddened continuum, together with permitted emission lines of He I, Fe II, O I, and the infrared Ca II triplet (see Fig. 3), as well as forbidden emission lines of [Fe II], [N II], [O I], [S II], and [Ca II]. Within the uncertainties, no variability has been found in the optical spectra taken in 1990 and 1995, and both of them also look very similar to the spectrum published by Allen (1978). The extended spectrum does not show significant differences between the inner central region and the lobes.

Line identifications are given in Table 1. The identified transitions are denoted by their ionic species, followed by their Moore (1972) multiplet number in parentheses. More than one transition is listed in the case of blends or when

FIG. 1.—Logarithmic-scale HST images of Hen 401 obtained in the light of H α (top) and the broad WFPC2 F606W filter (middle). The images are displayed with two different contrast levels in order to show both the faint outer emission (left) and the bright central inner region (right). The bottom panel also shows the H₂ continuum-subtracted image of Hen 401 at $\lambda 2.122 \ \mu m$ (left), together with the image containing the emission in the adjacent continuum at 2.15 μm (right). Both images are also displayed in logarithmic scale.

identification is uncertain. When possible, line identifications have been tested by comparing empirical and theoretical line ratios. In Table 1, the absolute integrated fluxes, normalized to $H\beta = 100$, are not corrected for reddening, and they correspond to the spectrum taken in 1995. The mean absolute $H\beta$ flux not corrected for extinction was found to be 5.7×10^{-13} ergs cm⁻² s⁻¹. Associated errors are in the range of 10%–50%, depending on the strength of the line.

4. DATA ANALYSIS

4.1. Reddening

A first approximation to the reddening correction to be applied to the emission-line flux ratios observed can be obtained from an analysis of the H I Balmer decrement. Assuming case B recombination theory and a standard interstellar reddening law, we obtain a value of $E(B-V) = 1.3 \pm 0.4$, which implies a visual extinction of 4.0 ± 1.0 mag. This strong reddening would explain the red slope observed in spite of the fact that the central star is assumed to be of B type.

Deviations from case B predictions, however, are expected in high-density regions, where self-absorption effects and collisional excitation can be important. There are reasons to suspect, as we discuss below, that most of the emission lines we observe in Hen 401 are formed in a very high density environment. Even taking into account these effects, and following Köppen et al. (1982), we estimate that

FIG. 2.—Low-resolution optical spectrum of Hen 401. The ordinate scale corresponds to the lower spectrum. The upper spectrum is the result of expanding the lower one by a factor of 10. It is displayed shifted to show the weaker features.

for a stellar temperature of 20,000 K, a dilution factor of 10^{-2} and a moderate self-absorption with $\tau(H\alpha) = 3.7$, E(B-V) would be ~1.6, still compatible with the value derived above and with the extremely reddened shape of the continuum observed. Thus, we will adopt E(B-V) = 1.3 for the following calculations.

4.2. Physical Parameters

The electron density has been derived from analysis of several emission-line intensity ratios. The dereddened [N II] $\lambda 6584/5755$ ratio of 11.6 suggests that the emission originates in a high-density gas. Adopting an electron temperature of 10,000 K, this ratio implies a density of $\sim 2 \times 10^5$ cm⁻³; lower densities would correspond to higher temperatures (i.e., 4×10^4 cm⁻³ for $T_e = 20,000$ K). Smaller values of the electron density would imply unrealistically high electron temperatures.

The large [S II] $(\lambda 4068 + \lambda 4076)/(\lambda 6717 + \lambda 6731)$ ratio also corresponds to a high-density regime, where its value is weakly dependent on the temperature, and can also be used to estimate the electron density in Hen 401. From the observed ratio of 8.1, a value of $n_e \simeq 2 \times 10^5$ cm⁻³ is again derived [$n_e = (1.6-2.3) \times 10^5$ cm⁻³ for $T_e = (2-1) \times 10^4$ K].

FIG. 3.—Section of the low-resolution optical spectrum of Hen 401 showing the strong O I emission at λ 8446 Å and the Ca II infrared triplet.

In contrast, using the standard [S II] $\lambda 6717/\lambda 6731$ doublet ratio to estimate the density, we obtain a much lower value of only 700 ± 100 cm⁻³. This value cannot be reconciled with the much higher densities derived above, and implies that the auroral forbidden emission lines are formed in a region of much higher density, where the nebular lines are collisionally deexcited.

4.3. Fluorescence Excitation

Among the permitted lines, the O I 8446 Å emission is the strongest feature observed in Hen 401, apart from H α . Several other permitted O I emission lines are detected in our spectra and identified in Table 1 as due to O I at 7002, 7254, 7774, and 7990 Å. From an analysis of the relative intensities of the O I lines and the dereddened O I λ 8446/H α ratio, we conclude that Ly β fluorescence, combined with continuum fluorescence (direct excitation by radiation coming from the central star), are needed to explain the values observed, while recombination and collisional excitation effects do not seem to be important.

4.4. A High-Density Contrast

The detection of the strong infrared Ca II triplet at 8498, 8542, and 8662 Å, and the [Ca II] lines at 7290 and 7324 Å, supports the presence of a dense, warm neutral region of a very high density in the core of Hen 401, where Ca is singly ionized and H is predominantly neutral.

At these high densities, the resonance Ca II H and K lines become optically thick, enhancing the triplet emission. The Ca II/[Ca II] ratio sets important limits to the density and optical depth of the emitting region. Following the calculations made by Ferland & Persson (1989), we derive a density in excess of 10^9 cm⁻³, but not higher than 10^{10} cm⁻³, since the [Ca II] emission lines would then be collisionally deexcited.

The next constraint is imposed by the fact that the Ca II infrared triplet is optically thick, as deduced from the internal line ratios observed ($\lambda 8542/\lambda 8498 = 1.38$; $\lambda 8662/\lambda 8498 = 1.27$). Following Persson, McGregor, & Campbell (1988), we derive a lower limit of 30 to the optical depth in the Ca II emitting region at 8542 Å.

The rich iron spectrum observed is also consistent with the presence of a high-density contrast in the inner core of Hen 401. This is concluded from the simultaneous detection of several multiplets of permitted and forbidden singly ionized iron identified in the spectrum and listed in Table 1.

The permitted Fe II lines arising from upper states with energies above 11.3 eV, such as those at 8926, 9177, and 9203 Å, can be originated by $Ly\alpha$ fluorescence (see Hammann & Simon 1988 for a discussion of the mechanism of excitation of these lines in MWC 349A, which displays a very similar Fe II spectrum). Those corresponding to upper levels between 5 and 7 eV, most of them in the ranges 4180-4600 Å, 4900-5400 Å, and 6300-6500 Å, and the individual lines at 7711, 7866, and 9997 Å, can be excited by collisions from lower levels, radiative decays from upper levels, or continuum fluorescence. All these emission lines are optically thick, as is evident from the relative intensities of lines belonging to the same multiplet, suggesting that they are formed in a very high density environment, which might be the same region in which the infrared Ca II triplet lines are formed.

On the other hand, the forbidden [Fe II] emission lines would be collisionally deexcited in regions where electron

λ (Å)	Identification	$I (H\beta = 100)^{a}$
3722	[О п] (1F) 3726.0, 3728.8	7.1
3884	He I (2) 3888.6, H ₈ 3889.1	3.4
3965	H_{ϵ} 3970.1	9.5
4070	$[S \Pi]$ (1F) 4068.6, 4076.3	3.0
4108	H0 4101.7 Form (28) 4122 6 (27) 4128 7 Sim (2) 4128 1	10.4
$4123 + 4129 \dots$ 4178	$\Gamma \in \Pi$ (20) 4122.0, (27) 4120.7, SI II (3) 4120.1 [Fe II] (21F) 4177.2 Fe III (27) 4173.5 (28) 4178.9	4.0
4234	Fe π (27) 4233.2. [Fe π] (21F) 4231.5	2.5
4245	[Fe II] (21F) 4244.0, 4244.8	2.8
4278	[Fе п] (21F) 4276.8, Fe п (27) 4273.3, (32) 4278.1	1.4
4287	[Fе п] (7F) 4287.4	4.2
4294	Fe II (28) 4296.6	1.8
4304	Fe п (27) 4303.2, [Fe п] (21F) 4305.9	d
4323	[Fе п] (21F) 4319.6	d
4342	Hy 4340.5, [Fe II] (21F) 4346.8	22.2
$4353 + 4360 \dots$	[Fe II] (21F) 4340.8, (/F) 4359.3, 4352.8, 4358.4, Fe II (2/) 4351.8 Fe II (27) 4395.4 (22) 4384.2	d 27
4387 4417	$\Gamma \in \Pi(27)$ 4303.4, (32) 4304.3 [Fe Π] (6F) 4414 5 4416 3 (7F) 4413 8 Fe $\Pi(27)$ 4416 8	2.7
4456	[Fe π] (7F) 4452 1 (6F) 4457 9	d.
4521	Fe Π (37) 4515.3, 4520.2, (38) 4522.6	4.3
4555	Fe II (37) (38) 4555.9, 4549.5	4.5
4584	Fe II (38) 4582.8, 4583.8	5.7
4631	Fe II (37) 4629.3	3.7
$4659 + 4664 \dots$	Fe II (43) 4657.0, (44) 4663.7, (37) 4666.8, [Fe II] (4F) 4664.4	5.9
4703+4715	[Fe III] (3F) 4701.3, He I (12) 4713.1, 4713.4	1.8
4732	[Fe II] (4F) 4728.1, (3F) 4729.8, Fe II (43) 4731.4, [Fe III] (3F) 4733.9	d
4810	[Fe II] (20F) 4814.5	2.0
4005	пр 4001.5 Бе п (42) 4923 9	7.0
4995	Ге п (42) 4923.9 Fe п (36) 4993.8	6.2
5008 + 5020	Fe II (42) 5018.4, [Fe II] (20F) 5005.5, 5020.2	17.4
5101	Fe п (35) 5100.7	2.5
5109	[Fе п] (18F) 5108.0, (19F) 5111.6	2.5
5134	Fe II (35) 5132.7, 5136.8	1.4
5160	[Fe п] (18F) 5158.0, (19F) 5158.8, (35F) 5163.9, Fe п (35) 5161.2	10.0
5171	Fe II (42) 5169.0, Fe II (35) 5171.6	7.1
5199	Fe II (49) 5197.6	5.8
5237	Fe II (49) 5234.0 Eo II (41) 5284.1 [Eo II] (16E) 5280.2 (25E) 5282.1	5.1 d
5280	Fe II (41) 5264.1, [Fe II] (10F) 5260.3, (55F) 5265.1 Fe II (48) 5316.6 5316.8	u 150
5328	Fe π (49) 5325.5	1.5
5336	Ге п] (19F) 5333.6. Fe п (48) 5337.7	5.9
5365	Fe π (48) 5362.9	4.4
5377	[Fе п] (19F) 5376.5	2.2
5413	[Fe II] (16F) 5413.3, (17F) 5412.6, Fe II (48) 5414.1	3.3
5426 + 5435	[Fе п] (18F) 5433.0, Fе п (49) 5425.3	6.9
5478	$[Fe \Pi] (34F) 5477.25$	2.1
$5500 + 5507 \dots$	[Fe II] $(1/F)$ 3495.8, [Fe II] 3006.0 [Fe II] $(17E)$ 5537.2, (24E) 5537.6, Fe II (55) 5524.0	4.3
$5529 + 5550 \dots$ 5746 ± 5756	[Fe II] (1/F) 3327.3, (34F) 3327.0, Fe II (35) 3334.9 [Fe II] (34F) 5747 (1) [N II] (3F) 5754.8	12.3
5877	He I (11) 5875 7	14.5
5979	Si II (4) 5979.0	2.5
5992	Fe II (46) 5191.4, O I (44) 5991–5995	4.0
$6084 + 6129 \dots$	Fe II (46) 6084.1, 6113.3, 6129.7	d
6149	Fe II (74) 6147.7, 6149.2	d
6239	Fe п (74) 6238.4, 6239.9	12.1
6249	Fe II (/4) 6247.6, Fe II 6247.6	d
6300	[O I] (IF) 6300.2 Ea y 6218.0	24.0
031/ 6347	ге II 0516.0 Si II (2) 6347 1	5.5 A
6365	ΓΟ 1] (1F) 6363.9 Si π (2) 6371.4 ΓΝί π] (8F) 6365.5	u 10.6
6384	Fe Π 6383.7. 6385.5	3.1
6417	Fe II (74) 6416.9	3.5

TABLE 1 Emission Lines Identified in the Optical Spectrum of Hen 401

_

TABLE 1—Continued

λ (Å)	Identification	$I (H\beta = 100)^{a}$
6427	Fe II (40) 6432.6	8.9
6456	Fe п (74) 6456.4	9.9
6493	Fe II 6491.2, 6493.0	4.8
6516	Fe п (40) 6516.1	8.2
6563	На 6562.8, [N II] (1F) 6548.1	1318.0
6581	$[N \Pi]$ (1F) 6583.6	61.2
000/	[N1 II] (2F) 0008.1	1.4
6717	$\Gamma = 1 (40) 0078.1$	5.0 1.8
6731	[S II] (2F) 6730.8	1.8
7001	[Fe II] (15F) 7005, O I (21) 7002.1	6.1
7067	He I (10) 7065.3	10.9
7156	[Fe II] (14F) 7155.1	11.1
7257	[Ni II] (7F) 7256, O I (20) 7254.4	d
7284	[Са п] 7291.5, Не 1 (45) 7281.3, Fe п (72) 7289	7.5
7320	$[Ca \Pi]$ (1F) 7323.9, $[O \Pi]$ (2F) 7320–7330	28.0
7412	[N1 II] (2F) / 3 / .8, [Fe II] (14F) / 388.2	6.5+4.9 67
74127464	[INI II] (2Г) 7411.0 [Ее н] (14Е) 7452 5. Ее н (73) 7462 6	0.7 77 ± 37
7492 ± 7508	Геп 74956 Fe п (73) 75153	46+85
7528	Fe II 7533.4	2.3
7706	Fe п 7711.4, Fe п 7711.7	10.8
7770	О і (1) 7774	5.7
7861	Fe п 7866.5	5.3
7874	Мд п (8) 7877.1	1.4
7898	Мд п (8) 7896.4	3.6
7912	Fe II 7917.8	2.6
/968	Fe II /969.0,/9/0.4, Fe II /969.0	5./
7979	$\begin{array}{c} Fe \parallel 7975.0, Fe \parallel 7981.9 \\ O \pm 7990.0, Fe \parallel 1181.9 \\ Te \parallel 1181.9 $	8.4 2 Q
8123	Mg π 8115 2 8120 4	2.9 d
8217	Mg II 8214.0	9.7
8234	Мд п 8233.2, 8234.6	2.7
8245	Fe п 8250.4	4.7
8286	Fe п 8287.6, 8287.9	23.6
8306	Fe п 8305.7, [Ni п] (2F) 8303.3	22.1
8355	Fe п 8352.8, Fe п 8357.2	4.0
8428	Fe II 8423.9 (4) 8446 (4)	d 1615
8445	O I (4) 8440, H I Pall 8438.0, Fe II 8430.8	101.5
8402	$\Gamma_1 \Gamma_2 \pi_1 = 0.0000000000000000000000000000000000$	14.2
8538	Ca π (2) 8542.1. H I Pa15 8545.4	93.0
8594	H I Pa14 8598.4	15.5
8617	[Fe π] (13F) 8617.0	d
8661	Са п (2) 8662.1, Н г Ра13 8665.0	95.5
8722	Fe п 8722.4	13.0
8746	H I Pa12 8750.5	19.0
8802	Fe II 8806.2	d
8838	H I Pall 8862.8	20.8
8895	[ГС II] (13Г) 8891.9 Бел 80267	u 13.6
9011	Н т Ра10 9014 9	18.9
9066	С і (3) 9061.5. 9062.5	20.7
9088	C I (3) 9088.4	4.2
9119	Fe п 9122.9	8.0
9172	Fe п 9175.8, 9178.0	10.2
9200	Fe II 9196.9, Fe II 9203.1	17.0
9229	Н г Ра9 9229.0, Мд п (1) 9218.2	33.0
9247	Мд п (1) 9244.3, Fe п 9251.7	d
9524	re II 9526.8 Ц - D-10 0546 0	12.8
9540	П 1 Рато 9340.0 Болг 0007 6	21.9
9990 10041	го п 3337.0 Н т Рад 10049.4	40./ 82 K
10041	11 1 1 4/ 10077.7	05.0

^a d: detected, but very faint.

densities exceed a critical value. Thus, we estimate that the [Fe II] spectrum should arise in regions with $n_e \leq 10^6$ cm⁻³.

5. DISCUSSION

Altogether, our results confirm the identification of Hen 401 as a new bipolar reflection nebula in the proto-PN stage. The bipolar morphology, as well as the other physical properties derived above, are very similar to those found in other well-known proto-PNs and young PNs, such as CRL 2688, M1-92, M2-9, or the recently discovered IRAS 17150-3224 and IRAS 17423-1755.

The overall morphology of Hen 401 as revealed by the HST images is remarkably similar to that of M2-9 (Balick, Icke, & Mellema 1997; Schwartz et al. 1997), while the optical spectrum of Hen 401 closely resembles the spectrum of M1-92 (Trammell, Dinnerstein, & Goodrich 1993; Solf 1994), with strong Balmer emission and a combination of permitted and forbidden emission lines of iron and other atomic elements superimposed on a red continuum.

A very steep density gradient must be invoked to explain the simultaneous detection of spectral lines formed under very different density conditions (from 1000 cm^{-3} up to 10^9 cm^{-3}). As suggested by the available polarization data (Scarrot & Scarrot 1995), the emission observed in Hen 401 could naturally be explained by the presence of a dense circumstellar disk, which would be responsible for the strong collimation of the outflow and for the dark lane observed in between the two main lobes.

The same scenario has been proposed to explain the overall morphology and the spectrum of M1-92 (Trammell et al. 1993), where the continuum emission and part of the permitted emission observed is interpreted as light reflected by dust scattering in the lobes, while the forbidden line emission and the remainder permitted emission would be produced locally and probably due to shocks (Solf 1994).

Shocked knots of material in the light of [S II] and [O I] have been found along the bipolar axis of many of these bipolar proto-PNs and young PNs, such as M1-92 itself (Bujarrabal et al. 1998) or IRAS 17423-1755, for which ground-based spectroscopy also revealed a strong emission in the light of [S II], [N II] and [O I] (Riera et al. 1995), with ratios consistent with shock excitation.

In the case of Hen 401, an inspection of the HST images taken in different filters, as we have already mentioned, does not reveal significant morphological differences. Thus, the extended emission observed must be mostly due to dust scattering and not to intrinsic photoionization of the bipolar lobes. Sahai et al. (1999) reports the tentative detection of two small shock-emitting blobs located along the nebular axis about 6".2 from the central star at a $3-5 \sigma$ level. However, this cannot be confirmed by our two-dimensional spectroscopy, where no variations are found between the spectrum of the central regions and that of the lobes.

The strong near-infrared excess reported in García-Lario et al. (1997) and the broad Balmer lines detected in the spectra of Hen 401 suggest that mass loss might still be active. Similar non-Gaussian profiles with extended wings in the Balmer lines, which in the case of H α extend up to 1600 km s⁻¹ with respect to the velocity of the emission peak in Hen 401, have also been observed in other proto-PNs and young PNs. M2-9 shows velocities in excess of 1200 km s⁻¹ (Torres-Peimbert & Arrieta 1998), and the spectacular IRAS 17423-1755 displays a wide H α profile

with a redward edge shifted 1090 km s⁻¹ (Riera et al. 1995). In all cases, the broad profiles found are interpreted as indicating mass outflows.

The detection of H_2 emission in another bipolar proto-PN where photoionization has not yet taken place confirms the results previously obtained by Weintraub et al. (1998). They suggest that H_2 emission occurs at an intermediate stage after the generation of the bipolar structure and before photoionization transforms a proto-PN into a PN.

With the available information, however, it is difficult to determine whether the origin of the H₂ emission observed lies in continuum fluorescence or shocks induced by high-velocity outflowing material. In a recent study of a sample of bipolar PNs showing H₂ emission carried out by Guerrero et al. (1999), it was found that very young PNs are usually dominated by Br γ emission, while more evolved PNs show very strong H₂ emission at 2.122 μ m, sometimes much stronger than Br γ . Fluorescence seems to be the main mechanism that excites molecular hydrogen in the high-density inner regions of the youngest PNs. In contrast, this emission is found to be concentrated in the walls of the lobes and in the ring of gas collimating the outflow in highly evolved PNs, where it is interpreted as shock-excited emission.

Additional spectroscopic measurements of other diagnostic H_2 lines would be needed to unambiguously establish the nature of the emission observed in Hen 401 by comparing the line ratios observed with excitation models. The detection in the optical spectrum of other emission lines that probably originate from continuum fluorescence, together with the apparent lack of shock-excited optical emission in the lobes, makes the fluorescence option more attractive a priori. However, as we have seen, shock-excited H_2 emission is expected to be concentrated in the walls of the lobes, as is observed in the case of Hen 401.

6. CONCLUSIONS

Based on a combination of ground-based optical and near-infrared spectroscopy with optical and near-infrared HST images, we confirm the identification of Hen 401 as a bipolar proto-PN surrounded by a highly elongated nebula.

Consistent with what has previously been reported in the case of some other well-known bipolar proto-PNs and young PNs, emission lines formed under very different density conditions are detected in the optical spectrum of Hen 401, indicating that a high-density contrast must exist very close to the central star. This, together with the strong obscuration observed in the waist between the main bipolar lobes, strongly suggests the presence of a thick circumstellar disk, which might be responsible for the collimation of the outflow observed.

The strong near-infrared excess found associated with Hen 401 and the broad H α profile detected in our spectra indicate that mass loss might still be active.

From the similar morphology at all wavelengths and from our optical spectroscopy, we conclude that the emission observed is mainly scattered light, probably originating in the fluorescence-excited inner region of the circumstellar disk, and not intrinsic photoionization or shock-excited emission.

However, strong molecular hydrogen emission is also detected in Hen 401, concentrated in the walls of the lobes, an effect that is usually attributed to shocks. Unfortunately, with the available information, it is not yet possible to determine whether the origin of the H_2 emission observed is continuum fluorescence or shocks induced by high-velocity outflowing material.

Finally, our results confirm that the onset of the H_2 emission occurs in proto-PNs after the bipolar structure has developed, but before photoionization takes place.

PB97-1435-C02-02 from the Spanish Dirección General de Investigación Científica y Técnica (DGICYT). A. R. acknowledges partial financial support through grant PB95-0066 from the Spanish DGICYT. We thank Gail Conway for her contribution to the IRSPEC data reduction.

This work was funded through grants PB94-1274 and

REFERENCES

- Allen, D. A. 1978, MNRAS, 184, 601
- Allen, D. A., & Glass, I. S. 1975, MNRAS, 170, 579
- Balick, B., Icke, V., & Mellema, G. 1997, Hubble Catches Up with a Blue Straggler Star (STScI press release STScI-PR97-35) Bujarrabal, V., Alcolea, J., Sahai, R., Zamorano, J., & Zijlstra, A. A. 1998,
- Å&A, 331, 361
- Bujarrabal, V., & Bachiller, R. 1991, A&A, 242, 247 Ferland, G. J., & Persson, S. E. 1989, ApJ, 347, 656
- García-Lario, P., Manchado, A., Pych, W., & Pottasch, S. R. 1997, A&AS, 126, 479
- Hammann, F., & Simon, M. 1988, ApJ, 327, 876 Guerrero, M., Villaver, E., Manchado, A., García-Lario, P., & Cernicharo, J. 1999, ApJ, submitted Köppen, J., Finkenzeller, U., Mundt, R., & Beltrametti, M. 1982, A&A,
- 112, 174
- Loup, C., Forveille, T., Nyman, L. A., & Omont, A. 1990, A&A, 227, L29 Moore, C. E. 1972, A Multiplet Table of Astrophysical Interest
- (Washington: National Bureau of Standards)

- Parthasarathy, M., & Pottasch, S. R. 1989, A&A, 225, 521
- Persson, S. E., McGregor, P. J., & Campbell, B. 1988, ApJ, 326, 339 Riera, A., García-Lario, P., Manchado, A., Raga, A., & Pottasch, S. R. 1995, A&A, 302, 137
- Sahai, R., Bujarrabal, V., & Zijlstra, A. 1999, ApJ, 518, L115
- Sanduleak, N., & Stephenson, C. B. 1973, ApJ, 185, 899
- Scarrot, S. M., & Scarrot, R. M. J. 1995, MNRAS, 277, 277
- Schwartz, H. E., Aspin, C., Corradi, R. L. M., & Reipurth, B. 1997, A&A, 319, 267
- Silva, A. M., Azcárate, I. N., Poppel, W. G. L., & Likkel, L. 1993, A&A, 275, 510 Solf, J. 1994, A&A, 282, 567
- Stephenson, C. B. 1971, Publ. Warner & Swasey Obs., 1(4), 4
- Torres-Peimbert, S., & Arrieta, A. 1998, Rev. Mexicana Astron. Atrofis., 7, 171
- Trammell, S. R., Dinnerstein, H. L., & Goodrich, R. W. 1993, ApJ, 402, 249 Weintraub, D. A., Huard, T., Kastner, J., & Gatley, I. 1998, ApJ, 509, 728